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1
OBJECT DETECTION

BACKGROUND

One or more computers in an autonomous vehicle (or
self-driving car) can be programmed to navigate and operate
the vehicle based on vehicle sensor data. The vehicle com-
puters may rely on sensor data, e.g., camera data, etc., to
detect objects. Different sensors can provide data from
different fields of view. Fusion of data from multiple sensors
1s a technical challenge.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

FIG. 1 1s a block diagram showing an example vehicle
including sensors detecting an object.

FIG. 2 1s an example image received from a camera
sensor ol the vehicle of FIG. 1.

FIG. 3 1s another example image received from the
camera sensor showing dimensions determined from HD
(High Definition) map data.

FIG. 4 A 1llustrates a top view of a point cloud, generated
from front camera sensor data, illustrating detected road
feature points.

FIG. 4B illustrates the feature points of FIG. 4A.

FIG. 5A illustrates a top view of another point cloud,
generated from side camera sensor data, illustrating detected
road feature points.

FIG. 5B illustrates the feature points of FIG. SA.

FIG. 6 1llustrates an example of matching feature points
of FIGS. 4B and 5B.

FIG. 7A shows an object within a side camera sensor field
of view of the vehicle of FIG. 1.

FIG. 7B shows the object of FIG. 7A within the field of
view of the front camera sensor of the vehicle of FIG. 1.

FIG. 8 shows the vehicle of FIG. 1 at a specified location
with fiducial markers for extrinsic calibration.

FIG. 9 1s a flowchart of an example process for perform-
ing extrinsic calibration of vehicle camera sensors based on
road features, and operating the vehicle.

FI1G. 10 1s a flowchart of an example process for perform-
ing extrinsic calibration of vehicle camera sensors based on
fiducial markers at a specified location, and operating the
vehicle.

DETAILED DESCRIPTION

Introduction

Disclosed herein 1s a computing device comprising a
processor and a memory. The memory stores instructions
executable by the processor to generate a plurality of raw 3D
point clouds from respective sensors having non-overlap-
ping fields of view, to scale each of the raw point clouds
including scaling real-world dimensions of one or more
teatures 1ncluded 1n the respective raw 3D point cloud, and
to determine a first transformation matrix that transforms a
first coordinate system of a first scaled 3D point cloud of a
first sensor to a second coordinate system of a second scaled
3D point cloud of a second sensor. The memory stores
instructions to determine a second transformation matrix
that transforms a third coordinate system of a third scaled 3D
point cloud of a third sensor to the second coordinate system
of the second scaled 3D point cloud of the second sensor,
based on the first and second transformation matrices, upon
detecting an object 1n a first or third camera field of view, to
determine location coordinates of the object relative to a
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2

coordinate system that 1s defined based on the second
coordinate system, and to output the determined location
coordinates of the object.

The 1nstructions may further include nstructions to gen-
erate the raw 3D point clouds by applying monocular visual
odometry technique to image data recerved from the respec-
t1ive sensor.

Each of the plurality of 3D point clouds may be generated
based on data recerved from one of a plurality of sensors.

The one or more features may 1nclude at least one of a
lane marking, a guardrail, a traflic sign, and a traflic light,
and wherein the real-world dimensions may be determined
based on at least one of (1) recetved HD map data or (11) a
set of specified dimensions including distances between two
or more road markings, and dimensions of the tratlic sign.

The 1instructions may further include 1nstructions to deter-
mine the first transformation matrix by matching one or
more features between the first and second 3D point clouds
from the plurality of scaled 3D point clouds, thereby deter-
mining a first sensor pose relative to a second sensor pose;
the second coordinate system defined based on the second
SeNnsor pose.

The 1nstructions may further include 1nstructions to deter-
mine the second transformation matrix by matching one or
more features between a third scaled 3D point cloud and the
second scaled 3D point clouds from the plurality of raw 3D
point clouds, thereby generating a third sensor pose relative
to the second sensor pose; the second coordinate system
defined based on the second sensor pose.

Further disclosed herein 1s a computing device compris-
ing a processor and a memory. The memory stores instruc-
tions executable by the processor to receive a transiformation
matrix of each of a plurality of stationary fiducial markers at
a plurality of locations, based on receiving image data from
cach of a plurality of sensors, each image including image
data including at least one of the fiducial markers, to
determine respective transformation matrices of a vehicle
relative each of the fiducial markers, wherein each of the
sensors 1s included on the vehicle and wherein the sensors
have non-overlapping fields of view, to determine a relative
transformation matrix of each of the sensors with respect to
a vehicle coordinate system having an origin at a vehicle
reference point, upon receiving the image data including an
object from at least one of the sensors, to determine trans-
formation matrix of the object relative to the vehicle coor-
dinate system, and to actuate a vehicle actuator based on the
object.

The 1instructions may further include 1nstructions to deter-
mine the relative transformation matrix of each of the
sensors with respect to the vehicle coordinate system by
performing a pose concatenation.

The recerved transformation matrix of each of a plurality
of stationary fiducial markers at a plurality of locations may
be defined relative to a second coordinate system outside the
vehicle, and each pose includes roll, pitch, vaw, lateral,
longitudinal, and elevation coordinates.

Each of the fiducial markers may be an Aruco marker.

The instructions may further include 1nstructions to deter-
mine transformation matrix of the object relative to a
coordinate system that 1s defined based on a second coor-
dinate system by performing a pose concatenation, wherein
the pose concatenation 1s a result of a matrix dot product
operation on a first matrix specitying object coordinates
relative to a first camera and a second transformation matrix
speciiying a pose and coordinates of the first camera relative
to the second coordinate system.
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Further disclosed herein 1s a method, comprising gener-
ating a plurality of raw 3D point clouds from respective
sensors having non-overlapping fields of view, scaling each
of the raw point clouds including scaling real-world dimen-
sions of one or more features included in the respective raw
3D point cloud, determining a first transformation matrix
that transforms a {irst coordinate system of a first scaled 3D
point cloud of a first sensor to a second coordinate system of
a second scaled 3D point cloud of a second sensor, deter-
mimng a second transformation matrix that transforms a
third coordinate system of a third scaled 3D point cloud of
a third sensor to the second coordinate system of the second
scaled 3D point cloud of the second sensor, based on the first
and second transformation matrices, upon detecting an
object 1 a first or third camera field of view, determining
location coordinates of the object relative to a coordinate
system that 1s defined based on the second coordinate
system, and outputting the determined location coordinates
of the object.

The method may further include generating the raw 3D
point clouds by applying monocular visual odometry tech-
nique to 1mage data received from the respective sensor,
wherein each of the plurality of 3D point clouds 1s generated
based on data receirved from one of a plurality of sensors.

The one or more features may include at least one of a
lane marking, a guardrail, a traflic sign, and a tratlic light,
and wherein the real-world dimensions are determined based
on at least one of (1) received HD map data or (11) a set of
specified dimensions including distances between two or
more road markings, and dimensions of the traflic sign.

The method may further include determining the first
transformation matrix by matching one or more features
between the first and second 3D point clouds from the
plurality of scaled 3D point clouds, thereby determiming a
first sensor pose relative to a second sensor pose; the second
coordinate system defined based on the second sensor pose.

The method may further include determining the second
transformation matrix by matching one or more features
between a third scaled 3D point cloud and the second scaled
3D point clouds from the plurality of raw 3D point clouds,
thereby generating a third sensor pose relative to the second
sensor pose; the second coordinate system defined based on
the second sensor pose.

Further disclosed 1s a computing device programmed to
execute any of the above method steps.

Yet further disclosed 1s a computer program product,
comprising a computer readable medium storing instruc-
tions executable by a computer processor, to execute any of
the above method steps.

System Elements

Navigation of a land vehicle, e.g., an autonomous or
semi-autonomous vehicle, may be based on sensor data
about objects, e.g., data including location(s), dimensions,
types or classes, etc., of objects. A vehicle computer may
receive data from multiple sensors from which objects may
be detected and/or described, e.g., camera sensors, lidar
(light 1maging detection and ranging) sensors, etc., and
operate the vehicle based on a result of fusing data received
from multiple sensors. Data fusion means combining mul-
tiple data sources about a field of view, thereby taking
advantage of data obtained via various sensed media, and
typically providing more consistent, accurate, and useful
information than that provided by any one of the data
sources alone.

Problem can arise 1n fusing data from multiple sensors,
¢.g., where difference sensors are governed by different
parameters, e.g., utilize different media, have diflerent fields

10

15

20

25

30

35

40

45

50

55

60

65

4

of view, etc. Fven diflerent sensors 1in a same medium can
present data fusion problems due to differences between
parameters, €.g., resolution of data, sensor field of view, efc.
For example, a vehicle computer may detect an object 1n a
first location with first dimensions based on data from a first
camera, while detecting the object 1n a second location with
second dimensions different from the first location and/or
the first dimensions based on data recerved from a second
camera. Fusing data from such first and second cameras to
present reliable data about an object with respect to a vehicle
present challenges.

Advantageously as disclosed herein, to operate a vehicle
based on data from multiple sensors, extrinsic calibration
parameters can be determined. Extrinsic calibration param-
cters specily a transformation of coordinates (or transior-
mation matrix) from a first sensor coordinate system to a
second sensor coordinate system.

To improve sensor data fusion and provide more eflicient
and accurate recognition and description of objects and/or an
environment, a computer may be programmed to generate a
plurality of raw 3D point clouds from respective 2D 1image
sensors having non-overlapping fields of view, and to scale
cach of the raw point clouds, including scaling real-world
dimensions of one or more features included 1n the respec-
tive raw 3D point cloud. The computer may be programmed
to determine a first transformation matrix that transforms a
first coordinate system of a first scaled 3D point cloud of a
first sensor to a second coordinate system of a second scaled
3D point cloud of a second sensor. The computer may be
further programmed to determine a second transformation
matrix that transforms a third coordinate system of a third
scaled 3D point cloud of a third sensor to the second
coordinate system of the second scaled 3D point cloud of the
second sensor. The computer may be further programmed,
based on the first and second transformation matrices, upon
detecting an object 1n a {irst or third camera field of view, to
determine location coordinates of the object relative to a
coordinate system that 1s defined based on the second
coordinate system, and to output the determined location
coordinates of the object. A transformation matrix includes
(1) pose (roll, pitch, and heading) and (11) location coordi-
nates (lateral, longitudinal, and elevation) of an object or
coordinate system relative to another coordinate system. A
“feature” 1n or of an environment, in the present context,
means a physical structure 1n the environment, 1.e., a physi-
cal object, surface, or marking, e.g., a building, pole, traflic
sign, bridge, road surface, vegetation, guardrail, and/or
patterns or markings physically applied to other physical
structures in the environment, e.g., a painted lane marking,
etc.

FIG. 1 1illustrates an example host vehicle 100 including
a computer 110, actuator(s) 120, and multiple object detec-
tion sensors such as camera sensors 130A, 130B, 130C,
130D with fields of view 140A, 140B, 140C, 140D. In the
present context, a camera sensor 130 with a field of view 140
may be any of the example camera sensors 130A, 1308,
130C, 130D with a respective field of view 140A, 140B,
140C, 140D. In one example shown in FIG. 1, the camera
sensors 130A, 1308, 130C, 130D may be directed to left,
rear, right, and front direction of the vehicle 100.

In one example, as shown 1n FIG. 1, the camera sensors
130 may be mounted within a predetermined distance, e.g.,
10 centimeter (cm), from one another 1n different directions.
A reference point such as a geometrical center point 150 can
be specified for a vehicle 100, e.g., a pomnt at which
respective longitudinal and lateral centerlines of the vehicle
100 intersect. A vehicle 100 body may have a longitudinal

.
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axis Al and one or more lateral axes A2. The vehicles 100
may be powered 1n a variety of known ways, e.g., with an
clectric motor and/or internal combustion engine.

The computer 110 (or computing device) includes a
processor and a memory such as are known. The memory
includes one or more forms ol computer-readable media,
and stores instructions executable by the computer 110 for
performing various operations, including as disclosed
herein.

The computer 110 may operate the vehicle 100 1n an
autonomous or semi-autonomous mode. For purposes of this
disclosure, an autonomous mode 1s defined as one 1n which
cach of vehicle 100 propulsion, braking, and steering are
controlled by the computer 110; 1n a semi-autonomous
mode, the computer 110 controls one or two of vehicle 100
propulsion, braking, and steering.

The computer 110 may include programming to operate
one or more of vehicle brakes, propulsion (e.g., control of
acceleration 1n the vehicle by controlling one or more of an
internal combustion engine, electric motor, hybrid engine,
etc.), steering, climate control, interior and/or exterior lights,
etc., as well as to determine whether and when the computer
110, as opposed to a human operator, 1s to control such
operations.

The computer 110 may include or be communicatively
coupled to, e.g., via a vehicle communications bus as
described further below, more than one processor, e.g.,
controllers or the like included 1n the vehicle for monitoring
and/or controlling various vehicle controllers, e.g., a pow-
ertrain controller, a brake controller, a steering controller,
ctc. The computer 110 1s generally arranged for communi-
cations on a vehicle commumnication network such as a bus
in the vehicle such as a controller area network (CAN) or the
like.

Via the vehicle network, the computer 110 may transmait
messages to various devices in the vehicle and/or receive
messages from the various devices, e.g., the sensors 130,
actuators 120, etc. Alternatively or additionally, 1n cases
where the computer 110 actually comprises multiple
devices, the vehicle communication network may be used
for communications between devices represented as the
computer 110 in this disclosure. Further, as mentioned
below, various controllers and/or sensors may provide data
to the computer 110 via the vehicle communication network.

The actuators 120 may be implemented via circuits, chips,
or other electronic components that can actuate various
vehicle subsystems 1n accordance with appropriate control
signals as 1s known. The actuators 120 may be used to
control braking, acceleration, and steering of the vehicle
100. As an example, the vehicle 100 computer 110 may
output control instructions to control the actuators 120.

The vehicle 100 sensors 130 may provide data encom-
passing at least some of an exterior of the vehicle 100, e.g.,
a camera, radar, and/or lidar (light imaging detection and
ranging). For example, a camera sensor 130 may provide
object detection, 1.e., data including dimensions, relative
location, etc., of objects 170 outside the vehicle 100 within
a field of view 140 of the sensor 130. For example, locations
relative to a vehicle 100 can be specified with respect to two
or three axes of a three-dimensional Cartesian coordinate
system 160, e.g., according to (X, y, z) coordinates. The
coordinate system 160 may be a Cartesian coordinate system
in an origin such as a point on or 1n the respective sensor
130. In one example, each coordinate system 160 has an
origin at a specified point, e.g., a center of a lens, a
geometrical center, etc., of the respective sensor 130.

10

15

20

25

30

35

40

45

50

55

60

65

6

A reference point 150, e.g., an mtersection of the longi-
tudinal axis Al and a lateral axis A2 could be at a reference
location with defined with respect to the vehicle 100. The
computer 110 may be programmed to determine the loca-
tion, dimensions, etc., of an object 170 within a field of view
140 of a specific sensor 130 based on data received from the
camera sensor 130 relative to the respective coordinate
system 160 defined with respect to the sensor 130.

A camera sensor 130 provides image data to, e.g., the
vehicle 100 computer 110. The camera sensor(s) may
include chips, 1image sensors, and optical components. The
camera sensor(s) 130 may output 1mage data based on the
optical signals captured by the image sensor(s) of the camera
sensor 130. The computer 110 may be programmed to detect
object(s) 170 from image data received from the camera
sensor(s) 130 and determine dimension(s) and/or location of
the object(s) 170, e.g., with respect to the coordinate system
160 of the respective sensor 130.

Object(s) 170 may be a second vehicle, bicycle, truck,
pedestrian, building, traflic sign, wall, light pole, etc., within
a field of view 140 of a respective sensor 130. An object 170
1s a real-world, 1.e., physical, object. Real-world data about
an object 170 1s herein referred to as ground truth data. That
1s, ground truth data 1s data that sensors 130 would obtain 1f
sensors 130 were perfect and could provide a perfect, true
representation of an environment without any errors or lags
in communication or measurement. It 1s desirable for sen-
sors 130 to provide data from which a computer 110 can
determine data representing an object 170 that 1s as close to
ground truth data as possible (1.e., a best possible approxi-
mation of real-world object. Further, in the present context,
a field of view 140 1s an area of the ground surface (e.g., the
horizontal plane 210) in which objects 170 can be detected
by the sensors 130.

The fields of view 140 of sensors 130 can be non-
overlapping, as 1 examples herein. “Non-overlapping”
fields of view mean that (1) no portion of an environment
exterior to the vehicle 100 1s included 1n data recerved from
more than one sensor 130, or (11) a portion of the environ-
ment exterior to the vehicle 100 1s present 1n data from two
sensors 130, but an object 170 within the portion of the
environment detected by the two sensors 130 1s detectable
based on data from only one of the two sensors 130. In other
words, fields of view of sensors 130 are considered to be
non-overlapping when any two sensors 130 provide data
from an overlapping area but the amount of the data (e.g.,
width angle of overlapping area) from the overlapping area
1s msuilicient for one of the sensors to detect an object 170
independently from data from at least the other sensor 130.
For example, a horizontal width angle of overlapping area
may be 5 degrees with respect to a reference line on the
ground surface. Thus, an object 170 may not fit in the
overlapping area of the image data, and therefore the com-
puter 110 may lack the ability to detect the object 170 only
based on the image data of the overlapping area.

The computer 110 may be programmed to operate the
vehicle 100 based on data received from the vehicle 100
sensor(s) 130. The computer 110 may be programmed to
actuate a vehicle 100 actuator 120, e.g., to operate braking,
steering, and/or propulsion, based on the received sensor
130 data.

The computer 110 can be programmed to generate a
plurality of raw 3D (three-dimensional) point clouds from
respective sensors 130 having non-overlapping fields of
view 140. A 3D point cloud 1s a 3D representation of an
environment formed by acquiring distance or range mea-
surements between an object detection sensor 130 and points
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in an environment (€.g., using techniques such as discussed
turther below), typically including data points describing
objects 170 and/or surfaces, e.g., a road surface detected
based on data recerved from an object detection sensor 130.
A 3D point cloud includes 3D location coordinates of points
on surfaces of object(s) 170, road, etc. In the present context,
a “raw”’ 3D pomt cloud specifies a representation of a 3D
environment, e.g., an exterior of the vehicle 100 including
any objects 1n the environment. The raw 3D point cloud 1s
unscaled, 1.e., lacks reference to real-world dimensions of
objects 170 (1.e., e.g., a real-world, 1.e., actual physical,
length or width of an object 170). A scale, 1n this context, 1s
a ratio of real-world distances compared to point cloud
distances, e.g., specified 1n pixels. For example, a scale may
specily that 1 pixel corresponds to 10x10 square centimeters
(cm®). “Scaling” means determining a ratio between real-
world dimensions and dimensions of the point cloud.

For example, the computer 110 may generate a first raw
3D point cloud based on data received from the first sensor
130A, a second raw 3D point cloud based on data received
from the second sensor 130B, a third raw 3D point cloud
based on data receirved from the third sensor 130C, and a
fourth raw 3D point cloud based on data received from the
tourth sensor 130D. Data recerved from a camera sensor 130
1s typically 2D (two-dimensional). Techniques such as a
Visual Odometry (VO), bundle adjustment, etc., may be
used to generate the raw 3D point clouds based on, e.g.,
grayscale 2D, data received from each of the camera sensor
130. In other words, each raw 3D point cloud 1s generated
based on data from one of the camera sensors 130.

In monocular Visual Odometry, features such as object(s)
170 are detected 1n a camera sensor 130 field of view 140,
and while the camera sensor 130 moves, ¢.g., based on a
vehicle 100 movement, the detected features are matched
over time. As discussed below with respect to FIGS. 4B, 5B,
and 6, this process 1s referred to “matching,” 1.e., finding
images ol a same feature 1n 1mages from diflerent cameras.
“Matching over time” means finding a feature i a {first
image at a time t, and then finding same feature viewed from
a different field of view 1n a second 1mage captured at time
t,. The computer 110 may be programmed to triangulate
according to a parallax technique between a {irst position of
the camera sensor 130, a second position of the camera
sensor 130, and a position of a feature. A “parallax,” as will
be understood, 1s a displacement or diflerence 1n an apparent
position of an object viewed along two different lines of
sight. The term “monocular,” in the present context, refers to
use of only one camera sensor 130 to provide data in
generating the raw 3D point cloud. For example, the com-
puter 110 may be programmed, based on Equation (1) below,
to estimate a relative location t and a relative pose R between
different positions of a camera sensor 130 by minimizing an
error E of point to point projection between the images
received from the camera sensor 130.

min 5 (1)
E = R 1. XJ Z HHEJ — ]_[ (RIXJ + ﬁ)H

A pose R specifies roll, pitch, and yaw of an object
relative to a reference coordinate system. In one example, a
pose R can specity a roll, pitch, and yaw of a first coordinate
system relative to a second coordinate system. Thus, a pose
R 1s an orthonormal rotation matrix parametrized by the
Euler angles [, 0, W]’. Parameters ¢, 0, 1\ represent an
angle between the coordinate system 160A, 160B, 1.¢., aroll,
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pitch, and heading respectively. The location parameter t=[x,
y, z]* is a translation vector that provides a translation
between the first and second locations of the coordinate
system 160 of the camera sensor 130. Vectors u represent 21D
features, e.g., object(s) 170, based on 1mage pixel locations.
For example, vector u[1,j] represent image plane position of
features, wherein 1 and 1 are row and column coordinates of
a feature. Additionally or alternatively, a feature may be a
corner feature, a SIFT (scale-invariant feature transform), a
SURF (speeded up robust features), and/or any other kind of
learned feature which may be tracked frame to frame. Vector
X represent 3D location of the features.

As discussed above, the raw 3D point cloud lacks a scale,
1.e., a reference to dimensions of the real (1.e., physical)
world. With reference to FIGS. 2-3, the computer 110 can be
programmed to scale each of the raw 3D point clouds
including scaling real-world dimensions of one or more
teatures included 1n the respective raw 3D point cloud. The
computer 110 may be programmed to generate a scaled 3D
point cloud by scaling raw 3D map data. A scaled 3D point
cloud includes information specitying a scale of the point
cloud. A feature may be a lane marking 200 (FIG. 2), a
guardrail, a traflic sign 300, and a traflic light 310. Upon
scaling a raw 3D point cloud, the coordinate system 160 of
the 3D point cloud 1s unchanged.

In one example, the computer 110 may be programmed to
recerve a set of specified dimensions including a length d, of
a lane marking 200, respective distances d, between one or
more sets of two road markings 200, and dimensions d,, d,
of the traflic sign 300, etc. The computer 110 may be
programmed to store the set of specified dimensions 1n a
computer 110 memory. Additionally or alternatively, the
computer 110 may be programmed to determine real-world
dimensions based on data received from a remote computer
and/or a location of the vehicle 100, e.g., local guidelines for
dimensions or road signs, markings, efc.

In another example, with reference to FIG. 3, the com-
puter 110 may be programmed to recerve 3D map data, e.g.,
an HD (High Definition) map, including dimensions of
features such as traflic signs 300, traflic lights 310, road
marking 200, etc. The computer 110 may then scale a feature
of a raw 3D map by detecting a corresponding feature in the
received HD map data and determining the dimensions of
the feature based on the HD map data.

As discussed above, the scaled 3D point clouds have
different coordinate systems 160, ¢.g., each having an origin
at a point on or 1n the respective camera sensor 130. Upon
cach point cloud’s scale being determined, a comparison of
same features, e.g., a traflic sign, between data captured by
different camera sensors 130 (as discussed below with
reference to FIGS. 4B, 5B, and 6) may be used to determine
a respective pose ol each camera sensor 130 relative to a
reference camera, e.g., the camera sensor 130.

The computer 110 may be programmed to determine a
first transformation matrix TCZCl that transtforms a first coor-
dinate system 160A of a first scaled 3D point cloud of a first
sensor 130A to a second coordinate system 160B of a second
scaled 3D point cloud of a second sensor 130B, as discussed
below with reference to FIGS. 4A-4B and 5A-5B.

FIG. 4A shows a vehicle 100 1n an area 410 having lane
markings 200. FIG. 4A shows the vehicle 100 at a first
location P, 1n the area 410. A location may be specified with
GPS (global positioning system) location coordinates. The
computer 110 may be programmed to identify lane markings
200 based on 1mage data recerved from the camera sensor
130D. For example, the computer 110 may detect feature
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points 400, e.g., edges of the lane marking 200, within the
field of view 140D of the front camera sensor 130D.

FIG. 4B shows a top view of a scaled pomnt cloud
generated based on the detected feature points 400. The
computer 110 may be programmed to determine a scale of
the point cloud, as discussed above, based on known dis-
tances such as a length d, of the lane markings 200. Location
coordinates of feature points 400 in the scaled point cloud
illustrated by FIG. 4B are with respect to the coordinate
system 160D of the sensor 130D.

FIG. SA shows the vehicle 100 moved to a second
location P,, e.g., 15 meters from the first location P, on a
vehicle 100 path within a road lane. At the second location
P, the computer 110 may detect feature points 500, based on
the camera sensor 130D data. At least some of the feature
points 400 (FIGS. 4A-4B), which were detected based on
the data received from the sensor 130A when the vehicle 100
was at the first location P,, will be included 1n the feature
points 500 from the second location P,. For example, as the
vehicle 100 moves from the first location P, to the second
location P,, some of the feature points 400 detected by the
front camera sensor 130D may be detected by side sensors
130A, and/or the rear sensor 130B as the feature points 300.

FIG. 5B shows a top view of a second scaled 3D point
cloud generated based on the feature points 500 detected
within the field of view 140D. The computer 110 may be
programmed to determine the scale of the 3D point cloud, as
discussed above, based on known distances such a length d,
of the lane markings 200. Location coordinates of the feature
points 500 are with respect to the coordinate system 160B.

With reference to FIGS. 4B, 5B, and 6, the computer 110
can be programmed to determine the first transformation
matrix T ' by “matching” one or more features 400, 500
between the first and second 3D point clouds from the
plurality of scaled 3D point clouds, thereby determinming a
first sensor pose R and location translation t relative to a
second sensor 130, represented as a relative transformation
matrix ¢ “1. In the present context, “matching” means
recognizing feature points 400 identified in the first scaled
point cloud determined based on the sensor 130A data that
correspond to feature points 500 identified 1n the second
scaled point cloud determined based on the sensors 130 data.

As discussed above, poses R and locations t of different
camera sensors 130 are different from one another. Thus, in
identifying the matching feature points 400, 500, for
example, a perspective transformation technique, e.g., Per-
spective-n-point (PnP) technique, etc., may be performed. A
computer 110 may be programmed to 1dentily feature points
400 of FIG. 4B and to perform (or compute) a homography
or projective transiformation to match feature points 500 1n
FIG. 5B. Thus, utilizing a homography technique, the com-
puter 110 may be programmed to identify a projective
transformation between the first and second feature points
400, 500, as discussed below.

In the present context, a “homography™ or a “perspective
transformation’™ 1s a line-preserving projective mapping ol
teature points 400, 500 observed from two diflerent per-
spectives. “Line preserving’ means that if multiple points
are on a same line 1n the first point cloud shown 1n FIG. 4B,
the matching feature points 500 are on a same line in the
second point cloud shown 1n FIG. 3B. In other words, the
homography provides a mathematical relationship, e.g., the
transformation matrix T - Cl

The computer 110 can be programmed to determine a
second transformation matrix T “* that transforms a third
coordinate system 160C of a thlrd scaled 3D point cloud of
a third sensor 130C to the second coordinate system 1608 of
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the second scaled 3D point cloud of the second sensor 1308,
as discussed above with respect to the above example of
determining the first transformation matrix T “".

The computer 110 may be programmed, based on the first
and second transformation matrices T fl, T 263, upon
detecting an object 170 1n a first or third camera field of view
140A, 140C, to determine location coordinates of the object
170 relative to a coordinate system that 1s defined based on
the second coordinate system 160D, and to then output the
determined location coordinates of the object 170. Addition-
ally or alternatively, the computer 110 may be programmed
to determine a transformation matrix TCEO, of the object 170
relative to the coordinate system 160 of the second camera
sensor 130B including a pose R and a location t of the object
170 relative to the coordinate system 160 of the second
camera sensor 130B.

Equation (2) 1s based on a “dot matrix operation,” such as
1s known. The computer 110 may detect the object 170 based
on 1mage data received from the sensor 130A having the
coordinate system 160A. Thus, the computer 110 may be
programmed to determine the transformation matrix TC of
the object 170 with respect to the coordinate system 160A of
the sensor 130A. T . “ represents coordinates and pose of the
detected object 170 relative to the sensor 130A coordinate
system 160A. T 20 represents coordinates of the detected
object 170 relative to the coordinate system 160D. The
computer 110 may be programmed, based on Equation (2),
to determine the transtformation matrix TCZO of the object
170 relative to the second coordinate system 160B using the
stored transformation matrix chl. The computer 110 may
store a transier Tunction [TCECI] specilying a transformation
of the sensor 130A relative to the sensor 1308, which may
be determined using the same technique discussed with
respect to FIG. 6.

[7c,”1= 7, M7 ¢, (2)

Object(s) 170 may move relative to the vehicle 100 and
therefore an object 170 may exit one sensor 130 field of view
140 and enter another sensor 130 field of view 140. FIGS.
7A-7TB show the vehicle 100 and an object 170, e.g., a
second vehicle, moving relative to the vehicle 100. With
reference to FIG. 7A, the computer 110 may be programmed
to detect the object 170 within a sensor 130A field of view
140A.

With respect to FIG. 7B, upon the object 170 exiting the
field of view 140A and/or entering a field of view 140D, the
computer 110 may determine the transformation matrix
[ch] of the object 170 based on data recerved from the
sensor 130D. The computer 110 may be programmed, e.g.,
implementing Equation (3) below, to determine the coordi-
nate [TCEO] of the object 170 based on the transiformation
matrices ch,, chl. In the present context, operation (3)
may be referred to as pose concatenation. A pose concat-
enation 1s a result of a matrix dot product operation on a first
matrix specifying object location and pose relative to a first
camera and a second transformation matrix specifying a
pose and location of the first camera relative to the second
coordinate system.

[T, 177, [T, (3)

The computer 110 can determine the object 170 transior-
mation matrix [TCIO] with respect to a reference field of
view, e.g., the second field of view 1408, as the object 170
1s 1n any of the fields of view 140, and to plan a path and/or
operate the vehicle 100, 1.e., actuate a vehicle 100 actuator
120, e.g., a steering, braking, and/or propulsion actuator

120, based on the detected object 170.
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FIG. 8 shows another example system for determining a
pose of a sensor 130 relative to a point of ornigin different
than the sensor 130 coordinate system 160, ¢.g., a reference
point 150 1n a vehicle 100. The vehicle 100 may be moved
to and/or placed in at a specified areca 800, e¢.g., 1n a
manufacturing or service facility provided with fiducial
markers 810. Multiple fiducial markers 810 may be placed
in specified locations within the area 800.

A fiducial marker 810 1s an object placed in the field of
view 140 of a camera sensor 130, for use as a point of
reference or a measurement. For example, a fiducial marker
810 can include a number of ArUco fiducial marks. ArUco
fiducial marks are two-dimensional (2D) patterns from a
library of fiducial marks described at www.uco.es/grupos/
ava/node/26, “Aplicaciones de la Vision Artificial”, Univer-
sity of Cordoba, Spain, May 15, 2019. ArUco fiducial marks
are designed to be read by machine vision software that can
determine a pose i pixel coordinates for each ArUco
fiducial mark included 1n a fiducial marker 810 by process-
ing a 2D (two-dimensional) image of the fiducial marker
810.

A fiducial maker 810 can be used to determine a pose of
a vehicle 100 sensor 130 by displaying the fiducial marker
810 on a surface, e.g., on a ground surface, a wall, etc., 1n
an environment, such as an area 800, that can be occupied
by a vehicle 100. When the vehicle 100 1s in the area 800 and
a marker 810 1s 1n a camera sensor 130 field of view 140, the
computer 110 may determine a 3D pose of the fiducial
marker 810, e.g., by using a machine vision technique.

The computer 110 can be programmed to receive a
transformation matrix of each of a plurality of fiducial
markers 810 at a plurality of locations within the area 800.
For example, the computer 110 may be programmed to
receive a transformation matrix T/, e.g., i=1, 2, 3, 4, of a
marker 810 relative to a reference coordinate system 830
with an origin 840, e.g., GPS coordinate system 830 with
GPS origin point 840. In other words, the computer 110 may
receive data that specify a transformation matrix T} of the
markers 810 relative to the reference coordinate system 830.

Table 1 shows an example set of relative transformation
matrices as discussed below with respect to Equations
(4)-(8).
TABLE 1
Parameter Description
TWI world to first marker transformation matrix
TWE world to second marker transformation matrix
TH;’ world to third marker transformation matrix
TW4 world to fourth marker transformation matrix
TWCI world to first camera sensor transformation
matrix
T,“! first marker to first camera sensor
transformation matrix
T, world to first marker transformation matrix
Tcll first camera sensor to first marker
transformation matrix
T, fl fourth camera sensor to first camera sensor

transformation matrix
TC Cy x? camera sensor to y camera sensor
transformation matrix

The computer 110 can be programmed, based on receiv-
ing 1mage data from the sensors 130, each image including
image data including at least one of the fiducial markers 810,
to determine respective poses ol respective vehicle 100
sensors 130 relative each of the fiducial markers 810. The
various sensors 130 typically have non-overlapping fields of
view 140. The computer 110 may be programmed to deter-
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mine a transformation matrix TCIl of a first marker 810
relative to the sensor 130A coordinate system 160A.

For example, the computer 110 may be programmed to
determine the transformation matrix TCIl of the first marker

810 relative to the sensor 130A using a convolutional neural
network (CNN). A CNN 1s a software program that can be
implemented on a computing device that can be trained to
iput an image of a marker 810 and output a transformation
matrix TC of the marker 810 relative to the sensor 130A
coordinate system 160A. A CNN includes a plurality of
convolutional layers that extract hidden features from an
input image of a vehicle 100 which are passed to a plurality
of fully-connected layers that transtorm the hidden features
into a vehicle 100 pose. A CNN can be trained to process a
plurality of images of markers 810 to determine the trans-
formation matrix T '. The CNN is trained by inputting an
image ol a marker 810 captured by the vehicle 100 sensor
130A and backpropagating results to be compared with the
ground truth pose to determine a loss function. Traiming the
CNN includes determining parameters for convolutional and
tully-connected layers that minimize the loss function.
When trained, a CNN can input an 1image of the markers 810
received from the vehicle 100 sensors 130 and output a
transformation matrix Tcll. Backpropagation, short for
“backward propagation of errors,” 1s an algorithm for super-
vised learning of artificial neural networks using gradient
descent. Given an artificial neural network and an error
function, the algorithm calculates the gradient of the error
function with respect to the neural network’s weights.
Ground truth data, 1.e., data deemed to provide a best
representation of the real world, for training the CNN may
include a set of data including (1) image data of markers 810
and (1) respective transformation matrix relative to the
sensor used for generating the training data.

The computer 110 can be programmed, as discussed with
reference to Equations (4)-(8), to determine a relative trans-
formation matrix of each of the sensors 130 with respect to
a vehicle 100 coordinate system, e.g., a vehicle 100 sensor
130 coordinate system 160B, or a vehicle 100 reference
point 150, etc. The computer 110 may be programmed, upon
receiving 1image data including a representation of an object
170 from at least one of the sensors 130, to determine
transformation matrix of the object 170 relative to a vehicle
100 coordinate system, €.g., a coordinate system 160 at a
sensor 130 location, and to actuate a vehicle 100 actuator
120 based on the detected object 170.

Equation (4) specifies an example transformation matrix
including (1) a pose matrix R;,., which is a rotation matrix
including roll, pitch, and heading of a vehicle 100, and (11)
a location translation T,_,. The computer 110 may be
programmed to implement Equation (3) to use an mnverse
matrix operation to calculate a transformation matrix of a
first camera sensor 130 relative to a first marker 810 based
on a determined transformation matrix of the first marker
810 relative to the first camera sensor 130. The computer 110
can be programmed to implement Equation (6) to determine
a transformation matrix T,°! of a first camera sensor 130
relative to the coordinate system 830 based on a transior-
mation matrix T, and a transformation matrix T,

| [ R3x1 Tsxi } (4)
“CTlo00 1
e, =[] ®)
To' = [TH [T ] (6)

The computer 110 may be programmed to determine a
transformation matrix TCEO of the object 170 relative to a
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coordinate system that 1s defined based on the second
coordinate system 160B by performing a pose concatena-
tion, as discussed with respect to Equation (3).

As a generalized example, the computer 110 may be
programmed to implement Equation (7) to determine a
transformation matrix of an x” camera sensor 130 relative to
a y” camera sensor 130 based on (i) a real-world x” marker
810 transformation matrix, and (11) a real-world coordinate
system 830 to the first camera sensor 130. For example,
Equation (8) shows an example use of Equation (7) to
determine an operation to calculate the transformation
matrix for the fourth camera sensor 130 relative to the first
camera sensor 130.

L CXCYZ[T X T (7)

I

=T T

(8)

FIG. 9 1s a flowchart of an example process 900 for
performing extrinsic calibration of vehicle 100 sensors 130
and operating the vehicle 100 using 3D point cloud data. The
computer 110 may be programmed to execute blocks of the
process 900.

The process 900 begins 1 a block 910, 1n which the
computer 110 receives image data from the vehicle 100
camera sensors 130 with non-overlapping fields of view
140.

Next, 1n a block 920, the computer 110 generates raw 3D
point clouds from respective sensors 130. The computer 110
may be programmed to utilize the Monocular VO technique,
etc., to generate the raw 3D point clouds based on the
received 1mage data from the vehicle 100 sensors 130.

Next, 1n a block 930, the computer 110 scales each of the
raw 3D point clouds, e.g., based on HD map data and/or
specified dimensions d,, d, of features, as discussed with
respect to FIGS. 2-3.

Next, 1n a block 940, the computer 110 determines the
transformation matrix T ' of a first sensor 130 relative to
second sensor 130. Wlth reference to FIGS. 4A-4B and
5A-3B, the computer 110 may be programmed to 1dentily
teature points 400 based on the first scaled point cloud and
the feature point 500 based on the second scaled 3D point
cloud, and to determine the transformation matrix 1. ¢
based on the i1dentified matching feature points 400, 500.

Next, 1n a decision block 950, the computer 110 deter-
mines whether an object 170 1s detected 1n the first sensor
130 field of view 140. If the computer 110 detects an object
170 1n the field of view 140 of the first sensor 130, then the
process 900 proceeds to a block 960; otherwise the process
900 returns to the decision block 950, or alternatively returns
to the block 910, although not shown in FIG. 9.

In the block 960, the computer 110 determines the coor-
dinates of the object 170 relative to a second coordinate
system, e¢.g., the second sensor 130D coordinate system
1608, or a second coordinate system with an origin at a
vehicle 100 reference point 150. As discussed with respect
to Equation (3), the computer 110 may be programmed to
determine a transformation matrix, including pose and coor-
dinates, of the object relative to the second camera sensor
130D.

Following the block 960, 1n a block 970, the computer 110
actuates a vehicle 100 actuator 120 based on the i1dentified
coordinates t and/or pose R of the object 170 relative to the
second coordinate system of the vehicle 100, e.g., with an
origin at the second sensor 130D. Following the block 970,
the process 900 ends, or alternatively returns to the decision
block 950, although not shown 1n FIG. 9.
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FIG. 10 illustrates a flowchart of a process 1000 for
performing extrinsic calibration of vehicle 100 sensors 130
using fiducial markers 810 located in the fields of view 140
of vehicle 100 sensors 130. The computer 110 may be
programmed to execute blocks of the process 1000.

The process 1000 begins 1 a block 1010, 1n which the
computer 110 receives transformation matrix, T ', of fidu-
cial markers 810 (Table 1).

Next, 1n a block 1020, the computer 110 determines
whether the vehicle 100 1s located at a specified location 800
(such as described above with respect to FIG. 8). The
computer 110 may be programmed to determine that the
vehicle 100 1s at the specified location 800 based on data
received from a remote computer, a vehicle 100 sensor 130,
ctc. If the computer 110 determines that the vehicle 100 1s
at the specified location 800, then the process 800 proceeds
to a block 1030; otherwise the process 1000 returns to the
block 1020, or alternatively returns to the block 1010,
although not shown 1n FIG. 10.

In the block 1030, the computer 110 receives image data
from the vehicle 100 camera sensors 130 with non-overlap-
ping lields of view 140. The recerved image data from each
of the sensors 130 include 1mage data of at least a fiducial
marker 810 located within the field of view 140 of the
respective sensor 130.

Next, in a block 1040, the computer 110 determines
respective transformation matrices of the vehicle 100 rela-
tive to each of fiducial markers 810, ¢.g., the transformation
matrix T, of the first camera sensor 130 relative to a first
marker 180.

Next, in a block 1050, the computer 110 determines a
relative transformation matrix of each of vehicle sensors
with respect to vehicle 100 coordinate system. For example,
the computer 110 may be programmed to implement Equa-
tions (4)-(8) to determine a transformation matrix T . Cl of

ﬂ’ sensor 130 to y” camera sensor 130.

x” camera
Next, in a decision block 1060, the computer 110 deter-
mines whether an object 170 1s detected 1n first sensor 130
data (as discussed concerning FIG. 8). If the computer 110
determines that the object 170 1s detected 1n the field of view
140 of the first sensor 130, the process 1000 proceeds to a
block 1070; otherwise returns to the decision block 1060, or
alternatively ends, although not shown 1n FIG. 10.

In the block 1070, the computer 110 determines coordi-
nates t and/or pose R of object 170 relative to vehicle 100
coordinate system. The computer 110 may be programmed,
based on Equation (3), to determine the transiormation
matrix TEZO of the object 170 within first sensor 130 field of
view relative to the coordinate system 160D of the second
sensor 130.

Next, 1n a block 1080, the computer 110 actuates a vehicle
100 actuator 120 based on the determined transformation
matrix TCZO. The computer 110 may be programmed to
actuate a brake, steering, and/or propulsion actuator 120
based on the detected object 170.

Following the block 1080, the process 1000 ends, or
alternatively returns to the block 1010, although not shown
in FIG. 10.

As used herein, the adverb “substantially” means that a
shape, structure, measurement, quantity, time, etc. may
deviate from an exact described geometry, distance, mea-
surement, quantity, time, etc., because of 1imperfections in
materials, machining, manufacturing, transmission of data,
computational speed, etc.

“Based on” encompasses “based wholly or partly on.” If,
herein, a first thing i1s described and/or claimed as being
“based on” the second thing, then the first thing 1s derived
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or calculated from the second thing, and/or output from an
algorithm, process, or program function that accepts some or
all of the second thing as input and outputs some or all of the
first thing.

Computing devices as discussed herein generally each
include instructions executable by one or more computing
devices such as those i1dentified above, and for carrying out
blocks or steps of processes described above. Computer-
executable instructions may be compiled or interpreted from
computer programs created using a variety of programming
languages and/or technologies, including, without limita-
tion, and either alone or in combination, Java™, C, C++,
Visual Basic, Java Script, Perl, HIML, etc. In general, a
processor (€.g., a microprocessor) receives mnstructions, €.g.,
from a memory, a computer-readable medium, etc., and
executes these instructions, thereby performing one or more
processes, icluding one or more of the processes described
herein. Such instructions and other data may be stored and
transmitted using a variety of computer-readable media. A
file 1n the computing device 1s generally a collection of data
stored on a computer readable medium, such as a storage
medium, a random-access memory, etc.

A computer-readable medium includes any medium that
participates 1n providing data (e.g., instructions), which may
be read by a computer. Such a medium may take many
forms, including, but not limited to, non-volatile media,
volatile media, etc. Non-volatile media include, for example,
optical or magnetic disks and other persistent memory.
Volatile media include dynamic random-access memory
(DRAM), which typically constitutes a main memory. Com-
mon forms of computer-readable media include, ifor
example, a floppy disk, a tlexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, a RAM, a PROM,
an EPROM, a FLASH-EEPROM, any other memory chip or
cartridge, or any other medium from which a computer can
read.

With regard to the media, processes, systems, methods,
etc. described herein, 1t should be understood that, although
the steps of such processes, etc. have been described as
occurring according to a certain ordered sequence, such
processes could be practiced with the described steps per-
formed 1n an order other than the order described herein. It
turther should be understood that certain steps could be
performed simultaneously, that other steps could be added,
or that certain steps described herein could be omitted. In
other words, the descriptions of systems and/or processes
herein are provided for the purpose of illustrating certain
embodiments, and should 1n no way be construed so as to
limit the disclosed subject matter.

Accordingly, 1t 1s to be understood that the present dis-
closure, including the above description and the accompa-
nying figures and below claims, 1s intended to be illustrative
and not restrictive. Many embodiments and applications
other than the examples provided would be apparent to those
of skill 1n the art upon reading the above description. The
scope of the mnvention should be determined, not with
reference to the above description, but should instead be
determined with reference to claims appended hereto and/or
included in a non-provisional patent application based
hereon, along with the full scope of equivalents to which
such claims are entitled. It 1s anticipated and intended that
tuture developments will occur 1n the arts discussed herein,
and that the disclosed systems and methods will be incor-
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porated 1nto such future embodiments. In sum, it should be
understood that the disclosed subject matter 1s capable of
modification and variation.

All terms used 1n the claims are intended to be given their
plain and ordinary meanings as understood by those skilled
in the art unless an explicit indication to the contrary in made
herein. In particular, use of the singular articles such as “a,”
“the,” “said,” etc. should be read to recite one or more of the
indicated elements unless a claim recites an explicit limita-
tion to the contrary.

What 1s claimed 1s:
1. A computing device, comprising a processor and a
memory, the memory storing instructions executable by the
processor to:
generate a plurality of raw 3D point clouds from respec-
tive sensors having non-overlapping fields of view;

scale each of the raw point clouds including scaling
real-world dimensions of one or more features included
in the respective raw 3D point cloud;
determine a first transformation matrix that transforms a
first coordinate system of a first scaled 3D point cloud
of a first sensor to a second coordinate system of a
second scaled 3D point cloud of a second sensor;

determine a second transformation matrix that transforms
a third coordinate system of a third scaled 3D point
cloud of a third sensor to the second coordinate system
of the second scaled 3D point cloud of the second
SeNsor;

based on the first and second transformation matrices,
upon detecting an object 1n a first or third camera field
of view, determine location coordinates of the object
relative to a coordinate system that 1s defined based on
the second coordinate system; and

output the determined location coordinates of the object.

2. The computing device of claim 1, wherein the instruc-
tions further include imstructions to generate the raw 3D
point clouds by applying monocular visual odometry tech-
nique to 1image data recerved from the respective sensor.

3. The computing device of claim 1, wherein each of the
plurality of 3D point clouds i1s generated based on data
received from one of a plurality of sensors.

4. The computing device of claim 1, wherein the one or
more features include at least one of a lane marking, a
guardrail, a trathic sign, and a traflic light, and wherein the
real-world dimensions are determined based on at least one
of (1) received HD map data or (1) a set of specified
dimensions including distances between two or more road
markings, and dimensions of the traflic sign.

5. The computing device of claim 1, wherein the instruc-
tions further include instructions to determine the first
transformation matrix by matching one or more features
between the first and second 3D point clouds from the
plurality of scaled 3D point clouds, thereby determining a
first sensor pose relative to a second sensor pose; the second
coordinate system defined based on the second sensor pose.

6. The computing device of claim 1, wherein the 1nstruc-
tions further include instructions to determine the second
transformation matrix by matching one or more features
between the third scaled 3D point cloud and the second
scaled 3D point clouds from the plurality of raw 3D point
clouds, thereby generating a third sensor pose relative to the
second sensor pose; the second coordinate system defined
based on the second sensor pose.

7. A computing device, comprising a processor and a
memory, the memory storing instructions executable by the
processor to:
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receive a transformation matrix of each of a plurality of
stationary fiducial markers at a plurality of locations;

based on recerving 1image data from each of a plurality of
sensors, each 1image including image data including at
least one of the fiducial markers, determine respective
transformation matrices of a vehicle relative each of the
fiducial markers, wherein each of the sensors 1is
included on the vehicle and wherein the sensors have
non-overlapping fields of view;

determine a relative transformation matrix of each of the

sensors with respect to a vehicle coordinate system
having an origin at a vehicle reference point;

upon receiving the image data including an object from at

least one of the sensors, determine transformation
matrix of the object relative to the vehicle coordinate
system; and
actuate a vehicle actuator based on the object.
8. The computing device of claim 7, wherein the nstruc-
tions further include istructions to determine the relative
transformation matrix of each of the sensors with respect to
the vehicle coordinate system by performing a pose concat-
enation.
9. The computing device of claim 7, wherein the recerved
transformation matrix of each of a plurality of stationary
fiducial markers at a plurality of locations are defined
relative to a second coordinate system outside the vehicle,
and each pose includes roll, pitch, yaw, lateral, longitudinal,
and elevation coordinates.
10. The computing device of claim 7, wherein each of the
fiducial markers 1s an Aruco marker.
11. The computing device of claim 7, wherein the mstruc-
tions further include instructions to determine transiorma-
tion matrix of the object relative to a coordinate system that
1s defined based on a second coordinate system by performs-
ing a pose concatenation, wherein the pose concatenation 1s
a result of a matrix dot product operation on a first matrix
specilying object coordinates relative to a first camera and a
second transformation matrix specifying a pose and coordi-
nates of the first camera relative to the second coordinate
system.
12. A method, comprising:
generating a plurality of raw 3D point clouds from
respective sensors having non-overlapping fields of
ViEW;

scaling each of the raw point clouds including scaling
real-world dimensions of one or more features included
in the respective raw 3D point cloud;
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determiming a first transformation matrix that transforms
a first coordinate system of a first scaled 3D point cloud
of a first sensor to a second coordinate system of a
second scaled 3D point cloud of a second sensor;

determiming a second transformation matrix that trans-
forms a third coordinate system of a third scaled 3D
point cloud of a third sensor to the second coordinate
system of the second scaled 3D point cloud of the
second sensor;

based on the first and second transformation matrices,
upon detecting an object 1n a first or third camera field
of view, determining location coordinates of the object
relative to a coordinate system that 1s defined based on
the second coordinate system; and

outputting the determined location coordinates of the
object.

13. The method of claim 12, further comprising generat-
ing the raw 3D point clouds by applying monocular visual
odometry technique to image data recerved from the respec-
tive sensor, wherein each of the plurality of 3D point clouds
1s generated based on data recerved from one of a plurality
ol sensors.

14. The method of claim 12, wherein the one or more
features 1nclude at least one of a lane marking, a guardrail,
a traflic sign, and a traflic light, and wherein the real-world
dimensions are determined based on at least one of (1)
received HD map data or (11) a set of specified dimensions
including distances between two or more road markings, and
dimensions of the trathic sign.

15. The method of claim 12, further comprising deter-
mining the first transformation matrix by matching one or
more features between the first and second 3D point clouds
from the plurality of scaled 3D point clouds, thereby deter-
mining a {irst sensor pose relative to a second sensor pose;
the second coordinate system defined based on the second
Sensor pose.

16. The method of claim 12, further comprising deter-
mining the second transformation matrix by matching one or
more features between the third scaled 3D point cloud and
the second scaled 3D point clouds from the plurality of raw
3D point clouds, thereby generating a third sensor pose
relative to the second sensor pose; the second coordinate
system defined based on the second sensor pose.
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