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VEHICLE NEURAL NETWORK
PERCEPTION AND LOCALIZATION

BACKGROUND

Vehicles can be equipped with computing devices, net-
works, sensors, and controllers to acquire data regarding the
vehicle’s environment and to operate the vehicle based on
the data. Vehicle sensors can provide data concerning routes
to be traveled and objects to be avoided in the vehicle’s
environment. Operation of the vehicle can rely upon acquir-
ing accurate and timely data regarding objects 1n a vehicle’s
environment while the vehicle 1s being operated on a road-
way.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an example traflic infrastructure
system.

FIG. 2 1s a diagram of an example illustration of a
topoplogical map.

FIG. 3 1s a diagram of example stereo 1images.

FIG. 4 1s a diagram of an example point cloud image.

FIG. 5 1s an example node system that generates topo-
logical nodes.

FIG. 6 1s an example of a topological convolutional neural
network.

FIG. 7 1s an example of a six degree of freedom local-
1zation system.

FIG. 8 1s an example of a three dimensional object
detection system.

FIG. 9 1s an example of a Siamese network.

FIG. 10 1s a flowchart diagram of an example process to
operate a vehicle based on six degree of freedom localiza-
tion and three dimensional object detection.

DETAILED DESCRIPTION

A computing device 1n a traflic infrastructure system can
be programmed to acquire data regarding the external envi-
ronment of a vehicle and to use the data to determine a
vehicle path upon which to operate a vehicle 1n an autono-
mous or semi-autonomous mode. A vehicle can operate on
a roadway based on a vehicle path by determining com-
mands to direct the vehicle’s powertrain, braking, and
steering components to operate the vehicle to travel along
the path. The data regarding the external environment can
include the location of one or more objects such as vehicles
and pedestrians, etc., 1n an environment around a vehicle and
can be used by a computing device 1n the vehicle to operate
the vehicle.

Determining a vehicle path can include solving two
problems: perception and localization. Perception includes
determining locations of objects in an environment around a
vehicle. Objects can include other vehicles, pedestrians,
traflic barriers, etc. Localization includes determining a six
degree-oi-freedom (DoF) pose for the vehicle with respect
to a map of the environment around the vehicle. A six DoF
pose 1ncludes a location 1n three orthogonal coordinates (x,
y, and z, for example) and orientation 1n three rotations about
the axes of each of the three orthogonal coordinates (roll,
pitch, and yvaw, for example). Localizing a vehicle with
respect to a map and perceiving objects in an environment
around a vehicle can permit a computing device in a vehicle
to determine a vehicle path upon which the vehicle can
travel to reach a destination on the map while avoiding
contact with objects 1n the environment around the vehicle.
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2

A vehicle path can be a polynomial function determined to
maintain lateral and longitudinal accelerations of the vehicle
within upper and lower limits as 1t travels on the vehicle
path.

Solving localization and perception problems for vehicle
routing can begin by recogmzing that vehicles typically
travel repeatedly along the same routes. Techniques dis-
closed herein can take advantage of predictable travel pat-
terns by creating a topological map of repeatedly traveled
routes that can be used by a vehicle to solve localization and
perception problems using less expensive equipment and
tewer computer resources that would otherwise be required
to determine a vehicle route. Techniques described herein
perform perception and localization of an environment
around a vehicle by first determining a topological map of a
route to be traveled by the vehicle. A route 1s defined as a
path that describes successive locations of a vehicle as 1t
travels from one point to a second point on a map, typically
on roadways. The topological map 1s a map that includes
location and 1mage data that can be used by a computing
device 1n a vehicle to determine data including vehicle
location and locations of objects 1n an environment around
the vehicle. A topological map 1s generated by processing a
plurality of stereo 1mages of the route to form a plurality of
nodes as illustrated 1n FIG. 2. Each node includes six DoF
data for a location along a route and 3D image data that
includes three-dimensional (3D) features based on an RGB
image from a stereo 1mage pair. The features are extracted
from the RGB 1mages using machine vision techniques and
3D data extracted from stereo 1mage data as will be dis-
cussed below in relation to FIGS. 3-5. The six DoF data and
the 3D 1mage data 1s used to train a neural network to input
a color or reg, green, blue (RGB) 1image acquired by a sensor
included 1n a vehicle and output data 1dentifying the closest
node of the topological map and a labeled point cloud 1image
as will be discussed 1n relation to FIGS. 6-8. A point cloud
image 1s point cloud data that includes distances or range to
points 1n the 1image. A semantic point cloud 1s a point cloud
image 1cludes labels that identify regions within the image
corresponding to objects. Regions so labeled can include
roadways, sidewalks, vehicles, pedestrians, buildings and
foliage, etc. Techniques disclosed herein improve localiza-
tion and perception by determining a s1x DoF location of a
vehicle and 1dentifying objects 1n an environment around a
vehicle based on a single monocular 1mage, thereby elimi-
nating the expense and computational resources required by
stereo cameras or lidar sensors. Techniques described herein
also discuss updating the topological map with new data
acquired by vehicles traversing the route, thereby improving
the data included at each node of the topological map to
reflect any changes to the route.

Disclosed herein 1s a method, including mputting an
image acquired by a sensor in a vehicle to a variational
auto-encoder neural network that outputs a semantic point
cloud 1image that includes regions labeled by region type and
region distance relative to the vehicle and, from a plurality
of topological nodes, determining a topological node closest
to the vehicle and a six degree-of-freedom pose for the
vehicle relative to the topological node closest to the vehicle
based on the semantic point cloud image, wherein each
topological node includes a location 1 real-world coordi-
nates and a three-dimensional point cloud image of an
environment including the location of the topological node.
A real-world si1x degree-of-freedom pose for the vehicle can
be determined by combining the six degree-of-ireedom pose
for the vehicle relative to the topological node and the
location 1n real-world coordinates of the topological node
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closest to the vehicle and a location and size of a three-
dimensional object in the semantic point cloud 1mage can be
determined based on three-dimensional background subtrac-
tion using the three-dimensional point cloud image 1included
in the topological node closest to the vehicle. The real-world
s1x degree-of-freedom pose for the vehicle can be deter-
mined based on a single monocular image acquired by the
sensor 1n the vehicle without including an 1nertial measure-
ment unit in the vehicle.

The semantic point cloud 1mage can be determined based
on a single monocular 1image acquired by the sensor 1n the
vehicle without including a stereo camera or lidar sensor in
the vehicle. The topological nodes can be determined by
acquiring point cloud images with a stereo camera and
determining locations of the point cloud images 1n real-
world coordinates with visual odometry. The real-world six
degree-of-freedom pose for the vehicle can be determined 1n
coordinates based on orthogonal x, y, and z axes and roll,
pitch, and yaw rotations about the x, vy, and z axes, respec-
tively. The location and size of an object in semantic point
cloud data can be determined with a convolutional neural
network trained to determine a three-dimensional bounding,
box that includes the three-dimensional object and a real-
world location relative to the vehicle for the object. Three-
dimensional background subtraction using the point cloud
image can be used to determine the three-dimensional
bounding box by reducing background clutter caused by
labeled regions that occur 1 both a current semantic point
cloud and a semantic point cloud 1mage included in a
topological node. The convolutional neural network can
include convolutional layers that output first latent variables
to first fully connected neural network layers. The varia-
tional auto-encoder neural network can determine the
semantic point cloud image by outputting second latent
variables to second fully connected neural network layers.
The vanational auto-encoder neural network can be trained
to output the semantic point cloud image in a Siamese
network configuration wherein the variational auto-encoder
neural network 1s trained in parallel with a second varia-
tional auto-encoder network trained using a plurality of
three-dimensional point cloud images acquired while trav-
cling along a route that includes the plurality of topological
nodes. The semantic point cloud 1mage region types can
include roadway, sidewalk, vehicle, building, and foliage
based on the plurality of three-dimensional point cloud
images. The variational autoencoder neural network can
include an encoder, a decoder and a loss function. The
variational autoencoder neural network encoder processes
input 1mage data to form latent variables. The varational
autoencoder neural network decoder can be trained to deter-
mine six degree of freedom data from the latent variables.

Further disclosed 1s a computer readable medium, storing
program instructions for executing some or all of the above
method steps. Further disclosed 1s a computer programmed
for executing some or all of the above method steps,
including a computer apparatus, programmed to put an
image acquired by a sensor 1n a vehicle to a vanational
auto-encoder neural network that outputs a semantic point
cloud image that includes regions labeled by region type and
region distance relative to the vehicle and, from a plurality
of topological nodes, determine a topological node closest to
the vehicle and a six degree-of-freedom pose for the vehicle
relative to the topological node closest to the vehicle based
on the semantic point cloud 1mage, wherein each topological
node includes a location in real-world coordinates and a
three-dimensional point cloud image of an environment
including the location of the topological node. A real-world
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s1X degree-of-freedom pose for the vehicle can be deter-
mined by combining the six degree-of-ifreedom pose for the
vehicle relative to the topological node and the location in
real-world coordinates of the topological node closest to the
vehicle and a location and size of a three-dimensional object
in the semantic point cloud 1image can be determined based
on three-dimensional background subtraction using the
three-dimensional point cloud 1mage included 1n the topo-
logical node closest to the vehicle. The real-world six
degree-ol-freedom pose for the vehicle can be determined
based on a single monocular 1image acquired by the sensor
in the vehicle without including an inertial measurement unit
in the vehicle.

The computer can be further programmed to determined
the semantic point cloud image based on a single monocular
image acquired by the sensor 1n the vehicle without includ-
ing a stereo camera or lidar sensor in the vehicle. The
topological nodes can be determined by acquiring point
cloud images with a stereo camera and determining loca-
tions of the point cloud images in real-world coordinates
with visual odometry. The real-world six degree-of-freedom
pose for the vehicle can be determined 1n coordinates based
on orthogonal x, y, and z axes and roll, pitch, and yaw
rotations about the x, y, and z axes, respectively. The
location and size of an object 1n semantic point cloud data
can be determined with a convolutional neural network
trained to determine a three-dimensional bounding box that
includes the three-dimensional object and a real-world loca-
tion relative to the vehicle for the object. Three-dimensional
background subtraction using the point cloud image can be
used to determine the three-dimensional bounding box by
reducing background clutter caused by labeled regions that
occur 1n both a current semantic point cloud and a semantic
pomnt cloud image included 1n a topological node. The
convolutional neural network can include convolutional
layers that output first latent variables to first fully connected
neural network layers. The variational auto-encoder neural
network can determine the semantic point cloud 1mage by
outputting second latent variables to second fully connected
neural network layers. The variational auto-encoder neural
network can be trained to output the semantic point cloud
image 1 a Siamese network configuration wherein the
variational auto-encoder neural network 1s trained 1n parallel
with a second variational auto-encoder network trained
using a plurality of three-dimensional point cloud 1mages
acquired while traveling along a route that includes the
plurality of topological nodes. The semantic point cloud
image region types can include roadway, sidewalk, vehicle,
building, and foliage based on the plurality of three-dimen-
sional point cloud images. The variational autoencoder
neural network can include an encoder, a decoder and a loss
function. The wvaniational autoencoder neural network
encoder processes mput image data to form latent variables.
The variational autoencoder neural network decoder can be
trained to determine six degree of freedom data from the
latent variables.

FIG. 1 1s a diagram of a traflic infrastructure system 100
that includes a vehicle 110 operable 1n autonomous (“au-
tonomous” by itsell 1n this disclosure means “fully autono-
mous”’), semi-autonomous, and occupant piloted (also
referred to as non-autonomous) mode. One or more vehicle
110 computing devices 115 can receive data regarding the
operation of the vehicle 110 from sensors 116. The comput-
ing device 115 may operate the vehicle 110 1n an autono-
mous mode, a semi-autonomous mode, or a non-autono-
mous mode.
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The computing device 115 includes a processor and a
memory such as are known. Further, the memory includes
one or more forms of computer-readable media, and stores
instructions executable by the processor for performing
vartous operations, including as disclosed herein. For
example, the computing device 115 may include program-
ming to operate one or more of vehicle brakes, propulsion
(e.g., control of acceleration 1n the vehicle 110 by control-
ling one or more of an internal combustion engine, electric
motor, hybrid engine, etc.), steering, climate control, interior
and/or exterior lights, etc., as well as to determine whether
and when the computing device 115, as opposed to a human
operator, 1s to control such operations.

The computing device 115 may include or be communi-
catively coupled to, e.g., via a vehicle communications bus
as described further below, more than one computing
devices, e.g., controllers or the like included 1n the vehicle
110 for monitoring and/or controlling various vehicle com-
ponents, €.g., a powertrain controller 112, a brake controller
113, a steering controller 114, etc. The computing device 115
1s generally arranged for communications on a vehicle
communication network, e.g., including a bus in the vehicle
110 such as a controller area network (CAN) or the like; the
vehicle 110 network can additionally or alternatively include
wired or wireless communication mechanisms such as are
known, e.g., Ethernet or other communication protocols.

Via the vehicle network, the computing device 115 may
transmit messages to various devices 1n the vehicle and/or
receive messages from the various devices, e.g., controllers,
actuators, sensors, etc., including sensors 116. Alternatively,
or additionally, 1n cases where the computing device 1135
actually comprises multiple devices, the vehicle communi-
cation network may be used for communications between
devices represented as the computing device 115 1n this
disclosure. Further, as mentioned below, various controllers
or sensing elements such as sensors 116 may provide data to
the computing device 115 via the vehicle communication
network.

In addition, the computing device 115 may be configured
for communicating through a vehicle-to-infrastructure
(V-to-I) interface 111 with a remote server computer 120,
¢.g., a cloud server, via a network 130, which, as described
below, includes hardware, firmware, and software that per-
mits computing device 115 to communicate with a remote
server computer 120 via a network 130 such as wireless
Internet (WI-FI®) or cellular networks. V-to-I interface 111
may accordingly include processors, memory, transceivers,
etc., configured to utilize various wired and/or wireless
networking technologies, e.g., cellular, BLUETOOTH® and
wired and/or wireless packet networks. Computing device
115 may be configured for communicating with other
vehicles 110 through V-to-I iterface 111 using vehicle-to-
vehicle (V-to-V) networks, e.g., according to Dedicated
Short Range Communications (DSRC) and/or the like, e.g.,
formed on an ad hoc basis among nearby vehicles 110 or
formed through infrastructure-based networks. The comput-
ing device 115 also includes nonvolatile memory such as 1s
known. Computing device 115 can log data by storing the
data 1n nonvolatile memory for later retrieval and transmattal
via the vehicle communication network and a vehicle to
inirastructure (V-to-1) interface 111 to a server computer 120
or user mobile device 160.

As already mentioned, generally included 1n instructions
stored 1n the memory and executable by the processor of the
computing device 115 1s programming for operating one or
more vehicle 110 components, e.g., braking, steering, pro-
pulsion, etc., without intervention of a human operator.
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Using data received 1n the computing device 115, e.g., the
sensor data from the sensors 116, the server computer 120,
etc., the computing device 115 may make various determi-
nations and/or control various vehicle 110 components and/
or operations without a driver to operate the vehicle 110. For
example, the computing device 115 may include program-
ming to regulate vehicle 110 operational behaviors (1.e.,
physical manifestations of vehicle 110 operation) such as
speed, acceleration, deceleration, steering, etc., as well as
tactical behaviors (i.e., control of operational behaviors
typically 1n a manner intended to achieve safe and eflicient
traversal of a route) such as a distance between vehicles
and/or amount of time between vehicles, lane-change, mini-
mum gap between vehicles, left-turn-across-path minimum,
time-to-arrival at a particular location and intersection (with-
out signal) mimmimum time-to-arrival to cross the intersec-
tion.

Controllers, as that term 1s used herein, include computing
devices that typically are programmed to monitor and/or
control a specific vehicle subsystem. Examples include a
powertrain controller 112, a brake controller 113, and a
steering controller 114. A controller may be an electronic
control unit (ECU) such as 1s known, possibly including
additional programming as described herein. The controllers
may communicatively be connected to and receive mnstruc-
tions from the computing device 115 to actuate the subsys-
tem according to the instructions. For example, the brake
controller 113 may receive mstructions from the computing
device 115 to operate the brakes of the vehicle 110.

The one or more controllers 112, 113, 114 for the vehicle
110 may 1include conventional electronic control units
(ECUs) or the like including, as non-limiting examples, one
or more powertrain controllers 112, one or more brake
controllers 113, and one or more steering controllers 114.
Each of the controllers 112, 113, 114 may include respective
processors and memories and one or more actuators. The
controllers 112, 113, 114 may be programmed and connected
to a vehicle 110 communications bus, such as a controller
area network (CAN) bus or local interconnect network
(LIN) bus, to receive structions from the computing device
115 and control actuators based on the instructions.

Sensors 116 may include a variety of devices known to
provide data via the vehicle communications bus. For
example, a radar fixed to a front bumper (not shown) of the
vehicle 110 may provide a distance from the vehicle 110 to
a next vehicle i front of the vehicle 110, or a global
positioning system (GPS) sensor disposed in the vehicle 110
may provide geographical coordinates of the vehicle 110.
The distance(s) provided by the radar and/or other sensors
116 and/or the geographical coordinates provided by the
GPS sensor may be used by the computing device 115 to
operate the vehicle 110 autonomously or semi-autono-
mously, for example.

The vehicle 110 1s generally a land-based vehicle 110
capable of autonomous and/or semi-autonomous operation
and having three or more wheels, e.g., a passenger car, light
truck, etc. The vehicle 110 includes one or more sensors 116,
the V-to-I interface 111, the computing device 115, and one
or more controllers 112, 113, 114. The sensors 116 may
collect data related to the vehicle 110 and the environment
in which the vehicle 110 1s operating. By way of example,
and not limitation, sensors 116 may include, ¢.g., altimeters,
cameras, LIDAR, radar, ultrasonic sensors, infrared sensors,
pressure sensors, accelerometers, gyroscopes, temperature
sensors, pressure sensors, hall sensors, optical sensors, volt-
age sensors, current sensors, mechanical sensors such as
switches, etc. The sensors 116 may be used to sense the
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environment in which the vehicle 110 1s operating, e.g.,
sensors 116 can detect phenomena such as weather condi-
tions (precipitation, external ambient temperature, etc.), the
grade of aroad, the location of a road (e.g., using road edges,
lane markings, etc.), or locations of target objects such as
neighboring vehicles 110. The sensors 116 may further be
used to collect data including dynamic vehicle 110 data
related to operations of the vehicle 110 such as velocity, yaw
rate, steering angle, engine speed, brake pressure, o1l pres-
sure, the power level applied to controllers 112, 113, 114 1n
the vehicle 110, connectivity between components, and
accurate and timely performance of components of the
vehicle 110.

Traflic infrastructure system 100 can include one or more
edge computing nodes 170. Edge computing nodes 170 are
computing devices as described above that can be located
near roadways, and can be in communication with stationary
or moveable sensors. For example, a stationary video cam-
era 180 can be attached to a pole 190, building, or other
structure to give the video camera 180 a view of traflic.
Mobile sensors can be mounted on drones or other mobile
platforms to provide views of trailic from positions not
available to stationary sensors. Edge computing nodes 170
further can be 1 communication with computing devices
115 1n vehicle 110, server computers 120, and user mobile
devices 160 such as smart phones. Server computers 120 can
be cloud-based computer resources that can be called upon
by edge computing nodes 170 to provide additional com-
puting resources when needed.

Vehicles can be equipped to operate 1n both autonomous
and occupant piloted mode. By a semi- or fully-autonomous
mode, we mean a mode of operation wherein a vehicle can
be piloted partly or entirely by a computing device as part of
a system having sensors and controllers. The vehicle can be
occupied or unoccupied, but in either case the vehicle can be
partly or completely piloted without assistance of an occu-
pant. For purposes of this disclosure, an autonomous mode
1s defined as one 1n which each of vehicle propulsion (e.g.,
via a powertrain including an internal combustion engine
and/or electric motor), braking, and steering are controlled
by one or more vehicle computers; 1n a semi-autonomous
mode the vehicle computer(s) control(s) one or more of
vehicle propulsion, braking, and steering. In a non-autono-
mous mode, none of these are controlled by a computer.

FI1G. 2 1s a diagram of a topological map 200. Topological
map 200 can be constructed by acquiring and processing
stereo video data using video odometry to determine topo-
logical nodes 202 along a route or roadway 204, 206. A
topological map 200 1s a set of nodes 202, each of which
includes real world coordinate data regarding the location of
the node and three dimensional (3D) image data derived
from the stereo video data as discussed in relation to FIGS.
3-6, below. A topological map 200 can be 1illustrated as 1n
FIG. 2 by modifying a street map by adding nodes 202,
illustrated as circles on roadways or routes 204, 206. The
terms roadways and routes will be used interchangeably
herein. Each node 202 1s located on a roadway 204, 206 that
can be traveled along by a vehicle 110. Nodes are located
with one to 10 meters distance between adjacent nodes.
Spacing out nodes 1n this fashion permits location of a
vehicle 110 within a few centimeters, for example one to 25
centimeters, 1 X, v, and z directions while maintaining a
limit on the amount of data required to represent the route.
The roadway 204, 206 1s mapped using a vehicle equipped
with a stereo camera to generate stereo point cloud data and
RGB images corresponding to the stereo point cloud data.
Each node 202 1n the topological map includes a represen-
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tative RGB 1mage with corresponding features derived from
latent varniables from a neural network to be described 1n
relation to FIGS. 7 and 8. Each node also includes 2D 1mage
points extracted from the RGB image using machine vision
techniques described in relation to FIGS. 3-6 and corre-
sponding 3D locations derived from stereo point cloud data.

FIG. 3 1s a diagram of a pair of stereo images 302, 304.
Stereo 1mages can be acquired by a stereo camera, where
two cameras are arranged to view the same scene with a
lateral separation. The lateral separation, also referred to as
the baseline, causes the cameras to generate 1mages where
corresponding points 1mn each image will be displaced with
respect to the 1mage by an amount that 1s a function of the
lateral separation of the cameras and the distance of the point
in space from the camera. Because the lateral separation of
the cameras can be precisely determined, a simple geometric
transformation can yield distances to points 1n the images,
¢.g., as described further below.

FIG. 4. 1s a diagram of a stereo point cloud 1mage 402
generated from a pair of stereo 1mages 302, 304. While the
pixels values 1n a pair of stereo images 302, 304 correspond
to the amount of light received by the sensors, 1n a stereo
point cloud 1image 402 the value of the pixels correspond to
distances from the point corresponding to the pixel to the
sensor. A stereo point cloud image 402 can be constructed
from a pair of stereo 1mages 302, 304 based on stereo
disparity. Stereo disparity 1s defined as the diflerence 1n
corresponding feature point locations in a pair of stereo
images 302, 304. Corresponding feature points are defined
as locations 1n the pair of stereo 1images 302, 304 that share
similar pixel values including regions around the locations.
For example, corners, edges and textures 1n the pair of stereo
images 302, 304 can be corresponding feature points. The
feature points can be determined by known machine vision
techniques which determine feature points by processing
regions 1n 1images to find pixel locations that can be defined
by patterns of abrupt changes in pixel values, for example
edges and corners and textures. Patterns of pixel values
around feature points can be compared between pairs of
stereo 1mages to i1dentity corresponding feature points that
occur 1n both images. The difference 1 location with respect
to the array of 1mage points can be used to measure stereo
disparity. An example of feature point detection can be
found in SURF (US Patent Application 2009238460, Ryuji
Funayama, Et. Al., ROBUST INTEREST POINT DETEC-
TOR AND DESCRIPTOR, published 2009 Sep. 24).

Once corresponding feature points 1 a pair of stereo
images 302, 304 by determining similar arrangements of
pixel values. Because the distance between the stereo cam-
eras determined by the fixed mount to which the cameras are
attached, a baseline 1s established that permits the distance
from the sensors to corresponding feature points to be
determined by triangulation. An equation for determining
the distance from an image sensor to a point P=x_,y_, 7, in
overlapping fields of view of a pair of stereo 1image sensors
corresponding to image feature locations P(u,, v,), P(u,, v,)
in {irst and second stereo 1mage based on stereo disparity 1s
given by the equations:

d=u—u- (D)

le b’iﬁl bf (2)
TP T T T

Where d 1s the disparnity determined by a difference in

feature coordinates locations u,—u, in the x-direction, b 1s



US 11,189,049 Bl

9

the baseline between the centers of first and second image
sensors and 1 1s the common focal distance of the image
sensors. Distances to a plurality of corresponding feature
points determined in this fashion can be assembled i1nto a
point cloud 1mage.

A stereo point cloud image can also be determined by
training a convolutional neural network (CNN) to determine
a point cloud 1image 402 from a pair of stereo 1mages 302,
304. A convolutional neural network includes a plurality of
convolutional layers followed by a plurality of fully con-
nected layers. The convolutional layers can determine the
feature points, which are passed as latent variables to the
tully connected layers, which calculate the equivalent of
equations (1) and (2). A CNN can be trained to determine a
point cloud 1image 402 from a pair of stereo 1mages 302, 304
using a training dataset that includes pairs of stereo 1mages
302, 304 along with ground truth point cloud images 402
that have been determined using feature points and geomet-
ric processing based on equations (1) and (2). Ground truth
1s data corresponding to a correct result output from a CNN,
1.€., data correctly representing a real-world state, where the
ground truth data 1s acquired from a source independent
from the CNN. Ground truth 1s used to compare to the result
output from a CNN when training the CNN to determine
when the CNN 1s outputting a correct result. For example,
ground truth for point cloud data can be determined by
manually selecting corresponding features 1n a pair of stereo
images and manually calculating distances based on mea-
sured baseline and camera focal length to form ground truth
point cloud data.

In addition to distances, the pixels of the stereo point
cloud image 402 can be labeled according to the objects they
correspond to. One or more of the RGB 1mages included 1n
the stereo 1image pairs 302, 304 can be mput to a convolu-
tional neural network (CNN) that has been trained to seg-
ment 1mages. Image segmentation 1s a machine vision
technique that labels objects in 1mage data. The CNN can
label objects 1n an input 1image and then the labels can be
transierred to point cloud data. In stereo point cloud image
402, objects corresponding to a roadway, vehicles, trees and
buildings adjacent to the roadway have been labeled to
identily the regions of pixels in the stereo point cloud 1image
402 corresponding to the labeled objects. The CNN can be
trained by labeling a plurality of RGB 1mages manually to
create ground truth 1images. The RGB images can be labeled
by humans using 1image processing software to label regions
of the images that correspond to objects as defined above.

Point cloud image 402 has been processed using the node
system 500 described 1n relation to FIG. 5 to form a semantic
point cloud 512 where objects and regions are labeled. For
example, point cloud image includes labeled regions corre-
sponding to a roadways, sidewalks, vehicles, pedestrians,
buildings, foliage, eftc.

FIG. 5§ 1s a diagram of a node system 500 that generates
node 202 data from pairs of stereo images (STEREO) 502
acquired as a mapping vehicle equipped with stereo video
sensors travels along a roadway 204, 206 to be mapped.
Node system 500 can be implemented as software operating
on a computing device 115, for example. Pairs of stereo
images 302 are acquired by a vehicle as the vehicle travels
along a route 204, 206 and input to node system 500. The
pairs of stereo 1mages 502 are processed by point cloud
processor (PCP) 3504 to form a poimnt cloud image by
determining three dimensional locations of corresponding
feature points by determining stereo disparity between the
pairs of stereo 1mages 502. Point cloud processor can be a
CNN as discussed above 1n relation to FIG. 4, above.
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The pairs of stereo 1mages 502 are also passed to an 1mage
segmentation processor (SIS) 506. Image segmentation pro-
cessor 306 segments one or both RGB 1mages 1n the pair of
stereo 1mages 502 to generate a one or more segmented RGB
images using a CNN as discussed above 1n relation to FIG.
4. The pairs of stereo 1mages 502 are processed one at a time
as RGB images (RGB) 504 by segmentation processor (SIS)
506. Segmentation processor 1s a CNN ftrained to label
regions 1n RGB 1mage 504 data. A CNN can be trained to
label regions 1n RGB image 504 data by first constructing a
training dataset, where i1mages are labeled manually by
humans using 1image processing software to draw boundaries
around objects and filling 1n the boundaries with pixel values
corresponding to the objects. The manually labeled 1images
are ground truth to be compared with the output of the CNN.
The dataset can include more than 1000 RGB 1images 504
with corresponding ground truth. The CNN 1s executed a
plurality of times with the same RGB 1mage 504 as input
while changing sets of parameters that govern the operation
of the convolutional layers and fully connected layer
included 1n the CNN. The sets of parameters are graded
depending upon how similar the output 1s to the correspond-
ing ground truth. The highest scoring sets of parameters over
the training dataset are retained as the set of parameters to
use when operating the trained CNN.

The one or more segmented RGB 1mages are passed to
point cloud labeling (PCL) 510 where a point cloud image
from point cloud processor 504 1s combined with segmented
RGB 1mages formed from the same stereo pair that gener-
ated the point cloud 1mage to form a semantic point cloud
512. A semantic point cloud 504 1s a point cloud image
where the point cloud data corresponding to distances 1s also
labeled to 1dentily the type of object or region. For example,
in point cloud 1mage 402 a roadway 404, vehicles 406, 408,
buildings 410, 412, 414 and foliage 416, 418 have been
labeled, making point cloud image 402 a semantic point
cloud 514.

A plurality of pairs of stereo images 502 are input to a
visual odometry processor (VO) 508. Stereo visual odom-
etry 1s a technique for determining a six DoF (6DOF) pose
514 for a vehicle 110 based on determining changes in the
locations of features extracted from the images as the
vehicle 110 moves through a scene. Visual odometry can be
performed by a trained variational autoencoder (VAE). A
VAE 1s a neural network that includes an encoder, a decoder
and a loss function. A VAE can be trained to mput image
data, encode the image data to form latent variables that
correspond to an ecoded representation of the mput 1image
data and decode the latent variables to output an 1mage that
includes portions of the input 1image data modified 1n a
deterministic fashion. The VAE can be traimned by determin-
ing a loss function which measures how accurately the VAE
has encoded and decoded the image data. Once a VAE 1s
trained, the encoder portion, or “head” can be removed from
the VAE and used to form latent variables that correspond to
the input images. The latent variables formed by the encoder
can be processed by decoding sections that derive additional
types of data, for example six DoF data that describes the
pose ol the camera that acquired the mput 1image as dis-
cussed below.

Visual odometry 1s a known technique for determining six
DoF data from a sequential series of 1images. Visual odom-
ctery can be determined by training a VAE to mput stereo
pairs of 1mages and outputting six DoF data. The VAE
determines corresponding feature points 1n sequential
images and calculates the change 1n location of the sensor
between 1mages. A six DoF pose for the camera can be
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determined by triangulating two or more sets of feature
points to determine translation and rotation to determine a
frame of reference for the sensor 1n global coordinates. The
VAE can be trained by determining ground truth using an
inertial measurement unit (IMU) and real time kinematic-
enhanced global positioming systems (GPS-RTK).

A VAE includes an encoder, a decoder and a loss function.
The encoder 1nputs image data and encodes the input image
data into latent variables. The latent variables are then
decoded to form a six DoF pose for the vehicle based on the
input 1mage data. The loss function 1s used to train the
encoder and decoder by determining whether the six DoF
poses 514 are valid poses for a vehicle on a roadway based
on tramning the encoder and decoder using ground truth data
regarding six DoF poses 514 corresponding to the input
images determined based on real-world measurements of a
vehicle six DoF poses 514. Visual odometry processor 508
determines six DoF poses 514 based on a plurality of pairs
of stereo 1images 502 acquired as the mapping vehicle travels
along the path to be topologically mapped. The six DoF pose
514 locates the vehicle with respect to global coordinates.

When the mapping vehicle has progressed along the
roadway 204, 206 a specified distance from the previous
node 202, which can be two to 10 meters, for example, the
computing device 1135 can create a new node 202 place 1n
into the topological map. Each node 202 in the topological
map includes a semantic point cloud 512, one or more RGB
images from the pair of stereo images 302 and a six DoF
pose corresponding to the location of the node 202 on the
topological map.

FIG. 6 1s a diagram of a topological CNN 600. A
topological CNN 600 1s a type of VAE. A topological CNN
600 1s a neural network that can be trained to input an RGB
image (RGB) 602 and output a semantic point cloud (SPC)
610. The topological CNN 600 can be trained using the RGB
images rom the pairs of stereo images 502 and mput and
semantic point clouds 512. The VAE includes an encoder
(EN) 604 which includes convolutional layers that encode
the mput RGB 1mage 602 into latent variables (LAT) 606
and a decoder (DEC) 608, that uses full-connected layers to

decode the latent variables 606 into a semantic point cloud
626. The encoder 604 or “head” can be detached from the

rest of the VAE and used as the input processing portion of

two additional neural networks, six DoF localization system
700 neural networks and 3D object detection system 800
neural networks, as discussed further below.

FI1G. 7 1s a diagram of a six DoF localization system 700.
S1x DoF localization system 700 determines a six DoF pose
for a vehicle 110. Six DoF localization system 700 includes
two topological CNNs 600 and a 3D object detection system
704. Si1x DoF localization system 700 takes as input the
output of a topological CNN 600. Topological CNN 600
iputs an RGB mmage 602 and outputs a semantic point
cloud corresponding to the RGB 1mage 602. The topological
CNN 600 can also be trained to output a six DoF pose
corresponding to the location of the vehicle 110 that
acquired the RGB 1mage 602. Six DoF localization system
700 can improve the estimate of the six DoF pose of the
vehicle 110 by combining 3D object detection and six DoF
localization. A 3D object detector 704 can be used to remove
3D objects from semantic point cloud data where the 3D
objects correspond to dynamic obstacles such as other
vehicles, pedestrians and traflic barriers, for example. This
can 1improve determiming six DoF data for localization of a
vehicle 110 because the presence of these dynamic obstacles
which were not present during topological mapping of the
scene can obscure the signature of the scene and thereby
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cause errors 1n determining the six DoF pose of the vehicle
based on processing by topological CNN 600.

S1x DoF localization system 700 determines an estimate
of a s1x DoF pose for a vehicle by first mputting an RGB
image 602 acquired by a vehicle 110 traveling on a roadway
204, 206 1ncluded 1n a topological map 200 to the encoder

topological CNN 600 of FIG. 6. In response to the RGB
image 602, the topological CNN 600 outputs a semantic
point cloud 610 to 3D object detector (3DOD) 704. The 3D

object detector 704 1s a VAE trained to detect objects 1n a
semantic point cloud 610 by first determiming bounding
boxes for each object 1n a semantic point cloud 610 and then
filtering the bounding boxes to determine objects that occur
on or adjacent to a roadway. The VAE can be trained using
semantic point cloud data as ground truth. Point cloud data
from stereo cameras or lidar sensors can be manually labeled
by human operators. The human operators can also deter-
mine bounding boxes for the labeled objects. The ground
truth including labeled bounding boxes can be compared to
the output from the VAE to train the VAE to correctly label
point cloud data.

The 3D object detector 704 outputs a semantic point cloud
(SM3D) 706 with 3D objects corresponding to vehicles,
pedestrians, traflic barriers, etc. marked 1n the semantic point
cloud data by bounding boxes, where a bounding box 1s a
rectangular 3D wire frame shape parallel to the detected
roadway 1n the point cloud data. The semantic point cloud
706 including bounding boxes for detected 3D objects 1s
passed to 3D subtraction (3DSUB) 708 where the detected
3D objects are subtracted from the point cloud data by
subtracting all of the pixels within the bounding boxes from
the semantic point cloud 708. The semantic point cloud 708
with the 3D objects subtracted 1s passed to the topological
CNN 600 for processing. The topological CNN 600 again
processes the semantic point cloud 708 with 3D objects
removed to obtain a refined six DoF pose (R6DOF) 710 for
the vehicle 110 along with the node number of the closest
topological node 202. The topological CNN 600 can also
output a refined semantic point cloud and a topological node
number to be returned to the topological map to refine the
semantic point cloud data included at the node number
indicated by the output by the topological CNN 600.

S1x DoF localization system 700 improves vehicle local-
1zation by processing a semantic point cloud with 3D objects
removed to improve the estimate of the s1x DoF pose for the
vehicle 110. Six DoF localization system 700 also improves
the topological map 200 by updating the semantic point
cloud data included 1n the topological map 200 at a particu-
lar node to include changes that may have occurred in the
scene since the first semantic point cloud was acquired and
input to the topological map. Six DoF localization system
700 outputs node number corresponding to the closest
topological node 202 included in the topological map 200.
S1x DoF localization system 700 also outputs a refined six
DoF pose 710 determined relative to the closest node 202.
The vehicle can determine a six DoF pose in real-world
coordinates for the vehicle using the equation:

P=r,Fy, (3)

Where P_" 1s the six DoF pose of the vehicle 1n real-world
coordinates measured with respect to the origin of the
topological map, obtained from the, P_” 1s the six DoF pose
of the closest node 202 measured with respect to the
topological map origin, and P, 1s the six DoF pose 710 of
the vehicle 110 measured with respect to the closest topo-
logical node 202.
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FIG. 8 1s a diagram o1 3D object detection system 800. Six
DoF localization of a vehicle as determined by six DoF
system 700 and 3D object detection are complementary
tasks. 3D object detection system 800 can improve six DoF
localization as discussed above 1n relation to FIG. 6, and six
DoF localization can improve 3D object detection system
800. Si1x DoF localization system 700 determines the loca-
tion of a vehicle with respect to the topological map 200
allows the subtraction of the current semantic point cloud
based on an RGB 1mage acquired by the vehicle from the
semantic point cloud 1n the topological map 200. This can be
done with 3D background subtraction. Subtraction of the
semantic point clouds can be used as a guide to the location
of the dynamic objects 1n the scene which were not present
during mapping. The 3D bounding box detection network
can then be focused on these regions of the scene, which can
speed up the algorithm up considerably by reducing back-
ground clutter caused by labeled 3D regions 1n the semantic
point cloud not related to 3D objects of iterest such as
buildings and foliage.

In 3D object detection, an RGB 1mage acquired by a
vehicle 110 1s mput to topological CNN 600 to produce a
semantic point cloud 804. Topological CNN 600 also 1den-
tifies a topological node number that gets passed to the
topological map 200. In response to the input topological
node number, topological map (TMAP) 200 outputs the
stored semantic point cloud to 3D subtraction (3DSUB)
where 1t 1s subtracted from the semantic point cloud 804
produced 1n response to the mput RGB image 802 from
vehicle 110 sensors. Subtracting the stored semantic point
cloud from the topological map 200 from the current seman-
tic point cloud 804 yields a point cloud image with the
approximate position of the 3D objects indicated by non-
zero data points, 1.e., regions where the current point cloud
804 differs from the stored semantic point cloud. These
regions are passed to a 3D object detector (3DOD) 808
where the regions output by 3D subtraction are used to guide
the 3D object detector 808, thereby speeding up the 3D
object detector 808 and reducing the required computing
resources required for 3D object detection. The 3D object

detector 1s described i1n relation to FIG. 8, above. The 3D
object detector 808 outputs locations and labels that identily
the 3D objects (3DOBI) 810 1n the semantic point cloud 804
to permit a computing device 115 in the vehicle 110 to
determine a vehicle path that avoids the 3D objects 810.
FIG. 9 1s a diagram of a Siamese network 900 that can be
used to train localization networks and 3D object detection
networks simultaneously. The duality of object detection and
localization can be used to improve both processes 1n
addition to the techniques discussed 1n relation to FIGS. 7
and 8. Multiple traversals of the route can be used to train
a Siamese network 900. A Siamese network 900 1s a neural
network configured to share some encoder layers between
two neural networks. One branch of the Siamese network
900 1nputs the semantic point cloud (SPC1) 902 from the
topological node when the route 1s traversed without
dynamic obstacles. The other branch of the Siamese network
900 inputs the semantic point cloud (SPC1) 904 when there
are dynamic obstacles. These pairs of semantic point clouds
902, 904 from each topological node 202, with and without
dynamic objects are used to train the Siamese network 900,
both to determine vehicle six DoF localization as discussed
in relation to FIGS. 7 and 3D object pose detection as
discussed in relation to FIG. 8. As discussed 1n relation to
FI1G. 6, a VAE with encoder-decoder architecture to recreate
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semantic point clouds can be pre-tramned and its encoder
(ENCODE) 908 can be detached and used as the heads of the
Siamese network 900.

Siamese network 900 includes two encoders (ENCI,
ENC2) 908, 910 that mput semantic point cloud data 902,
904, respectively. The encoders 908, 910 share convolu-
tional layers (CEN) 912 included 1n each encoder 908, 910.
Having shared convolutional layers 912 means that the
parameters determined for the shared convolutional layers
912 during training will be the same for each encoder 908,
910. Shared convolutional layers 912 permit encoders 908,
910 to share ground truth data when training the neural
networks, thereby improving the training of each encoder
908, 910 by eflectively increasing the number of training
images and corresponding ground truth data to the total
number of sematic point clouds 902, 904. Encoders 908, 910
output latent variables (LATENT1, LATENT2) 914, 916.
The latent variables 914, 916 are mput to node number
decoding layers (NDE1, NDE2) 918, 924, pose decoding
layers (PDE1, PDE2) 920, 926, and 3D object decoding
layers (3D0O1, 3D0O2) 922, 928, respectively. Node number
decoding layers 918, 924 1nput latent variables 914, 916 and
output the node number (NNU1, NNU2) 930, 936 of the
node 202 closest to the input semantic point cloud 902, 904,
respectively as discussed 1n relation to FIG. 6, above. Pose
decoding layers 920, 926 input latent variables 914, 916 and
output six DoF poses (6DF1, 6DEF2) 932, 938 for the vehicle
that acquired the semantic point cloud 902, 904 with respect
to the node 202 identified by the node number 930, 936 as
discussed 1n relation to FIG. 6, above. 3D object decoding
layers 922, 928 1nput latent variables 914, 916 and output 3D
bounding boxes and labels for objects 1n the semantic point
clouds 902, 904 as discussed above 1n relation to FIG. 7.

Techniques described herein improve determining vehicle
s1x DoF locations and 3D object detection by permitting
vehicle six DoF vehicle locations and 3D object detection to
be performed using a monocular RGB camera on routes that
have been previously mapped to form a topological map
200. Using a monocular RGB camera to perform 3D object
detection 1s far less expensive and requires fewer computing
resources than using stereo cameras or lidar sensors. Tech-
niques described herein can determine six DoF vehicle
locations much less expensively and using fewer computing
resources than using an inertial measurement unit (IMU) or
real time Kkinematic-enhanced global positioning systems
(GPS-RTK). Techniques described herein can also improve
the topological map 200 corresponding to a route by updat-
ing the node data corresponding to the nodes 202 of the
topological map 200 based on the node numbers 622, six
DoF pose 624, and semantic point clouds 626 determined
based on mput RGB 1mages 602 acquired as the vehicle 110
traverses a give route. 10

FIG. 10 1s a diagram of a flowchart, described 1n relation
to FIGS. 1-9, of a process 1000 for determining vehicle six
DoF pose and 3D object detection from RGB images.
Process 1000 can be implemented by a processor of com-
puting device, taking as input information from sensors, and
executing commands, and outputting object information, for
example. Process 1000 1includes multiple blocks that can be
executed 1n the 1llustrated order. Process 1000 could alter-
natively or additionally include fewer blocks or can include
the blocks executed 1n different orders.

Process 1000 begins at block 1002, where a topological
map 202 1s determined for a roadway by traversing the
roadway with a mobile platform equipped with a stereo
camera as discussed 1n relation to FIG. 2. The stereo images
are processed by a computing device 115 to produce a
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semantic point cloud, where distance to points 1n the 1mage
are grouped and labeled as discussed 1n relation to FIG. 5.
For example, a semantic point cloud can include labels for
roadways, vehicles, pedestrians, buildings and foliage. The
topological map 200 includes a plurality of nodes 202,
where each node includes a six DoF location and a semantic
point cloud. The technique 1s described herein using ground
vehicles operating on roads, however, the techniques can be
used to determine a route for any mobile platform, including,
mobile robots, drones or boats, for example.

At block 1004 a computing device 115 trains a topological
CNN 600 to mput a monocular RGB image and output a
semantic point cloud as discussed 1n relation to FIG. 6. The
topological CNN 600 can also be trained to output a s1x DoF
pose for the vehicle 110 that acquired the RGB 1mage and a
topological node number corresponding to the closest topo-
logical node 202 from the topological map 200. The closest
topological node 1s defined as the topological node with a six
DoF location that has the least Euclidian distance in three
dimensions from the six DoF location of the vehicle as
determined by six DoF localization system 700.

At block 1006 the computing device 115 uses the trained
topological CNN to determine a six DoF pose for the vehicle
and the node number of the closest topological node 202 1n
the topological map 200. As discussed above in relation to
FIG. 7, the computing device 115 can detect and label 3D
objects 1n a semantic point cloud output by the topological
CNN to remove them from the semantic point cloud and
thereby determine a refined s1x DoF pose for the vehicle 110.
The data determined by the computing device 115 at block
1006 can be passed back to the topological map 200 to
update the topological map 200.

At block 1008 the computing device 115 can determine
3D object locations 1n the point cloud data determined by the
topological CNN 600. A semantic point cloud from the
topological map 200 can be used to determine an approxi-
mate location for the 3D objects 1 the semantic point cloud
output by the topological CNN 600 which can be used to
increase the ethciency of 3D object detection system 800.
The locations of 3D objects determined at block 1008 can be
passed back to the topological map 200 to update the
semantic point cloud included in the closest topological
node 202.

At block 1010 the computing device 115 can use the six
DoF pose of the vehicle 110 with respect to the topological
map 200 output by six DoF localization system 700 and the
locations of 3D objects detected by 3D object detection
system 800 to operate the vehicle. Computing device 115
can determine a vehicle path upon which to operate the
vehicle 110 by sending commands to vehicle brake, steering,
and powertrain controllers. The vehicle path can be a
polynomial function determined to stay within the roadway
and avoid 3D objects. The vehicle path can be determined
based on maintaining lower and upper limits on lateral and
longitudinal accelerations. Following block 1010 process
1000 ends.

Computing devices such as those discussed herein gen-
erally each includes commands executable by one or more
computing devices such as those identified above, and for
carrying out blocks or steps of processes described above.
For example, process blocks discussed above may be
embodied as computer-executable commands.

Computer-executable commands may be compiled or
interpreted from computer programs created using a variety
of programming languages and/or technologies, including,
without limitation, and either alone or in combination,

Java™, C, C++, Python, Julia, SCALA, Visual Basic, Java
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Script, Perl, HIML, etc. In general, a processor (e.g., a
mICroprocessor) receives commands, €.g., from a memory, a
computer-readable medium, etc., and executes these com-
mands, thereby performing one or more processes, including
one or more of the processes described herein. Such com-
mands and other data may be stored in files and transmitted
using a variety of computer-readable media. A file 1 a
computing device 1s generally a collection of data stored on
a computer readable medium, such as a storage medium, a
random access memory, etc.

A computer-readable medium includes any medium that
participates in providing data (e.g., commands), which may
be read by a computer. Such a medium may take many
forms, including, but not limited to, non-volatile media,
volatile media, etc. Non-volatile media include, for example,
optical or magnetic disks and other persistent memory.
Volatile media include dynamic random access memory
(DRAM), which typically constitutes a main memory. Com-
mon forms ol computer-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, a RAM, a PROM,
an EPROM, a FLASH-EEPROM, any other memory chip or
cartridge, or any other medium from which a computer can
read.

All terms used 1n the claims are intended to be given their
plain and ordinary meanings as understood by those skilled
in the art unless an explicit indication to the contrary 1n made
herein. In particular, use of the singular articles such as “a,”
“the,” “said,” etc. should be read to recite one or more of the
indicated elements unless a claim recites an explicit limita-
tion to the contrary.

The term “exemplary” 1s used herein in the sense of
signitying an example, e.g., a reference to an “exemplary
widget” should be read as simply referring to an example of
a widget.

The adverb “approximately” moditying a value or result
means that a shape, structure, measurement, value, determai-
nation, calculation, etc. may deviate from an exactly
described geometry, distance, measurement, value, determi-
nation, calculation, etc., because ol imperfections in mate-
rials, machining, manufacturing, sensor measurements,
computations, processing time, communications time, efc.

In the drawings, the same reference numbers indicate the
same elements. Further, some or all of these elements could
be changed. With regard to the media, processes, systems,
methods, etc. described herein, i1t should be understood that,
although the steps or blocks of such processes, etc. have
been described as occurring according to a certain ordered
sequence, such processes could be practiced with the
described steps performed 1n an order other than the order
described herein. It further should be understood that certain
steps could be performed simultaneously, that other steps
could be added, or that certain steps described herein could
be omitted. In other words, the descriptions of processes
herein are provided for the purpose of illustrating certain
embodiments, and should 1n no way be construed so as to
limit the claimed invention.

The mvention claimed 1is:
1. A computer, comprising;
a processor; and
a memory, the memory including instructions executable
by the processor to:
iput an 1image acquired by a sensor 1n a vehicle to a
variational auto-encoder neural network that outputs
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a semantic point cloud image that includes regions
labeled by region type and region distance relative to
the vehicle;

from a plurality of topological nodes, determine a
topological node closest to the vehicle, and a six
degree-of-freedom pose for the vehicle relative to the
topological node closest to the vehicle, based on the
semantic point cloud 1mage, wherein each topologi-
cal node 1ncludes a location 1n real-world coordi-
nates and a three-dimensional point cloud 1mage of
an environment including the location of the topo-
logical node;

determine a real-world six degree-oi-freedom pose for
the vehicle by combining the six degree-of-freedom
pose for the vehicle relative to the topological node
closest to the vehicle and the location 1n real-world
coordinates of the topological node closest to the
vehicle; and

determine a location and size of a three-dimensional
object 1n the semantic point cloud 1mage based on

three-dimensional background subtraction using the

three-dimensional point cloud image included in the

topological node closest to the vehicle.

2. The computer of claim 1, the instructions including
turther instructions to determine the real-world six degree-
of-freedom pose for the vehicle based on a single monocular
image acquired by the sensor 1n the vehicle without includ-
ing an inertial measurement unit 1n the vehicle.

3. The computer of claim 1, the instructions including
turther instructions to determine the semantic point cloud
image based on a single monocular 1mage acquired by the
sensor 1n the vehicle without including a stereo camera or
lidar sensor 1n the vehicle.

4. The computer of claim 1, the instructions including
turther mstructions to determine the plurality of topological
nodes by acquiring point cloud images with a stereo camera
and determining locations of the point cloud images 1n
real-world coordinates with visual odometry.

5. The computer of claim 1, wherein the real-world six
degree-of-freedom pose for the vehicle 1s determined 1n
coordinates based on orthogonal x, y, and z axes and roll,
pitch, and yaw rotations about the x, v, and z axes, respec-
tively.

6. The computer of claim 1, the instructions including
turther structions to determine the location and size of the
three-dimensional object 1n the semantic point cloud image
with a convolutional neural network trained to determine a
three-dimensional bounding box that includes the three-
dimensional object and a real-world location relative to the
vehicle for the three-dimensional object.

7. The computer of claim 6, wherein three-dimensional
background subtraction using the point cloud image 1s used
to determine the three-dimensional bounding box by reduc-
ing background clutter caused by labeled regions that occur
in both a current semantic point cloud and a semantic point
cloud image included 1n a topological node.

8. The computer of claim 7, wherein the convolutional
neural network includes convolutional layers that output first
latent variables to first fully connected neural network
layers.

9. The computer of claim 1, wherein the vanational
auto-encoder neural network determines the semantic point
cloud image by outputting second latent variables to second
tully connected neural network layers.

10. The computer of claim 1, the instructions including
turther instructions to train the varational auto-encoder
neural network to output the semantic point cloud image in
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a Siamese network configuration wherein the variational
auto-encoder neural network 1s trained in parallel with a
second variational auto-encoder network trained using a
plurality of three-dimensional point cloud images acquired
while traveling along a route that includes the plurality of
topological nodes.
11. The computer of claam 10, wherein region types
included 1n the semantic point cloud image include roadway,
sidewalk, vehicle, building, and foliage based on the plu-
rality of three-dimensional point cloud 1mages.
12. A method, comprising:
inputting an 1image acquired by a sensor 1n a vehicle to a
variational auto-encoder neural network that outputs a
semantic point cloud image that includes regions
labeled by region type and region distance relative to
the vehicle;
from a plurality of topological nodes, determining a
topological node closest to the vehicle, and a six
degree-oi-freedom pose for the vehicle relative to the
topological node closest to the vehicle, based on the
semantic point cloud image, wherein each topological
node includes a location 1n real-world coordinates and
a three-dimensional point cloud 1mage of an environ-
ment imcluding the location of the topological node;

determiming a real-world six degree-oi-freedom pose for
the vehicle by combining the six degree-of-ifreedom
pose for the vehicle relative to the topological node
closest to the vehicle and the location in real-world
coordinates of the topological node closest to the
vehicle; and

determine a location and size of a three-dimensional

object 1n the semantic point cloud image based on
three-dimensional background subtraction using the
three-dimensional point cloud image included in the
topological node closest to the vehicle.

13. The method of claim 12, further comprising deter-
mining the real-world six degree-of-freedom pose for the
vehicle based on a single monocular image acquired by the
sensor 1n the vehicle without including an 1nertial measure-
ment unit in the vehicle.

14. The method of claim 12, further comprising deter-
mining the semantic point cloud image based on a single
monocular 1image acquired by the sensor in the vehicle
without including a stereo camera or lidar sensor in the
vehicle.

15. The method of claim 12, further comprising deter-
mining the plurality of topological nodes by acquiring point
cloud images with a stereo camera and determining loca-
tions of the point cloud images in real-world coordinates
with visual odometry.

16. The method of claim 12, wherein the real-world six
degree-of-freedom pose for the vehicle 1s determined 1n
coordinates based on orthogonal x, v, and z axes and roll,
pitch, and yaw rotations about the x, y, and z axes, respec-
tively.

17. The method of claam 12, the instructions including
further mstructions to determine the location and size of the
three-dimensional object 1n the semantic point cloud image
with a convolutional neural network trained to determine a
three-dimensional bounding box that includes the three-
dimensional object and a real-world location relative to the
vehicle for the three-dimensional object.

18. The method of claim 17, wherein three-dimensional
background subtraction using the point cloud image 1s used
to determine the three-dimensional bounding box by reduc-
ing background clutter caused by labeled regions that occur
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in both a current semantic point cloud and a semantic point
cloud image included 1n a topological node.

19. The method of claim 18, wherein the convolutional
neural network includes convolutional layers that output first
latent variables to first fully connected neural network
layers.

20. The method of claim 12, wherein the variational
auto-encoder neural network determines the semantic point
cloud image by outputting second latent variables to second
tully connected neural network layers.
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