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1
VEHICLE NEURAL NETWORK

BACKGROUND

Vehicles can be equipped with computing devices, net-
works, sensors, and controllers to acquire and/or process
data regarding the vehicle’s environment and to operate the
vehicle based on the data. Vehicle sensors can provide data
concerning routes to be traveled and objects to be avoided 1n
the vehicle’s environment. Operation of the vehicle can rely
upon acquiring accurate and timely data regarding objects in
a vehicle’s environment while the vehicle 1s being operated
on a roadway.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an example vehicle.

FIG. 2 1s a diagram of an example twin varnational
autoencoder neural network.

FIG. 3 1s a diagram of an example twin varational
autoencoder neural network configured for training based on
cycle consistency.

FIG. 4 1s a diagram of another example twin vanational
autoencoder neural network configured for training based on
cycle consistency.

FIG. 5 1s a diagram of an example varnational autoencoder
neural network configured to produce segmentation maps
and depth maps.

FIG. 6 1s a diagram of an example real image and
corresponding segmentation map.

FIG. 7 1s a diagram of an example real image and
corresponding depth map.

FIG. 8 1s a flowchart diagram of an example process to
train and operate a neural network to produce a segmenta-
tion map and a depth map.

DETAILED DESCRIPTION

A computing device 1n a traflic infrastructure system can
be programmed to acquire data regarding the external envi-
ronment of a vehicle and to use the data to determine a
vehicle path upon which to operate a vehicle 1n an autono-
mous or semi-autonomous mode. A vehicle can operate on
a roadway based on a vehicle path by determining com-
mands to direct the vehicle’s powertrain, braking, and
steering components to operate the vehicle to travel along
the path. The data regarding the external environment can
include the location of one or more objects such as vehicles
and pedestrians, etc., 1n an environment around a vehicle and
can be used by a computing device 1n the vehicle to operate
the vehicle.

A computing device 1n a vehicle can be programmed to
detect objects and regions based on 1mage data acquired by
a sensor included in the vehicle. The computing device can
include a neural network tramned to detect objects and
regions 1n 1mage data. Detecting objects and regions in the
context of this document means determining labels, loca-
tions, and sizes of objects and regions 1n 1image data. Object
and region labels typically include a substantially unique
identifier for an object or region such as a text string that
identifies the object or region, where an object or a region 1s
a physical item that occupies three dimensions, e.g., a
roadway, a vehicle, a pedestrian, a building or foliage, eftc.
Locating an object or region 1 an 1mage can include
determining the pixel locations 1n an 1mage that include the
object. A neural network 1s typically implemented as a
computer software program that can be trained to detect
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objects and regions 1n 1mage data using training datasets that
include 1images with examples of objects and regions and
corresponding ground truth that identifies the objects and
regions. Ground truth 1s data regarding the object that 1s
obtained from a source independent from the neural net-
work. Ground truth data 1s data determined or deemed to

correspond to, 1.€., represent, actual real world conditions or
states. For example, ground truth regarding the objects can
be obtained by having human observers view the images and
determine object labels, locations and sizes.

A techmique for detecting objects and regions in image
data 1s to train a neural network to generate a segmentation
map. A segmentation map 1s an 1image in which objects 1n an
input 1mage are 1dentified by determining a label, which can
be a number, a location and a size of corresponding to
objects 1n an 1mage. Labeled objects can include roadways,
vehicles, pedestrians, buildings and foliage, for example.
The location and size of the objects can be indicated 1n the
image by replacing the pixels corresponding to the object
with a solid color. For example, objects 1n an input image
corresponding to roadways can be assigned a first number
and replaced with the color green, regions of the input image
corresponding to vehicles can be assigned a second number
and replaced with the color red, regions of the image
corresponding to foliage can be assigned a third number and
replaced with the color yvellow, and so forth. An instance
segmentation map 1s a segmentation map where multiple
instances of a single type of region, such as vehicle, are each
assigned a diflerent number and color. A neural network can
be trained to determine a segmentation map from an input
monocular color (RGB) image by training the neural net-
work with a large number (typically >1000) of traiming
images with corresponding ground truth. A monocular
image 1s an 1mage acquired by a single camera, as opposed
to a stereo i1mage which includes two or more i1mages
acquired by two or more cameras. The neural network can
also be tramned to process images acquired from sensors
including monochrome cameras, inifrared cameras or cam-
eras that acquire a combination of color and infrared data. In
this example ground truth includes segmented images
obtained from a source independent from the neural net-
work. For example, 1images 1n a training dataset can be
segmented by human observers using i1mage processing
soltware to assign values to regions in the traiming images.

A depth map 1s an 1mage 1n which pixels of the image are
assigned values according to the distance or range from the
sensor that acquired the image to the point in real world
three-dimensional (3D) space that corresponds to the image
pixel. A neural network can be trained to determine a depth
map from a monocular RGB 1mage by training the neural
network with a large number (typically >1000) of traiming
images and corresponding ground truth. In this example
ground truth includes depth maps obtained from a source
independent from the neural network, for example a lidar
sensor or a stereo video camera. Lidar sensors output
distance or range data that can be processed to match the
range data from the lidar sensor with the field of view of a
color video sensor. Likewise, image data from a stereo video
camera, which i1ncludes two or more cameras mounted to
provide a fixed baseline or distance between the cameras,
can be processed to provide distance or range data that
corresponds to a color video camera field of view. Ground
truth depth maps obtained 1n this fashion can be paired with
corresponding monocular RGB 1mages and used to train a
neural network to produce depth maps from monocular RGB
1mages.
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A neural network can be trained by presenting the neural
network with a large number (typically >1000) of training
images that include objects along with corresponding
ground truth. During training the neural network processes
an 1put image and the result, referred to herein as an output
state, 1s compared to the ground truth. The neural network
can process the mput image a plurality of times, varying
processing parameters each time the image 1s processed. The
output state of the neural network 1s compared to the ground
truth to determine a set of processing parameters that
achieves the correct output state when presented with an
input image. Acquiring a traiming dataset and ground truth
suitable for training a neural network can be expensive, time
consuming and unreliable due to the human judgement
involved, and 1s ineflicient and challenging in terms of
consumption of computing resources.

Techniques discussed herein improve the tramning and
operation ol a neural network by generating simulated
images that correspond to scenes included 1n real 1images
acquired using a real 1image sensor viewing a real world
scene. Because the simulated images are generated by
photorealistic 1mage rendering soitware, the identity and
location of objects and regions 1n 3D space, segmentation
data, and 3D distances to points in the 1image are known. A
neural network can be configured as discussed herein to
permit the neural network to be trained using simulated
images and the training transiferred to real images. In this
tashion the neural network can be trained to operate on real
images without the expense, time and computing resources
required to determine ground truth data for real 1images in a
training dataset. Techniques discussed herein can be used to
train a neural network to produce output that can be used to
operate a vehicle, a stationary robot, a mobile robot, a drone
or a surveillance system, for example.

Disclosed herein 1s a method, including receiving a mon-
ocular image and provide the 1mage to a varniational auto-
encoder neural network (VAE), wherein the VAE has been
trained 1n a twin configuration that includes a first encoder-
decoder pair that recerves as input unlabeled real 1images and
outputs reconstructed real 1images, and a second encoder-
decoder pair that receives as mput synthetic images and
outputs reconstructed synthetic images and wherein the VAE
includes third and fourth decoders that are trained using
labeled synthetic images, segmentation ground truth and
depth ground truth and outputting from the VAE a segmen-
tation map and a depth map based on mputting the mon-
ocular 1mage. Training the VAE 1n a twin configuration can
include a third decoder outputting the segmentation map and
a fourth decoder outputting the depth map. The segmenta-
tion ground truth can include labels for a plurality of objects
in the labeled synthetic 1mages, and the depth ground truth
includes distances from a sensor to a plurality of locations 1n
the labeled synthetic images. The segmentation map can
include labeled objects including roadways, buildings, foli-
age, vehicles and pedestrians. The depth map can include
distances from a sensor to a plurality of locations. The real
image can be acquired by a real world sensor viewing a real
world scene.

The synthetic 1mages can be generated by photorealistic
image rendering soltware based on data input to the photo-
realistic image rendering soitware that describes a scene to
be rendered by the photorealistic image rendering software.
The segmentation ground truth and depth ground truth can
be generated based on a scene description input to the
photorealistic 1mage rendering soitware that describes the
scene to be rendered by the photorealistic 1mage rendering
software. The VAE can include first and second encoders for
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the unlabeled real images and the labeled synthetic images,
and further wherein the first and second encoders each
include layers that share weights with the other of the first
or second encoder, a shared latent space, and respective first
and second decoders for the unlabeled real images and
labeled synthetic images. The VAE can be further trained the
VAE based on determining cycle consistency between the
first encoder-decoder and the second encoder-decoder.
Training the VAE can be based on determining cycle con-
sistency 1includes comparing an mput real image and a
reconstructed real image by determining Kullback-Leibler
divergence loss and maximum mean discrepancy loss. Oper-
ating a device can be based on the segmentation map and the
depth map. The device can be one of a vehicle, a mobile
robot, a stationary robot, a drone, and a surveillance system.
The vehicle can be operated by controlling one or more of
vehicle propulsion, vehicle brakes, and vehicle steering
based on determining a vehicle path based on the segmen-
tation map and the depth map.

Disclosed 1s a computer readable medium, storing pro-
gram 1nstructions for executing some or all of the above
method steps. Further disclosed 1s a computer programmed
for executing some or all of the above method steps,
including a computer apparatus, programmed to receive a
monocular 1image and provide the image to a variational
autoencoder neural network (VAE), wherein the VAE has
been trained 1n a twin configuration that includes a first
encoder-decoder pair that receives as input unlabeled real
images and outputs reconstructed real images, and a second
encoder-decoder pair that receives as mput synthetic images
and outputs reconstructed synthetic images and wherein the
VAE includes third and fourth decoders that are trained
using labeled synthetic 1images, segmentation ground truth
and depth ground truth and output from the VAE a segmen-
tation map and a depth map based on mputting the mon-
ocular image. Training the VAE 1n a twin configuration can
include a third decoder outputting the segmentation map and
a fourth decoder outputting the depth map. The segmenta-
tion ground truth can include labels for a plurality of objects
in the labeled synthetic 1mages, and the depth ground truth
includes distances from a sensor to a plurality of locations 1n
the labeled synthetic 1images. The segmentation map can
include labeled objects including roadways, buildings, foli-
age, vehicles and pedestrians. The depth map can include
distances from a sensor to a plurality of locations. The real
image can be acquired by a real world sensor viewing a real
world scene.

The computer can be further programmed to generate
synthetic images by photorealistic image rendering software
based on data mput to the photorealistic 1mage rendering
software that describes a scene to be rendered by the
photorealistic 1mage rendering software. The segmentation
ground truth and depth ground truth can be generated based
on a scene description input to the photorealistic 1image
rendering software that describes the scene to be rendered by
the photorealistic 1image rendering software. The VAE can
include first and second encoders for the unlabeled real
images and the labeled synthetic images, and further
wherein the first and second encoders each include layers
that share weights with the other of the first or second
encoder, a shared latent space, and respective first and
second decoders for the unlabeled real 1images and labeled
synthetic 1mages. The VAE can be further trained the VAE
based on determining cycle consistency between the first
encoder-decoder and the second encoder-decoder. Training
the VAE can be based on determining cycle consistency
includes comparing an input real image and a reconstructed
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real image by determining Kullback-Leibler divergence loss
and maximum mean discrepancy loss. Operating a device
can be based on the segmentation map and the depth map.
The device can be one of a vehicle, a mobile robot, a
stationary robot, a drone, and a surveillance system. The
vehicle can be operated by controlling one or more of
vehicle propulsion, vehicle brakes, and vehicle steering
based on determiming a vehicle path based on the segmen-
tation map and the depth map.

FIG. 1 1s a diagram of a vehicle 110 operable in autono-
mous (“autonomous” by itsell 1 this disclosure means
“fully autonomous”), semi-autonomous, and occupant
piloted (also referred to as non-autonomous) mode. By a
semi- or fully-autonomous mode, we mean a mode of
operation wherein a vehicle can be piloted partly or entirely
by a computing device as part of a system having sensors
and controllers. The vehicle can be occupied or unoccupied,
but 1n either case the vehicle can be partly or completely
piloted without assistance of an occupant. For purposes of
this disclosure, an autonomous mode 1s defined as one i1n
which each of vehicle propulsion (e.g., via a powertrain
including an internal combustion engine and/or electric
motor), braking, and steering are controlled by one or more
vehicle computers; 1n a semi-autonomous mode the vehicle
computer(s) control(s) one or more of vehicle propulsion,
braking, and steering. In a non-autonomous mode, none of
these are controlled by a computer. Thus, one or more
vehicle 110 computing devices 113 can receive data regard-
ing the operation of the vehicle 110 from sensors 116. The
computing device 115 may operate the vehicle 110 1n an
autonomous mode, a semi-autonomous mode, or a non-
autonomous mode.

The computing device (or computer) 115 includes a
processor and a memory such as are known. Further, the
memory includes one or more forms of computer-readable
media, and stores instructions executable by the processor
for performing various operations, including as disclosed
herein. For example, the computing device 115 may include
programming to operate one or more ol vehicle brakes,
propulsion (e.g., control of acceleration 1n the vehicle 110 by
controlling one or more of an 1nternal combustion engine,
clectric motor, hybrid engine, etc.), steering, climate control,
interior and/or exterior lights, etc., as well as to determine
whether and when the computing device 115, as opposed to
a human operator, 1s to control such operations.

The computing device 115 may include or be communi-
catively coupled to, e.g., via a vehicle communications bus
as described further below, more than one computing
devices, e.g., controllers or the like included 1n the vehicle
110 for monitoring and/or controlling various vehicle com-
ponents, e.g., a powertrain controller 112, a brake controller
113, a steering controller 114, etc. The computing device 115
1s generally arranged for communications on a vehicle
communication network, e.g., including a bus 1n the vehicle
110 such as a controller area network (CAN) or the like; the
vehicle 110 network can additionally or alternatively include
wired or wireless communication mechanisms such as are
known, e.g., Ethernet or other communication protocols.

Via the vehicle network, the computing device 115 may
transmit messages to various devices in the vehicle and/or
receive messages from the various devices, e.g., controllers,
actuators, sensors, etc., mncluding sensors 116. Alternatively,
or additionally, 1n cases where the computing device 1135
actually comprises multiple devices, the vehicle communi-
cation network may be used for communications between
devices represented as the computing device 115 1n this
disclosure. Further, as mentioned below, various controllers
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6

or sensing elements such as sensors 116 may provide data to
the computing device 115 via the vehicle communication
network.

In addition, the computing device 115 may be configured
for communicating through a vehicle-to-infrastructure
(V-to-I) interface 111 with a remote server computer, €.g., a
cloud server, via a network, which, as described below,
includes hardware, firmware, and software that permits
computing device 115 to communicate with a remote server
computer via a network such as wireless Internet (WI-FI®)
or cellular networks. V-to-I interface 111 may accordingly
include processors, memory, transceivers, etc., configured to
utilize various wired and/or wireless networking technolo-
gies, e.g., cellular, BLUETOOTH® and wired and/or wire-
less packet networks. Computing device 115 may be con-
figured for communicating with other vehicles 110 through
V-to-1I interface 111 using vehicle-to-vehicle (V-to-V) net-
works, e.g., according to Dedicated Short Range Commu-
nications (DSRC) and/or the like, e.g., formed on an ad hoc
basis among nearby vehicles 110 or formed through inira-
structure-based networks. The computing device 115 also
includes nonvolatile memory such as 1s known. Computing
device 115 can log data by storing the data in nonvolatile
memory for later retrieval and transmaittal via the vehicle
communication network and a vehicle to infrastructure
(V-to-I) iterface 111 to a server computer or user mobile
device.

As already mentioned, generally included in instructions
stored 1n the memory and executable by the processor of the
computing device 115 1s programming for operating one or
more vehicle 110 components, €.g., braking, steering, pro-
pulsion, etc., without intervention of a human operator.
Using data received in the computing device 115, e.g., the
sensor data from the sensors 116, the server computer, etc.,
the computing device 115 may make various determinations
and/or control various vehicle 110 components and/or opera-
tions without a driver to operate the vehicle 110. For
example, the computing device 115 may include program-
ming to regulate vehicle 110 operational behaviors (1.e.,
physical manifestations of vehicle 110 operation) such as
speed, acceleration, deceleration, steering, etc., as well as
tactical behaviors (1.e., control of operational behaviors
typically 1n a manner intended to achieve sate and eflicient
traversal of a route) such as a distance between vehicles
and/or amount of time between vehicles, lane-change, mini-
mum gap between vehicles, left-turn-across-path minimum,
time-to-arrival at a particular location and intersection (with-
out signal) minimum time-to-arrival to cross the intersec-
tion.

The one or more controllers 112, 113, 114 for the vehicle
110 may 1include conventional electronic control units
(ECUs) or the like including, as non-limiting examples, one
or more powertrain controllers 112, one or more brake
controllers 113, and one or more steering controllers 114.
Each of the controllers 112, 113, 114 may include respective
processors and memories and one or more actuators. The
controllers 112, 113, 114 may be programmed and connected
to a vehicle 110 communications bus, such as a controller
area network (CAN) bus or local interconnect network
(LIN) bus, to recerve mstructions from the computing device
115 and control actuators based on the instructions.

Sensors 116 may include a variety of devices known to
provide data via the vehicle commumications bus. For
example, a radar fixed to a front bumper (not shown) of the
vehicle 110 may provide a distance from the vehicle 110 to
a next vehicle i front of the vehicle 110, or a global
positioning system (GPS) sensor disposed in the vehicle 110
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may provide geographical coordinates of the vehicle 110.
The distance(s) provided by the radar and/or other sensors
116 and/or the geographical coordinates provided by the
GPS sensor may be used by the computing device 115 to
operate the vehicle 110 autonomously or semi-autono-
mously, for example.

The vehicle 110 1s generally a land-based vehicle 110
capable of autonomous and/or semi-autonomous operation
and having three or more wheels, e.g., a passenger car, light
truck, etc. The vehicle 110 includes one or more sensors 116,
the V-to-I interface 111, the computing device 115 and one
or more controllers 112, 113, 114. The sensors 116 may
collect data related to the vehicle 110 and the environment
in which the vehicle 110 1s operating. By way of example,
and not limitation, sensors 116 may include, e.g., altimeters,
cameras, LIDAR, radar, ultrasonic sensors, infrared sensors,
pressure sensors, accelerometers, gyroscopes, temperature
sensors, pressure sensors, hall sensors, optical sensors, volt-
age sensors, current sensors, mechanical sensors such as
switches, etc. The sensors 116 may be used to sense the
environment in which the vehicle 110 i1s operating, e.g.,
sensors 116 can detect phenomena such as weather condi-
tions (precipitation, external ambient temperature, etc.), the
grade of a road, the location of aroad (e.g., using road edges,
lane markings, etc.), or locations of target objects such as
neighboring vehicles 110. The sensors 116 may further be
used to collect data including dynamic vehicle 110 data
related to operations of the vehicle 110 such as velocity, vaw
rate, steering angle, engine speed, brake pressure, o1l pres-
sure, the power level applied to controllers 112, 113, 114 1n
the vehicle 110, connectivity between components, and
accurate and timely performance of components of the
vehicle 110.

FIG. 2 1s a diagram of a twin vanational autoencoder
(VAE) 200. A twin VAE 200 includes two encoders (RGBR,
RGBS) 206, 208 and two decoders (RDEC, SDEC) 214, 216
joined by a shared latent space 214. A VAE 1s a type of
neural network that can learn to encode mput data, typically
to reduce the dimensions or size of the input data. VAEs
operate by encoding the mput data using encoding layers
(encoders 206, 208) 1into a latent space (shared latent space
214). A latent space includes data corresponding to encoded
input data. The encoded 1nput data typically retains essential
characteristics of the mput data while discarding noise or
non-essential elements of the data. VAEs also imclude decod-
ing layers (decoders 214, 316) that reconstruct the encoded
data in the latent space 1nto reconstructed real images 218
and reconstructed simulated images 220 that corresponds to
the input real images 202 and mput simulated images 204,
respectively. A VAE can be trained to encode and decode
data by comparing the output data to the input data. VAEs
are typically trained in an unsupervised fashion, where the
VAE attempts to encode and decode the input data a plurality
of times while varying the encoding and decoding param-
cters. The VAE can determine a loss function by comparing
the output to the mput, retaining the parameters that result in
output data that matches the mput data. Loss functions will
be discussed below.

In thus example, the real encoder 206 and simulated
encoder 208 input real images 202 and simulated images
204, respectively and map the mput real and simulated
images 202, 204 into latent variables included 1n a shared
latent space 214. A real image 202 1s an image acquired by
a real world sensor such as a video camera viewing a real
world scene. A simulated image 204 1s an 1image generated
by photorealistic image rendering soiftware such as Unreal
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torealistic image rendering soitware 1s a software program
that generates 1mages that appear to an observer as it they
were acquired with a real world camera viewing a real world
scene. Photorealistic image rendering software generates an
image based on a scene description file, which can be a text
file that can include mathematical descriptions of the 3D
shapes to be included 1n the rendered 1image. For example,
the scene description can describe the 3D shapes 1n terms of
intersections of rectangular solids, cylinders, etc. The scene
description also includes the color and texture of surfaces 1n
the scene. Rendering the scene includes projecting simulated
light sources onto the 3D shapes and determining how the
shapes would reflect the light onto a simulated camera
sensor. Photorealistic image rendering software can produce
images with sutlicient detail that they can almost appear as
if they were acquired with a real world camera to a human
observer. For example, photorealistic rendering software can
be used to create realistic-appearing images for video game
software.

By forcing the real encoder 206 and the stmulated encoder
208 to use a shared latent space 214, the twin VAE 200 can
use a single set of latent variables to describe both the
encoded real images 202 and simulated images 204. A latent
space 1s the set of variables output by an encoder 206, 208
in response to mput data, such as a real or simulated 1image
202, 204. A shared latent space 214 includes latent variables
which correspond to an encoded version of the mput real or
simulated 1image 202, 204 data, where the number of latent
variables 1s chosen to be smaller than the number of pixels
that are used to represent the real or simulated 1image 202,
204 data. For example, an input real or simulated image 202,
204 can include over three million pixels, while shared latent
space 212 can represent an mput real or simulated 1image
202, 204 with one thousand or fewer latent variables. Proof
that the shared latent space 212 correctly corresponds to the
input real of simulated images 202, 204 1s demonstrated by
correctly reconstructing the mput real or simulated image
202, 204 with real and simulated decoders 214, 216, respec-
tively, which process the latent variables and output recon-
structed real and simulated images 218, 220. Correctly
reconstructing the input images 202 1s verified by comparing
the mput real and simulated images 202, 204 with the
corresponding reconstructed real and simulated 1mages 218,
220, respectively.

Twin VAE 200 1s trained 1n two independent stages. In the
first stage, referred to as sim2real training, the twin VAE 200
1s trained to input simulated images 204 and output recon-
structed real images 218. In the second stage, referred to as
sim2depth and sim2seg, the twin VAE 200 1s trained to input
simulated 1mages 204 and output depth maps and segmen-
tation maps. In sim2real training the simulation encoder 208
and decoder 216 pair output reconstructed simulated images
220 while real encoder 206 and decoder 214 pair output
reconstructed real images 218. Real images 202 are com-
pared to reconstructed real 1mages 218 and simulated images
204 are compared to reconstructed simulated images 220 by
calculating a loss function based on a mean-square-error
(MSE) calculation. An MSE calculation determines the
mean or average squared diflerence per pixel between a real
image 202 and a reconstructed RGB 1image 218 and between
a simulated image 204 and a reconstructed RGB image 220.

During training, programming parameters that govern the
operation of the encoders 206, 208 and decoders 214, 216

are selected to minimize the MSE loss function.

Because latent variables are included in a shared latent
space 212, an 1mage of one type, for example a real image
202, can be encoded by real encoder 206 into latent variables
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in a shared latent space 212 and then decoded by simulated
image decoder 216 into a reconstructed simulated 1mage
220. Likewise, a simulated image 204 can be encoded into
latent variables 1n shared latent space 212 and decoded by
real decoder 214 into a reconstructed real image 218. This 1s
aided by sharing the final three layers of each real and
simulated encoder 206, 208, 1llustrated by the bi-directional
arrow 210. Sharing the final three layers means that param-
cters that govern the encoding are forced at training time to
be the same for each of the three final layers, respectively,
of encoders 206, 208. The real decoders 214 and simulated
decoder 216 decode the shared latent variables 1n the shared
latent space 212 into reconstructed real images 218 and
reconstructed simulated 1images 220. The twin VAE 200 1s
trained to encode and decode real and simulated 1mages 202,
204 nto reconstructed real and simulated images 218, 220
by varying the parameters that control encoding and decod-
ing the 1mages and comparing the reconstructed real and
simulated 1images 218, 220 to the mput real and simulated
images 202, 204, respectively. By restricting the number of
latent variables used to represent the encoded 1mages in the
shared latent space 212, a compact encoding that encodes
both real and simulated 1mages 202, 204 can be achieved.

Once the twin VAE 200 has been trained on both real and
simulated 1mages 202, 204, the decoders 214, 216 can be
disconnected from the shared latent space 214 and a seg-
mentation decoder (SGDEC) 222 and a depth decoder
(DDEC) 224 can be connected to shared latent space 214
and trained using labeled simulated data 204 that includes
ground truth based on the scene description data that was
used to render the simulated data 204. Segmentation decoder
222 1s discussed 1n relation to FIG. 5 and depth decoder 1s
discussed 1n relation to FIG. 6.

The encoder 206, 208 layers and decoder 214, 216 layers
are configured as packing and unpacking layers to improve
generation of latent variables to include in shared latent
space 212. Typically, real and simulated 1mage encoders
206, 208 and real and simulated decoders 214, 216 are
configured to increase and decrease convolutional stride and
pool and un-pool data, respectively. Convolutional stride 1s
an encoding techmque for reducing resolution and thereby
performing data reduction on mput data by skipping over
pixels i both x and y dimensions. For example, convolu-
tions can be performed on every second column or row of
pixels 1 an 1mage. Convolutional stride 1s coupled with
pooling, where a neighborhood of pixels 1s treated as a
single pixel for output to the next level. A typical operation
1s max pooling, where the maximum value 1ncluded 1n a
neighborhood of pixels 1s used to represent the entire
neighborhood for output, thereby reducing a 2x2 neighbor-
hood of pixels to a single pixel, for example. The process can
be reversed for decoding, where the output of a convolu-
tional layer can be replicated to increase resolution, for
example. Following pixel replication, the output can be
filtered with a smoothing filter, for example, to reverse the
max pooling operation and at least partially restore the
original data.

Packing and unpacking can improve generation of latent
variables and restoration of mput data from the latent
variables by replacing convolutional stride and pooling by
performing 3D convolutions which reduce spatial resolution
while increasing depth resolution, thereby preserving input
data. Packing layers first perform a space to depth transior-
mation that encodes spatial data into bit depth data. Packing,
then performs 3D convolutions that reduce spatial resolution
while maintaining bit depth data. Packing then performs
reshaping operations that further encodes the bit depth data
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followed by 2D convolutions to filter the output latent
variables. Decoding layers reverse this sequence to restore
the latent variables to full resolution. Packing and unpacking
1s described 1n “3D Packing for Seli-Supervised Monocular
Depth Estimation™ Vitor Guizilini, Rares Ambrus, Sudeep
Pillai, Allan Raventos, and Adrien Gaidon, Toyota Research

Institute, arXiv.org, 1905.02693v4, 28 Mar. 2020.

FIG. 3 1s a diagram of a twin VAE 300 configured to
determine cycle consistency. The twin VAE 300 includes a
first configuration 302 and a second configuration 304. First
configuration 302 mputs a real image 202 and outputs a
reconstructed simulated 1mage 220. The twin VAE 300 1s
then configured into a second configuration 304 where the
simulated output RGB 1mage 220 output from the first
configuration 302 1s mnput to the sitmulated encoder 208 to be
decoded by real decoder 214 into a reconstructed real image
218. Cycle consistency 1s a technique for training a twin
VAE 300 to produce reconstructed real image 218 from a
simulated 1image 320 based on unpaired data. Paired data 1s
image data where a simulated 1mage 204 1s generated to
match each real image 202, 1.e. where the simulated scene
matches the objects, their appearance, and their arrangement
in a real image. Producing paired training data requires users
to analyze real image 202 data, estimate a scene description
required to produce a simulated copy of each real image 202
by determiming a scene description file that includes all of
the objects 1n the real image 202, at the same locations as the
objects 1n the real image 202. Real world locations of objects
occurring 1n real image 202 can be determined by photo-
grammetry. Photogrammetry 1s a technique for determining
real world sizes and locations of objects using data regarding
real world camera locations and orientation. For example, a
roadway can be assumed to define a plane upon which
objects such as vehicles are positioned. Data regarding
camera position and orientation with respect to a roadway
and camera lens magnification can be used to convert pixel
locations 1n an 1mage to real world locations.

The scene description file must contain instructions to
render simulated 1image 204 1n such a fashion as to produce
a realistic copy of the real image 202, including the appear-
ance and location of each object occurring 1n the real 1mage
202. Photorealistic rendering software inputs a scene
description file including real world locations of objects and
renders a 2D 1mage by simulating a camera and lens and
tracing light rays reflected or emitted from the objects
through the simulated lens onto a simulated image plane in
a simulated camera. Producing paired image data 1s expen-
s1ve, time consuming and requires extensive human work to
determine the scene description files that include real world
3D locations of each object in the real world 1mage. It 1s
theoretically possible to automate this task, however pro-
ducing and executing the software required to analyze the
real 1images 202 and produce the paired simulated 1mages
would require extensive human programming effort and
extensive computer resources. Unpaired data 1s 1image data
where real images 202 and simulated images 204 do not
match, 1.e. where the scene description files used to generate
the simulated 1images 204 are not generated from real 1images
202. Producing a training dataset including unpaired simu-
lated 1images 204 requires a fraction of the human effort and
computer resources required to produce paired image data.
Tramning a twin VAE 300 using cycle consistency as
described herein permits training the twin VAE 300 using
unpaired data, which reduces the time, expense, human
labor and computing resources required to produce a train-
ing dataset.
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Twin VAE 200 1s first trained as discussed 1n relation to
FIG. 2 to train the real encoder 206 and real decoder 214 to
iput real images 202 and output reconstructed real 1images
218. The twin VAE 200 i1s also trained as discussed in
relation to FIG. 2 to train the simulated encoder 208 and
simulated decoder 216 to input simulated 1mages 204 and

output reconstructed simulated images 220. Following this
training, the twin VAE 200 1s configured to form twin VAE
300, first and second configurations 302, 304. The twin VAE

300 first configuration 302 encodes the real images 202
using the real encoder 206 to form latent variables in the
shared latent space 212. Because the shared latent space 212
1S shared between real and simulated datasets, the latent
variables 1n the shared latent space 212 can be output to
simulated decoder 216 to produce reconstructed simulated
images 220 based on real image 202 input. The recon-
structed simulated 1images 220 are then iput to the twin
VAE 300 second configuration 304 and encoded using
simulated encoder 208 to produce latent variables i shared
latent space 212. Because the latent variables are included 1n
shared latent space 212, the latent variables can be output to
real decoder 214 to be decoded into reconstructed real
images 218.

Cycle consistency works by comparing the input real
images 202 to the reconstructed real images 218 to deter-
mine consistency between real encoding and decoding and
simulated encoding and decoding. To provide more accurate
comparisons between the input and output and compensate

for the differences 1n 1mage encoding and decoding between
real and simulated 1mages, Kullback-Liebler (KL.) diver-
gence and maximum mean discrepancy loss (MMD) are
calculated instead of MSE. Because encoding and decoding
the 1mages using real and simulated decoders and encoders
can introduce visual artifacts into the images being com-
pared, a simple MSE loss function cannot be successfully
used to minimize the loss function. For example, the overall
intensity or brightness of the image might be changed by
encoding and decoding an input 1mage twice as required to
determine cycle consistency. While the overall brightness
does not impact segmentation or depth processing by a
neural network, 1t will affect MSE calculations. KL diver-
gence and MMD loss are measures based on probability
distributions of pixel values rather than absolute measures
like MSE and are therefore less subject to artifacts intro-
duced by repeated encoding and decoding.

KL divergence measures the difference between mulifi-
variate probability distributions and does not depend upon
the distributions having the same mean. For example, prob-
ability distributions of pixel values can be compared
between mput real 1mages 202 and output reconstructed real
images 218 following repeated encoding and decoding.
Training the twin VAE 300 can be based on minimizing a
loss function based on the differences between the distribu-
tions rather than per-pixel differences. KL divergence D, 1s
based on the expectation of the logarithmic difference
between two probability distributions and P and QQ described
by the equation:

(1)

P(x) ]

Dir(PIQ) = ZP(x)lug( o0

xe X

Twin VAE 300 first and second configurations 302, 304
can also be trained to maximize cycle consistency by
minimizing a loss function based on MMD loss. MMD loss
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1s calculated by determining the square of the mean distance
M, between two distributions P, @ according to the equa-
tion:

M(F @)=l —all, =Ep [k )] Era [k(x )]+

g [k(y,)] (2)

Where Up and g are the means of the distributions, Ep,
Ey , and Epy are the expectations for the distributions P,
Q@ and the joint expectation, respectively, and k 1s a kernel
function, 1n this example a Gaussian kernel. The square
mean distance M, 1s zero if and only if F=Q . Calculating
the MMD based on equation (2) can yield a loss function
that measures the distance between distributions of pixel
values assuming that the pixel values follow a (Gaussian
distribution. Calculating a loss function based on the MMD
can determine whether 1mages are similar despite being
based on different objects 1n different configurations, and
can therefore be used to compare mput real and simulated
images 202, 204 to reconstructed real and simulated 1images
218, 220 following repeated encoding and decoding as
performed by twin VAE 300 first and second configurations
302, 304 as described below 1n relation to FIGS. 4 and 5.

FIG. 4 1s a diagram of a twin VAE 200 1n first and second
configurations 402, 404 that mirror first and second con-
figurations 302, 304 from FIG. 3. In similar fashion as
described above 1n relation to FIG. 4, twin VAE 200, first
and second configurations 402, 404 can be trained to imnput
real images 204 and output reconstructed simulated 1mages
220 using cycle consistency. In twin VAE 200, the first
configuration 402 inputs a simulated 1mage 204, encodes 1s
using the simulated encoder 208 and produces latent vari-
ables included in the shared latent space 212. The latent
variables are then output to the real image decoder 214 to be
encoded 1to reconstructed real images 218. The recon-
structed real images 218 are mnput to twin VAE 200 second
configuration 404 to be encoded using real encoder 206 to
form latent vanables included in the shared latent space 212.
The latent variables are then output to simulated decoder
216 to be output as reconstructed simulated images 220. The
reconstructed simulated 1images 220 are compared to the
input simulated 1mages 204 using KL divergence and MMD
loss to train the twin VAE as described above 1n relation to

FIG. 3. Training the twin VAE 200 as described 1n relation
to FIGS. 3 and 4 permits the twin VAE 200 to mnput either
real images 202 or simulated images 204 and produce either
reconstructed real images 218 or reconstructed simulated
images 220.

Once this tramning has been accomplished, the twin VAE
200 can be configured as described 1n relation to FIG. 5 to
train the twin VAE 200 using simulated images 204 that
include ground truth data to produce segmentation maps and
depth maps. Because the twin VAE 200 has also been trained
to using both real and simulated i1mages 202, 204 as
described 1n relation to FIGS. 3 and 4, the twin VAE 200 can
input real images 202 and produce segmentation maps and
depth maps despite not having been trained using real
images 202. In this fashion, a twin VAE 200 can be trained
without having to produce expensive and time consuming
ground truth data for real images 202 or produce expensive
and time consuming paired real and simulated 1images 202,
204.

Tramning a twin VAE 200 can also be used to reduce
problems caused by training a neural network based on
simulated 1mages. Training a neural network using simu-
lated 1mages can cause difficulties when real 1mages are
presented to the neural network 1n operation. Because of
slight differences between the appearance of real image and
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simulated 1mages, a neural network trained on simulated
images can have difliculty processing real images to deter-
mine segmentation maps and depth maps correctly. Training
a twin VAE 200 using cycle consistency methods as dis-
cussed herein can improve the performance of a neural
network 1n processing real 1mages based on training with
simulated 1mages.

FIG. 5 15 a diagram of a twin VAE 500 configured to train
and a twin VAE 500 to produce segmentation maps and
depth maps. Because the real encoder 206 and simulated
encoder 208 have been trained as discussed above 1n relation
to FIGS. 2, 3, and 4, the latent variables included 1n shared
latent space 212 will be consistent regardless of whether a
real image 202 or a simulated image 204 1s input to the twin
VAE 500. This permits the twin VAE 500 to be trained using
simulated images 204 that include ground truth data for both
segmentation and depth. Because the scene description data
used to generate the simulated images 204 includes detailed
3D descriptions of all of the surfaces included in the
simulated 1image, accurate and highly detailed segmentation
and depth ground truth data can be obtained without the
laborious, time-consuming, expensive, and computer
resource 1ntensive process ol generating ground truth data.
The twin VAE 500 can be trained to encode simulated
images 204 with simulated encoder 208 into latent variables
in shared latent space 212, and then decode the latent
variables with segmentation decoder 222 and depth decoder
224 to produce a segmentation map (SGOUT) 226 and depth
map (DOUT) 228, respectively. To train the segmentation
decoder 222 and the depth decoder 224, the output segmen-
tation map 226 and output depth map 228 can be compared
to the segmentation ground truth data and depth ground truth
data corresponding to the input simulated 1image 204 using
an MSE loss function as discussed above with respect to
FIG. 2 to select the decoding parameters corresponding to
the most accurate results.

Because the twin VAE 500 has been trained to generate
latent variables that are consistent between real images 202
and simulated 1mages 204, real images 202 can be mput to
a real 1image encoder 206 to form latent variables in shared
latent space 212. The latent variables can then be output to
segmentation decoder 222 to form a segmentation map 226
and depth decoder 224 to form a depth map 228. Because
segmentation decoder 222 and depth decoder 224 were
trained using synthetic images 204 that formed latent vari-
ables 1 a shared latent space 214, latent variables 1n the
shared latent space 214 formed based on input real 1images
202 can be processed by segmentation decoder 222 and
depth decoder 224 just as 11 they were synthetic images 204,
thereby processing latent variables formed from real 1images
202 without requiring ground truth data corresponding to the
real images 202 to train the VAE 200. Techniques discussed
herein improve training of a twin VAE 500 to determine
segmentation maps and depth maps based on mputting real
images by using a shared latent space 212 that permuits
training the twin VAE 500 with a small number (typically
<100) of unlabeled real images 202 and a large number
(typically >1000) of labeled simulated 1mages 204, thereby
reducing the expense, time and manual effort required to
train the twin VAE 500 to generate segmentation maps 226
and depth maps 228. As discussed above simulated 1images
204 are generated based on scene descriptions that include
the real world location and size of objects that occur in the
simulated 1mage 204.

Because the real world location and size of objects 1n the
simulated 1mage 204 are available 1n the scene description
file, 1image corresponding to segmentation maps and depth
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maps can be generated from the scene description data in the
same fashion in which the simulated 1image 1s rendered. For
a segmentation map, rather than render the reflections of
ambient light onto an 1mage sensor, segmentation rendering
soltware can generate an 1mage that identifies regions cor-
responding to objects in an 1mage thereby forming a seg-
mentation map. For a depth map, depth rendering software
can generate an i1mage where the pixels of the image
correspond to the distance from a sensor to points in the
scene thereby forming a depth map. Segmentation maps and
depth maps corresponding a simulated 1mage 202 in this
fashion can be used to train segmentation decoder 222 and
depth decoder 224 to produce segment maps 226 and depth
maps 28 based on simulated 1mage 204 input. Following
training, twin VAE 300 can input a real image 202 and
produce a segmentation map 226 and a depth map 228
without retraining because the twin VAE 500 was trained to
produce reconstructed real images 218 and reconstructed
simulated 1mages 220 in a cycle consistent fashion as
discussed in relation to FIGS. 3 and 4, above.

FIG. 6 1s a diagram of a real image 602 and a correspond-
ing segmentation map 604. Segmentation map 604 1s gen-
erated by mnputting real image 202 into a trained twin VAE
500 that includes a trained segmentation decoder 222. In
segmentation map 604, the outlines of objects, including
vehicles, have been processed and replaced with regions of
a single grayscale or color value that corresponds to a
“vehicle” label. A segmentation map 604 can also be an
“instance” segmentation map where each vehicle 1s deter-
mined to be a separate 1stance of a vehicle and 1s assigned
a unique color or grayscale value to i1dentily each vehicle
separately.

FIG. 7 1s a diagram of a real image 702 and a depth map
704. Depth map 704 1s generated by mputting real image
202 1nto a trained twin VAE 500 that includes a trained depth
decoder 224. In depth map 704 each pixel 1n the input real
image 702 1s replaced by a grayscale value that corresponds
to a distance between the sensor that acquired the real image
702 and the object in the scene.

FIG. 8 1s a diagram of a flowchart, described 1n relation
to FIGS. 1-7, of a process for generating a segmentation map
226 and a depth map 228 based on a real image 202. Process
800 can be implemented by a processor of computing
device, taking as input information from sensors, and
executing commands, and outputting object information, for
example. Process 800 includes multiple blocks that can be
executed 1n the 1llustrated order. Process 800 could alterna-
tively or additionally include fewer blocks or can include the
blocks executed 1n different orders.

Process 800 begins at block 802, where a computing
device trains located 1n a server computer trains a twin VAE
200 neural network to generate reconstructed real 1images
218 and reconstructed simulated 1mages 220 based on real
image 202 and simulated image 204 input using cycle
consistency methods as discussed in relation to FIGS. 2, 3
and 4, above. A twin VAE 500 can then be trained to
generate segmentation maps 226 and depth maps 228 1n
response to input real images 202 based on training the twin
VAE 500 using simulated images 204 and corresponding
ground truth as discussed 1n relation to FIG. 5.

At block 804 the trained twin VAE 500 can be down-
loaded to a computing device 115 1n a vehicle 110. The
twin-VAE can be used to mput real images 202 and output
segmentation maps 226 and depth maps 228 as discussed 1n
relation to FIGS. 6 and 7 in response to real image 202 input.
The real images 202 can be generated by vehicle sensors
such as color video cameras, for example.




US 11,562,571 B2

15

At block 806 the twin VAE 500 can output a segmentation
map 226 and a depth map 228 to soltware executing in
computing device 115 to be used to operate a vehicle 110.
The segmentation map 226 and depth map 228 can be used
to determine a vehicle path. A technique for determining a
vehicle path includes using the segmentation map and depth
map to produce a cognitive map of the environment around
a vehicle. A cognitive map 1s a top-down view of the
environment around a vehicle that includes roadways and
objects such as vehicles and pedestrians, for example. A
vehicle path can be determined by selecting a local route on
the cognitive map that 1s consistent with a vehicle route plan.
A vehicle route plan can include a route from a starting point
to a final destination such as “work™ or “home™ and can be
determined by using locations and maps stored 1n computing
device 115 memory or downloaded from a server computer
via the Internet, for example. A vehicle path 1s a polynomual
function that describes a local route to be traveled by a
vehicle from the current location of the vehicle 110 to a local
destination on the vehicle route plan. The polynomial func-
tion can be determined to maintain vehicle lateral and
longitudinal accelerations within predetermined limaits. The
computing device 115 can control vehicle steering, brakes
and powertrain via controllers 112, 113, 114 to cause the
vehicle 110 to move along the polynomial function and
thereby travel on the planned vehicle path. Following block
806 process 800 ends.

Computing devices such as those discussed herein gen-
erally each includes commands executable by one or more
computing devices such as those identified above, and for
carrying out blocks or steps of processes described above.
For example, process blocks discussed above may be
embodied as computer-executable commands.

Computer-executable commands may be compiled or
interpreted from computer programs created using a variety
of programming languages and/or technologies, including,
without limitation, and either alone or in combination,
Java™, C, C++, Python, Julia, SCALA, Visual Basic, Java
Script, Perl, HTML, etc. In general, a processor (e.g., a
mICroprocessor) receives commands, €.g., from a memory, a
computer-readable medium, etc., and executes these com-
mands, thereby performing one or more processes, including
one or more of the processes described herein. Such com-
mands and other data may be stored 1n files and transmitted
using a variety ol computer-readable media. A file 1 a
computing device 1s generally a collection of data stored on
a computer readable medium, such as a storage medium, a
random access memory, eftc.

A computer-readable medium includes any medium that
participates in providing data (e.g., commands), which may
be read by a computer. Such a medium may take many
forms, including, but not limited to, non-volatile media,
volatile media, etc. Non-volatile media include, for example,
optical or magnetic disks and other persistent memory.
Volatile media include dynamic random access memory
(DRAM), which typically constitutes a main memory. Com-
mon forms of computer-readable media include, ifor
example, a floppy disk, a tlexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, a RAM, a PROM,
an EPROM, a FLASH-EEPROM, any other memory chip or
cartridge, or any other medium from which a computer can
read.

All terms used 1n the claims are mntended to be given their
plain and ordinary meanings as understood by those skilled
in the art unless an explicit indication to the contrary in made
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herein. In particular, use of the singular articles such as “a,”
“the,” “said,” etc. should be read to recite one or more of the
indicated elements unless a claim recites an explicit limita-
tion to the contrary.

The term “exemplary” 1s used herein in the sense of
signifying an example, e€.g., a reference to an “exemplary
widget” should be read as simply referring to an example of
a widget.

The adverb “approximately” moditying a value or result
means that a shape, structure, measurement, value, determi-
nation, calculation, etc. may deviate from an exactly
described geometry, distance, measurement, value, determi-
nation, calculation, etc., because ol imperfections in mate-
rials, machining, manufacturing, sensor measurements,
computations, processing time, communications time, efc.

In the drawings, the same reference numbers indicate the
same elements. Further, some or all of these elements could
be changed. With regard to the media, processes, systems,
methods, etc. described herein, i1t should be understood that,
although the steps or blocks of such processes, etc. have
been described as occurring according to a certain ordered
sequence, such processes could be practiced with the
described steps performed 1n an order other than the order
described herein. It further should be understood that certain
steps could be performed simultaneously, that other steps
could be added, or that certain steps described herein could
be omitted. In other words, the descriptions of processes
herein are provided for the purpose of illustrating certain
embodiments, and should 1n no way be construed so as to
limit the claimed invention.

The mvention claimed 1s:

1. A computer, comprising;

a processor; and

a memory, the memory including instructions executable

by the processor to:

receive a monocular 1image and provide the image to a
vaniational autoencoder neural network (VAE),
wherein the VAE has been trained 1n a twin configu-
ration that includes a first encoder-decoder pair that
receives as iput unlabeled real images and outputs
reconstructed real images, and a second encoder-
decoder pair that receives as mput synthetic images
and outputs reconstructed synthetic images and
wherein the VAE includes third and fourth decoders
that are trained using labeled synthetic 1images, seg-
mentation ground truth and depth ground truth; and

output from the VAE a segmentation map and a depth
map based on mputting the monocular 1image.

2. The computer of claim 1, wherein training the VAE 1n
a twin configuration includes a third decoder outputting the
segmentation map and a fourth decoder outputting the depth
map.

3. The computer of claim 1, wherein the segmentation
ground truth includes labels for a plurality of objects in the
labeled synthetic images, and the depth ground truth
includes distances from a sensor to a plurality of locations 1n
the labeled synthetic 1mages.

4. The computer of claim 1, wherein the segmentation
map includes labeled objects including roadways, buildings,
foliage, vehicles and pedestrians.

5. The computer of claim 1, wherein the depth map
includes distances from a sensor to a plurality of locations.

6. The computer of claam 1, wherein the real 1mage 1s
acquired by a real world sensor viewing a real world scene.

7. The computer of claim 1, wherein the synthetic 1mages
are generated by photorealistic 1mage rendering software
based on data mput to the photorealistic 1mage rendering
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software that describes a scene to be rendered by the
photorealistic 1mage rendering software.

8. The computer of claim 7, wherein the segmentation
ground truth and depth ground truth are generated based on
a scene description 1nput to the photorealistic image render-
ing software that describes the scene to be rendered by the
photorealistic 1image rendering software.

9. The computer of claim 1, wherein the VAE 1includes
first and second encoders for the unlabeled real 1images and
the labeled synthetic images, and further wherein the first
and second encoders each include layers that share weights
with the other of the first or second encoder, a shared latent
space, and respective first and second decoders for the
unlabeled real 1images and labeled synthetic 1mages.

10. The computer of claim 1, wherein the VAE 1s further
trained based on determining cycle consistency between the
first encoder-decoder and the second encoder-decoder.

11. The computer of claim 10, wherein training the VAE
based on determining cycle consistency includes comparing,
an mput real image and a reconstructed real image by
determining Kullback-Leibler divergence loss and maxi-
mum mean discrepancy loss.

12. The computer of claim 1, the instructions including
turther instructions to operate a device based on the seg-
mentation map and the depth map.

13. The computer of claim 12, wherein the device 1s one
ol a vehicle, a mobile robot, a stationary robot, a drone, and
a surveillance system.

14. The computer of claim 13, the instructions including
turther istructions to operate the vehicle by controlling one
or more of vehicle propulsion, vehicle brakes, and vehicle
steering based on determining a vehicle path based on the
segmentation map and the depth map.
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15. A method, comprising:

recerving a monocular image and provide the 1mage to a
variational autoencoder neural network (VAE), wherein
the VAE has been trained 1n a twin configuration that
includes a first encoder-decoder pair that receives as
input unlabeled real 1mages and outputs reconstructed
real 1mages, and a second encoder-decoder pair that
receives as mput synthetic images and outputs recon-
structed synthetic i1mages and wheremn the VAE
includes third and fourth decoders that are trained using
labeled synthetic 1mages, segmentation ground truth
and depth ground truth; and

outputting from the VAE a segmentation map and a depth
map based on 1nputting the monocular 1image.

16. The method of claim 15, wherein training the VAE 1n
a twin configuration includes a third decoder outputting the
segmentation map and a fourth decoder outputting the depth
map.

17. The method of claim 15, wherein the segmentation
ground truth includes labels for a plurality of objects 1n the
labeled synthetic 1mages, and the depth ground truth
includes distances from a sensor to a plurality of locations 1n
the labeled synthetic 1images.

18. The method of claim 15, wherein the segmentation
map includes labeled objects including roadways, buildings,
foliage, vehicles and pedestrians.

19. The method of claim 15, wherein the depth map
includes distances from a sensor to a plurality of locations.

20. The method of claim 15, wherein the real image 1s
acquired by a real world sensor viewing a real world scene.
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