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SYSTEMS AND METHODS OF
HIERARCHICAL FORECASTING OF SOLAR
PHOTOVOLTAIC ENERGY PRODUCTION

BACKGROUND

With the development of photovoltaic (PV) or other
similar technologies 1n recent years, renewable energy
sources have been used more frequently across the U.S. and
worldwide. Policies, such as Renewable Portfolio Standards
(RPS), are gaiming more and more attention due to the
increasing penetration of renewable energy production in the
conventional utility grid. As of March o1 2015, with 46 states
already 1n use across the country and over 100 RPS baills
pending, deciding how to best promote solar energy to
compete with other major players in the renewable source
market 1s a priority for many solar power producers, utility
companies and independent service operators (ISO).

The widespread implementations of solar power systems
are 1mpeded by many factors, such as weather conditions,
seasonal changes, intra-hour variability, topographic eleva-
tion and discontinuous production. Operators need to
acquire solar energy production information ahead of the
time to counter the operating costs caused by energy reserve
requirements or shortage of electricity supplies from PV
systems. To fully utilize solar energy, reliable mechanisms to
predict solar production are necessary.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the embodiments
and the advantages thereol, reference 1s now made to the
tollowing description 1n conjunction with the accompanying
figures briefly described as follows:

FIG. 1 1s a drawing of an artificial neural network
structure according to various example embodiments.

FIG. 2 illustrates a hierarchical approach accordingly to
various example embodiments.

FIGS. 3A-3C illustrate example plots of forecast results
according to various example embodiments.

FIGS. 4A and 4B illustrate example plots of forecast
results according to various example embodiments.

FIGS. SA and 5B illustrate hierarchical approaches
involving evolving errors according to various example
embodiments.

FIG. 6 1llustrates an example flowchart of certain func-
tionality executed in a computing environment according to
various example embodiments.

FIG. 7 1s a schematic block diagram that illustrates an
example computing environment employed according to
various embodiments.

The drawings illustrate only example embodiments and
are therefore not to be considered limiting of the scope
described herein, as other equally eflective embodiments are
within the scope and spirit of this disclosure. The elements
and features shown in the drawings are not necessarily
drawn to scale, emphasis instead being placed upon clearly
illustrating the principles of the embodiments. Additionally,
certain dimensions may be exaggerated to help wvisually
convey certain principles. In the drawings, similar reference
numerals between figures designate like or corresponding,
but not necessarily the same, elements.

DETAILED DESCRIPTION

In the following paragraphs, the embodiments are
described 1n further detail by way of example with reference
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2

to the attached drawings. In the description, well known
components, methods, and/or processing techniques are
omitted or brietly described so as not to obscure the embodi-
ments. As used herein, the “present invention” refers to any
one of the embodiments of the invention described herein
and any equivalents. Furthermore, reference to various fea-
ture(s) of the “present invention™ 1s not to suggest that all
embodiments must 1include the referenced feature(s).

Among embodiments, some aspects of the present inven-
tion are implemented by a computer program executed by
one or more processors, as described and illustrated. As
would be apparent to one having ordinary skill 1n the art, the
present invention may be implemented, at least 1n part, by
computer-readable instructions in various forms, and the
present invention 1s not intended to be limiting to a particular
set or sequence of instructions executed by the processor.

The embodiments described herein are not limited in
application to the details set forth 1n the following descrip-
tion or illustrated in the drawings. The 1nvention 1s capable
of other embodiments and of being practiced or carried out
in various ways. Also, the phraseology and terminology used
herein 1s for the purpose of description and should not be
regarded as limiting. The use of “including,” “comprising,”
or “having” and variations thereof 1s meant to encompass the
items listed thereafter, additional items, and equivalents
thereof. The terms “connected” and “coupled” are used
broadly and encompass both direct and indirect connections
and couplings. In addition, the terms “connected” and
“coupled” are not limited to electrical, physical, or mechani-
cal connections or couplings. As used herein, the terms
“machine,” “computer,” “server,” and “work station™ are not
limited to a device with a single processor, but may encom-
pass multiple devices (e.g., computers) linked 1n a system,
devices with multiple processors, special purpose devices,
devices with various peripherals and input and output
devices, software acting as a computer or server or cloud
computing, and combinations of the above.

Solar power forecast 1s the “cornerstone™ for a reliable
and stable solar energy industry. Intra-hour forecasts can be
used for monitoring and dispatching purposes while intra-
day and day-ahead forecasts can be used for scheduling the
spinning reserve capacity and managing the grid operations.
Two methods, Artificial Neural Network (ANN) and Sup-
port Vector Regression (SVR), can be used for predicting
15-min ahead, hour ahead and 24-hour ahead energy pro-
ductions from a solar photovoltaic system. A hierarchical
approach can be used based on machine learning algorithms.
Production data of average power measurements can be
collected 1n fixed increments, such as 15 minute increments.
The accuracy of a predictive model can be determined by
computing error statistics such as mean bias error (MBE),
mean absolute error (MAE), root mean square error
(RMSE), relative bias error (rMBE), mean percentage error
(MPE), and relative root mean square error (rRMSE). Fore-
casts for individual inverters can improve the total solar
power generation forecast for a PV system.

The forecast of power output, say day-ahead, 1s a chal-
lenging task owing to the dependency of inputs’ accuracy.
Examples of iputs, also referred to as input parameters, for
PV energy output forecasting can include exogenous inputs
from the meteorological forecasts and endogenous inputs
from the direct system energy outputs, among other 1mnputs.
As an example, meteorological forecasts, such as solar
irradiance, can be used to predict solar output. Power can be
predicted for an entire PV plant in this manner. However,
even with the cloud graph from synchronous meteorological
satellites, large variability 1n key parameters, namely diffuse

i
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components from the sky hemisphere, can make solar irra-
diance much less predictable than the temperature. More
dificulties exist 1n large-scale PV systems 1nstalled over a
wide area with diflerent tile and azimuth angles. An indi-
vidual parameterized solar model can be used to deal with
diverse configurations of PV,

Since 1t 1s not possible to take into account all related
meteorological forecasts in practical situation, alternative
solutions can be developed. Weather forecasts can be
adopted by meteorological online services. The solar fore-
cast model can be simplified by exploring different nonlinear
modeling tools, such as an artificial neural network. Two
types of networks, radial basis function (RBF) and multi-
layer perception (MLP), can be utilized to forecast global
solar radiation, solar radiation on tilted surface, daily solar
radiation, and short term solar radiation. Other techniques
can be used to improve the current models for solar radia-
tions and PV productions, such as the minmimal resource
allocating network, the wavelet neural network, fuzzy logic,
and the least-square Support Vector Machine (SVM), among
other techmiques. PV productions forecasts can be per-
formed based on reduced weather inputs (e.g. no solar
irradiance input) or only based on endogenous inputs. PV
linear and nonlinear power outputs can be 1solated, temporal
resolution can be adjusted, and day types can be classified.

As discussed further herein, reduced exogenous inputs
without solar 1rradiance can be used for predicting the PV
production output 15-minutes ahead, hour-ahead and
24-hours ahead of time, among other times ahead. The
forecast models, developed from Artificial Neural Network
and Support Vector Regression respectively, can forecast the
power output based on PV’s historical record and the online
meteorological services. Moreover, an alternative way to
forecast total PV output forecast, generated from individual
inverter output forecast, can be carried out to compare the
baseline performance using the total PV output data. The
accuracy ol common forecast techniques can be assessed 1n
order to determine a baseline performance for different
prediction windows (e.g. 15 min. ahead, 1 hour ahead, and
24 hours ahead). A hierarchical forecast approach using the
monitored information on inverter level can be used to
predict PV productions. The hierarchical forecast approach
can be validated by comparing with the baseline forecasts.

Two machine learning methods are discussed herein to
forecast the power plant output, but other machine learning
methods can be used. In one embodiment, the forecast can
be calculated 15 minutes ahead, 1 hour ahead, and 24 hours
head of time. Artificial Neural Network (ANN) and Support
Vector Regression (SVR) can be used for the machine
learning methods.

Neural Network 1s heuristically developed from the
human brain’s learning processes on recognizing visualized
objects. Similar to neurons 1n a biological brain, ANN can be
operated on many different artificial neurons. The structure
1s a network model connecting the input, hidden, and output
layers constructed with neuron nodes. Assumptions do not
need to be made about the mputs or outputs of the model.
The users can define the model structure such as the number
of hidden layers, the number of neurons in each layer, and
the appropriate learning algorithms, and perform the model.
Inputs to a neuron can be external stimul1 or direct outputs
from the other neurons. Neurons calculate the weight sum of
the mputs and produce the output by transfer functions:

10

15

20

25

30

35

40

45

50

55

60

65

N

o _
flx) = Z Wi Z WiiXi + Wi

= | i=1

(1)

+Wj,;.

Where w 1s the weights for mput, hidden, and output
layers, x 1s the training input, F(x) is the training output, N
represents the total number of hidden neurons, M represents
the total number of mputs, and ¢ represents the transier
function for each hidden neuron. The weighted sums can be
adjusted during training processes by minimizing the errors
of the traiming data, namely Mean Squared Error, Sum
Squared Error and Root Mean Squared Error. Numerical
learning algorithms, such as back-propagation, quasi-New-
ton and Levenberg-Marquardt, can be used to eflectively
optimize the weights.

With reference to FIG. 1, shown 1s a feed forward neural
network (FFNN) 103. The FFNN 103 can include one or
more mputs 106 and one or more hidden layers for neurons
109. The FFNN 103 can produce a forecasted PV output 112
for power production. The FFNN 103 can output the fore-
casted PV output 112 based on the mputs 106 and the hidden
layers 109.

FFNN 103 of a single layer and a double layer configu-
ration can be used. However, due to an over-fitting problem,
good forecasts were not found from the double hidden layer
structure. The performance of FFNN 103 depends strongly
on the parameter settings. In one embodiment, FFNN can be
modeled as 1 hidden layer 109 with more than 20 neurons,
1 output neuron (the prediction of power production, e.g.
forecasted PV output 112), and 26 mput neurons 106 (sev-
eral time lagged values of historical power productions,
meteorological mnputs, and time information). A simplified
diagram of the FFNN 103 1s shown i FIG. 1.

In one embodiment, the model can be implemented 1n
Python. The transfer functions can be the hyperbolic tangent
sigmoid functions for each layer. FNNN 103 can be trained
with a gradient descent back-propagation algorithm.
FFNN’s 103 weights can be learned by minimizing Sum
Squared Error (SSE). To select the specific number of
hidden neurons, the training algorithms can be performed on
multiple epochs of historical data. As an example, for each
epoch selected (e.g. one week), 75% of the data can be used
for training and the rest of the 25% can be held out for
validation. Other ratios can also be used. The parameter can
be normalized. As an example, the parameters can be
optimized using all input data normalized between 0 to 1. In
one example, at least 50 epochs are simulated until the
calculated SSE reaches the setting error goal of 0.001.

Support vector machines are statistics learning tools that
can be used in classification and regression. For support
vector regression (SVR), a data set can be transformed 1nto
a high dimension space. Predictions can be discriminated
from training data as a “tube’ enclosed with a desired pattern
curve with certain tolerances. The support vectors are the
points which mark the margins of the tube. The SVR
approximates the inputs and outputs using the following
form:

J @) =weplx)+b (2)

where @(x) represents the transfer function mapping the
input data to the high dimensional feature spaces. Param-
cters w and b are estimated by mimimizing the regularized
risk function:
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mmzw -w+C; (& + &)
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Where w represents the total number of training samples, &
1s the error slacks guaranteeing the solutions, C 1s the
regularized penalty, € defines the desired tolerance range of
the “tube”, and @ 1s the kernel mapping function. The first
term w' -w is a regularized term to flatten the function in Eq.
(2). The second term 1s the empirical error measured by the
e-insensitive loss function. This loss function defines the
tube: 1f the forecasted values are within the tube, the loss 1s
zero; 11 the forecasted values are outside the tube, the loss 1s
proportional to the absolute diflerences between the fore-
casted values and the radius € of the tube.

Both ¢ and C are optimized by introducing Lagrange
multiplier and exploiting the optimality constraints. The
equivalent Lagrangian form of Eq. (2) 1s expressed by the
following equation:

" (4)
fO) =) (a—a)K(x, x)) +b
i=1

Where K(x,,x;) 1s defined as the kernel function. In Eq. (4),
a, and a* are the so-called Lagrange multipliers. The
Lagrange multipliers can be calculated by solving the dual
problem of Eq. (3) in Lagrange form. The advantage of
using the kernel function i1s that one can deal with feature
space 1n arbitrary dimension without explicitly computing
the map ¢ 1 Eq. (3). Any function that satisfies Mercer’s
condition can be used as the kernel function. The commonly
used choices are linear, polynomial, and radial basis function
(RBF). In general, RBF with weight parameter v tends to
give good performance by smoothness. The RBF 1s defined
as follows:

(4)

where v 1s the kernel parameter.
The RBF used can be a 3-degree kernel function. The

SVR model can be found relatively insensitive to the value
of € which 1s smaller than 0.01 whereas both C and vy
necessitate independent tuning. These parameters are deter-
mined with 10-fold cross-validation based on mean square
error. The grid search scale for C and v 1s maintained
between 10° and 1077,

As shown m FIG. 1, any historical information of the
power productions can be fed to the machine learning
methods as the mputs 106. The forecasting of the power
plant production (forecasted PV output 112) can use the
information of the total power plant production from his-
torical record to train the models. Parameters of the machine
learning models can be manipulated to get better predic-
tions. However, different feeding mnformation from histori-
ans could change the results, especially for a large PV plant.
The dithiculties of accessing and measuring the data can
contribute to why production information in the micro level
1s typically neglected. However, the abundant information
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from the micro level of PV (e.g. mverters) can facilitate a
new hierarchical view 1n forecasting the power output from
the large PV system. The hierarchical forecasting approach,
utilizing the machine learning tools at a micro level for each
inverter prediction and evaluating the performances at a
macro level for the whole plant by summing up the fore-
casts, 1s shown 1n FIG. 2.

With reference to FIG. 2, shown 1s a hierarchical approach
200 of forecasting power output for a PV system. The
hierarchical approach can include historical information 203
from one or more PV power 1mverters of the PV system. The
historical information 203 for each of the PV power invert-
ers can be processed by a corresponding neural network 206,
such as, for example, a FNNN 103. The neural network 206
can produce forecasted PV outputs 112a-112# for each of the
neural network 206. The hierarchical approach can include
summing the forecasted PV outputs 1124-112# to determine
a macro level forecasted PV output 209 for the PV system.
Each of the neural network 206 can be generated based on
average power productions from the historical information
203 over a period of time for a corresponding inverter. The
neural networks 206 can be generated based in part on a
machine learning algorithm.

Performances of the techmques discussed can be evalu-
ated by several error calculations. For test samples at the
night time hours, 1.e. when solar 1irradiance 1s not available,
there 1s no need to evaluate the system performances.
Forecast accuracy can be evaluated using the following
common statistical metrics:

Mean Bias Error (MBE)

MBE = ii} (P; - P;) 7
Mean Absolute Error (MAE)
MAE = ii} P, - P, ©
Root Mean Square Error (RMSE)
(7)

RMSFE =

where P. is the measured power output, P, is the forecast-
ing for P, and N represents the number of data points which
the forecast errors are calculated. MBE 1s used to estimate
the bias between the expected value from predictions and the
ground truth. In comparison, MAFE provides a view on how
close the forecasts are to the measurements 1n absolute scale.
The last one, RMSE, amplifies and severely punishes large
errors by using the square form. Although these performance
metrics are popular and considered as the standard perfor-
mance measures, limitations with MAE, MBE and RMSE

involve the relative sizes of the reported errors not being
obvious. It 1s hard to tell whether the errors are big or small
in comparison to different series of data 1n different scales.
Hence, relative error measures are further introduced below:
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Relative Mean Bias Error (rMB.

T
o

N (8)

P, - P (%)

Relative Root Mean Squared Error (rRMSE)

(10)

LR

rRMSE = —
P

where M 1s the maximum power production 1s recorded, and
P is the mean value of solar PV energy production during the
daytime in the test period. P is calculated from the below
equation:

(11)

In one exemplary test, data was collected from a 6 MW
(DC) peak solar power plant with eleven 500 kW (AC)
inverters located in Florida. This solar farm’s tested period
spanned from Jan. 1, 2014 to Dec. 31, 2014. The intra hour
ground truth data collected from the PV plant site was
transierred to 15 mins and hourly average of power output.
Before applying the training algorithm, both the input and
output data were normalized to the range from O to 1 using
the following equation:

" Yi — Vmin

Yi = (14

Vinax — Ymin

where vy, 1s the original data value, y*, 1s the corresponding
normalized value, y_ . 1s the mimimum value 1n vy, data set,
and y, _ 1s the maximum value 1n y, data set.

e

To train the models for different forecasting windows, a
determination of what iputs perform the best at predicting
the PV output can be made. The traiming process can be
tacilitated by testing different configurations of historical
power production information. The inputs for the 15-min
and 1 hour ahead forecast, defined as H1, can be a Markov
order 5 sequence as follows:

Hl: J(L, 0 -2 Lys) (12)

where L__, represents historical power plant production from
the previous one-time step back, . . . , and L, . represents
production from the previous five time steps back. The
24-hour ahead input set, defined as H2, 1s used to forecast
the next 24-hour power production. For one future hour

10

15

20

25

30

35

40

45

50

55

60

65

8

power production L, of the next 24-hour window, the input
features selected are:

H2: J(LyoaLiagLi7 -« - L 168) (13)

For a one-time step ahead forecast (the 15-min and 1 hour
ahead forecast), inputs include the historical power produc-
tions from 1 to 5 time steps back. By comparison, the
24-hour ahead forecast needs the historical outputs at the
same time from vesterday, the day before yesterday, and the
day before one week. These features are selected based on
an exhaustive search by minimizing coetlicient of determi-
nation.

On the other hand, the reduced exogenous inputs are the
following physical varniables from weather services that no
lag effect 1s considered: ambient temperature, wind speed,
and wind direction. Additional variables are also tried from
the NREL SOLPOS as an indirect source to enhance the
clear-sky PV production forecast. In the example case, the
tollowing variables were found usetul: 1) solar zenith angle,
no atmospheric correction; 2) solar zenith angle, degrees
from zemth, refracted; 3) cosine of solar incidence angle on
panel; 4) cosine refraction corrected solar zenith angle; 5)
solar elevation (no atmospheric correction), and 6) solar
clevation angle (degrees from horizon, refracted). Various
combinations of these vaniables can be used individually to
help to improve the forecasts of different scenarios. It
depends on the forecast windows, and these are all the
possible variables that can be used. In essence, these addi-
tional mputs are adopted as indicators to the clear-sky solar
irradiance without explicitly predicting the 1irradiances. The
assumption 1s that the machine learning algorithms will
learn the nonlinear relationship between clear-sky solar
properties and the PV plant productions directly rather than
through the solar irradiance predictions.

The forecast techniques, ANN and SVR, were tested on
the total power production forecast of the sample PV plant.
The baseline forecast uses whole plant production informa-
tion. It only implements one machine learming model trained
with the plant data for power production prediction. The
hierarchical way predicts the power production from PV
inverters while each nverter production forecast uses a
different machine learming model, which 1s trained sepa-
rately based on the information provided by the correspond-
ing 1verter. The summation of these mverter forecasts can
convert the micro level predictions to a macro level forecast
standing for total PV plant production. Tables 1 to 3 present
forecast results 1 year 2014 for diflerent prediction win-
dows using both approaches. Best results from different
error matrixes are highlighted. The hierarchical approach,
whether using ANN or SVR, performs better 1n one step
ahead forecast than the traditional way. The 24-hour ahead
case 1s fairly even between the two approaches, as it 1s
difficult to implement the machine learning algorithms 1in
longer forecast windows, shown by the larger MAE, RMSE
and MPE comparing to hour ahead forecast results.

TABLE 1

15-min ahead forecast result for the whole PV plant.

Endog-

enous MBE MAE  RMSE

input Model (KWh) (KWh) (KWh) rMBE rRMSE MPE
In- ANN 0.49 34.57 42,15 0.0131 0.131 4.32
verters SVR 0.58 35.73 43.52 0.0132 0.133 434
Whole ANN 0.54 35.85 43.67 0.0135 0.132 4.31
plant SVR 0.51 36.21 45770 0.0132 0.135 4.31
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TABLE 2

Hour ahead forecast result for the whole PV plant.

Endog-
enous S MALE  RMSE
input Model (KWh) (KWh) (KWh) rMBE rRMSE MPE
In- ANN 0.50 51.56 63.62 0.0128 0.134 4.32
verters SVR 0.55 50.77 66.87 0.0131 0.136 4.34
Whole ANN 0.53 52.23 65.45 0.0134 0.135 4.31
plant SVR 0.57 54.69 65.43 0.0131 0.135 4.31
TABLE 3

24-hour ahead forecast result for the whole PV plant.
Endog-
enous S MALE  RMSE
input Model (KWh) (KWh) (KWh) rMBE rRMSE MPE
In- ANN 0.03 12632 182.64 0.0001 0.410 10.54
verters SVR 0.05 13448 18544 0.0002 0410 10.53
Whole ANN -0.07 12877 18349 0.0012 0412 10.51
plant SVR 0.01 126.89 185.67 0.0002 0411 10.52

FIGS. 3A-3C and FIGS. 4A and 4B display the forecast

results by comparing the traditional method and the hierar-
chical approach using the same machine learning technique,
such as ANN. In FIGS. 3A-3C, the presented two-week
period shows improvements of performances using a hier-
archical approach for 15-min ahead, hour ahead and 24-hour
ahead forecasts respectively. In particular, some strikingly
different results are observed for 24-hour ahead cases 1n
comparison to the consistent performances for 15-min and
hour ahead forecasts, which are the one-time step ahead
cases. Power production forecasting plots in FIG. 3A and
FIG. 3B, even 1n the cloudy day (around 1,200 time steps 1n
15-min ahead plot and 300 time steps 1n hour ahead plot),
match the ground truth pattern with a low error. In contrast,
the same case in the 24-hour ahead forecast apparently
excessively predicts the true power production. The damp-
ened performance for the 24-hour ahead case 1s clearly
influenced by the imput features. In the 24-hour ahead
forecast, models learned the patterns as a daily profile,
which 1s a 24 time steps ahead moving window. The key
assumption behind the learning process 1s that daily power
plant productions are similar without large deviation, which
may not be the case for all days. That 1s why cloudy or rainy
weather plays a more important role than historical power
production information in 24-hour ahead cases. However,
due to the goals and definitions of the approaches, the factors
cannot be easily approximated from the reduced exogenous
inputs 1n this disclosure. Besides the 24-hour tests, 15-min
and hour ahead predictions actually do not depend too much
on exogenous inputs. Sample plots for rainy and cloudy
days’ forecasts in FIG. 4 indicate that the trained model with
endogenous mputs can predict the plant power production
for one-time step ahead cases on an appropriate error level.
In the cloudy day, the production level of energy 1s affected
by the cloudy periods, and changes can be observed during
10 am to 3 pm 1n FIG. 4B. In comparison, the rainy day has
more irregular productions in the whole daytime and more
periods are either over-fitted or under-estimated (e.g. the
periods from 2 pm to 4 pm 1n FIG. 4A).
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TABLE 4

15-min ahead forecast result for each inverter.

Max
In- MBE MAE  RMSE energy
verter (KWh) (KWh) (KWh) rMBE rRMSE MPE (KWh)
Al —-0.57 4,95 6.15 0.0124 0.134 436 1134
A2 —-0.55 5.06 6.27 0.0118 0.134 439 113.15
B1 —-0.52 4.93 6.13 0.0112 0.131 439 11045
B2 —-0.39 5.03 6.24 0.0083 0.133 445 111.16
Cl1 0.42 491 6.11 0.0119 0.133 442 11045
C2 0.51 4.97 6.19 0.0126 0.133 437 109.75
D1 0.45 5.09 6.21 0.0133 0.134 446 110.5
D2 0.56 5.14 6.15 0.0148 0.132 441 110.25
El —-0.57 4.96 6.18 0.0134 0.131 436 112.89
E2 0.43 5.07 6.22 0.0127 0.131 443 112.5
E3 0.44 5.03 6.26 0.0131 0.134 437 114.2
TABLE 5
Hour ahead forecast result for each imverter.
Max
In- MBE MAE  RMSE energy
verter (KWh) (KWh) (KWh) rMBE rRMSE MPE (KWh)
Al 0.59 4.55 5.58 0.0146 0.139 408 446
A2 0.48 4.69 5.74 0.0118 0.140 414 452.6
B1 0.44 4.62 5.63 0.0107 0.137 418 441.8
B2 0.47 4.71 5.74 0.0114 0.140 424 444.64
Cl1 0.49 4.75 5.55 0.0127 0.135 419 4418
C2 0.55 4.63 5.62 0.0119 0.140 4.26 439
D1 0.43 4.62 5.72 0.0125 0.139 419 442
D2 0.52 4,59 5.67 0.0141 0.138 4.20 441
El 0.58 4.58 5.56 0.0135 0.137 416 451.56
E2 0.50 4.68 5.63 0.0133 0.138 4.22 450
E3 0.55 4,770 5.66 0.0129 0.136 421 456.8
TABLE 6
24-hour ahead forecast result for different number of inverters.
Max
In- MBE MAE  RMSE cnergy
verter (KWh) (KWh) (KWh) rMBE rRMSE MPE (KWh)
1 -0.10 11.46 16.37 0.0024 0412 10.28 446
2 -0.21 23.39 33.13 0.0026 0412 10.41 R98.6
3 -0.14 35.27 4973  0.0011 0.410 10.52 13404
4 —-0.25 47.19 66.40 0.0016 0410 10.57 1785.04
5 0.01 58.95 83.09 0.0001 0412 10.59 2226.84
6 0.11 70.11 0008 0.0005 0410 10.52 2665.84
7 0.06 81.96 115.80 0.0002 0410 10.55 3107.84
8 -0.31 9343 132.07 0.0010 0411 10.53 3548.84
9 0.03 105.58 149.10 0.0001 0410 10.56 40004
10 0.11 117.27 165.70 0.0003 0410 10.54 44504
11 0.03 126.32 182.64 0.0001 0.410 10.54
Whole -0.07 128.77 18349 0.0002 0412 10.51
plant

Table 4 and Table 5 list all the inverter values for the

15-min and 1 hour ahead forecast windows using ANN. The

classification of the iverter groups 1s based on plant con-
figuration and areas occupied. The similar size for the plant
inverter guarantees a comparative view on which area has
the most potential 1 production predictions and which
inverter causes the most trouble 1n power forecast. Table 6
turther illustrates eflects of the hierarchical approach during
predicting power plant production from the micro level to a
macro analysis. In terms of MBE, the unstable errors imply
similar chances to overly predict or inadequately predict the
power output regardless of the power production levels. The
evaluations based on absolute changes, such as MAE, MP.

(L]
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and RMSE, represent the evolving process when the power
production level increases as the max energy shown as well.
The gradually improved forecasts are measured by rMBE
and rTRMSE. By comparing the total summation from 11
inverter predictions and the forecast using the historical
power production from whole plant, we can conclude that
the hierarchical approach performs better 1n terms of MBE,
MAE, RMSE, rMBE, and rRMSE, which 1s shown in FIGS.
5A and 5B. The evolving process of the hierarchical
approach shows the potential to have multiple levels of
forecasts of the PV system that can be used for various
purposes, such as optimizations of the production schedules

in the mverter level and micro controls for multiple solar
modules 1n a large PV system. FIGS. 5A and 3B show a

hierarchical approach in terms of evolving errors. In FIG.
S5A, the rMBE method 1s used, and 1n FIG. 5B, the rRMSFE
method 1s used.

Two models, ANN and SVR, are compared for the 15-min
ahead, hour ahead, and 24-hour ahead forecasting of the
averaged power output of a 6 MW photovoltaic power plant.
In some embodiments, no exogenous data such as solar
irradiance was used in the forecasting models. A hierarchical
approach using micro level power plant information, such as
from inverters, 1s further assessed. From the analysis of the
error between ground truth and predicted values, 1t can be
concluded that hierarchical technique outperforms tradi-
tional models using power production information from the
micro level of a plant system. In addition, the difference 1s
shown between one step ahead forecast, namely 15-min and
hour ahead, and 24-hour ahead {forecast using both
approaches. The analysis of the evolving errors, calculated
by the summation of the different inverter number, shows the
potential of the hierarchical approach to determine which
smaller PV generation units have the most impact on PV
power plant forecasting. A subset of the PV power inverters
can be determined based on the evolving errors by selecting
the PV power mverters that are predicted to have the greatest
impact on PV power plant forecasting.

Before turning to the process flow diagrams of FIG. 6, 1t
1s noted that embodiments described herein may be prac-
ticed using an alternative order of the steps illustrated in
FIG. 6. That 1s, the process flows illustrated in FIG. 6 are
provided as examples only, and the embodiments may be
practiced using process flows that differ from those illus-
trated. Additionally, it 1s noted that not all steps are required
in every embodiment. In other words, one or more of the
steps may be omitted or replaced, without departing from the
spirit and scope of the embodiments. Further, steps may be
performed in different orders, in parallel with one another, or
omitted entirely, and/or certain additional steps may be
performed without departing from the scope and spirit of the
embodiments.

At box 603, data 1s collected on average power produc-
tions from inverters 1n a PV system. At box 606, neural
networks are generated using the data collected from the PV
system. At box 609, the neural networks are used to predict
output for each of the inventers using input information. At
box 612, the total power for a PV system 1s predicted by
summing up the predicted output from each of the inverters.

Turning to FIG. 7, an example hardware diagram of a
general purpose computer 700 1s illustrated. Any of the
methods of systems discussed herein, 1n part, can be imple-
mented using one or more elements of the general purpose
computer 700. The computer 700 includes a processor 710,
a Random Access Memory (“RAM”) 720, a Read Only
Memory (“ROM™) 730, a memory device 740, a network
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interface 750, and an Input Output (“I/O”’) interface 760. The
clements of the computer 700 are commumnicatively coupled

via a bus 702.

The processor 710 comprises any well-known general
purpose arithmetic processor or Application Specific Inte-
grated Circuit (“ASIC”). The RAM and ROM 720 and 730

comprise any well-known random access or read only
memory device that stores computer-readable 1nstructions to
be executed by the processor 710. The memory device 730
stores computer-readable instructions thereon that, when
executed by the processor 710, direct the processor 710 to
execute various aspects of the present mvention described

herein. When the processor 710 comprises an ASIC, the

processes described herein may be executed by the ASIC

according to an embedded circuitry design of the ASIC, by
firmware of the ASIC, or both an embedded circuitry design
and firmware of the ASIC. As a non-limiting example group,
the memory device 730 comprises one or more ol an optical
disc, a magnetic disc, a semiconductor memory (1.e., a
semiconductor, floating gate, or similar {flash based
memory), a magnetic tape memory, a removable memory,
combinations thereof, or any other known memory means
for storing computer-readable instructions. The network
interface 750 comprises hardware interfaces to communi-
cate over data networks. The I/O interface 760 comprises
device mput and output interfaces such as keyboard, point-
ing device, display, communication, and other interfaces.
The bus 702 electrically and communicatively couples the
processor 710, the RAM 720, the ROM 730, the memory
device 740, the network 1ntertface 750, and the I/O interface
760, so that data and instructions may be communicated
among them.

In operation, the processor 710 1s configured to retrieve
computer-readable instructions stored on the memory device
740, the RAM 720, the ROM 730, or another storage means,
and copy the computer-readable instructions to the RAM
720 or the ROM 730 for execution, for example. The
processor 710 1s further configured to execute the computer-
readable 1nstructions to implement various aspects and fea-
tures of the present invention. For example, the processor
710 may be adapted and configured to execute the processes
described above with reference to FIG. 6, including the
processes described as being performed by the modules of
the hierarchical solar power prediction techniques discussed.

A phrase, such as “at least one of X, Y, or Z,” unless
specifically stated otherwise, 1s to be understood with the
context as used 1n general to present that an item, term, etc.,
can be either X, Y, or Z, or any combination thereof (e.g., X,
Y, and/or 7). Similarly, “at least one of X, Y, and Z,” unless
specifically stated otherwise, 1s to be understood to present
that an item, term, etc., can be either X, Y, and 7, or any
combination thereof (e.g., X, Y, and/or Z). Thus, as used
herein, such phrases are not generally mtended to, and
should not, imply that certain embodiments require at least
one of either X, Y, or Z to be present, but not, for example,
one X and one Y. Further, such phrases should not imply that
certain embodiments require each of at least one of X, at
least one of Y, and at least one of Z to be present.

Although embodiments have been described herein 1n
detail, the descriptions are by way of example. The features
of the embodiments described herein are representative and,
in alternative embodiments, certain features and elements
may be added or omitted. Additionally, modifications to
aspects of the embodiments described herein may be made
by those skilled in the art without departing from the spirit
and scope of the present invention defined 1n the following
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claims, the scope of which are to be accorded the broadest
interpretation so as to encompass modifications and equiva-
lent structures.

Therefore, at least the following 1s claimed:

1. A method comprising;

collecting a plurality of respective average power produc-

tions over a period of time from individual ones of a
plurality of photovoltaic power inverters ol a photo-
voltaic system;
generating a plurality of neural networks based at least in
part on the plurality of respective average power pro-
ductions over the period of time for the individual ones
of the plurality of photovoltaic power inverters, the
plurality of neural networks individually corresponding
to the plurality of photovoltaic power iverters; and

predicting a total solar power generation forecast for the
photovoltaic system based at least in part on the plu-
rality of neural networks.

2. The method of claim 1, wherein each of the plurality of
neural networks comprises at least one hidden layer.

3. The method of claim 1, wherein the plurality of neural
networks are generated based at least 1n part on a machine
learning algorithm.

4. The method of claim 1, further comprising determining,
at least one 1mput parameter, wherein the total solar power
generation forecast for the photovoltaic system 1s further
based at least in part on the at least one 1mput parameter.

5. The method of claim 4, wherein the at least one input
parameter comprises at least one of: a time and a meteoro-
logical forecast.

6. The method of claim 4, further comprising predicting,
for each of the plurality of photovoltaic power nverters, a
respective inverter solar power generation forecast using the
at least one 1nput parameter, wherein predicting the total
solar power generation forecast for the photovoltaic system
comprises summing the respective inverter solar power
generation forecast for each of the plurality of photovoltaic
power 1nverters.

7. The method of claam 1, wheremn the plurality of
respective average power productions individually corre-
spond to a respective 15 minute average ol power produc-
tion.

8. The method of claim 1, wherein a respective hourly
ahead forecast for each of the plurality of respective average
power productions corresponds to a respective hourly aver-
age ol power production.

9. The method of claim 1, wherein a respective 24 hour
ahead forecast for each of the plurality of respective average
power productions corresponds to a respective hourly aver-
age ol power production.

10. The method of claim 1, further comprising determin-
ing a subset of the plurality of photovoltaic power inverters
by an analysis of evolving errors, the subset corresponding,
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to ones of the plurality of photovoltaic power mnverters with
an 1mpact on PV power plant forecasting.

11. A photovoltaic system, comprising:

a plurality of photovoltaic power inverters;

a plurality of sensing devices individually coupled to ones

of the plurality of photovoltaic power nverters; and

at least one computing device configured to at least:

collect a plurality of respective average power produc-
tions over a period of time from individual ones of
the plurality of photovoltaic power inverters;

generate a plurality of neural networks based at least 1n
part on the plurality of respective average power
productions over the period of time, the plurality of
neural networks individually corresponding to the
plurality of photovoltaic power inverters;

predict, for each of the plurality of photovoltaic power
inverters, a respective mverter solar power genera-
tion forecast based at least 1n part on the plurality of
respective average power productions over the
period of time; and

predict a total solar power generation forecast for a
photovoltaic system based at least in part on the
respective 1nverter solar power generation forecast.

12. The photovoltaic system of claim 11, wherein each of
the plurality of neural networks comprises at least one
hidden layer.

13. The photovoltaic system of claim 11, wherein the
plurality of neural networks are generated based at least in
part on a machine learning algorithm.

14. The photovoltaic system of claim 11, wherein the at
least one computing device 1s further configured to at least
determine at least one 1mput parameter, wherein the respec-
tive mverter solar power generation forecast for each of the
plurality of photovoltaic power inverters 1s based at least in
part on the at least one mput parameter.

15. The photovoltaic system of claim 14, wherein the at
least one 1nput parameter comprises at least one of a time or
a meteorological forecast.

16. The photovoltaic system of claim 11, wherein the total
solar power generation forecast 1s predicted by summing the
respective inverter solar power generation forecast for each
of the plurality of photovoltaic power 1inverters.

17. The photovoltaic system of claim 11, wherein an
hourly ahead forecasting of respective average power pro-
ductions corresponds to an hourly average of power pro-
duction.

18. The photovoltaic system of claim 11, wheremn a 24
hour ahead forecasting of respective average power produc-
tions corresponds to an hourly average of power production.

19. The photovoltaic system of claim 11, wherein the
period of time 1s greater than or equal to at least one of: a
week, a month, and a vear.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

