US010409560B1

a2y United States Patent (10) Patent No.: US 10,409,560 B1
Bebee et al. 45) Date of Patent: Sep. 10, 2019

(54) ACCELERATION TECHNIQUES FOR (56) References Cited

GRAPH ANALYSIS PROGRAMS |
U.S. PATENT DOCUMENTS

(71) Applicant: Amazon Technologies, Inc., Seattle, 8,209,702 BL* 6/2012 Roytman GOG6F 9/5027
WA (US) 718/106
8,387,005 B1* 2/2013 Ghosh-Roy GO6F 8/34
: 717/109
(72) Inventors: Bradley R. Bebee, Washington, DC 8.022.559 B2* 12/2014 Charles ..o, GOG6K 9/6224
(US); Bryan B. Thompson, 345/440
Greensboro, NC (US); Thomas James 9,195,445 B1* 11/2015 Shakeri GOG6F 9/5044
Lewis, Washington, DC (US); Olaf 9,420,027 B1* 82016 Elsner HO4L 65/604
. ¢ ’ 9,501,304 B1* 11/2016 Powerscc......... HO41. 67/34
Hartig, Bremen (DE) 0,678,726 BL* 6/2017 Massaguer GOGF 8/35
2009/0138862 Al* 5/2009 Tanabe GO6F 8/456
(73) Assignee: Amazon Technologies, Inc., Seattle, 717/149
WA (US) 2009/0319486 Al* 12/2009 Surlaker GO6F 16/2329
2010/0299657 Al1* 11/2010 Barua GO6F 8/456
717/136
(*) Notice: Subject to any disclaimer, the term of this 2010/0325608 Al* 12/2010 Radigan GOOF 8/456
patent 1s extended or adjusted under 33 2012/0084789 Al* 4/2012 Iori G06F7é/?5/(l)gg

OTIO o riiiiiiiiiiriinies
U.S.C. 1534(b) by 136 days. T19/105

(Continued)

(21) Appl. No.: 15/354,981

OTHER PUBLICATTONS

(22) Filed: Nov. 17, 2016 | | |
Systap, “The bigdata RDF Database”, Technical Whitepaper, Systap,

LLC, May 29, 2013, pp. 1-25.

Related U.S. Application Data (Continued)
(60) Provisional application No. 62/256,893, filed on Nov. P‘V”f? ary Examn;zer — Chat C Do
18, 2015. Assistant Examiner — Douglas M Slachta

(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(51) Int. CI. (57) ABSTRACT

G06r 5/30 (2018.01) Source code of a graph analysis program expressed in a

GO6L 5/71 (2018.01) plattorm-independent language which supports linear alge-
(52) U.S. Cl. bra primitives 1s obtained. An executable version of the
CPC ., GO6F 8/311 (2013.01); GO6F 8/71 program 1s generated, which includes an invocation of a
(2013.01) function of a parallel programming library optimized for a
(58) Field of Classification Search particular hardware platform. A result of executing the
CPC e, GO6F 8/311; GO6F 8/71 program 1s stored.
See application file for complete search history. 22 Claims, 9 Drawing Sheets

Obtain (e.q., via programmatic interface of & graph analtics service) source code of
program for graph analysis, &.¢., written in & highdevel platform-independent functional
programming language which supports Ingar algebra primitives; also, obtain Indication of
input graph data set 701

!

Opfionally, transform input graph data format’data structure— e.g., from Resilient
Distributed Datasets (RDD), Resource Description Framework {RDF) or data frames to
Compressed Sparse Column [CSC) or Compressed Sparse Row (CSR) 704

l

Parse source code and generate abstract syntax tree, e.0., with nodes representing lingar
alpebra primitives and user-defined functions (UDFs) 707

Y
From abstract syntax tree, generate task dependency graph, whose nodes represent

potentially parallelizable operators such as vector, matrix, or matrix-vector operations, as
well as any needed sequentisl processing sections 710

'

Optionally, save {e.q., for debugging or re-use) representations of infermediate arfifacts
such as dependency graph andior abstract syntax tree 713

:

Select/determine execution platfiorm to be used {e.q., based on available platforms of a
pocl of GPU-based servers, or based on parameters supplied by client) 716

'

(Generate executable representation of program, comprising compute kemeals optimized/
tuned for execution platform, code for UDFS utilizing permitted sets of data types, elc.; if
mult-node platiorm is selegted, include Invocations of inter-node sommunication
primitives in the executable representation 719

!

Initiate exacution of program on salected platform, retrigve results (including, or sxample,
performance data comesponding to individual tasks or oparators, communication
overheads, etc.) and store or transmit results to specified destination {22

US 10,409,560 B1
Page 2

(56)

2012/0096445

2012/0166772

2013/0036409

2013/0298130

2013/0332937

2014/0019949

2014/0189665

2014/0359563

2014/0380322

2016/0092181

2016/0188656

20
20
20

16/0314025
17/0024192
| 7/0032487

20

| 8/0089002

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Nl

¥ w % %

References Cited

4/2012

6/2012

2/2013

11/2013

12/2013

1/2014

7/2014

12/2014

12/2014

3/2016

6/2016

10/201
1/201
2/201

3/201

O ~1 ~1 O

U.S. PATENT DOCUMENTS

Berg ..o, GOG6F 9/44547
717/140
Ringseth GO6F 8/436
712/220
Auerbach GO6F 8/456
717/140
Pienaar GOGF 9/4887
718/102
Gasteroeeeeenn, GO6F 9/5072
718/104
Craymer GO6F 8/443
717/150
Hongccooeevn GOO6F 8/443
717/151
XIC toviriiiiiiiiieneeenniiinn, GO6F 8/34
717/106
Aillamaki GO6F 9/4843
718/102
Rodgers GO6F 8/447
717/145
Ekanadham GO6F 9/547
707/755
McGarry GOO6F 9/542
Hong GO6F 9/45512
Ashart GO6T 1/20
X1 v, GO6F 9/5094

OTHER PUBLICATIONS

Wikipedia, “CUDA”, Retrieved from URL: https://en. wikipedia.

org/wiki/CUDA on Oct. 12, 2016, pp. 1-14.

Cyrnl Zeller, “NVIDIA Turtorial CUDA”, Disponibile 1n rete:
http://people.maths.ox.ac.uk/~gilesm’hpc/NVIDIA/NIVIDIA CUDA
Tutorial No NDA Apr08. pdf, 2008, pp. 1-50.

Mohammadtaghi Hajiaghayi, et al., “Hierarchical Graph Partition-
ing”’, Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures, ACM, Jun. 2014, pp. 51-60.
Wikipedia, “OpenCL”, Retrieved from URL: https://en.wikipedia.
org/wik1/OpenCL on Nov. 10, 2016, pp. 1-16.

Sean Treichler, et al., “Realm: An Event-Based Low-Level Runtime

for Distributed Memory Architectures”, Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation,
ACM, Aug. 2014, pp. 263-276.

Vyay Srinivas Agneeswaran, PhD, et al., “Paradigms for Realizing
Machine Learning Algorithms”, Big Data vol. 1 No. 4, Dec. 2013,
pp. 207-214.

Zhisong Fu, et al., “Parallel Breadth First Search on GPU Clusters”,
In Big Data, 2014 IEEE International Conference, IEEE, Oct. 2014,
pp. 110-118.

Huan Zhou, et al., “DART-MPI: An MPI-based Implementation of
a PGAS Runtime System™, Proceedings of the 8th International

Conference on Partitioned Global Address Space Programming
Models, ACM, 2014, pp. 1-11.
U.S. Appl. No. 15/587,313, filed May 4, 2017, Bradley R. Bebee, et

al.

* cited by examiner

U.S. Patent

System 100

GPU platforms 162

SOC accelerator
platforms 165

Sep. 10, 2019 Sheet 1 of 9

' '
' '
E Graph analysis programs 120 (e.g., in platform- E
: independent functional programming language :
: supporting linear algebra primitives) :
f '
B 9

Program analyzer/translator 130

Execution plan generator 140 (e.g., JNI interface layer)

Execution coordinator 150

CPU-only platforms
164 (e.q., for testing/

US 10,409,560 B1

Hybrid
CPU+GPU

platforms 163

Execution platforms 160

FIG. 1

debugging)

FPGA platforms 166

U.S. Patent Sep. 10, 2019 Sheet 2 of 9 US 10,409,560 B1

»» Embedded “GPALang’

3+ graph analysis

|
|
|
|
|
)
|

19 .

s algorithm source code :
|
|
|
|
»
|

initial abstract syntax
free 230

" 212

Transformed abstract
syntax tree 232

Initial dependency graph
of schedulable tasks 240
Parallel programming
model library 210 (e.q.,
CUDA kernels for various

operators) Transformed

dependency graph 242

F‘-'ﬂ"""‘-‘ﬂﬂ‘-“""‘
L B R N o8 N N B N E B N BN B X X N E E B N N B N R N K N

Executable
representation 250
(e.9., using hardware
platform-specific tuned
kernels and
optimizations)

Parallel-programming
platform 262

FIG. 2

U.S. Patent Sep. 10, 2019 Sheet 3 of 9 US 10,409,560 B1

Source code 310

s Abstract syntax tree 351 . . uo

Linear algebra

Assignment 311A Assignment 3118
Linear aigebra primitive \/ariable
Variable 314A 317A (e g SPMV) 3148 primitive
317B (e.g., MAP)
Value .
303 Variable
314C

ser-defined function (UDF}
320

rﬂﬂ“ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂ“ﬂﬂﬂﬂﬂﬂ“ﬂﬂﬂﬂﬂﬂﬂ“
L N B N R E N B N B B ¥ 3 N N ¥N 3 32 2 N E R 3% B N N N B 3 N N 3 3 2 3N R B

Parallelizable task set 3598 ::

Fﬂ

rﬂ“““ﬂﬂﬂﬂ“ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ“ﬂﬂﬂﬂ““ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Task dependency graph 361

U.S. Patent Sep. 10, 2019 Sheet 4 of 9 US 10,409,560 B1

Serial execution section 420A

Host CPU thread 430

F-.'-'---'-
. B N R N B B B N B N N B N N

s Platform-optimized parallel execution section 440A

: '

- :

T Sttty Parallel platform ¢

gosccessecsce- ' + iParallelkernel s (e.g., GPU) threads ¢

y Platform- 4 E ! 426A : 450 :

; indepet‘]dent graph - ' - - - : :

+ analysis program ; :
§

Pa - :
' ’

RN — l. --------- cecccccccna ottt cctctcttccean --‘:

.................... S

+ Serial execution section 4208 :

8

. ' Serial code : :

s 14258 : :

N ! '

: :

. "

L :

s Platform-optimized parallel execution section 4408

Parallel platform
threads 450

U
Q)
-
Q)
D
N
92
-
—
&,

FIG. 4

US 10,409,560 B1

Sheet 5 of 9

Sep. 10, 2019

U.S. Patent

“ﬁﬂ-"ﬂ--ﬂ--ﬂ-'-‘--‘_‘-‘-‘_--_-‘-'-'-‘-‘-----‘ﬂ_‘-'-ﬂ-'-‘-‘

G Ol
085 Swalo

185 uosewsio! | [sas vogewsom

239G 9p0d 9%INn0s
weJbo.d sisAjeue ydeio

i 8 X B 3 B A E B X 32 X N B E N E B X 2 N E E 3N B L B X R 2 B B K B X N R L B B A B R N R Lk B B N B R N K L A X X K X R 3 R N 2 N X B 3 B X 2 N X N R B 3 N N 3 32 X R
"' _eaee9eeDeDeS o 4 e . e s e e - B8 e e e ee s L ™
|

" 07C S9oeysul onewwelbold ;

S2URLIONSY buibBngaq #3G SINsay

WE YT R RN REYYEERFEYETYRYEYRERYER YRR R RN YWY

‘l'l‘l‘l"'ll‘l'l‘l"ll'll""'lll'l“

$7G Slawiojsues) weiboid

J7G S10}09]9S WONR|d

¢7¢ sioeisuen | VA4S
Jewloj elep ydelssy | | SIOJRUIPIOOD UORNISXT

ﬂﬂ‘ﬂ‘ﬁ‘ﬂﬂ‘ﬂﬂﬂ‘ﬂﬂﬂ‘I
“ﬂ---'-----ﬂ-_ﬂﬂ'

GG 90INIBS SanAjeue ydelo)

"l‘l‘"""""‘l""""""""_"l.‘

L R N R N N K A E_N_ & N N X B N B 3 2R B X B X _E_JN B N 8 N N N _J B N & N ™ L B R N g N R N N R R B B 3 K N _ & R B _E B 2 B B N _E N B _E_ & R _B_ N 8 N _JN J§

(Z/\ JOpUdA WO} SNdD/sNdS) buisn

£yS Aloyisods “B-0) G7¢C |00d suuogeld 7y imoslydly

vs

10ejie sonhjeue ydess | | Aioysodas ejep ydeis

(1A JOpuaA woll sNdD/sndo buisn
“0'9) Y76 |00d swiofeld |y 2Inj0slyoly

0FG 901n8s Bunndwion

l""'""“"“"""“"""l"“"_‘,

LT T E X F S X E Y T Y X
YT ¥ T I YT YT T YN YT EYT YT T .

OFG 99InI9S 9bei0lS

"‘.""“‘"“"_""""""‘""“'_‘_

'ﬂﬂﬂ'ﬂﬂﬂﬁﬂ'ﬂﬂﬂﬂﬂﬂ~
"“““ﬁ‘ﬂ“““‘

01G YIOMIdU JBPIAOI4

‘ﬂﬂ'ﬂﬂﬂﬁﬂﬂﬂﬁﬂﬂﬂ'ﬂﬂﬂﬂﬂﬂﬂﬂ'ﬂﬂﬂﬂ_ﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂ_ﬂ'

US 10,409,560 B1

Sheet 6 of 9

Sep. 10, 2019

U.S. Patent

9 9l
JT T A T TTTTTTTIIIEEETT
" :
; Gpp0 Sjeulsy Jojeado J0joaA XLUIB :
: ' Pt b el bl il S
' ' i xS
" acpg Sjpulay Joelado xuepy : m
; '
’ '
" acr0 Sieusey Jojeado JOJosp : m
) ' '
’ ' '
¢ (7 @injoauyole : ¢ —
' ' sioyelado J0j0aA-X1Ie
s Joj paziwndo “ousdp Buisn “6°8) GOFT SlouIeY : " VL9 SINEIRHD INISXIAEN

!'l_‘__““‘ll!_‘.‘““_“i““““i““““

¢0 sioelado xuep

Z¢0 Slojesado 10j08A

L T TN F Y YT YR Y Y YR YYY Y NN

ra B B N X N B B N N

00 18$ Jojetado papoddng

Y Y P Y Y YT I Y I Y Y YT Y Y YN ST YT YT Y P R T YT YT YT Y

ViPO Slouloy Jojelado J0j0aA XL

--"'ﬁﬂﬂﬂ'

VErO S[auiay Jojesado Xujep

VZp0 Siausay Joyesado Jojoap

(1Y @njo8uyole
JO} paziwndo ‘sppussy yano “be) yoyg sisuisy

’ﬂﬂ"ﬂ‘_-’-ﬂﬂﬂﬂ"ﬂﬂﬂﬂﬂ‘

‘--_ﬂ"ﬁﬂﬂ

U.S. Patent Sep. 10, 2019 Sheet 7 of 9 US 10,409,560 B1

Obtain (e.q., via programmatic interface of a graph analytics service) source code of
program for graph analysis, e.q., written in a high-level platform-independent functional
programming language which supports linear algebra primitives; also, obtain indication of
input graph data set 701

Optionally, transform input graph data format/data structure— e.qg., from Resilient

Distributed Datasets (RDD), Resource Description Framework (RDF) or data frames to
Compressed Sparse Column (CSC) or Compressed Sparse Row (CSR) 704

Parse source code and generate abstract syntax tree, e.g., with nodes representing linear
algebra primitives and user-defined functions (UDFs) 707

From abstract syntax tree, generate task dependency graph, whose nodes represent
potentially paralielizable operators such as vector, matrix, or matrix-vector operations, as
well as any needed sequential processing sections 710

Optionally, save (e.q., for debugging or re-use) representations of intermediate artifacts
such as dependency graph and/or abstract syntax tree 713

Select/determine execution platform to be used (e.g., based on available platforms of a
pool of GPU-based servers, or based on parameters supplied by client) 716

tuned for execution platform, code for UDFs utilizing permitted sets of data types, etc.; if
multi-node platform is selected, include invocations of inter-node communication
primitives in the executable representation 719

Inifiate execution of program on selected platform, retrieve results (including, for example,
performance data corresponding to individual tasks or operators, communication
overheads, efc.) and store or transmit results to specified destination 722

FIG. 7

U.S. Patent Sep. 10, 2019 Sheet 8 of 9 US 10,409,560 B1

Obtain dependency graph comprising abstract tasks and their dependencies 801

Select compute kernels corresponding to tasks 804

Generate sequential code 807

Compile and link for target platform (for multi-node architecture, this may involve insertion

of executable code for communication primitives) §10

Execute program on target platform 813

FIG. 8

U.S. Patent Sep. 10, 2019 Sheet 9 of 9 US 10,409,560 B1

Computing device
9000

Processor

Processor (CPU Processor

or GPU) 9010a 9010b

9010n

/0 interface 9030

Network interface
9040

System memory 9020

Code Data
9025 9026

Network(s)
9050

Other device(s)
9060

FIG. 9

US 10,409,560 B1

1

ACCELERATION TECHNIQUES FOR
GRAPH ANALYSIS PROGRAMS

PRIORITY INFORMAITON

This application claims benefit of priority of U.S. Provi-
sional Application Ser. No. 62/256,893 entitled “SYSTEM
AND METHOD FOR HIGH LEVEL GRAPH AND
MACHINE LEARNING ALGORITHMS WITH TRANS-
PARENT MULTI-CORE ACCELERATION" filed Nov. 18,

20135, the content of which 1s incorporated by reference
herein 1n 1ts entirety.

BACKGROUND

Graph data structures comprising nodes and links are used
to represent a wide variety of information for numerous
types ol computer-based applications. For example, appli-
cations associated with social networks, drug discovery,
precision medicine, fault prediction i1n large distributed
systems, cyber-defense, fraud detection, regulation compli-
ance and the like may all employ graphs for representing
respective sets of entities and relationships among the enti-
ties. Graph representations of complex dependencies are
especially important for various types of machine learning
algorithms, which are increasingly used in a number of
problem domains. Developing scalable graph analysis appli-
cations which can handle a wide range of graph data sets
may represent a non-trivial technical challenge.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example system environment in
which graph analysis algorithms, expressed 1n a high-level
plattorm-independent programming language supporting
linear algebra primitives, may be optimized for accelerated
execution at a variety ol hardware platiforms, according to at
least some embodiments.

FIG. 2 illustrates examples of several stages of optimi-
zations which may be performed on graph analysis algo-
rithms, according to at least some embodiments.

FIG. 3 illustrates examples of intermediary data structures
which may be generated from a graph analysis program
prior to i1ts execution, according to at least some embodi-
ments.

FI1G. 4 1llustrates an example of a sequence of serial code
sections and parallel computing kernels which may be
generated from a graph analysis algorithm, according to at
least some embodiments.

FIG. 5 illustrates an example of a provider network
environment at which a graph analytics service may be
implemented, according to at least some embodiments.

FIG. 6 1llustrates examples of operators for which hard-
ware-platform-specific kernels may be generated for graph
algorithms, according to at least some embodiments.

FIG. 7 1s a flow diagram 1illustrating aspects of operations
which may be performed to accelerate graph analysis algo-
rithms expressed 1n a platiorm-independent high-level pro-
gramming language, according to at least some embodi-
ments.

FIG. 8 1s a flow diagram illustrating aspects of operations
which may be performed at an execution coordinator layer
of a system for accelerating graph analysis algorithms,
according to at least some embodiments.

FIG. 9 1s a block diagram illustrating an example com-
puting device that may be used in at least some embodi-
ments.

10

15

20

25

30

35

40

45

50

55

60

65

2

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,

those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.¢., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words
“include,” “including,” and “includes” mean including, but
not limited to. When used 1n the claims, the term “or” 1s used
as an inclusive or and not as an exclusive or. For example,
the phrase *“at least one of X, y, or z” means any one of X, v,

and z, as well as any combination thereof.

DETAILED DESCRIPTION

Embodiments of methods and apparatus for enabling
acceleration and optimization of graph analysis algorithms
at a variety of hardware platforms are described. According
to some embodiments, a programmer may utilize a high
level hardware-platform-independent programming lan-
guage to produce the source code of a graph analysis
program. A number of variants of programming languages
may be used 1n different embodiments. In one embodiment,
a domain-specific language comprising graph analysis
extensions to a general purpose functional programming
language such as Scala may be used. In another embodi-
ment, a language supporting extensions to a graph traversal
language such as Gremlin may be employed. The program-
ming language used may enable programmers to express
iterative graph analysis algorithms using various combina-
tions or compositions of a set of linear algebra primitives in
some embodiments. The source code for the graph analysis
algorithm may be embedded or included within a program
written 1n a different programming language (which may be
called the “host” language) 1n some embodiments.

The programmer may submit source code (which may
include a reference to one or more mput graph data sets
which are to be processed using the algorithm) to a graph
program acceleration system (GPAS) in one embodiment for
optimization and eventual execution. Various types of hard-
ware platforms may be used in different embodiments for the
execution of the algorithm indicated 1n the source code. In
one embodiment, a platform may include one or more
graphics processing units (GPUs). In another embodiment,
the plattorm may include one or more conventional central
processing unit (CPUs). A hybrid host or device which
includes one or more GPUS and one or more CPUs may be
used 1n one embodiment. A platform may include one or
more FPGAs (field programmable gate arrays) in another
embodiment. Accelerators implemented using system-on-
chip (SOC) designs may be used in some embodiments. In
one embodiment, a programmer may design and develop
source code for the graph analysis algorithm 1n a program-
ming language which does not require extensive expertise in
parallel programming or detailed knowledge of the hardware
platforms which might be used. The programming language
used for the algorithms in such an embodiment may be
referred to as a graphics program acceleration language or

“GPALang” herein. The graph program acceleration system

US 10,409,560 B1

3

may be responsible in one embodiment for parsing and
analyzing the source code, potentially transforming the
source code mto several types of intermediary data struc-
tures 1n multiple phases, searching for opportunities to
optimize the algorithm in various platform-independent and
platform-dependent ways, implementing some combination
of optimizations (1f any optimizations are found), optionally
identifving the specific particular hardware platforms to be
used, generating or selecting executable code modules tuned
or optimized for the particular hardware platforms, execut-
ing the code at the hardware platforms, and providing the
results of the execution to one or more destinations (e.g., to
a submuitter of the source code). In such an embodiment, the
task ol designing algorithms may be effectively separated
from the task of executing the algorithms; programmers may
be freed to focus on the logic of their algorithms, while the
GPAS focuses on algorithm execution. Variants of this basic
distribution of responsibilities may include, for example,
embodiments 1n which the programmer or application owner
selects the hardware platforms to be used and notifies the
GPAS accordingly, or provides hints regarding specific types
of optimizations which should be attempted. In some
embodiments, the functions of the graph programming
acceleration system may be implemented using one or more
network-accessible services of a provider network as dis-
cussed below 1n further detail. The manner in which difler-
ent functions of the graph program acceleration system are
mapped to individual servers or hosts may vary in different
embodiments. For example, in one embodiment, the analysis
of the source code, the generation of the executable code,
and the execution of the generated executable code, may all
be performed on a single host (e.g., during testing of the
graph analysis program). In another embodiment, respective
sets of servers or hosts may be used for performing various
phases of the analysis and optimization of the source code,
and a cluster of nodes may be used to execute the program
(e.g., 1n a production environment).

In one embodiment, a programmer may provide the
source code for a graph analysis program, written in the
plattorm-independent language GPALang, via a program-
matic interface to the GPAS. A varniety of programmatic
interfaces may be used 1n different embodiments, such as a
web-based console, a set of application programming inter-
taces (APIs), a command line tool, or a graphical user
interface. The source code may be examined and parsed at
the GPAS in one embodiment, and a corresponding abstract
syntax tree (AST) may be generated. The nodes of the AST
may comprise, for example, the linear algebra primitives
used 1n the algorithm, user defined functions, assignment
operators, variables to which values are being assigned, and
the like. In some embodiments, the mnitial AST generated
from the source code may be optimized at this stage, e.g., by
combining or collapsing some nodes, re-arranging nodes,
and so on. A dependency graph of tasks may be generated
from the original or optimized AST 1n some embodiments.
In one embodiment, each task of the dependency graph may
correspond, for example, to an operator (such as matrix
operators, vector operators, or matrix-vector operators) for
which respective implementations of compute kernels, func-
tions or routines tuned for diflerent hardware platforms may
be generated. Zero or more dependencies of a given task
(e.g., a dependency on the output produced by another task)
may also be indicated in the dependency graphs in one
embodiment. The dependency graphs may be expressed in a
hardware-platform-independent manner 1n at least some
embodiments. In one embodiment, optimized versions of the

10

15

20

25

30

35

40

45

50

55

60

65

4

dependency graphs may be generated, e.g., by dividing a
given task into several smaller parallelizable tasks, etc.

In at least one embodiment, the dependency graphs may
be passed on to an execution coordinator component of the
GPAS. The execution coordinator may perform at least some
hardware-platform-specific operations in some embodi-
ments. For example, the tasks or nodes of the dependency
graph may be analyzed, and corresponding compute kernels,
functions or routines may be identified from a library. In
some 1mplementations, CUDA (Compute Unified Device
Architecture) kernels may be used; in other embodiments,
kernels compatible with a different parallel programming
model may be used. If needed, the execution coordinator
may generate executable code (e.g. for sequential portions of
the program) specific to the hardware platform which 1s
going to be used 1n one embodiment. In some embodiments,
several diflerent compute kernels may be available for a
given operator, with individual ones of the kernels being
optimized or tuned for respective hardware platforms. In one
embodiment, a set of executable code modules prepared by
the execution coordinator, which may include kernels with
hardware-platform-specific optimizations, may be run at a
selected hardware platform. In one embodiment, a distrib-
uted platform such as a multi-node cluster, with each node
equipped with one or more CPUs and/or GPUs, may be
used. In some embodiments, 1f a decision 1s made to use a
multi-node execution platform, code modules for commu-
nication among the nodes may be generated by the execution
coordinator and included within the executable representa-
tion of the graph analysis program. Any of a number of
different approaches towards inter-node communication
may be employed 1n various embodiments: e.g., communi-
cation primitives compatible with MPI (Message Passing
Interface), Realm and/or PGAS (Partitioned Global Address
Space) may be included in the executable modules generated
by the execution coordinator. In one embodiment, the results
obtained from the executable version of the program may be
transmitted to one or more destinations (e.g., to a submuitter
of the program’s source code) and/or stored at a selected
storage device.

A number of diflerent optimizations may be performed at
one or more phases during the analysis of the source code
and the preparation of the executable representation of the
program 1in various embodiments. Such optimization opera-
tions, whose results are incorporated in the executable
representation 1n such an embodiment, may 1n one embodi-
ment 1include, among others, fusing a plurality of compute
kernels mto a single compute kernel, unrolling of a tail
recursion, a sparsity-enhancement operation, a memory allo-
cation operation intended for an overwrite-in-place data set,
a selection of a compute kernel variant based on a read-only
access pattern, or storing a data set into a shared memory
accessible from a plurality of execution engines of the
particular hardware platiform. In one embodiment, one of the
optimizations performed may comprise combimng work
items dynamically into a single kernel launch, e.g., based at
least 1 part on utilization considerations. This latter opti-
mization may be performed, for example, when the respec-
tive amounts ol work corresponding to some tasks are small
enough that inducing desired levels of utilization of the
hardware platform being used may be dithicult unless the
tasks are combined. Such a “fiber bundling” approach may
make 1t possible to retain high throughput 1n one embodi-
ment even when the individual work items and/or associated
data partitions are small.

The high-level programming language GPALang used to
specily the graph analysis program may provide support for

US 10,409,560 B1

S

a number of different linear algebra primitives in various
embodiments. For example, 1n one embodiment, the primi-
tives may include an SpMV primitive (for sparse matrix
vector multiplication), SpMM (for sparse matrix-matrix
multiplication), a primitive to map a unary function over a
vector, a primitive to map a binary function over two
vectors, and/or a primitive implementing a convolution
operation. Examples of source code which may be used to
express graph analysis algorithms are provided below.

A wide variety of graph analysis algorithms may be
accelerated using the techniques discussed above 1n various
embodiments, including for example various types of tree
search algorithms, hierarchical graph partitioning algo-
rithms, graph coarsening algorithms, Louvain modularity
algorithms, algorithms for determining a Jaccard similarity,
triangle counting algorithms, collaborative filtering algo-
rithms, matrix factorization algorithms, supervised neural
network algorithms, clustering algorithms, or dimensional-
ity reduction algorithms.

Example System Environment

FIG. 1 illustrates an example system environment in
which graph analysis algorithms, expressed 1n a high-level
plattorm-independent programming language supporting
linear algebra primitives, may be optimized for accelerated
execution at a variety of hardware platforms, according to at
least some embodiments. As shown, graph program accel-
cration system 100 may comprise a program analyzer/
translator 130, an execution plan generator 140, an execu-
tion coordinator 150, and a collection of one or more
execution platforms 160 1n the depicted embodiment. In
some embodiments, respective sets of hardware and/or soft-
ware components may be used for the program analyzer/
translator 130, the execution plan generator 140 and the
execution coordinator; as such, system 100 may comprise
several layers, each comprising one or more components.

In one embodiment, a single server may be used to
implement the program analyzer/translator, the execution
plan generator and the execution coordinator. In one
embodiment, the program analyzer/translator 130 and the
execution plan generator 140 may both be implemented
within a single platform-agnostic virtual machine (e.g., a
Java™ virtual machine), and “native” or platform-specific
methods may be used to invoke the execution coordinator
(e.g., using the Java™ Native Interface or JNI framework, or
using a Python interpreter).

In one embodiment, source code of a variety of graph
analysis programs 120, each utilizing or implementing one
or more graph analysis algorithms, may be presented as
input to the analyzer/translator 130. The programs 120 may
be written 1n a hardware-platform-independent high level
programming language designed specifically for graph algo-
rithms 1n some embodiments; that 1s, a domain-specific
language for graph algorithms may be used in such embodi-
ments. The programming language may allow graph algo-
rithms to be expressed as combinations or compositions of
linear algebra primitives in one embodiment. In at least
some embodiments, a functional programming language
may be used, which results in code which typically does not
have side eflects. In other embodiments, the programming
language need not necessarily be a functional language.

In one embodiment, the analyzer/translator layer 130 may
examine and parse the source code and translate 1t into an
abstract syntax tree (AST). The nodes of the AST may
comprise, for example, program variables, assignment
operators, linear algebra primitives of the programming
language, or user-defined functions 1n one embodiment. In
one embodiment, one or more opportunities for optimizing

e

10

15

20

25

30

35

40

45

50

55

60

65

6

a program may be 1dentified at the analyzer/translator layer
130, and an initial or baseline AST may be transformed 1nto
an optimized AST by, for example, coalescing nodes, rear-
ranging nodes, and so on. In various embodiments, a user-
defined function may comprise a routine which does not
comprise a pre-defined primitive of the programming lan-
guage. Compute kernels formatted according to one or more
targeted parallel programming models (e.g., CUDA) may be
generated i one embodiment for at least some user defined
functions, e.g., by the execution coordinator.

In one embodiment, the AST, which may be represented
in a hardware-platform-independent format, may be passed
on to the execution plan generator layer 140. Using the AST,
the execution plan generator may derive a task dependency
graph 1n such an embodiment, whose nodes comprise sched-
ulable tasks corresponding to various types ol operators
(1including vector operators, matrix operators, matric-vector
operators and the like) for which tuned compute kernels may
be available for various types of hardware platforms to the
execution coordinator 150. Dependencies among the tasks,
such as the requirement that the output of one task be
available before another task can be begun, may also be
indicated 1n the dependency graph 1n one embodiment. The
tasks 1dentified 1n the dependency graph may also be rep-
resented 1n a platform-independent manner 1n one embodi-
ment—e.g., the tasks may represent abstractions of the
operators, for which platiorm-specific implementations may
have to be 1dentified, selected or generated by the execution
coordinator 150.

The task dependency graphs may be transmitted to the
execution coordinator 150 from the execution plan generator
layer 140 in one embodiment. In one embodiment, the
execution coordinator layer 150 may analyze the task and
their dependencies, select compute kernels corresponding to
the tasks, generate any sequential code which may be
needed, and compile and link an executable representation
of the program for a specific execution platform 160. A
variety ol hardware platforms may be used in different
embodiments. In one embodiment, a platform 162 may
comprise one or more GPUs. In another embodiment, a
platiorm 164 comprising one or more CPUs and no GPUs
may be used, e.g., for checking code correctness or debug-
ging. A hybrid platform 163 comprising one or more CPUs
and one or more GPUs may be used in one embodiment.
Platforms containing one or more field programmable gate
arrays (FPGAs) 166 may be used in one embodiment. A
platform 165 which includes accelerators for various algo-
rithms, which may be implemented using SOC (system-on-
chip) architectures may be used 1n one embodiment. The
hardware platform to be used may be selected 1n various
ways 1n different embodiments. In some embodiments, for
example, a pool of execution platforms with different char-
acteristics may be available, and the execution coordinator
may select the specific platiorms or types of platforms to be
used, and use kernels optimized or tuned for those platiorms.
In other embodiments, the submitter of the program may
indicate preferences for the type of platform to be used.
Source Code Examples

Example source code corresponding to a breadth-first
search algorithm which may be submitted by a programmer
or developer 1n one embodiment 1s provided and discussed
below. Breadth first search (BFS) 1s a commonly-used graph
analysis technique, involving a traversal of the vertices 1n a
graph beginning at a given source vertex. All of the vertices
reachable from the source vertex are explored in the first
iteration. In each successive iteration all vertices reachable
from vertices newly reached in the previous iteration are

US 10,409,560 B1

7

explored. Iterations proceed until no unexplored nodes are

reachable from vertices newly reached i1n the previous

iteration. In one embodiment, source code for a breadth first

search algorithm may be expressed in the following manner

using a high-level platform-independent language support-

ing linear algebra primitives of the kind mentioned above:

Source Code Example SCEL:

1. def BFS(frontier, graph, levels, visited, depth) {

2. 1t (frontierasEmpty) return(levels);

3. val tmp=SPMYV (graph.transpose, frontier);

4. val mask=MAP((x)=>11 (x=—=-1) T1false else true,
tmp /*x*/);

5. val newLevels=sMAP((x)=>11 (
levels /*x*/, mask);

6. val newVisited=MAP((x)=>11 (x==-1) false else true,
visited, mask);

7. val newFrontier=/IP((x, y)=>11 (y) -1 else x, tmp,
new Visited);

8. return BFS(newFrontier, graph, newlLevels, newVisited,
depth+1);

9.1

In example SCEI1, line 1 declares the BFS function. The
“oraph” parameter 1s assumed to be a sparse matrix repre-
senting the input graph for which the search i1s to be
conducted. The “frontier” parameter 1s a vector representing
the frontier vertex set, which 1s the set of vertices first
explored 1n the previous iteration. The frontier vector may
be mitialized to all zeroes except for the element corre-
sponding to the starting vertex, which may be set to 1. The
“levels” parameter 1s a vector which labels each vertex with
the 1teration 1t was first explored 1n, or -1 11 the vertex hasn’t
yet been explored; imitially, all elements of levels are set to
-1, except for the starting vertex which 1s set to 0. The
“visited” parameter 1s a vector whose elements indicate
whether each of the vertices has already been visited or not.
The “depth” parameter corresponds to the current iteration
count of the search, initially set to 1.

Line 2 1s a termination check for concluding the 1terations
of the search. Line 3 performs a 1-hop parallel expand,
returning the vertices 1n the 1-hop neighborhood as a com-
pact queue using the SPMYV linear algebra primitive. Line 4
prepares a bitmask from the one-hop neighborhood. Line 5
uses the mask to assign the current depth to the vertices
visited for the first time 1n the current i1teration. Line 6 uses
the mask to update the set of vertices visited for the first time
in the current iteration. Line 7 computes the new frontier
from the 1-hop neighborhood and the bitmap of vertices
visited for the first time 1n the current iteration. Vertices in
the 1-hop neighborhood that have already been visited are
cleared from the frontier by setting the corresponding ele-
ment of frontier to —1. Line 8 represents a tail recursion
operation, 1n which the BFS function 1s invoked recursively.

In one embodiment, during the analysis and processing of
the BFS source code by a graph program acceleration
system, one or more optimization operations may be 1den-
tified for a GPU-based platform. For example, lines 4, 5 and
6 may be fused into a single compute kernel. Rather than
creating a bitmask (line 4) and passing that into the MAP
kernels (lines 5 and 6), the MAP kernel may be applied on
a compact queue (tmp, representing the 1-hop neighbor-
hood). Further, the two MAP operations of lines 5 and 6 are
over the same mask. Thus, the functors for these operations
may be pushed down into the kernel and executed at the
same time. The tail recursion of line 8 may be unrolled 1nto
a sequence of kernel mvocations. An analysis of the data
movement 1 the BFS code may reveal that the only data
movements are the values passed into the first BFS 1nvoca-

=—-1) depth else x,

10

15

20

25

30

35

40

45

50

55

60

65

8

tion and the final result of the BFS traversal. When the tail
recursion 1s unrolled, the system may recognize that none of
the intermediate values are visible to the CPU. As a result,
storage for the values may be allocated once and then
destructively overwritten 1n each iteration. Sparsity of the
data structures allocated on the GPU (e.g., the frontier and
newFrontier data structures) may be maximized.

In some embodiments, depending on the source code of a
given graph analysis program, kernel variants that are tuned
for restricted communication patterns (e.g., when some set
of accesses are read-only) may be selected, only subgraphs
rather than the entire graph may be transmitted to a GPU, or
shared memory accessible by multiple execution engines
may be used for some of the graph data. The use of shared
memory may, for example, enable improvements 1n effective
memory bandwidth in one embodiment.

In one embodiment, a given instance of a graph analysis
algorithm such as the BFS algorithm may be invoked in the
following manner from a graph analysis program written for
example 1n a language similar to Scala. In this example, the

name of graph program acceleration system which can be
used to run a BFS function similar to that shown above 1s
assumed to be “GPASystem”™.

Source Code Example SCE2:

1. val adjMatrix=readInputMatrix();

2. val srcVertexID=0;

3. var BFSworkerlnstance=new BFSWorker(adjMatrix,
src VertexID);

4. val result=GPASystem.run(BFSworkerInstance);

In line 1 of SCE2, the mput graph data set i1s read 1n. In
Line 2, the starting vertex identifier 1s imitialized. An
instance of BFSWorker, a wrapper program which runs the
BEFS algorithm similar to that shown 1n ESCI, 1s created 1n
line 3. The instance of BFSWorker 1s passed to GPASystem
for analysis, optimization and execution in line 4, and the
result of the execution 1s returned. Other ways of mvoking
the graph may be used in other embodiments—e.g., a
command line tool which takes a source code file containing
the graph analysis algorithm as mput and returns the results
of the optimized execution of the program may be used 1n
some embodiments. For example, the command “GPACLI
<sourcefileName> <anputParameterList>" may be used
from within a shell execution environment in one embodi-
ment, 1n which GPACLI i1s the name of the command line
tool, <sourceFileName> contains the graph analysis pro-
gram, and <inputParameterList> includes zero or more
parameter values such as the name of an mput graph data
file, hints regarding optimizations to be performed, and so
on.

In various embodiments, source code elements of the
language used in the graph program acceleration system
may be embedded within programs written 1n various host
languages, such as Scala, Gremlin and the like as mentioned
carlier. The following 1s a Gremlin source code example
which may be used for breadth-first search 1n one embodi-
ment. The name “GPALang” 1s used to refer to the embed-
ded programming language for which optimizations can be
performed using a graph program acceleration system of the
kind discussed i the context of FIG. 1.

Source Code Example SCE3:

1. G.matrx().transpose().as(‘adj1’);

2. G.V().createVec{x—x==src ? 0: —1}.repeat]
3. init{input.apply{x—x+1}.as(‘frontier)}.

4. step]

US 10,409,560 B1

9

5. ‘frontier’.SPMV(‘adiT’, SemiRing(GPALang.builtIn-

s. Times, GPALang.builtlns.Or)).

6. applyPairwise(input, {(x,y)—=x=—=1 && y=—-1 ? 1:0}).as

(‘frontier’)

7.1,

8. steplinput.applyPairwise(‘frontier’,
loops(): x}).setOutput()}.

9. step{‘frontier’.reduce(0,

Count’)}

10.} until(‘ frontierCount’==0)

In SCE3, a constant “src” indicates the index of the
starting vertex of the search. In line 1, a transpose of the
adjacency matrix containing the input graph data set for
which breadth-first search 1s to be conducted 1s obtained,
using matrix() and transpose() functions of GPALang. In
line 2, a vector (corresponding to the “levels” vector of
SCE1 above) 1s mitialized with all values except src set to
—1, and the value for src set to 0. The “repeat” and “step”
Gremlin constructs are used to perform the 1terations of the
search. The “init” Gremlin construct i1s used 1n line 3 to
generate the “frontier” vector. In line 5, the GPALang SPMV
primitive 1s mvoked with a non-standard Semi-Ring which
uses the GPALang built-in “Or” for addition. In line 6,
previously-visited vertices are removed from the vertex set.
In line 8, the equivalent of the “levels” vector 1s updated.
Line 9 computes the iteration termination condition, per-
forming a reduction to sum all the elements 1n the frontier
vector. When the frontier 1s empty, the sum (“frontier-
Count™) will be zero and the 1terations will be terminated as
per line 10.

Program Analysis and Optimization Phases

FIG. 2 illustrates examples of several stages of optimi-
zations which may be performed on graph analysis algo-
rithms, according to at least some embodiments. As shown,
in one embodiment a program 210 (which may be written 1n
a host language such as Java™, Scala, Gremlin or the like)
comprising embedded GPALang algorithm code 212 may be
provided for analysis, optimization and execution to a
graphics program acceleration system (GPAS). The program
may be examined and parsed, e.g., at a translator layer of the
GPAS, and an mitial abstract syntax tree 230 may be
produced in one embodiment. In various embodiments, the
translator layer may 1dentily various user-defined functions
(1.e., functions 1n the source code for which compute kernels
may not already be available), and kernels corresponding to
such user-defined functions may be generated (e.g., at an
execution coordinator). In some embodiments, opportunities
for optimizing the abstract syntax tree may be 1dentified, and
a transiformed syntax tree 232 may be derived from the
initial abstract syntax tree.

The transformed syntax tree may be passed on to the
execution plan generator layer of the GPAS, where an mitial
dependency graph 240 of schedulable tasks may be gener-
ated 1n the depicted embodiment. The tasks may be repre-
sented at an abstract level at this stage of the analysis, e.g.,
without referencing any specific hardware platiorms.
Depending on the dependencies 1dentified among the tasks,
several of the tasks may be parallelizable in some embodi-
ments. The dependency graph may also indicate any neces-
sary sequential steps 1in one embodiment. Individual tasks
may correspond to any of a number of operators, such as
vector operators, matrix operators and the like, for which
compute kernels such as CUDA kernels may be available 1n
a parallel programming model library 210 in one embodi-
ment. In some embodiments, one or more optimizing trans-
formations may be applied on the initial task dependency
graph 240 to obtain a transformed dependency graph 242.

(xy)—=y=1 7

{(X,y)—=x+y}).as(‘frontier-

10

15

20

25

30

35

40

45

50

55

60

65

10

In one embodiment, the transformed dependency graph
242 may then be transmitted or provided to the execution
coordinator, where a platform-specific executable represen-
tation 250 of the program may be generated. The executable
representation may comprise various compute kernels that
are optimized or tuned for a selected parallel processing
plattorm—Tfor example, several versions of a given kernel
may be available, each tuned for a different GPU-based
server or cluster, and the appropriate version may be selected
for the platform which 1s going to be used. Respective
kernels corresponding to one or more user defined functions
may also be generated and incorporated into the executable
representation i one embodiment. In addition, m one
embodiment the execution coordinator may perform other
optimizations on the task dependency graph, such as replac-
ing one task with a number of smaller tasks which can
potentially be performed in parallel, inserting the appropri-
ate code hooks for communication among the nodes of a
cluster to be used for parallel execution of the program, and
so on. In one embodiment the executable representation may
then be run at the selected parallel programming platform
262, and results of the execution may be stored or transmiut-
ted to one or more destinations.

As indicated 1n FIG. 2, optimizations may be identified
and 1mplemented at several different layers of the graph
program acceleration system 1n various embodiments, such
as the translator layer, the dependency graph generation
layer, and the execution coordinator responsible. It 1s noted
that for a given program or algorithm, optimizations need
not necessarily be performed at one or more of the layers in
various embodiments.

FIG. 3 illustrates examples of intermediary data structures
which may be generated from a graph analysis program
prior to its execution, according to at least some embodi-
ments. In the depicted embodiment, source code 310 of the
program may first be parsed and analyzed to produce an
abstract syntax tree 351 representing the logic being imple-
mented in the program. Nodes of the abstract syntax tree
may include, among others, assignment operators (such as
nodes 311A and 311B), linear algebra primitives (such as
node 317A corresponding to an SPMYV primitive and node
317B corresponding to the MAP primitive), user-defined
functions (such as node 320), variables (such as nodes
314A-314C) and values (such as node 323) 1n some embodi-
ments. Programmers may be permitted to register UDFs
which include mathematical and logical operations
expressed 1n the host programming language (the language
in which the GPALang code 1s embedded) in various
embodiments. For example, the following line of code may
be used to register a UDF to compute the reciprocal of the
out-degree of each vertex 1n a graph 1n one embodiment:
Source Code Example SCEA4:

1. val fct_RecipOutdegs=GPALangContext. functionRegis-
try.registerUnaryFunction({outdeg: Float)=>11 (outdeg=—
OF) outdeg else IF/outdeg)

In an embodiment 1n which CUDA 1s used, the portions
of the abstract syntax tree corresponding to UDFs may be
converted into equivalent CUDA kernels by the translation
layer. Only a subset of the functions and/or operators sup-
ported by the host language may be registered as UDFs 1n
one embodiment. In some embodiments, only a selected
subset of the data types available 1n the host language may
be used for UDFs or passed as parameters to various linear
algebra operators.

The abstract syntax tree may be used to generate a task
dependency graph 361 in the depicted embodiment. Indi-
vidual nodes of the dependency graph may represent sepa-

US 10,409,560 B1

11

rately schedulable tasks, with edges denoting data depen-
dencies among the tasks (e.g., an edge leading from one task
node 337K to another task node 339 may indicate that task
339 requires the output of task 337 to be available). At least
some of the tasks may be parallelizable—e.g., tasks 337A- 5
337K of task set 359 A may all be run in parallel, and tasks
338A-338C of task set 359B may be run 1n parallel. In the
depicted embodiment, individual ones of the tasks may
represent an execution of an operator, such as a matrix
operator, a vector operator, or a matrix-vector operator 1 10
various embodiments. In one embodiment, the task depen-
dency graph 361 may be platform-independent, and may be
sent to the execution coordinator layer by the execution plan
generator layer of the GPAS as discussed above conversion
to a hardware platiorm specific executable form. In some 15
embodiments, persistent representations of the task depen-
dency graph 361 and/or the abstract syntax tree 361 may be
stored, e.g., to assist with debugging of the graph analysis
program. As mentioned earlier, in various embodiments an
initial abstract syntax tree and/or an 1itial task dependency 20
graph may be transformed or optimized prior to being
passed on to the next layer in the GPAS stack.
Intermingled Serial and Parallel Code Sections

FI1G. 4 1llustrates an example of a sequence of serial code
sections and parallel computing kernels which may be 25
generated from a graph analysis algorithm, according to at
least some embodiments. Execution platforms comprising
GPUs may be usable to execute portions of graph analysis
algorithms in parallel in some embodiments, thereby speed-
ing up overall execution time of the programs substantially 30
(by orders of magnitude compared to fully serial execution
in some embodiments). The extent of the speedup may be
dependent upon the relative amount of computation that can
be parallelized and the degree of parallelization achievable
in each parallel phase 1 some embodiments. In other 35
embodiments, other platforms may be used for parallel
programming, including for example platforms comprising,
combinations of CPUs and GPUs, FPGAs and/or hardware
(e.g., SOC) accelerators for various algorithms.

In one embodiment, using an appropriate parallel pro- 40
gramming library, a given graph analysis program 412 may
be converted by the GPAS into a sequence of sequential and
parallel sections as shown. Sernial code 425A and 425B of
execution sections 420A and 420B may be run on a con-
ventional host using a single CPU thread 430 in the depicted 45
embodiment. In contrast, parallel compute kernels such as
426A and 426B of platform-specific parallel execution sec-
tions 440A and 440B may be run using parallel platform
threads 450 (e.g., GPU threads) 1n various embodiments. In
one embodiment, the GPAS may be responsible for deter- 50
mimng the achievable parallelism possible in various parts
of the code, for selecting the appropriate hardware-specific
tuned compute kernels to be used based on the execution
platforms available 1n various embodiments.
Provider Network Environment 55

FIG. 5 illustrates an example of a provider network
environment at which a graph analytics service may be
implemented, according to at least some embodiments.
Networks set up by an entity such as a company or a public
sector organization to provide one or more network-acces- 60
sible services (such as various types of cloud-based com-
puting, storage or analytics services) accessible via the
Internet and/or other networks to a distributed set of clients
may be termed provider networks 1n one or more embodi-
ments. A provider network may sometimes be referred to as 65
a “public cloud” environment. The resources of a provider
network may in some cases be distributed across multiple

12

data centers, which 1n turn may be distributed among
numerous geographical regions (e.g., with each region cor-
responding to one or more cities, states or countries).

As shown, provider network 510 may comprise, among
others, a computing service 530, a storage service 540 and
a graph analytics service 5135 1n the depicted embodiment.
The computing service 530 may comprise computing plat-
forms representing a variety of hardware and software
architectures 1n one embodiment. A first pool 532A of the
computing service may comprise physical and/or virtual
machines corresponding to one architecture Al in the
depicted embodiment, e.g., machines which comprise GPUs
and/or CPUs from a first vendor V1, while a different pool
532B may comprise physical and/or virtual machines cor-
responding to a diflerent architecture A2, e.g., with GPUs
and/or CPUs from a different vendor V2. The programming
models may differ for the different architectures mn some
embodiments—e.g., Architecture A1 may require compute
kernels compatible with CUDA, architecture A2 may
require compute kernels compatible with OpenCL (Open
Computing Language), and so on. In some embodiments
architectures based on FPGAs (field programmable gate
arrays) and/or custom accelerators comprising SOCs may be
supported. Different executable versions of graph analysis
programs, €ach using respective compute kernels optimized
or tuned specifically for the corresponding architecture, may
be prepared for the various pools 532 in the depicted
embodiment.

In some embodiments, a storage service 540 may be
utilized to store various data sets and representations of
other software objects associated with graph program prepa-
ration and execution. For example, the input graph data may
be stored at graph data repository 542, and artifacts such as
program source code, abstract syntax trees, task dependency
graphs, platform-specific compute kernels or functions cor-
responding to various operators, executable versions of the
programs for various platiorms, program execution results,
and the like may be stored 1n a graph analysis artifact
repository 344 1n the depicted embodiment. Any of a number
of different types of storage services may be used 1n various
embodiments, such as database service which implements a
graph data model, a relational data model or a non-relational
data model, a storage service which provides access to
arbitrary storage objects using web-service interfaces, a
storage service which implements storage volumes provid-
ing a block device interface, and so on. In some embodi-
ments, the graph data itself may be stored using a diflerent
service than the artifacts. In at least one embodiment, the
execution platforms used for the graph analysis programs
may include (or have access to) one or more distributed
parallel file systems or shared-nothing file systems.

The graph analytics service 315 may comprise several
components in the depicted embodiment. Program trans-
formers 524 may analyze the graph analysis program source
code programs 582 transmitted by clients 380 via program-
matic interfaces 570 and produce the abstract syntax tree
representations as well as the task dependency graphs 1n the
depicted embodiment. The platform selectors 527 may be
responsible for identifying the platforms (e.g., the particular
architecture Al, A2, etc.) which are to be used to execute the
programs, as well as the number of platforms to be used in
parallel in the depicted embodiment. In some embodiments,
the selection of the platforms may be left entirely to the
service 515, while in other embodiments a client 5380 (e.g.,
an application developer or application owner) may indicate
preferences regarding the platforms to be used (for example,
during mmtial testing of the program, a developer may

US 10,409,560 B1

13

indicate that a single CPU-based plattorm will suflice for the
program). In embodiments 1n which the service 5135 selects
the platforms, a number of factors may be taken into
consideration, such as for example the number of available
platforms 1n the pools 532, the extent to which the program
can be parallelized, cost/billing considerations, and so on.

In one embodiment, the execution coordinators 522 may
generate the platform-specific executable versions of the
graph analysis program using the task dependency graphs,
transmit them to the computing service 530 for execution,
and obtain the results from the computing service. The
results 584 may be provided to clients 380 via the program-
matic interfaces 570 1n one embodiment. In at least some
embodiments, upon request, clients 580 may also be pro-
vided debugging information 385 such as representations of
the intermediate artifacts (original or optimized dependency
graphs, original or optimized abstract syntax trees, etc.). In
at least one embodiment, the service may also provide
performance information 387 pertaining to the execution of
the program, such as the amounts of time spent in various
steps of the computations, the amount of time spent 1n
inter-node communication i1 a multi-node platform was
used, etc. Performance information 587 may be provided by
default in some embodiments, or upon request i other
embodiments.

In some embodiments, graph data format translators 523
may be used at the service 515, e.g., to render input data sets
into formats or data structures which are compatible with the
programming environment being used. For example, a graph
data set expressed in any one of the following formats or
data structures may be converted to any one of the other
formats or data structures 1in some embodiments: a Resilient
Distributed Dataset (RDD) format, a Resource Description
Framework (RDF) format, a data frames format (which may
be supported 1n, for example, the R programming language
or the PANDAS data analysis toolkit), a Compressed Sparse
Column (CSC) data structure, or a Compressed Sparse Row
(CSR) data structure.

In one embodiment, optimizations of various kinds may
be 1dentified and implemented at the graph analytics service
515 at various stages in the process of transforming and
executing the graph analysis programs (e.g., by the program
transformers 527 and/or the execution coordinators 522).
The graph analysis programs may comprise various combi-
nations ol one or more algorithms 1n some embodiments,
including for example tree search algorithms, hierarchical
graph partitioning algorithms, graph coarsening algorithms,
Louvain modularity algorithm, algorithms for determining a
Jaccard similanty, triangle counting algorithms, collabora-
tive filtering algorithms, matrix factorization algorithms,
supervised neural network algorithms, clustering algo-
rithms, or dimensionality reduction algorithms. In one
embodiment, the kinds of optimizations performed at one or
more components of the service may include, among others,
fusing a plurality of compute kernels into a single compute
kernel, unrolling of a tail recursion, a sparsity-enhancement
operation, a memory allocation operation intended for an
overwrite-in-place data set, a selection of a compute kernel
variant based on a read-only access pattern, or storing a data
set 1nto a shared memory accessible from a plurality of
execution engines (e.g., GPU cores or CPU cores) of a given
execution platform. It 1s noted that the functions indicated
for the components of the service 515 may be performed by
a standalone tool or a set of tools 1n one embodiment; that
1s, a network-accessible service (or any other service of a
provider network) 1s not a requirement for the kinds of
program acceleration optimizations discussed.

10

15

20

25

30

35

40

45

50

55

60

65

14

Example Operators and Compute Kernels

FIG. 6 illustrates examples of operators for which hard-
ware-platform-specific kernels may be generated for graph
algorithms, according to at least some embodiments. A
supported operator set 620 may include, among others,
vector operators 632, matrix operators 634, and matrix-
vector operators 634 in the depicted embodiment.

Vector operators 632 may include, among others, the
following 1n one embodiment. An apply operator may pro-
duce an output vector of the same cardinality as an 1nput
vector, with each element of the output vector representing
the result of applying a specified functor to the correspond-
ing element of the mput vector. A reduce operator may
represent a generalization of summation that 1s not order-
preserving. A bind operator may take argument vectors with
associated names and return as output a vector of tuples with
clements composed of the elements 1n the mput vectors. An
extract operator may retrieve elements corresponding to a
tuple element type name from a vector of tuples. An index-
Set operator may return the index set of a specified vector.
A sparseView operator may return a view of an iput vector
containing only elements which an imnput index set defines as
having values and which also have a value 1 a specified
input vector. An asMatrix operator may convert a vector to
a matrix.

In various embodiments, matrix operators may include,
among others, the following. An SPMM (sparse matrix
multiply) operator may return the result of multiplying an
input matrix A with another input matrix B over a specified
semi-ring. An applyMatrix operator may apply a specified
functor element-wise to an input matrix and return the
resulting matrix. A bindMatrix operator may return a matrix
view which has elements with tuple values composed of the
clements of the mput matrices. A constructMatrix operator
may take a sparse index and a backing relation as input and
return a corresponding matrix. A sliceMatrix operator may
return a submatrix extracted using specified sub-ranges of
rows and columns.

Matrix-vector operations may include, among others, the
following 1n at least one embodiment. A readFile operator
may be used to generate a two-column or three-column
relation from a specified input file 1n a specified format, with
the first column indicating row 1ndices of graph data in the
file, the second column indicating column indices, and an
optional third column indicating edge values. An SpMV
operator may be used for multiplying an mput matrix with
a specified vector over a specified semi-ring. A diagonal-
Matrix operator may take as mput a vector, and construct a
matrix whose diagonal values are the non-sparse elements of
the vector. In addition, one or more other types of operators
may be supported in various embodiments, e.g., for pattern
matching, helper functions and so on.

Corresponding to each of the operators of set 620, in one
embodiment respective tuned compute kernels may be gen-
erated for each hardware/software architecture at which the
graph analysis computations are expected to be performed.
For example, with respect to architecture A1, CUDA-based
kernels 642 may be generated—kernels 642A for vector
operators, kernels 643 A for matrix operators, and kernels
644 A for matrix-vector operators 1in one embodiment. Simi-
larly, with respect to architecture A2, OpenCL-based kernels
6428, 643B, and 644B may be created for the different types
of supported operators 1 one embodiment. If and when
support for a new execution platiorm architecture (e.g., a
new type of GPU/CPU) 1s to be added to the graph program
acceleration system or service, respective kernels for the
various operators may be generated in various embodiments.

US 10,409,560 B1

15

Methods for Accelerating Graph Analysis Programs

FIG. 7 1s a flow diagram 1illustrating aspects of operations
which may be performed to accelerate graph analysis algo-
rithms expressed 1n a platform-independent high-level pro-
gramming language, according to at least some embodi-
ments. As shown 1n element 701, 1n one embodiment source
code of a graph analysis program and an indication of an
input graph data set which 1s to be analyzed (which may be
included 1n the source code, or supplied as a parameter of the
program) may be obtained, for example, via a programmatic
interface at one or more computing devices ol a graph
analytics service, a graph program acceleration system or
tool. The source code may be expressed, for example, 1n a
high-level platform-independent programming language in
which iterative and/or other types of graph algorithms can be
expressed using combinations of linear algebra primitives 1n
one embodiment. In some embodiments, a functional pro-
gramming model may be supported by the programming
language; 1n such an embodiment, the language may restrict
or prevent side eflects (state changes that do not depend on
function 1mputs) 1n the program.

In some embodiments, the input data set may be translated
from one format or data structure to another before 1t can be
processed (element 704). For example, 1n one embodiment
the input graph data may be translated from Resilient
Distributed Datasets (RDD), Resource Description Frame-
work (RDF) or data frames to Compressed Sparse Column
(CSC) or Compressed Sparse Row (CSR).

The source code may be parsed, and an abstract syntax
tree may be generated (element 707), e.g., at a translation
layer of the service or system in one embodiment. The nodes
of the abstract syntax tree may comprise, for example, linear
algebra primitives, user defined functions, variables, assign-
ment operators and the like 1n one embodiment. In some
embodiments, respective compute kernels may be generated
for each user-defined ftunction. In various embodiments, the
system may search for one or more optimizations that can be
performed on the original abstract syntax tree, and generate
a transformed version of the abstract syntax tree which
represent the results of such a first set of optimizations. Such
optimizations may include, for example, rearranging some
of the nodes of the tree, coalescing nodes, and so on.

From the abstract syntax tree (either the original tree or an
optimized version), in one embodiment a dependency graph
of tasks may be generated (element 710). In one embodi-
ment, mdividual nodes or tasks of the graph may comprise
potentially parallelizable operators, such as vector, matrix or
matrix-vector operators; edges may represent data depen-
dencies (e.g., when the output of one task 1s needed for
another, an edge may connect the nodes of the two tasks). In
one embodiment, some tasks may represent sequential pro-
cessing steps. In some embodiments, another set of optimi-
zation opportunities may be i1dentified with respect to the
dependency graph—e.g., tasks may be divided up mto
parallelizable sub-tasks, tasks may be merged, and so on. A
transformed version of the dependency graph may be cre-
ated 1n one embodiment, retlecting the optimizations applied
to the original task graph.

Optionally, 1n one embodiment, persistent representations
of the artifacts produced during the analysis and optimiza-
tion of the program, such as one or more abstract syntax
trees and/or one or more task dependency graphs, may be
stored (element 713). The abstract syntax trees and/or the
task dependency graphs may be referred to as intermediary
data structures herein with respect to the graph analysis
program, as they are produced after the source code 1s
written and before the program 1s executed. The saved

10

15

20

25

30

35

40

45

50

55

60

65

16

representations of the artifacts or data structures may be
used for debugging or addressing performance problems in
various embodiments—e.g., a program developer dissatis-
fied with the performance achieved for a particular graph
analysis program may be provided access to the task depen-
dency graph that was generated, and so on. In some embodi-
ments, the itermediate representations may be re-used—
¢.g., a given task dependency graph may be used to generate
respective distinct executable code representations and run
at several diflerent hardware/software platforms 11 desired.

In one embodiment, a particular execution platform may
be selected for the program, e.g., based on available plat-
forms of a pool of servers, or based on parameters supplied
by the program submitter or client (element 716). In one
embodiment, as mentioned earlier, resources of one or more
network-accessible services of a provider network,distrib-
uted parallel file systems or shared-nothing file systems may
be selected as execution platforms.

At least one executable representation of the program,
comprising compute kernels optimized/tuned {for the
selected execution platform may be generated in the
depicted embodiment (element 719). The compute kernels
may correspond to functions of a parallel programming
library such as a CUDA library 1n some embodiments. If a
multi-node platiform 1s selected, in some embodiments, code
for invocations of inter-node communication primitives may
be 1nserted into the appropriate sections of the executable
representation. Any appropriate communication paradigm or
model may be used 1n different embodiments, including for
example MPI, PGAS, Realm etc. Kernels corresponding to
user-defined functions of the source code may be generated
for one or more hardware platforms 1n one embodiment and
incorporated into the executable representation. As men-
tioned earlier, 1n one embodiment 1n which graph algorithm
source code 1s embedded within a program written 1n a host
programming language, only a subset of data types may be
used 1n user-defined functions and/or passed to various
linear algebra primitives or operators, and compliance with
such restrictions may be verified when generating the cor-
responding kernels.

In one embodiment, an execution of the program may be
initiated on the selected platform (element 722). Results
(including, for example, performance data corresponding to
individual tasks or operators, communication overheads,
ctc.) may be retrieved from the execution platform and
stored or transmitted results to specified destination 1n some
embodiments.

FIG. 8 1s a flow diagram 1illustrating aspects of operations
which may be performed at an execution coordinator layer
of a system for accelerating graph analysis algorithms,
according to at least some embodiments. As shown 1n
clement 801, in one embodiment a dependency graph whose
nodes represent tasks or operators corresponding to a graph
analysis program, and whose edges represent logical or data
dependencies among the operators, may be obtained (e.g., as
part of a communication from an execution plan generator
layer of the graphic program acceleration system). Depend-
ing on the program, some of the tasks may be schedulable
independently of other tasks 1n at least some embodiments.
In one embodiment the tasks may be examined and ana-
lyzed.

In some embodiments, multiple versions ol compute
kernels may be available for a given task, with each version
being tuned for a particular use case and/or a particular
execution platform. The appropriate compute kernels corre-
sponding to a selected execution platform may be identified
in the depicted embodiment (element 804). Some of the

US 10,409,560 B1

17

compute kernels may correspond to the operators discussed
above, while others may correspond to user-defined func-
tions.

Sequential code, as needed, may be generated and fused
into the appropriate kernels (element 807) 1n the depicted
embodiment. The code of the program may then be com-
piled and linked for the targeted execution platform (element
810) in the depicted embodiment. In one embodiment, 11 the
selected platform 1s a multi-node platform, code for inter-
node communication may be generated in the appropnate
sections of the program, compiled and linked. The program
may then be executed on the target platform (element 813)
in the depicted embodiment.

It 1s noted that in various embodiments, some of the
operations shown 1n FIG. 7 or FIG. 8 may be implemented
in a different order than that shown in the figure, or may be
performed 1n parallel rather than sequentially. Additionally,
some of the operations shown 1 FIG. 7 and/or FIG. 8 may
not be required in one or more 1mplementations.
[lustrative Computer System

In at least some embodiments, a server that implements
one or more of the techniques described above for analyzing
and accelerating graph analysis algorithms and programs,
may 1nclude a general-purpose computer system that
includes or 1s configured to access one or more computer-
accessible media. FIG. 9 illustrates such a general-purpose
computing device 9000. In the illustrated embodiment,
computing device 9000 includes one or more processors
9010 coupled to a system memory 9020 (which may com-
prise both non-volatile and volatile memory modules) via an
input/output (I/0) interface 9030. Computing device 9000
turther includes a network interface 9040 coupled to I/O
intertace 9030.

In various embodiments, computing device 9000 may be
a uniprocessor system including one processor 9010, or a
multiprocessor system including several processors 9010
(e.g., two, four, eight, or another suitable number). Proces-
sors 9010 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,
processors 9010 may be general-purpose or embedded pro-
cessors 1implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each ol processors 9010 may commonly, but not
necessarily, implement the same ISA. In some 1mplemen-
tations, graphics processing umts (GPUs) may be used
instead of, or i addition to, conventional processors or
CPUs.

System memory 9020 may be configured to store instruc-
tions and data accessible by processor(s) 9010. In at least
some embodiments, the system memory 9020 may comprise
both volatile and non-volatile portions; 1n other embodi-
ments, only volatile memory may be used. In various
embodiments, the volatile portion of system memory 9020
may be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM or any other type of memory. For the
non-volatile portion of system memory (which may com-
prisc one or more NVDIMMs, for example), in some
embodiments {flash-based memory devices, including
NAND-flash devices, may be used. In at least some embodi-
ments, the non-volatile portion of the system memory may
include a power source, such as a supercapacitor or other
power storage device (e.g., a battery). In various embodi-

ments, memristor based resistive random access memory
(ReRAM), three-dimensional NAND technologies, Ferro-

clectric RAM, magnetoresistive RAM (MRAM), or any of

10

15

20

25

30

35

40

45

50

55

60

65

18

various types of phase change memory (PCM) may be used
at least for the non-volatile portion of system memory. In the
illustrated embodiment, program instructions and data
implementing one or more desired functions, such as those
methods, techniques, and data described above, are shown
stored within system memory 9020 as code 9025 and data
9026.

In one embodiment, I/O mtertace 9030 may be configured
to coordinate I/O traflic between processor 9010, system
memory 9020, network interface 9040 or other peripheral
interfaces such as various types of persistent and/or volatile
storage devices. In some embodiments, I/0 interface 9030
may perform any necessary protocol, timing or other data
transformations to convert data signals from one component
(e.g., system memory 9020) into a format suitable for use by
another component (e.g., processor 9010).

In some embodiments, I/O terface 9030 may include
support for devices attached through various types of periph-
eral buses, such as a Low Pin Count (LPC) bus, a variant of
the Peripheral Component Interconnect (PCI) bus standard
or the Universal Serial Bus (USB) standard, for example. In
some embodiments, the function of I/O nterface 9030 may
be split 1into two or more separate components, such as a
north bridge and a south bridge, for example. Also, 1n some
embodiments some or all of the functionality of I/O interface
9030, such as an interface to system memory 9020, may be
incorporated directly into processor 9010.

Network interface 9040 may be configured to allow data
to be exchanged between computing device 9000 and other
devices 9060 attached to a network or networks 9050, such
as other computer systems or devices as 1illustrated 1n FIG.
1 through FIG. 8, for example. In various embodiments,
network interface 9040 may support communication via any
suitable wired or wireless general data networks, such as
types ol Ethernet network, for example. Additionally, net-
work interface 9040 may support communication via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks, via
storage area networks such as Fibre Channel SANs, or via
any other suitable type of network and/or protocol.

In some embodiments, system memory 9020 may be one
embodiment of a computer-accessible medium configured to
store program 1instructions and data as described above for
FIG. 1 through FIG. 8 for implementing embodiments of the
corresponding methods and apparatus. However, 1in other
embodiments, program 1nstructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-acces-
sible medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 9000 via I/O
interface 9030. A non-transitory computer-accessible stor-

age medium may also include any volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR SDRAM,

RDRAM, SRAM, etc.), ROM, etc., that may be included 1n
some embodiments of computing device 9000 as system
memory 9020 or another type of memory. Further, a com-
puter-accessible medium may include transmission media or
signals such as electrical, electromagnetic, or digital signals,
conveyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network 1nterface 9040. Portions or all of multiple comput-
ing devices such as that illustrated 1n FIG. 9 may be used to
implement the described functionality in various embodi-
ments; for example, software components running on a
variety ol different devices and servers may collaborate to
provide the functionality. In some embodiments, portions of

US 10,409,560 B1

19

the described functionality may be implemented using stor-
age devices, network devices, or special-purpose computer
systems, 1n addition to or instead of being implemented
using general-purpose computer systems. In various
embodiments, the term “computing device” may refer to one
or more of these types of devices, and 1s not limited to these
types of devices.

CONCLUSION

Various embodiments may further include recerving,
sending or storing instructions and/or data implemented 1n
accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-acces-
sible medium may include storage media or memory media
such as magnetic or optical media, e.g., disk or DVD/CD-
ROM, volatile or non-volatile media such as RAM (e.g.
SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as well
as transmission media or signals such as electrical, electro-
magnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

The various methods as illustrated 1n the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It 1s intended to embrace all such modi-
fications and changes and, accordingly, the above descrip-
tion to be regarded 1n an 1llustrative rather than a restrictive
sense.

What 1s claimed 1s:
1. A system, comprising:
one or more processors; and
memory storing program instructions that, 1f executed,
cause the one or more processors to perform a method
comprising:
obtaining source code of a graph analysis algorithm
expressed 1 a platform-independent programming,
language, wherein the source code includes one or
more linear algebra primitives of the language;
generating a platform-independent task dependency
graph from the source code, wherein the task depen-
dency graph represents the one or more linear alge-
bra primitives as individual nodes and indicates that
at least an individual one of the one or more linear
algebra primitives 1s a parallelizable task that can be
divided 1nto two or more sub-tasks to be executed 1n
parallel on one or more hardware platforms;
generating executable code corresponding to the source
code for a first hardware platiorm of the one or more
hardware platforms, wherein the executable code
comprises an 1nvocation of a first version of a
function of a parallel programming library to per-
form the parallelizable task, wherein the first version
1s selected from a plurality of versions of the func-
tion which are tuned for execution at respective
hardware platforms; and
causing a result of execution of the executable code on
the first hardware platform to be transmitted to a
destination.
2. The system as recited in 1, wherein the first hardware
plattorm comprises a plurality of nodes of a cluster, and
wherein generating the executable code comprises:

5

10

15

20

25

30

35

40

45

50

55

60

65

20

identifying one or more communication primitives to be
used to enable transier of data from a first node of the
plurality of nodes to a second node of the plurality of
nodes;

including, within the executable code, respective mvoca-

tions of the one or more communication primitives.

3. The system as recited 1n claim 1, wherein the one or
more linear algebra primitives comprise one or more of: (a)
a sparse matrix vector multiplication primitive, (b) a sparse
matrix-matrix multiplication primitive, (¢) a primitive to
map a unary function over a vector, (d) a primitive to map
a binary function over two vectors, or (¢) a primitive
implementing a convolution operation.

4. The system as recited i claim 1, wherein the graph
analysis algorithm comprises one or more of: a tree search
algorithm, a hierarchical graph partitioning algorithm, a
graph coarsening algorithm, a Louvain modularity algo-
rithm, an algorithm for determining a Jaccard similarity, a
triangle counting algorithm, a collaborative filtering algo-
rithm, a matrix factorization algorithm, a supervised neural
network algorithm, a clustering algorithm, or a dimension-
ality reduction algorithm.

5. The system as recited i claim 1, wherein the first
hardware platform comprises a resource of one or more of
(a) a network-accessible computing service of a provider
network (b) a distributed parallel file system or (¢) a shared-
nothing file system.

6. The system as recited 1n claim 1, wherein the source
code comprises a user defined function, and wherein gen-
erating the executable code comprises generating a compute
kernel corresponding to the user defined function.

7. A method, comprising;:

obtaining source code of a graph analysis algorithm

expressed 1n a platform-independent programming lan-
guage, wherein the source code utilizes one or more
linear algebra primitives of the language;

generating a plattorm-independent task dependency graph

from the source code, wherein the task dependency
graph represents the one or more linear algebra primi-
tives as individual nodes and indicates that at least an
individual one of the one or more linear algebra primi-
tives 1s a parallelizable task that can be divided into two
or more sub-tasks to be executed in parallel on one or
more hardware platforms;

generating executable code corresponding to the source

code for a hardware platform of the one or more
hardware platforms, wherein the source code comprises
an 1nvocation of a first function of a parallel program-
ming library to perform the parallelizable task, wherein
the first function 1s tuned for the hardware platiorm;
and

causing a result of execution of the executable code on the

hardware platform to be stored.

8. The method as recited 1n claim 7, further comprising:

implementing one or more optimization operations whose

results are 1ncorporated into the executable code,
wherein an optimization operation of the one or more
optimization operations comprises one or more of:
fusing a plurality of compute kernels mto a single
compute kernel, unrolling of a tail recursion, a sparsity-
enhancement operation, a memory allocation operation
intended for an overwrite-in-place data set, a selection
of a compute kernel variant based on a read-only access
pattern, storing a data set into a shared memory acces-
sible from a plurality of execution engines, or combin-
ing work 1tems dynamically 1nto a single kernel launch
based at least in part on utilization considerations.

US 10,409,560 B1

21

9. The method as recited in claim 7, wherein the hardware
platform comprises one or more of (a) a graphical process-
ing unit (GPU), (b) a central processing unit (CPU), (¢) a
device comprising at least one CPU and at least one GPU,
(d) a field programmable gate array (FPGA) device, or (¢) an
accelerator comprising a system on chip (SOC).

10. The method as recited 1n claim 7, wherein the hard-
ware platform comprises a plurality of nodes of a cluster,
and wherein said generating the executable code comprises:

identifying one or more communication primitives to be
used to enable transfer of data from one node of the
plurality of nodes to another node of the plurality of
nodes;

including, within the executable representation, respec-

tive invocations of the one or more communication
primitives.

11. The method as recited 1n claim 7, wherein the plat-
form-independent programming language i1s a functional
programming language.

12. The method as recited 1n claim 7, wherein the one or
more linear algebra primitives comprise one or more of: (a)
a sparse matrix vector multiplication primitive, (b) a sparse
matrix-matrix multiplication primitive, (¢) a primitive to
map a unary function over a vector, (d) a primitive to map
a binary function over two vectors, or (¢) a primitive
implementing a convolution operation.

13. The method as recited 1n claim 7, further comprising:

transforming a representation of an input graph data set

which 1s to be analyzed using the graph analysis
program from a {irst format or data structure to a second
format or data structure.

14. The method as recited in claim 7, wherein the graph
analysis algorithm comprises one or more of: a tree search
algorithm, a hierarchical graph partitioning algorithm, a
graph coarseming algorithm, a Louvain modularity algo-
rithm, an algorithm for determining a Jaccard similarity, a
triangle counting algorithm, a collaborative filtering algo-
rithm, a matrnx factorization algorithm, a supervised neural
network algorithm, a clustering algorithm, or a dimension-
ality reduction algorithm.

15. The method as recited in claim 7, wherein the hard-
ware platform comprises a resource ol one or more of: (a) a
network-accessible service of a provider network, (b) a
distributed parallel file system or (¢) a shared-nothing file
system.

16. The method as recited 1n claim 7, wherein the source
code 1s obtained via a programmatic interface of a network-
accessible service.

17. The method as recited 1n claim 7, further comprising:

generating an abstract syntax tree based at least 1n part on

the source code; and

wherein the task dependency graph 1s generated based at

least 1n part on the abstract syntax tree.

18. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors:

obtain source code of a graph analysis program expressed

in a platform-independent programming language,

10

15

20

25

30

35

40

45

50

55

22

wherein the source code comprises one or more linear
algebra primitive operations;

generate a platform-independent task dependency graph

from the source code, wherein the task dependency
graph represents the one or more linear algebra primi-
tives as individual nodes and indicates that at least an
individual one of the one or more linear algebra primi-
tives 1s a parallelizable task that can be divided into two
or more sub-tasks to be executed in parallel on one or
more hardware platforms;

generate an executable representation of the source code

for a first hardware platform of the one or more
hardware platiorms, wherein the executable represen-
tation comprises an mvocation of a first function of a
parallel programming library to perform the paralleliz-
able task, wherein the first function 1s optimized for the
first hardware platform; and

cause a result of execution of the executable representa-

tion on the first hardware platform to be stored.
19. The non-transitory computer-accessible storage
medium as recited in claim 18, wherein the instructions
when executed on the one or more processors:
implement one or more optimization operations whose
results are icorporated 1nto the executable represen-
tation, wherein a first optimization operation of the one
or more optimization operations CoOmprises one or more
of: fusing a plurality of compute kernels into a single
compute kernel, unrolling of a tail recursion, a sparsity-
enhancement operation, a memory allocation operation
intended for an overwrite-in-place data set, a selection
of a compute kernel variant based on a read-only access
pattern, storing a data set into a shared memory acces-
sible from a plurality of execution engines of the first
hardware platform, or combining work items dynami-
cally into a single kernel launch based at least 1n part on
utilization considerations.
20. The non-transitory computer-accessible storage
medium as recited 1n claim 18, wherein the first hardware
platform comprises one or more of (a) a graphical process-
ing unit (GPU), (b) a central processing unit (CPU), (¢) a
device comprising at least one CPU and at least one GPU,
(d) a field programmable gate array (FPGA) device, or (¢) an
accelerator comprising a system on chip (SOC).
21. The non-transitory computer-accessible storage
medium as recited 1n claim 18, wherein the first hardware
platiorm comprises a plurality of nodes of a cluster, and
wherein to generate the executable representation, the
instructions when executed on the one or more processors:
identily one or more communication primitives to be used
to enable transfer of data from one node of the plurality
of nodes to another node of the plurality of nodes;

include, within the executable representation, respective
invocations of the one or more communication primi-
tives.

22. The non-transitory computer-accessible storage
medium as recited in claim 18, wherein the platiorm-
independent programming language 1s a functional pro-
gramming language.

	Front Page
	Drawings
	Specification
	Claims

