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ABSTRACT

Technologies that are well-suited for use 1 size, weight, and
power (SWAP)-constrained environments are described
herein. A host controller dispatches data processing instruc-
tions to hardware acceleration engines (HAEs) of one or
more field programmable gate arrays (FPGAs) and further
dispatches data transfer instructions to a memory controller,

Hs perform processing operations on data
stored 1n local memory devices of the HAEs 1n parallel with
other data being transferred from external memory devices
coupled to the FPGA(s) to the local memory devices.

20 Claims, 6 Drawing Sheets
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FPGA-BASED COMPUTING SYSTEM FOR
PROCESSING DATA IN SIZE, WEIGH'T, AND
POWER CONSTRAINED ENVIRONMENTS

STATEMENT OF GOVERNMENTAL INTEREST

This mnvention was made with Government support under
Contract No. DE-NA0003525 awarded by the United States
Department of Energy/National Nuclear Security Adminis-
tration. The U.S. Government has certain rights in the
invention.

BACKGROUND

An orbiting (man-made) satellite can be equipped with a
high-resolution focal plane array that 1s used to generate
images at a relatively high frame rate. It 1s desirable to
process 1mages generated by the FPA onboard the satellite,
as transmitting the high-resolution 1images from the satellite
to a ground station requires more bandwidth than 1s typically
available on a wireless communications channel between the
orbiting satellite and the ground station.

Processing large amounts of data in such an environment
in real-time (e.g., as 1mages are generated), however, 1s
non-trivial, as limitations associated with the environment
where processing 1s to be undertaken must be accounted for
when designing an architecture for processing large amounts
of data, such as FPA images. For instance, a computing
system onboard an orbiting satellite that 1s configured to
process 1mages generated through use of an FPA must meet
s1ze, weight, and power (SWAP) constraints that are asso-
ciated with the orbiting satellite. As algorithms that are to be
executed by computing systems 1n SWAP-constrained envi-
ronments have become increasingly complex, meeting
SWAP constraints has become increasingly diflicult.

In an example, graphical processing units (GPUs) are
designed to be well-suited for executing complex algorithms
in environments that are not SWAP-constrained; however,
because GPUs have predefined instructions sets that are
somewhat limited, GPUs may consume a relatively high
amount of power when executing a relatively complex
algorithm over large amounts of data. Thus, employing a
GPU or a bank of GPUs to execute a relatively complex
algorithm 1n an orbiting satellite in connection with pro-
cessing FPA 1mages may violate a predefined power con-
straint. Central processing units (CPUs) are less eflicient
than GPUs when processing image data, due to inherent
limitations of CPUs with respect to parallel processing tasks.
Application-specific integrated circuits (ASICs) can be cus-
tom-designed to execute complex algorithms that include
parallel processing tasks and that meet SWAP constraints;
however, once manufactured, ASICs cannot be changed, and
therefore there 1s no way for an algorithm designer to update
the algorithm once an ASIC that has been custom-designed
to execute the algorithm once the ASIC has been deployed.

A field programmable gate arrays (FPGA) can be pro-
grammed such that certain processing tasks can be per-
formed much more efliciently on the FPGA than such tasks
can be performed on a GPU or CPU. In addition, the FPGA
1s programmable, such that the circuitry of the FPGA can be
updated 11 an algorithm designer updates an algorithm. It has
been found, however, that using FPGAs for onboard pro-
cessing of images generated by FPAs on an orbiting satellite
through use of complex algorithms violates SWAP con-
straints associated with such environment, due to 1neflicien-
cies that are inherent in conventional algorithm execution on
FPGAs. For example, a simulation indicated that 32-120
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separate FPGAs would be required to execute a proposed
algorithm for processing images generated by FPAs on an

orbiting satellite, wherein such a large number of FPGAs
violates the SWAP constraints associated with the environ-
ment.

SUMMARY

The following 1s a brief summary of subject matter that 1s
described in greater detail herein. This summary 1s not
intended to be limiting as to the scope of the claims.

Described herein are various technologies that are well-
suited for use in connection with processing relatively large
amounts of data in an environment with size, weight, and
power (SWAP) constraints, such as an orbiting satellite. In
a nonlimiting example, the technologies described herein are
well suited for real-time processing of 1images generated by
one or more focal plane arrays (FPAs) onboard an orbiting
satellite.

A computing system that 1s configured to process data 1n
a SWAP-constrained environment includes a host controller
that executes an algorithm, wherein the algorithm, when
executed by the host controller, causes the computing sys-
tem to process data. In an example, the host controller may
be included 1n a field programmable gate array (FPGA). In
another example, the host controller may be external to an
FPGA, but 1s in communication with one or more FPGAs.

The computing system further includes a local memory
device that 1s internal the FPGA, wherein the local memory
device has first data stored therein, and further wherein the
first data 1s a portion of the data that 1s to be processed by
the computing system. For instance, the first data may be a
portion of an 1mage generated by an FPA onboard the
orbiting satellite. Further, and in another example, the local
memory device can be a Dual Port Static Random Access
Memory (DPSRAM) device of the FPGA.

The computing system also includes a hardware accel-
eration engine (HAE) that 1s implemented 1n fabric of the
FPGA, wherein the HAE 1includes circuitry that 1s config-
ured to etliciently perform a particular processing operation.
The HAE 1s operably coupled to the host controller and the
local memory device. The host controller, based upon the
algorithm being executed by the host controller, can transmiat
a first instruction to the HAFE, wherein the first instruction 1s
configured to cause the HAE to retrieve the first data from
the local memory device and perform the processing opera-
tion with respect to the first data. Thus, the HAE, upon
receipt of the first instruction, retrieves the first data from the
local memory device, performs the processing operation
with respect to the first data, and generates output data based
upon the first data. In an example, the output data can be
written back to the local memory device or can be placed in
a bufler or register of the HAFE.

The computing system additionally includes an external
memory device that 1s external to the FPGA and coupled to
the FPGA, wherein the external memory device has second
data stored therein, and further wherein the second data 1s to
be processed by the algorithm or in accordance with the
algorithm. Pursuant to an example, the external memory
device can be a Printed Circuit Board (PCB) Double Data
Rate Synchronous Dynamic Random Access Memory (DDR
SDRAM) device or silicon interposer integrated High Band-
width Memory (HBM).

The computing system additionally includes a memory

control engine (MCE), which can optionally be a memory
dispatch engine (MDE) MCE, wherein the MCE can be

included 1n the FPGA or external to the FPGA and coupled
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to the FPGA. The MCE 1s operably coupled to the host
controller, the internal memory device, and the external
memory device. The host controller, based upon the algo-
rithm being executed by the host controller, transmits a
second 1nstruction to the MCFE, wherein the second instruc-
tion 1s configured to cause the second data to be transierred
from the external memory device to the internal memory
device. The MCE, upon receipt of the second instruction,
causes the second data to be transferred from the external
memory device to the internal memory device of the FPGA
(which 1s directly accessible to the HAE). Further, the HAE
performs the processing operation on the first data 1n parallel
with the second data being transferred from the external
memory device to the internal memory device. The parallel
movement of data into the internal memory device of the
FPGA and processing of data in the internal memory device
of the FPGA (by the HAE) allows the FPGA to perform
more processing operations over time than 1s possible with
conventional approaches using FPGAs, and thus allows the
computing system to meet SWAP constraints associated
with onboard processing performed 1n an orbiting satellite.

It can be ascertained that the architecture described herein
1s extendible. For example, an FPGA may include several
HAEs and may further include several external memory
devices. The host controller can dispatch instructions to one
or more of the HAEs and can further dispatch instructions to
the MCE such that data can be processed by the HAEs
simultaneously with other data being transferred from the
external memory device to internal memory device(s) that
are directly accessible to the HAEs. Thus, the host controller
can transmit instructions that result in data being transferred
from external memory devices to internal memory devices
simultaneously with data stored in the internal memory
devices being processed by HAEs. Moreover, the architec-
ture can be further extended such that the computing system
includes several FPGAs, each (potentially) with several
external memory devices coupled thereto, wherein the sev-
ceral FPGAs are employed to perform operations that allow
for portions of the algorithm being executed by the host
controller to be performed 1n parallel.

The above summary presents a simplified summary in
order to provide a basic understanding of some aspects of the
systems and/or methods discussed herein. This summary 1s
not an extensive overview ol the systems and/or methods
discussed herein. It 1s not intended to i1dentify key/critical
clements or to delineate the scope of such systems and/or
methods. Its sole purpose 1s to present some concepts 1n a

simplified form as a prelude to the more detailed description
that 1s presented later.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram of an exemplary
computing system that 1s well-suited for processing data 1n
s1ze, weight, and power (SWAP)-constrained environments.

FIG. 2 1s a functional block diagram of an exemplary
memory map that can be accessed by a host controller,
wherein the memory map 1s configured to map types and/or
sources ol data to locations 1 computer-readable storage
where the data 1s stored.

FIG. 3 1s a functional block diagram of an exemplary
computing system that includes a bridge that can be
employed in connection with transierring data from memory
devices that are external to an FPGA to local (internal)
memory devices of the FPGA.
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FIG. 4 1s a communications diagram illustrating process-
ing of data stored in a local (internal) memory device of an
FPGA 1n parallel with movement of data into the local
memory device.

FIG. § 1s a functional block diagram of an exemplary
computing system that includes several FPGAs that process
data 1n parallel.

FIG. 6 1s a flow diagram 1llustrating an exemplary meth-
odology for executing an algorithm in a SWAP-constrained
environment.

DETAILED DESCRIPTION

Various technologies pertaining to processing data in a
s1ze, welight, and power (SWAP)-constrained environment
are now described with reference to the drawings, wherein
like reference numerals are used to refer to like elements

throughout. In the following description, for purposes of
explanation, numerous specific details are set forth 1n order
to provide a thorough understanding of one or more aspects.
It may be evident, however, that such aspect(s) may be
practiced without these specific details. In other instances,
well-known structures and devices are shown in block
diagram form 1n order to facilitate describing one or more
aspects. Further, 1t 1s to be understood that functionality that
1s described as being carried out by certain system compo-
nents may be performed by multiple components. Similarly,
for mstance, a component may be configured to perform
functionality that 1s described as being carried out by
multiple components.

Moreover, the term “or’ 1s intended to mean an inclusive
“or” rather than an exclusive “or.” That 1s, unless specified
otherwise, or clear from the context, the phrase “X employs
A or B” 1s intended to mean any of the natural inclusive
permutations. That 1s, the phrase “X employs A or B” 1s
satisfied by any of the following instances: X employs A; X
employs B; or X employs both A and B. In addition, the
articles “a” and “‘an” as used in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from the
context to be directed to a singular form.

Described herein 1s a computing system that 1s well-suited
to execute advanced algorithms over relatively large
amounts of data n a SWAP-constrained environment. For
example, the SWAP-constrained environment may be a
satellite that 1s orbiting the earth, wherein the computing
system 1s onboard the orbiting satellite and 1s configured to
process (in real-time) 1mages output by a focal plane array
(FPA) on the orbiting satellite. It 1s to be understood,
however, that features described herein are not limited to
such an environment. As will be described 1n greater detail
herein, the computing system includes a host controller, a
field programmable gate array (FPGA), and an external
memory device that 1s external to the FPGA and 1s operably
coupled to the FPGA. In contrast to conventional computing
systems that include FPGAs, the host controller, when
executing an algorithm to process data, can dispatch instruc-
tions that: 1) causes a hardware acceleration engine (HAE)
in the fabric of the FPGA to perform a processing operation
on {irst data stored 1n a local memory device that 1s directly
accessible to the HAE; while 2) (and in parallel with the
HAE performing the processing operation) causing second
data stored 1n the external memory device to be transferred
from the external memory device to the local memory
device. This approach reduces the idle time of the HAE, thus
ecnabling the HAE to perform the processing operations
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more frequently than previously possible, which 1s highly
advantageous 1n SWAP-constrained environments.

With reference now to FIG. 1, a functional block diagram
of an exemplary computing system 100 that 1s well-suited
for utilization 1n SWAP-constrained environments 1s 1llus-
trated. The computing system 100 comprises a host control-
ler 102 that 1s configured to execute an algorithm 104. In an
exemplary embodiment, the algorithm 104 can be developed
by an algorithm designer in a relatively high-level program-
ming language, such as C, C++, Python, etc., and can be
developed to execute on a fairly light weight operating
system, such as embedded Linux, Real Time OS, etc. A focal
plane array (FPA) 106 can be operably coupled to the host
controller 102. As indicated previously, the computing sys-
tem 100 may be onboard an orbiting satellite, and the FPA
106 may be configured to capture images of the earth as the
satellite orbits the earth. The FPA 106 can generate images
at a relatively high frame rate and/or high resolution,
wherein the algorithm 104 1s configured to perform real-time
processing on 1mages output by the FPA 106. For instance,
the algorithm 104 can be designed to i1dentily one or more
types of objects 1n i1mages output by the FPA 106 in
real-time, such as a certain type ol automobile, people
moving on the ground, etc.

The computing system 100 additionally includes an
FPGA 108, wherein the host controller 102 can optionally be
included in the FPGA 108 or may be external to the FPGA
108. The FPGA 108 includes FPGA fabric 110. In the
exemplary computing system 100, the FPGA fabric 110
comprises several hardware acceleration engines (HAEs)
112-114. The HAEs 112-114 can be designed to perform
certain processing operations 1 a very etlicient manner,
including linear matrix operations (multiplication, division,
addition, subtraction, dot product, etc.), or any other suitable
processing operations that are desirably performed on 1image
data. In an example, the first HAE 112 can be designed to
perform a {irst processing operation, and the Nth HAE can
be designed to perform an Nth processing operation that 1s
different from the first processing operation. It 1s to be
understood, however, that multiple of the HAEs 1n the HAEs
112-114 can be designed to perform the same processing
operation.

The FPGA 108 also includes a plurality of local memory
devices 116-118 that respectively correspond to the plurality
of HAFEs 112-114. For example, the first HAE 112 1s able to
read data from and write data to the first local memory
device 116 (but not other local memory devices 1n the local
memory devices 116-118), and the Nth HAE 114 1s able to
read data from and write data to the Nth local memory
device 118 (but not other local memory devices 1n the local
memory devices 116-118). In an example, the local memory
devices 116-118 are Dual-Port Static Random Access
Memory (DPSRAM) devices, such that, for example, data
can simultaneously be written to two different memory
locations 1n the first local memory device 116, data can be
simultaneously read from two different locations 1n the first
local memory device 116, and data can be read from one
location of the first local memory device 116 simultaneously
with other data being written to another location of the first
local memory device 116. The FPGA fabric 110 can also
include several buflers (and/or registers) 120-122 that
respectively correspond to the plurality of HAEs 112-114,
wherein the HAEs 112-114 can store intermediate results of
processing 1n the respective bullers 120-122.

The FPGA 108 further includes a memory control engine
(MCE) 124 that 1s 1n communication with the host controller
102. In an example, a memory dispatch engine (MDE), not
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shown, may include the MCE 124, although other embodi-
ments are contemplated. The memory MCE 124 1s config-
ured to receive instructions from the host controller 102
based upon the algorithm 104 being executed by the host
controller 102. As will be described 1n greater detail below,
the MCE 124 1s configured to cause data to be transierred
amongst memory devices based upon instructions received
from the host controller 102.

The computing system 100 also comprises several exter-
nal memory devices 126-128 that are coupled to the FPGA
108 by way of respective interfaces. In a nonlimiting
example, the external memory devices 126-128 may consist
of four external memory devices, wherein the external
memory devices 126-128 may have the same or different
amounts of memory therein. In another nonlimiting
example, the external memory devices 126-128 may be

Printed Circuit Board (PCB) Double Data Rate Synchronous
Dynamic Random Access Memory (DDR SDRAM)
devices, silicon interposer integrated High Bandwidth
Memory (HBM) devices, some combination thereof, or
other suitable memory devices.

The computing system 100 also includes a memory map
130. In FIG. 1, the memory map 130 1s 1llustrated as being
stored 1n the host controller 102 (e.g., 1n computer-readable
storage of the host controller 102); however, the memory
map 130 may be stored 1n computer-readable storage that 1s
external to the host controller 102. The memory map 130
comprises a mapping between types of data that 1s stored 1n
the external memory devices 126-128, a virtual address
space corresponding to the external memory devices 126-
128, and physical address spaces corresponding to the
external memory devices 126-128. Thus, the host controller
102, when executing the algorithm 104, can ascertain types
of data stored across the external memory devices 126-128
when instructing the MCE 124 to transfer data into and out
of the external memory devices 126-128.

Referring brietly to FIG. 2, an exemplary depiction of the
memory map 130 1s presented. The memory map 130
includes a virtual address space 202 that, for example,
corresponds to the external memory devices 126-128 and
FPGA block RAM (BRAM) 204 of the FPGA 108. The
memory map 130 may also i1dentify types of data that are
stored 1n storage locations corresponding to addresses 1n the
virtual address space 202, and thus the memory map 130
may 1dentily types of data that are stored in the external
memory devices 126-128 and the FPGA BRAM 204. There-
fore, as illustrated in FIG. 2, the memory map 130 can
indicate that data of type A 206 and type B 208 are stored 1n
storage corresponding to first addresses 1n the virtual address
space 202 that correspond to the FPGA BRAM 204. The
memory map 130 can further indicate that data of type C 210
and type D 212 are stored in storage corresponding to second
addresses 1n the virtual address space 202 that correspond to
the first external memory device 126. As illustrated, the
memory map 130 can further indicate that data of types E
214 and F 216 are stored 1n storage corresponding to N+1th
addresses 1n the virtual address space 202 that correspond to
the Nth external memory device 128.

The memory map 130 can also 1dentily a physical address
space for each of the memory devices identified 1n the
memory map 130. Thus, the memory map 130 can identify
first physical addresses for the FPGA BRAM 204, second
physical addresses 220 for the first external memory device
126, and N+1 physical addresses 222 for the Nth external
memory device 128. Accordingly, when the host controller
102 transmits 1nstructions to the MCE 124 to cause data to
be moved to or from the external memory devices 126-128
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(or the BRAM 204), the host controller 102 need not resolve
to the low-level physical addresses of such memory devices.
Instead, the host controller 102 can 1dentily a range 1n the
virtual address space 202, and the MCE 124 can 1dentify the
appropriate physical address space where such data 1s stored
in the memory devices 204 and 126-128.

Returming to FIG. 1, the host controller 102 can further
comprise numerous drivers that are configured to enable the
host controller 102 to communicate with other components
of the computing system 100. For instance, the host con-
troller 102 can include an MCE driver 132 that 1s configured
to enable the host controller 102 to communicate with the
MCE 124. The host controller 102 further includes an FPA
driver 134 that enables the host controller 102 to commu-
nicate with the FPA 106 (such that the host controller 102
can cause the FPA 106 to generate one or more 1mages). The
host controller 102 can also optionally include a network
driver 136 that allows the host controller 102 to communi-
cate with the FPGA 108 by way of a network (not shown),
and further allows the host controller 102 to communicate
with several other FPGAs (not shown) or computing sys-
tems by way of the network. The host controller 102
includes HAE drivers 138-140 that enable the host controller
102 to transmit instructions to the HAEs 112-114, respec-
tively.

Referring now to FIG. 3, a functional block diagram of the
FPGA 108 1s depicted. As described previously, the external
memory devices 126-128 are coupled to the FPGA 108. The
FPGA 108 includes M memory controllers 302-304 that
respectively correspond to the external memory devices
126-128. For instance, the memory controller 302 can
include Q ports 306-308, where Q 1s greater than or equal to
one, and further where a stream of bits (e.g., eight bits) can
be output by way of each of the ports 306-308 at each clock
cycle. Similarly, the memory controller 304 for the Mth
external memory device 128 can include 7 ports 310-312,
where 7 1s greater than or equal to one, and further where a
stream of bits (e.g., eight bits) can be output by way of each
of the ports 310-312 at each clock cycle.

The FPGA 108 further includes a bridge 314 by way of
which data can be transferred from the external memory
devices 126-128 to the local memory devices 116-118 and
by way of which data can be transferred from the local
memory devices 116-118 to the external memory devices
126-128. The bridge 314 can also be employed to transfer
data between memory devices 1n the external memory
devices 126-128 and between memory devices in the local
memory devices 116-118. For instance, each of the local
memory devices 116-118 can have a respective port that
interfaces with the bridge 314. Thus, the first local memory
device 116 has a first port 316 that that interfaces with the
bridge 314, and the Nth local memory device 118 includes
an Nth port 318 that interfaces with the bridge 314. The
bridge 314 and the ports 306-308, 310-312, and 316-318 can
be designed in accordance with a suitable standard, such as
the Advanced eXtendible Interface standard. Thus, 1n an
example, the first memory controller 302 of the first external
memory device 126 can receive an instruction from the
MCE 124 to transifer data from the first external memory
device 126 to the first local memory device 116, and the first
memory controller 302 can cause the data to be transferred
(by way of one or more of the ports 306-308) to the first port
316 of the first local memory device 116 by way of the
bridge 314.

As noted previously, the FPGA 108 includes the HAEs
112-114 in the FPGA fabric 110. The HAEs 112-114 respec-

tively access the local memory devices 116-118 by second

10

15

20

25

30

35

40

45

50

55

60

65

8

ports of such local memory devices 116-118. Theretore, for
example, while data 1s being written to the first local
memory device 116 by way of one port of the first local
memory device 116 (e.g., from one or more of the external
memory devices 126-128), the first HAE 112 can read data
from and write data to the first local memory device 116 by
way ol another port of the first local memory device 116.
With reference to FIG. 4, a communications diagram 400
that illustrates an exemplary operation of the computing
system 100 1s depicted. As noted above, the host controller
102 executes the algorithm 104, wherein the algorithm 104,
when executed by the host controller 102, 1s configured to
cause the computing system 100 to process data, wherein the
data can be of a size between one byte of data and R bytes
of data (with R being less than infinity). In an example, the
data may include first data and second data that 1s difierent
from the first data, wherein the first data 1s stored 1n the first
local memory device 116 and the second data 1s stored 1n the
first external memory device 126. In a nonlimiting example,
the data may comprise an 1mage generated by the FPA 106,
wherein the first portion of the data 1s a first portion of the
image and the second portion of the data 1s a second portion
of the image. At 402, based upon the algorithm 104 being
executed by the host controller 102, the host controller 102
transmits a first instruction to the first HAE 112 by way of
the first HAE driver 138, wherein the first instruction 1s
configured to cause the first HAE 112 to perform a process-
ing operation on the first data that 1s stored 1n the first local
memory device 116. Thus, at 404, the first HAE 112 requests
the first data from the first local memory device 116, and at
406, the first HAE 112 receives the first data from the first
local memory device 116. At 408, the first HAE 112 per-
forms the processing operation on the first data that was

retrieved from the first local memory device 116.

At a time between when the host controller 102 transmiut-
ted the first instruction at 402 and when the first HAE 112
completes performing the processing operation on the first
data at 408, the host controller 102, based upon the algo-
rithm 104 that 1s being executed by the host controller 102,
transmits a second instruction 410 to the MCE 124 by way
of the MCE driver 132. The second instruction 1s configured
to cause the second data stored 1n the first external memory
device 126 to be transierred from the first external memory
device 126 to the first local memory device 116. In an
example, the second instruction transmitted at 410 can
identify a location of the second data 1n a virtual address
space, wherein the host controller 102 determines the loca-
tion of the second data in the virtual address space from the
memory map 130. The MCE 124 can identily the first
external memory device 126 and physical address(es) of the
first external memory device 126 where the second data 1s
stored, and can transmit an instruction to the first memory
controller 302 that, when received by the first memory
controller 302, causes the first memory controller 302 to
transfer the second data from the first external memory
device 126 to the first local memory device 116 by way of
the bridge 314. Thus, at 412, the MCE 124 initiates transier
of the second data from the first external memory device 126
to the first local memory device 116. At 414, the second data
1s transferred from the first external memory device 126 to
the first local memory device 116.

It 1s noted that the second data 1s transferred from the first
external memory device 126 to the first local memory device
116 simultanecously with the first HAE 112 performing the
processing operation on the first data stored 1n the first local
memory device 116. Put differently, the first HAE 112

performs the processing operation on the first data in parallel
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with the second data being transferred from the first external
memory device 126 to the first local memory device 116.
Upon the first HAE 112 completing the processing operation
on the first data, the first HAE generates output data and at
416, writes the output data to the first local memory device
116. The host controller 102 can iitiate transfer of the
output data to an appropriate location 1n one or more of the
external memory devices 126-128.

It 1s emphasized that in accordance with the architecture
set forth in FIG. 1, HAEs 112-114 can perform processing
operations on data stored in their local memory devices
116-118 1n parallel with other data that 1s to be processed 1n
the future being transferred from one or more of the extra
memory devices 126-128 to the appropriate local memory
devices 116-118. This 1s 1n contrast to conventional
approaches where FPGAs are employed to process data.
Conventionally, performing processing operations and data
transiers occurs sequentially; more specifically, an HAE wall
indicate when a processing operation on data 1s complete, at
which point output data 1s transierred out of local memory,
and subsequently new data 1s transierred to the local
memory of the HAE. This conventional approach, dictated
by conventional FPGA architectures, however, causes the
HAE to be i1dle while data 1s being transferred into or out of
the local memory device of the HAE. In contrast, in the
approach described herein, the host controller 102 decouples
instructions to process data from instructions to transier
data; therefore, the computing system 100 1llustrated 1n FIG.
1 can meet SWAP constraints that cannot be met utilizing
conventional approaches with FPGAs.

Further, 1t 1s to be understood that the communications
diagram depicted in FIG. 4 depicts a relatively small number
of acts, and this diagram can be extended to depict several
different acts. That 1s, the host controller 102 can transmit
instructions that cause the first HAE 112 to perform the first
processing operation on the first data 1n parallel with the Nth
HAE 114 performing an Nth processing operation on the
Nth data. Moreover, the host controller 102 can transmit
instructions that cause the second data to be transferred from
the first external memory device 126 to the first local
memory device 116 in parallel with third stored in the first
external memory device 126 being transierred to the Nth
local memory device 118 of the Nth HAE 114. Accordingly,
multiple different portions of data stored in the first external
memory device 126 can be transterred in parallel to multiple
different local memory devices of multiple different HAEs.
Still further, different data from different external memory
devices can be transferred from such external memory
devices to different local memory devices of different HAEs
in parallel, which can further be 1n parallel with the different
HAEs processing other data that 1s stored in the local
memory devices of the HAFEs. Such approach enables a
relatively small number of FPGAs to be designed to perform
complex processing over large amounts of data.

The architecture illustrated and described herein also
exhibits other advantages over conventional FPGA archi-
tectures, particularly with respect to executing complex
algorithms 1 SWAP-constrained environments. For
instance, each of the HAEs 112-114 can represent a partlcu-
lar optimized instruction subset, wherein each HAE 1is
optimized to execute such subset. Thus, more specifically,
the first HAE 112 represents a first optimized instruction
subset 1n the algorithm 104. The first HAE 112 can be caused
to perform its operation multiple times when the algorithm
1s being executed by the host controller 102. In addition,
when host controller 102 1s not executing the algorithm 104,
the FPGA can use the first HAE 112 when some other
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algorithm includes a reference to the first optimized instruc-
tion set. Historical FPGA 1mplementations dedicate
resources to a specific algorithm; thus, conventionally, if the
host controller 102 were not executing the algorithm, the
first HAE 112 would remain idle, thereby creating resource
inefliciencies. With the HAE approach and architecture
described herein, multiple algorithms within a chip can be
supported through use of a common and unique HAE
instruction set.

In addition, while not shown, HAEs can be grouped 1nto
sets, where HAEs 1n a set are independent but share a local
memory structure that 1s collocated with the set. For
example, the first HAE 112 can be a set of HAESs, such that
the first HAE 112 comprises multiple, independent HAEs
that share the first local memory 116. In this architecture, for
example, a first HAFE 1n the set can write an output to the first
local memory device 116 and a second HAE 1n the set can
retrieve the output from the first local memory device 116,
so that the output need not be written to one of the external
memory devices 126-128 or read from one of the external
memory devices 126-128, thereby improving efliciency
compared to conventional approaches. In addition, as
described above, data can be exchanged between the local
memory devices 116-118 by way of the bridge, and thus,
with respect to intermediate data processing, an output from
one HAFE to 1ts local memory device can be transferred to
another local memory device for another HAE without
requiring such output to first be transiferred to one of the
external memory devices 126-128.

Now referring to FIG. 5, another exemplary computing
system 500 that 1s well-suited for use in SWAP-constrained
environments 1s 1illustrated. The computing system 500
includes the host controller 102 and the MCE 124. The

computing system 500 further comprises multiple FPGAs
502-506 that are 1n commumnication with the host controller
102 and the MCE 124 by way of a suitable network 307. In
such an example, the host controller 102 can communicate
with the MCE 124 and the FPGAs 502-506 by way of the
network driver 136. Further, optionally, the MCE 124 can
include a network driver or can be on-chip with the host

controller 102. Moreover, the host controller 102 and/or the
MCE 124 can be internal to one of the FPGAs 502-506.

Each of the FPGAs 502-506 can have one or more
external memory devices coupled thereto. As illustrated 1n
FIG. 5, the first FPGA 502 has M external memory devices
508-510 coupled thereto, the second FPGA 504 has M
external memory devices 512 through 514 coupled thereto,
and the Pth FPGA 506 has M extra memory devices 516-518
coupled thereto. While each of the FPGAs 3502-3506 is
illustrated as including M external memory devices coupled
thereto, 1t 1s to be understood that different FPGAs may have
a different number of external memory devices coupled
thereto.

The host controller 102 and the MCE 124 operate as
described above. That 1s, the host controller 102 executes the
algorithm 104, and based upon execution of the algorithm,
transmits 1nstructions to the MCE 124 and HAEs in the
fabrics of the FPGAs 502-506. The 1nstructions to the MCE
124 are configured to cause data stored 1n external memory
devices of the FPGAs 502-506 to be transferred to local
memory devices of HAEs of the FPGAs, and the instructions
to the HAFEs are configured to cause the HAEs to perform
processing operations (for which the HAEs are designed) on
data 1n their local memory devices.

FIG. 6 1s a flow diagram that illustrates an exemplary
methodology relating to processing data 1n a SWAP-con-

strained environment. While the methodology 1s shown and
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described as being a series of acts that are performed 1n a
sequence, 1t 1s to be understood and appreciated that the
methodology 1s not limited by the order of the sequence. For
example, some acts can occur in a different order than what
1s described herein. In addition, an act can occur concur-
rently with another act. Further, in some instances, not all
acts may be required to implement a methodology described
herein.

Moreover, the acts described herein may be computer-
executable instructions that can be implemented by one or
more processors and/or stored on a computer-readable
medium or media. The computer-executable mnstructions can
include a routine, a sub-routine, programs, a thread of
execution, and/or the like. Still further, results of acts of the
methodologies can be stored mm a computer-readable
medium, displayed on a display device, and/or the like.

The methodology starts at 602, and at 604, at the host
controller 102 of the computing system 100, the algorithm
104 1s executed. The algorithm 104, when executed by the
host controller 102, 1s configured to cause the computing
system 100 to process data, wherein such data includes first
data and second data that 1s different from the first data.
Pursuant to an example, the first data i1s stored in the first
local memory device 116 of the first HAE 112 and the
second data 1s stored in the first external memory device 126
that 1s coupled to the FPGA 108.

At 606, from the host controller 102 and based upon the
algorithm 104 being executed by the host controller 102, a
first instruction 1s transmitted from the host controller 102 to
the first hardware acceleration engine 112, wherein the first
hardware acceleration engine 112 1s 1n the FPGA fabric 110
of the FPGA 108. As indicated previously, the first imstruc-
tion 1s configured to cause the first HAE 112, upon receiving,
the first instruction, to perform a processing operation on the
first data stored in the first local memory device 116.

At 608, the first data 1s retrieved by the first HAE 112
from the first local memory device 116, and the first HAE
112 performs the processing operation on the retrieved first
data.

At 610, based upon the host controller 102 executing the
algorithm 104, the host controller 102 transmits a second
istruction to the MCE 124. The second instruction, when
received by the MCE 124, 1s configured to cause the second
data that 1s stored 1n the first external memory device 126 to
be transierred from the first external memory device 126 to
the first local memory device 116 of the first HAE 112.

At 612, based upon the second instruction, the MCE 124
causes the second data to be ftransferred from the first
external memory device 126 to the first local memory device
116 of the first HAE 112, such that the second data 1s placed
in the first local memory device 116. The second data is
transierred to the first local memory device 116 simultane-
ously with the first HAE 112 performing the processing
operation on the first data. The methodology 600 completes
at 614.

What has been described above includes examples of one
or more embodiments. It 1s, of course, not possible to
describe every conceivable modification and alteration of
the above devices or methodologies for purposes of describ-
ing the aforementioned aspects, but one of ordinary skill 1in
the art can recognize that many further modifications and
permutations of various aspects are possible. Accordingly,
the described aspects are intended to embrace all such
alterations, modifications, and variations that fall within the
spirit and scope of the appended claims. Furthermore, to the
extent that the term “includes” 1s used in either the detailed
description or the claims, such term 1s intended to be
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inclusive 1 a manner similar to the term “comprising” as
“comprising’ 1s interpreted when employed as a transitional
word 1n a claim.

What 15 claimed 1s:

1. A computing system that 1s configured to process data,
the computing system comprising;

a host controller that executes an algorithm that i1s to be

employed 1n connection with processing the data,
wherein the data includes first data and second data that
1s different from the first data;

a local memory device of a field programmable gate array
(FPGA), wherein the local memory device has the first
data stored therein;

a hardware acceleration engine (HAE) implemented 1n
fabric of the FPGA, wherein the HAE 1s operably
coupled to the local memory device, wherein the host
controller, based upon the algorithm, transmits a first
instruction to the HAE, and further wherein the HAE,
upon receipt of the first mstruction, retrieves the first
data from the local memory device, performs a pro-
cessing operation on the first data, and generates output
data upon performing the processing operation on the
first data;

an external memory device that 1s external to the FPGA
and coupled to the FPGA, wherein the external
memory device has the second data stored therein; and

a memory control engine (MCE) that 1s operably coupled
to the host controller and the external memory device,
wherein the host controller, based upon the algorithm,
transmits a second instruction to the MCE, and further
wherein the MCE, upon receipt of the second 1nstruc-
tion, causes the second data to be transferred from the
external memory device to the local memory device,
wherein the HAE performs the processing operation on
the first data in parallel with the second data being
transierred from the external memory device to the
local memory device.

2. The computing system of claim 1, wherein the host

controller 1s included 1n the FPGA.

3. The computing system of claim 1, wherein the host
controller 1s external to the FPGA.

4. The computing system of claim 1, wherein the data
comprises third data that 1s different from the first data and
the second data, the computing system further comprising;:

a second local memory device of the FPGA, wherein the
second local memory device has the third data stored
therein; and

a second HAE implemented 1n the fabric of the FPGA,
wherein the second HAE 1s operably coupled to the
second local memory device, wherein the host control-
ler, based upon the algorithm, transmits a third mstruc-
tion to the second HAE, wherein the second HAE, upon
receipt of the third instruction, retrieves the third data
from the second local memory device, performs a
second processing operation on the third data, and
generates second output data upon performing the
second processing operation on the third data, and
further wherein the second HAE performs the second
processing operation on the third data 1 parallel with
the HAE performing the processing operation on the
first data and further in parallel with the second data
being transferred from the external memory device to
the local memory device.

5. The computing system of claim 1, wherein the MCE
has access to a memory map that maps a virtual address
space to physical addresses of the external memory device,
wherein the second instruction i1dentifies an address in the
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virtual address space, and further wherein the MCE, in
response to receiving the second 1nstruction:

identifies the external memory device from amongst sev-
eral possible external memory devices based upon the
address 1n virtual address space identified in the second
instruction; and

causes the second data to be transierred from the external
memory device to the local memory device responsive
to 1dentifying the external memory device.

6. The computing system of claim 5, further comprising

a memory controller that 1s operably coupled to the external
memory device, wherein the memory controller receives a
third instruction from the MCE, the third instruction i1den-
tifies a physical address of the second data in the external
memory device, and further wherein the memory controller
causes the second data to be transferred from the external
memory device to the local memory device based upon the
physical address of the second data 1n the external memory
device 1dentified in the third instruction.

7. The computing system of claim 1, wherein the local
memory device 1s a Dual Port Static Random Access
Memory (DP SRAM) device.

8. The computing system of claim 7, wherein the external
memory device comprises at least one of a Double Data Rate
Synchronous Dynamic Random-Access Memory (DDR
SDRAM) device or a High Bandwidth Memory device.

9. The computing system of claim 8, wherein the data
comprises third data that 1s different from the first data and
the second data, the system further comprising:

a second external memory device that i1s external to the
FPGA, wherein the second external memory device has
the third data stored therein, wherein the MCE 1s
operably coupled to the second external memory
device, wherein the host controller, based upon the
algorithm, transmuits a third mstruction to the MCE, and
further wherein the MCE, upon receipt of the third
instruction, causes the third data to be transferred from
the second external memory device to the local
memory device, wherein the HAE performs the pro-
cessing operation on the second data 1n parallel with the
third data being transierred from the second external
memory device to the local memory device.

10. The computing system of claim 8, wherein the data
comprises third data that 1s different from the first data and
the second data, wherein the external memory device has the
third data stored therein, the system further comprising:

a second local memory device of the FPGA, wherein the
second local memory device 1s a second DP SRAM
device; and

a second HAE implemented in the fabric of the FPGA,
wherein the second HAE 1s operably coupled to the
second local memory device but 1s not operably
coupled to the local memory device, wherein the host
controller, based upon the algorithm, transmits a third
instruction to the MCE, and further wherein the MCE,
upon receipt of the third instructions, causes the third
data to be transierred from the external memory device
to the second local memory device 1n parallel with the
HAE performing the processing operation on the first
data.

11. The computing system of claim 1, wherein the data 1s

an 1mage generated by a focal plane array (FPA).

12. The computing system of claim 11, wherein the
computing system 1s included in an orbiting man-made
satellite, wherein the FPA 1s included in the satellite, and
turther wherein the 1image 1s of the earth from the orbiting
satellite.
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13. A method performed by a computing system, the
method comprising:
at a host controller of the computing system, executing an
algorithm, wherein the algorithm, when executed by
the host controller, 1s configured to cause the comput-
ing system to process data, wherein the data includes
first data and second data that 1s diflerent from the first
data, and further wherein the first data 1s stored 1n a
local memory device of a field programmable gate
array (FPGA) and the second data 1s stored in an
external memory device that 1s external to the FPGA;

transmitting, from the host controller and based upon the
algorithm being executed by the host controller, a first
istruction to a hardware acceleration engine (HAE)
that 1s 1n fabric of the FPGA, the first instruction 1s
configured to cause the HAE to retrieve the first data
from the local memory device and perform a process-
ing operation on the first data;

based upon the first instruction, retrieving, by the HAFE,

the first data from the local memory device of the
FPGA and performing the processing operation on the
first data;

transmitting, from the host controller and based upon the

algorithm being executed by the host controller, a
second 1nstruction to a memory control engine (MCE)
that 1s operably coupled to the host controller, wherein
the second instruction 1s configured to cause the second
data to be read from the external memory device and
written 1nto the local memory device; and

based upon the second 1nstruction, causing, by the MCE,

the second data to be read from the external memory
device and written ito the local memory device,
wherein the second data 1s written into the local
memory device while the HAE i1s performing the
processing operation on the first data.

14. The method of claim 13, wherein the local memory
device 1s a Dual Port Static Random Access Memory (DP
SRAM) device.

15. The method of claim 14, wherein the second memory
1s one ol a Double Data Rate Synchronous Dynamic Ran-
dom-Access Memory (DDR SDRAM) device or a High
Bandwidth Memory device.

16. The method of claim 13, wherein the data 1s an 1image
generated by a focal plane array (FPA), wherein the first data
1s a {irst portion of the 1image, and the second data 1s a second
portion ol the image.

17. The method of claim 13, wherein the FPGA comprises
the host controller.

18. The method of claim 13, wherein the data comprises
third data that 1s diflerent from the first data and the second
data, the third data stored 1n a second local memory device
of a second FPGA, the method further comprising:

transmitting, from the host controller and based upon the

algorithm being executed by the host controller, a third
instruction to a second HAE that 1s 1n fabric of the
second FPGA, the third instruction 1s configured to
cause the second HAE to retrieve the third data from
the second local memory device and perform a second
processing operation on the third data; and

based upon the third 1nstruction, retrieving, by the second

HAE, the third data from the second local memory
device of the second FPGA and performing the second
processing operation on the third data, wherein the
second HAE performs the second processing operation
on the third data in parallel with the HAE performing
the processing operation on the first data.
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19. The method of claim 13, wherein the second 1nstruc-
tion 1ncludes a first address that 1dentifies a location of the
second data 1n a virtual address space, the method further
comprising:

at the MCE, i1dentifying a second address of the second

data in physical address space of the second memory,

wherein causing, by the MCE, the second data to be

read from the external memory device and written to

the local memory device comprises:

transmitting a third instruction from the memory con-
troller to a memory controller for the external
memory device, the third mstruction comprises the
second address, wherein the memory controller
causes the second data to be read from the external
memory device and written to the local memory
device based upon the third instruction.

20. A field programmable gate array (FPGA) comprising:
a host controller that executes an algorithm that 1s to be

employed in connection with processing data, wherein
the data includes first data and second data that 1s
different from the first data;

a local memory device of the field programmable gate

array (FPGA), wherein the local memory device has
the first data stored therein;
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a hardware acceleration engine (HAE) implemented 1n

fabric of the FPGA, wherein the HAE 1s operably

coupled to the local memory device, wherein the host
controller, based upon the algorithm, transmits a first
instruction to the HAE, and further wherein the HAFE,
upon receipt of the first mstruction, retrieves the first
data from the local memory device, performs a pro-
cessing operation on the first data, and generates output
data upon performing the processing operation on the
first data; and

a memory control engine (MCE) that 1s operably coupled

to the host controller and an external memory device
that 1s external to the FPGA, wherein the external
memory device stores the second data, wherein the host
controller, based upon the algorithm, transmits a sec-
ond struction to the MCE, wherein the MCE, upon
receipt of the second 1nstruction, causes the second data
to be read from the external memory device and written
to the local memory device, and further wherein the
HAE processes the first data in parallel with the second
data being read from the external memory device and
written to the local memory device.
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