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renders, data driven cross-domain feature embedding can be
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LARGE-SCALE OUTDOOR AUGMENTED
REALITY SCENES USING CAMERA POSE
BASED ON LEARNED DESCRIPTORS

BACKGROUND

Augmented reality systems typically rely on imnformation
denoting geography of a physical scene 1n order to facilitate
accurate display of virtual content within the physical scene.
Oftentimes, tracking camera pose (e.g., position and orien-
tation) 1s used for accurately rendering the virtual content
correctly 1n relation to the physical scene. This tracking 1s
usually accomplished based on various device sensors, such
as, for example, active depth sensors, stereo camera or
multiview geometry from monocular video. However, such
approaches are limited 1n operational range due to various
constraints (e.g., light fallofl for active 1llumination, stereo
baselines, and/or camera parallax for multiview methods).

SUMMARY

Embodiments of the present disclosure are directed
towards an augmented scene system for facilitating large-
scale augmented reality 1n relation to outdoor scenes using
estimated camera pose information. In particular, camera
pose information for an 1mage can be estimated by matching
the 1mage to a rendered ground-truth terrain model with
known camera pose information. To match images with such
renders, data driven cross-domain feature embedding can be
learned using a neural network. Cross-domain Ifeature
descriptors can then be used for eflicient and accurate feature
matching between the image and the terrain model renders.
This feature matching allows to estimate the camera pose of
the 1mages 1n relation to the terrain model.

In operation, an 1mage can be input mnto the augmented
scene system such that the cross-domain embedding func-
tion 1s used as part of estimating camera pose for the image.
In particular, descriptors (e.g., 1image descriptors) can be
generated for the image using a neural network (e.g., based
on 1mage patches around keypoints 1n the 1mage). In addi-
tion, a rough estimate can be determined as to where the
image was taken using information related to this input
image (e.g., GPS information). This information can be used
to generate a set of renders (e.g., 12 renders from the terrain
model) related to the location of the input image. Descriptors
(e.g., render descriptors) can also be generated for each of
the set of renders using the neural network (e.g., using
render patches around keypoints 1n the set of renders). These
image descriptors and render descriptors can then be com-
pared (e.g., matched) to determine similarity. Top matching,
renders are used to select the candidate camera pose, which
1s used to reduce the number of keypoints from the rendered
images. Keypoints (eg., rendered keypoints) visible by the
candidate camera are matched 1n a following step, which
enables estimation of a refined (eg., more precise) camera
pose. The camera pose can be estimated given the matched
keypoints.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

FIG. 1A depicts an example configuration of an operating,
environment 1n which some implementations of the present
disclosure can be employed, 1n accordance with various
embodiments of the present disclosure.

FIG. 1B depicts an example configuration of an operating,
environment 1n which some implementations of the present
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2

disclosure can be emploved, 1n accordance with various
embodiments of the present disclosure.

FIG. 2 depicts aspects of an illustrative augmented scene
system, 1n accordance with various embodiments of the
present disclosure.

FIG. 3 1llustrates a process flow showing an embodiment
for generating a dataset for use 1n training a model with a
robust cross-domain embedding function, in accordance
with embodiments of the present disclosure.

FIG. 4 1llustrates a process flow showing an embodiment
for training a model with a robust cross-domain embedding
function, 1n accordance with embodiments of the present
disclosure.

FIG. 5 1llustrates a process flow showing an embodiment
for estimating camera pose, in accordance with embodi-
ments of the present disclosure.

FIG. 6 1llustrates a process flow showing an embodiment
for generating an augmented reality scene 1n relation to an
outdoor scene, in accordance with embodiments of the
present disclosure.

FIG. 7 illustrates an example process for generating a
dataset for use 1n training a model with a robust cross-
domain embedding function, 1n accordance with embodi-
ments of the present disclosure.

FIG. 8 depicts an 1llustrative generation of corresponding
patches from multiple views, 1n accordance with embodi-
ments of the present disclosure.

FIG. 9 depicts an 1llustrative architecture that can used for
a model with a cross-domain embedding function, 1n accor-
dance with embodiments of the present disclosure.

FIG. 10 depicts an illustrative augmented reality scene 1n
relation to an outdoor scene, in accordance with embodi-
ments of the present disclosure.

FIG. 11 1s a block diagram of an example computing
device 1n which embodiments of the present disclosure may
be employed.

DETAILED DESCRIPTION

The subject matter of the present disclosure 1s described
with specificity herein to meet statutory requirements. How-
ever, the description itself 1s not intended to limait the scope
of this patent. Rather, the inventors have contemplated that
the claimed subject matter might also be embodied 1n other
ways, to mclude different steps or combinations of steps
similar to the ones described 1n this document, 1n conjunc-
tion with other present or future technologies. Moreover,
although the terms “step” and/or “block”™ may be used herein
to connote different elements of methods employed, the
terms should not be interpreted as implying any particular
order among or between various steps herein disclosed
unless and except when the order of individual steps 1s
explicitly described.

Oftentimes, users desire additional content to be added to
images. Such content can be experienced using, for
example, augmented reality. For example, an overlay or
virtual content can be added to an image to create an
augmented reality image scene. When generating an aug-
mented reality 1mage scene, it 1s important to incorporate
virtual information into the physical scene based on the
geometry of local terrain as well as using a relative positon
ol a camera capturing the physical scene. In indoor scenes,
such information can often be determined by assuming a
planar floor and using device sensors (e.g., depth cameras,
etc.) to estimate geometry and camera pose (e.g., position
and orientation of the camera). However, device sensors
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often fail to provide adequate information 1n outdoor envi-
ronments and/or at larger distances when geometry ceases to
be planar.

Accordingly, embodiments of the present disclosure are
directed to facilitating large-scale augmented reality 1n rela-
tion to outdoor scenes. In particular, an 1mage can be
matched to a rendered ground-truth terrain model (e.g.,
digital elevation model (“DEM”)) from which camera pose
information can be estimated. For instance, data driven
cross-domain feature descriptors can be used for etlicient
and accurate feature matching between the image and the
terrain model. This feature matching allows i1mages to be
localized using long-distance cues from the terrain model.
Such localization 1n relation to the terrain model, which has
known camera pose mnformation, can then be used to esti-
mate camera pose information in relation to the image.
Using this camera pose iformation allows for large-scale
augmented reality overlays to be displayed on images of
large-scale outdoor scenes. Advantageously, such overlays
on large-scale outdoor scenes allows information to be
presented that includes altitude contour lines, map features
(e.g., roads, trails, etc.), and/or three-dimensional created
content (e.g. educational geographic-focused features).

At a ligh level, to allow large-scale augmented reality
information to be applied to outdoor scenes, data driven
cross-domain feature embedding can be learned. For
instance, data driven cross-domain feature embedding by an
augmented scene system can be learned using a neural
network system (e.g., an augmented scene system). A neural
network system can be comprised of one or more neural
networks. A neural network 1s a computational approach
loosely based on how the brain solves problems using large
clusters of connected neurons. Neural networks are seli-
learning and trained to generate output reflecting a desired
result. As described herein, the augmented scene system can
be trained using at least one neural network. For example, a
branched neural network can be used. This branched net-
work can be comprised of two branches, one branch for each
of mnput domains (e.g., a first branch related to input images)
and a second branch related to the terrain model, followed
by a shared trunk. Although generally described as one
branched neural network, any number of neural networks
can be trained 1n accordance with embodiments described
herein.

By training and utilizing a neural network, in accordance
with the systems and methods described herein, the aug-
mented scene system implements a robust cross-domain
embedding function. This cross-domain embedding function
allows for eflicient and accurate feature matching between
input 1mages and the terrain model. For instance, an image
input ito the neural network can be localized 1n relation to
the terrain model by matching features of the image with
teatures of the terrain model. Using this matching, known
camera pose information related to the related frame of the
terrain model can be used to estimate camera pose informa-
tion related to the image.

Tramming data for training such a neural network can
comprise accurately aligned pairs of 1mages (e.g., photo-
graphs) and renders from a terrain model (e.g., DEM ren-
ders). Collections of internet 1mages can be leveraged for
such training. However, such internet images often contain
unrclhiable location annotations. As such, for each training
photograph, precise camera pose mformation can be deter-
mined by aligning the images with the terrain model. For
example, a gmided Structure-from-Motion technique can be
used to align images with renders based on the terrain model
for use as traiming data. Paired images and renders can then
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4

be used to train the network. These pairs of 1images and
renders can be used to train the neural network such that the
output of the neural network (e.g., descriptors) align the
images and renders from a terrain model. In this way, the
neural network can learn the cross-domain embedding func-
tion such that when an image 1s input into the neural
network, 1t can be aligned in relation to renders from a
terrain model (e.g., that can be used to estimate camera pose
information).

The neural network can be trained by evaluating different
types of loss to determine any errors or discrepancies
therebetween, as described in more detail below. Errors can
include inaccuracies, flaws, vanations, and/or divergences
between the descriptors output by the neural network that
represent each of the paired 1mages and renders. Such errors
can be determined by comparing the descriptor from an
image and the descriptor from a render. In some embodi-
ments, updating the neural network involves feeding errors
back through the neural network so the algorithm can adjust
network connections in order to reduce the value of the error.

Adjusting the neural network to correct for errors is
accomplished by changing at least one node parameter of
such a neural network. The neural network can comprise a
plurality of iterconnected nodes with a parameter, or
weilght, associate with each node. Each node receives mputs
from multiple other nodes and can activate based on the
combination of all these inputs, for example, when the sum
of the 1input signals 1s above a threshold. The parameter can
amplily or dampen the input signals. For example, a param-
cter could be a value between zero and one. The mnputs from
cach node can be weighted by a parameter, or 1n other words,
multiplied by the parameter, prior to being summed. In this
way, the parameters can control the strength of the connec-
tion between each node and the subsequent node. For
example, for a given node, a first parameter can provide
more weight to an input from a first node, while a second
parameter can provide less weight to an input from a second
node. As a result, the parameters strengthen the connection
to the first node, making 1t more likely that a signal from the
first node will cause the given node to activate, while 1t
becomes less likely that mputs from the second node will
cause activation. Errors can be determined, for example,
using loss functions. Errors determined using loss functions
are used to minimize loss in the neural network by back-
wards propagation of such errors through the network.

In embodiments, errors can be determined by evaluating
cross-domain triplet loss. Cross-domain triplet loss can
generally be defined as using an image as an anchor with
positive patches (e.g., known matching portion) and nega-
tive patches (e.g., known portions that do not match) as
related to patches of renders. Such a loss function allows for
optimization between the image and render descriptors. In
some embodiments, the loss functions can further comprise
a variant with auxiliary loss functions that can be used to
optimize distances between 1image-image and render-render
descriptors.

An 1mage can be mput mto the augmented scene system
such that the cross-domain embedding function i1s used as
part of estimating camera pose for the image. In particular,
the trained neural network, as described herein, can be used
to generate descriptors for the image. For example, patches
around keypoints in the input 1mage can be input into the
trained neural network to generate descriptors. In addition,
based on information related to this mput 1image (e.g., GPS
information), a rough estimate can be determined as to
where the 1mage was taken. This information can be used to
generate a set of renders (e.g., 12 renders) related to the
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location of the mput image. The trained neural network can
also be used to generate descriptors for each of the set of
renders. For example, patches around keypoints 1n each of
the set of renders can be input mto the trained neural
network to generate descriptors. These 1mage descriptors
and render descriptors can then be compared (e.g., matched
to determine similarity). In this way, the cross-domain
embedding function of the model can be used to find
matching patches between the mput image and the renders
(e.g., using descriptor matching).

Using descriptor matching, a set of top candidate renders
can be determined. These top candidates can be the best
matches between the mput image and the renders. To deter-
mine the best matches, a voting strategy can be used. For
example, this voting strategy can be used to determine a
number of mutual nearest neighbor matches of the renders
with the mput 1image. To determine such mutual nearest
neighbor matches, a diflerence between the renders descrip-
tors and the image descriptor can be used (e.g., Euclidean
difference).

For each of the top candidates, the two-dimensional
points from the rendered images can be unprojected to
three-dimensions using rendered camera parameters and a
depth map. For instance, two-dimensional points related to
a rendered 1mage can be mapped to corresponding three-
dimensional points from the terrain model. Then a tull
camera pose can be determined for the mput image with
respect to the three-dimensional coordinates (e.g., using
2D-3D matches and/or intrinsic parameters of the camera,
such as focal length). This determination will determine the
“best pose” and can be made using, for example, an OpenCV
implementation of EpnP algorithm. Finally, the matches can
be reprojected 1nto the camera plane using the best pose. The
matches that are within the frame of the mput 1image can be
selected. In some embodiments, the matching process can be
repeated to obtain a refined pose. For instance, the matching,
process and EpnP can be repeated.

In embodiments, the mput 1mage can be augmented. For
instance, the estimated camera pose can be used to augment
information in relation to the mput image. Such augmented
information can include, for example, an overlay on the
input image. This overlay can display information such as
altitude contour lines, map features (e.g., roads, trails, etc.),
and/or three-dimensional created content (e.g. educational
geographic-focused features, ammmated 3D content changing
in time, etc.).

Turning to FIG. 1A, FIG. 1A depicts an example con-
figuration of an operating environment in which some
implementations of the present disclosure can be employed.,
in accordance with various embodiments of the present
disclosure. It should be understood that this and other
arrangements described herein are set forth only as
examples. Other arrangements and elements (e.g., machines,
interfaces, functions, orders, and groupings of functions,
etc.) can be used 1n addition to or instead of those shown,
and some elements may be omitted altogether for the sake of
clanity. Further, many of the elements described herein are
functional entities that may be implemented as discrete or
distributed components or in conjunction with other com-
ponents, and in any suitable combination and location.
Various functions described herein as being performed by
one or more enfities may be carried out by hardware,
firmware, and/or software. For instance, some functions may
be carried out by a processor executing instructions stored in
memory as further described with reference to FIG. 11.

It should be understood that operating environment 100
shown 1n FIG. 1A 1s an example of one suitable operating
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environment. Among other components not shown, operat-
ing environment 100 includes a number of user devices,
such as user devices 102a and 1025 through 1027, network
104, and server(s) 106. Each of the components shown 1n
FIG. 1A may be implemented via any type of computing
device, such as one or more of computing device 1100
described in connection to FIG. 11, for example. These
components may communicate with each other via network
104, which may be wired, wireless, or both. Network 104
can include multiple networks, or a network of networks, but
1s shown 1n simple form so as not to obscure aspects of the
present disclosure. By way of example, network 104 can
include one or more wide area networks (WANSs), one or
more local area networks (LANs), one or more public
networks such as the Internet, and/or one or more private
networks. Where network 104 1ncludes a wireless telecom-
munications network, components such as a base station, a
communications tower, or even access points (as well as
other components) may provide wireless connectivity. Net-
working environments are commonplace 1n oflices, enter-
prise-wide computer networks, intranets, and the Internet.
The network 104 may be any network that enables commu-
nication among machines, databases, and devices (mobile or
otherwise). Accordingly, the network 104 may be a wired
network, a wireless network (e.g., a mobile or cellular
network), a storage area network (SAN), or any suitable
combination thereof. In an example embodiment, the net-
work 104 includes one or more portions of a private net-
work, a public network (e.g., the Internet), or combination
thereof. Accordingly, network 104 1s not described 1n sig-
nificant detail.

It should be understood that any number of user devices,
servers, and other components may be employed within
operating environment 100 within the scope of the present
disclosure. Each may comprise a single device or multiple
devices cooperating 1n a distributed environment.

User devices 102a through 1027 can be any type of
computing device capable of being operated by a user. For
example, 1n some 1mplementations, user devices 102qa
through 1027 are the type of computing device described in
relation to FIG. 11. By way of example and not limitation,
a user device may be embodied as a personal computer (PC),
a laptop computer, a mobile device, a smartphone, a tablet
computer, a smart watch, a wearable computer, a personal
digital assistant (PDA), an MP3 player, a global positioning
system (GPS) or device, a video player, a handheld com-
munications device, a gaming device or system, an enter-
tainment system, a vehicle computer system, an embedded
system controller, a remote control, an appliance, a con-
sumer electronic device, a workstation, a virtual reality
hardware platform, augmented reality hardware platform,
mixed-reality hardware platform, any combination of these
delineated devices, or any other suitable device.

The user devices can include one or more processors, and
one or more computer-readable media. The computer-read-
able media may include computer-readable instructions
executable by the one or more processors. The instructions
may be embodied by one or more applications, such as
application 110 shown in FIG. 1A. Application 110 1s
referred to as a single application for simplicity, but its
functionality can be embodied by one or more applications
in practice. As indicated above, the other user devices can
include one or more applications similar to application 110.

The application(s) may generally be any application
capable of facilitating the exchange of information between
the user devices and the server(s) 106 i1n carrying out
large-scale augmented reality in relation to outdoor scenes.
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For instance, to facilitate such large-scale augmented reality,
the application(s) can be used to determine a camera pose
(c.g., position and orientation of a camera 1 a three-
dimensional space). In some 1mplementations, the applica-
tion(s) comprises a web application, which can run 1n a web
browser, and could be hosted at least partially on the
server-side of environment 100. In addition, or instead, the
application(s) can comprise a dedicated application, such as
an application capable of determiming camera pose and/or
having augmented visualization functionality. For example,
such an application can be configured to determine position
and orientation of a camera 1n a three-dimensional space
(e.g., camera pose). Such an application can also be capable
of displaying a rendered augmented reality 1n relation to an
outdoor scene utilizing a determined camera pose. In some
cases, the application 1s integrated into the operating system
(e.g., as a service). It 1s therefore contemplated herein that
“application” be interpreted broadly.

The user device can communicate over a network 104
with a server 106 (e.g., a Software as a Service (SAAS)
server), which provides a cloud-based and/or network-based
augmented scene system 108. The augmented scene system
108 of server 106 may communicate with one or more user
devices and corresponding user interface(s) to facilitate
large-scale augmented reality 1n relation to outdoor scenes
via the user device using, for example, application 110. For
instance, the augmented scene system 108 can communicate
with the user devices to facilitate determining position and
orientation of a camera 1n a three-dimensional space (e.g.,
camera pose). The augmented scene system 108 may further
communicate with the user devices to facilitate visualization
of a rendered augmented reality in relation to an outdoor
scene utilizing a determined camera pose.

As described herein, server 106 can facilitate large-scale
augmented reality in relation to outdoor scenes via aug-
mented scene system 108. Server 106 includes one or more
processors, and one or more computer-readable media. The
computer-readable media includes computer-readable
istructions executable by the one or more processors. The
instructions may optionally implement one or more compo-
nents of augmented scene system 108, described in addi-
tional detail below.

Application 110 may be utilized by a user to interface with
the functionality implemented on server(s) 106, such as
augmented scene system 108. In some cases, application 110
comprises a web browser. Application 110 can also comprise
an application on a device capable of facilitating a user
experience related to virtual reality, augmented reality, and/
or mixed reality. In other cases, server 106 may not be
required, as further discussed with reference to FIG. 1B.

Thus, 1t should be appreciated that augmented scene
system 108 may be provided via multiple devices arranged
in a distributed environment that collectively provide the
functionality described herein. Additionally, other compo-
nents not shown may also be included within the distributed
environment. In addition, or 1nstead, augmented scene sys-
tem 108 can be integrated, at least partially, into a user
device, such as user device 102a.

Referring to FIG. 1B, aspects of an illustrative augmented
scene system are shown, in accordance with various
embodiments of the present disclosure. FIG. 1B depicts a
user device 114, 1mn accordance with an example embodi-
ment, configured to allow for augmented scene system. The
user device 114 may be the same or similar to the user device
1024a-1027% and may be configured to support the augmented
scene system 116 (as a standalone or networked device). For
example, the user device 114 may store and execute sofit-
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ware/mstructions to facilitate interactions between a user
and the augmented scene system 116 via the user interface
118 of the user device.

A user device can be utilized by a user to facilitate
large-scale augmented reality 1n relation to outdoor scenes.
In particular, a user can select a virtual-based experience for
visualization utilizing user interface 118. A virtual experi-
ence can be selected or mput 1n any manner. The user
interface may facilitate the user accessing one or more
stored virtual-based experiences on the user device (e.g., 1n
an augmentation library), and/or import virtual-based expe-
riences from remote devices and/or applications. The user
interface may also facilitate the type of visual-based expe-
rience (e.g., virtual reality, augmented reality, and/or mixed
reality). Based on the selected virtual-based experience, a
rendered augmented reality can be generated in relation to
an outdoor scene using various techniques, some of which
are Turther discussed below with reference to augmented
scene system 204 of FIG. 2. User device 114 can also be
utilized for displaying a rendered visualization of an aug-
mented environment and/or outdoor scene(s) utilizing posi-
tion and orientation of a camera in a three-dimensional space
(e.g., camera pose) determined using various techniques,
some of which are further discussed below with reference to
augmented scene system 204 of FIG. 2.

Referring to FIG. 2, aspects of an illustrative augmented
scene environment 200 are shown, in accordance with
various embodiments of the present disclosure. Augmented
scene system 204 includes patch matching engine 206 and
augmentation engine 208. The foregoing engines ol aug-
mented scene system 204 can be implemented, for example,
in operating environment 100 of FIG. 1A and/or operating
environment 112 of FIG. 1B. In particular, those engines
may be integrated into any suitable combination of user
devices 102a and 1026 through 1027z and server(s) 106
and/or user device 114. While the patch matching engine and
augmentation engine are depicted as separate engines, it
should be appreciated that a single engine can perform the
functionality of both engines. Additionally, 1n implementa-
tions, the functionality of the engines can be performed
using additional engines and/or components. Further, 1t
should be appreciated that the functionality of the engines
can be provided by a system separate from the augmented
scene system.

As shown, an augmented scene system can operate 1n
conjunction with data store 202. Data store 202 can store
computer nstructions (e.g., software program instructions,
routines, or services), data, and/or models used 1n embodi-
ments described herein. In some implementations, data store
202 can store information or data received via the various
engines and/or components of augmented scene system 204
and provide the engines and/or components with access to
that information or data, as needed. Although depicted as a
single component, data store 202 may be embodied as one
or more data stores. Further, the information in data store
202 may be distributed 1n any suitable manner across one or
more data stores for storage (which may be hosted exter-
nally).

In embodiments, data stored 1n data store 202 can include
augmentation nformation a user can explore during an
augmented reality-based experience. Such augmentation
information can be input into data store 202 from a remote
device, such as from a server or a user device. This aug-
mentation information can comprise any type of information
that adds context to a scene. For example, augmentation
information for an outdoor scene can include information
needed to visualize any of contour lines, gravel roads, trails.
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Data stored 1n data store 202 can also include outdoor scenes
related to the augmentation information. Such outdoor
scenes can 1include associated properties, such as, for
example, camera pose of the scene (e.g., position and
orientation of a camera 1n a three-dimensional space). Data
stored 1n data store 202 can further include other attributes
or information associated with viewing an augmented out-
door scene and or camera pose.

Augmented scene system 204 can generally be used for
tacilitating large-scale augmented reality in relation to out-
door scenes. Specifically, the augmented scene system can
be configured for determining position and orientation of a
camera in a three-dimensional space (e.g., camera pose).
Such position and orientation of a camera can be used for
accurately rendering augmented reality information in rela-
tion to an outdoor scene. Using data driven cross-domain
feature descriptors between an 1mage and the terrain model
for eflicient and accurate feature matching, importantly,
allows for accurate determination of position and orientation
of the camera using known camera pose information related
to the terrain model. In particular, such feature matching
allows 1mages to be localized to the terrain model using
long-distance cues. This localization then allows for large-
scale augmented reality overlays to be displayed on the
images ol outdoor scenes.

Augmentation information can be accessed or referenced
by augmented scene system 204 for displaying an aug-
mented reality visualization 1n relation to an outdoor scene
utilizing a determined camera pose. In this regard, the
augmented scene system 204 may access or retrieve aug-
mentation imformation in relation to an outdoor scene cur-
rently being viewed by a user, via a user device. As another
example, the augmented scene system 204 may receive
augmentation information from data store 202 and/or from
a remote device, such as from a server or a user device. The
visualization of the augmentation mformation in relation to
the outdoor scene can be performed in any number of ways,
as discussed herein. For example, position and orientation of
a camera 1n a three-dimensional space can be determined
using feature matching based on data driven cross-domain
feature descriptors between an 1mage and a terrain model.

Patch matching engine 206 can generally be used to
obtain traiming data, train a robust cross-domain embedding
function using the training data, and/or use the cross-domain
embedding function. As shown, patch matching engine 206
can 1nclude data component 210, training component 212,
and matching component 214. The foregoing components of
the dynamic mapping engine can be implemented, for
example, 1 operating environment 100 of FIG. 1A and/or
operating environment 112 of FIG. 1B. In particular, these
components may be integrated into any suitable combination
of user devices 102a and 1025 through 1027 and server(s)
106 and/or user device 114. It should be appreciated that
while data component, training component, and matching,
component are depicted as a separate components, 1n 1mple-
mentations, the functionality of these components can be
performed using a single components and/or additional
components.

Data component 210 can be utilized to obtain traiming
data for use 1n training a robust cross-domain embedding
function. For instance, such training data can comprise
accurately aligned pairs of images (e.g., photographs) and
renders from a terrain model (e.g., DEM renders). Manually
annotating camera poses 1s olten tedious and 1s prone to
errors. In addition, capturing diverse training data along with
accurate camera pose mformation can be difficult. As such,
collections of internet 1images can be leveraged. Advanta-
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geously, such collections of internet images are highly
diverse. However, such internet images often contain unre-
liable location annotations. As such, for each training pho-
tograph, precise camera pose information can be deter-
mined. As used herein, camera pose information can
comprise camera translation (e.g., t), rotation (e.g., R), and
intrinsic parameters (e.g., K) with respect to a reference
frame of a virtual globe.

In some embodiments, a guided Structure-from-Motion
technique can be used to align 1mages with a terrain model
for use as training data. In particular, images from a collec-
tion of internet images can be mput. These 1mages can have
viewpoint changes, different weather and seasonal changes,
and/or different illumination. Such i1mages can be 1nput
within a given rectangle of 10x10 km. For the same area,
panoramic 1mages can be rendered that are sampled 1 km
apart on a regular grid. For each sampled position, a set of
images can be rendered (e.g., renders). As an example, six
renders can be generated with a 60° field-of-view each
rotated 60° around a vertical axis. In addition, for each
render, corresponding information can be stored. Such cor-
responding information can comprise a depth map, full
camera pose, detected keypoints, and/or descriptors. Such
keypoints and/or descriptors can be obtained using, for
example, a baseline feature descriptor such as D2Net. Fur-
ther, for the renders, matches can be determined using
terrain geometry using the stored camera poses and depth
maps. Such techniques are further described herein with
reference to at least FIG. 7.

In addition, keypoints and descriptors can be extracted
from the 1images from the collection of internet images. For
example, such keypoints and/or descriptors can be obtained
using, for example, the baseline feature descriptor such as
D2Net. The mput images can then be matched with other
images and the renders using descriptor matching. As used
herein, descriptor matching can generally be the comparison
of descriptors from a first image and a second 1image. Such
descriptors can generally be represented using, for example,
a feature vector and/or feature map. These 1mages can be any
combination of mput images (e.g., photos of an outdoor
scene) and/or renders (e.g., rendered 1mages of a synthetic
view ol an outdoor scene).

Further, the mput 1mages can be localized to the terrain
model using Structure-from-Motion. Global bundle adjust-
ment can then be used to refine camera parameters belong-
ing to the images and three-dimensional points. Global
bundle adjustment can generally be simultaneously refiming
three-dimensional coordinates describing scene geometry
when given a set of 1mages that depict a number of three-
dimensional points from diflerent viewpoints. The renders
have fixed camera parameters because the parameters are
known. Additionally, the location of reconstructed photos
from the terrain model can be checked. In embodiments,
photos that are taken below, or more than, 100 m above the
terrain can be discarded due to likelihood that the photos are
not localized precisely. Advantageously, discarding such
photos can result in a more robust dataset for use in training.
In particular, using such a dataset for training results 1n a
system capable of accurately geo-registering images 1n
tested regions.

Using such a guided Structure-from-Motion technique
can generate traiming data that aligns mput images (e.g.,
photos) with renders (e.g., rendered 1mages from a terrain
model). Such training data can then be used in training a
robust cross-domain embedding function. This cross-do-
main embedding function can be used to align an input
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image with a portion of a terrain model. Such alignment can
be used to determine precise camera pose mformation, as
discussed further herein.

To select traming data for use 1n training the cross-domain
embedding function, a weakly supervised patch sampling
method can be used that 1s independent of the keypoint
detector. This can result 1n avoiding bias 1n the system.
Using such an approach 1s advantageous 1n the cross-domain
approach of the present system because the accuracy of
existing keypoint detectors in cross-domain matching can be
unknown. In addition, the embedding function of the system
can be used with any keypoint detector without the need for
re-training the system.

Each image in the dataset can contain a ground-truth
camera pose (e.g., P=K[RIt]) which can transform synthetic
world coordinates into the camera space. In particular, for
each image (e.g., L)), a synthetic image (e.g., I,,) can be
rendered along with a depth map (e.g., D, ). Pairs of cameras
can be selected that have at least 30 corresponding three-
dimensional points 1 a Structure-from-Motion reconstruc-
tion. For instance, for each pair, a camera pose and depth
map can be used to un-project image pixels into a dense
three-dimensional model. Next, for each domain, the three-
dimensional points visible 1n both views can be kept while
those outside such wvisibility can be discarded. Further, a
center of a local image patch can be defined by uniformly
sampling a number of random correspondences. Such tech-
niques are further described herein with reference to at least

FIG. 8.

Training component 212 can be utilized to train a model
with a cross-domain embedding function. In particular, to
account for appearance diflerences between the two domains
(e.g., images and terrain model), a branched network can be
used for the architecture of the model. This branched net-
work can be comprised of two branches, one branch for each
of the input domains (e.g., input 1mages and terrain model)
tollowed by a shared trunk. In embodiments, the architecture
of the branched network can be a tully convolutional net-
work with a receptive field of 63 px. To obtain a descriptor
using the network, an input patch with size 64x64 can be
used. This input patch to the network can be normalized. For
instance, the mput patch can be normalized by subtracting
the mean and dividing by its standard deviation. Advanta-
geously, such a network 1s compact and contains only
261,536 trainable parameters. Having such a compact net-
work allows for deployment on a wide array of devices, such
as, for example, mobile devices.

To train such a network, triplet loss function can be used.
An example equation for determining such loss is:

L@, p".n") = Y max(lf7(@) - £ (pDlly = IF7 @) = 7Dl + v, 0)

In such an equation, a, p, and n can respectively denote a
minmi-batch of anchor, positive, and negative patches. In
addition, such superscripts denote photograph (e.g., p) or
render (e.g., r). Further, ¥ and 1" can respectively denote
embedding functions for photograph and render branches.
Finally, a can denote the margin.

For each batch in a muini-batch, its three-dimensional
coordinates are known 1n an Fuclidean world space (e.g.,
x(pj)ERS). Given a mini-batch of anchor and positive
descriptors (e.g., ¥ (af, 1"(p,")&[0, N] where N 1s a batch
s1ze), a subset of possible negatives (e.g., (K)) can be
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selected. This subset of possible negatives can be farther
than m meters away from the anchor (e.g., p/={x(p, )>m}).

In particular, an adaptive variant of hard negative sam-
pling can be used such that the embedding function of the
network does not collapse 1nto a single point during training.
For instance, the difliculty of randomly sampled negatives
can be increased during training of the network. Classic hard
negative mining uses a randomly chosen descriptor (e.g., p;)
as a negative example (e.g., n,) for each anchor descriptor
(e.g., a,) if, and only if a triplet loss criterion 1s violated. An
example equation for when the triplet loss criterion 1is
violated 1s:

mz’_ijE{Haz'_prE'l'm

In such an equation, an anchor descriptor (e.g., a='(a’))
can be denoted as calculated from an 1mage patch using a
photo encoder such that similarity can be designated for
p,~t'(p, ), and p,=t'(p,).

This can be built upon to carry out the adaptive variant of
hard negative sampling. In particular, for each anchor
descriptor (e.g., a,), a randomly chosen descriptor (e.g., p;)
can be selected as a negative example (e.g., n;) when
la,~p|,<d*-(d*-(n,,,, +€))-A. In such an equation, A is a
tunable parameter using an interval (e.g., [0,1]) that defines
a dithiculty of the negative mining. The epsilon 1s a small
positive constant, close to zero. In addition, d* denotes a
distance between the anchor and positive plus margin (e.g.,
d*=lla,=p/||,+c.). Further, n,,, denotes the distance between
the anchor and the hardest negative (e.g., n,,,,=min,|ja,-
p ). For instance, when A=0, the adaptive variant of hard
negative sampling equation i1s reduced to random hard
negative sampling as in the classic hard negative miming
equation. When A=1, the adaptive variant of hard negative
sampling equation 1s forced to select p; as a negative only 1f
it 1s equal to the hardest negative (e.g., n__. ). In such a case,
the sampling 1s similar to that used 1n HardNet. Utilizing
parameter A allows for selection of harder negatives as
training progresses. In particular, training can be started with
»=0 and then 1ncreases made to A with each new epoch, up
to a maximum hardness. As one example, 1n one embodi-
ment, a maximum ol A=0.23 can be defined with a margin
set to a=0.2 as well as a mmmmum distance 1n three-
dimensions set to m=50 m.

Such a cross-domain triplet loss defined with having an
anchor as an 1mage and the positive and negative patches as
renders allows for optimization of a loss function between
the 1mage and render descriptors. However, a variant with
auxiliary loss functions can also be used to optimize dis-
tances between 1mage-image and render-render descriptors.
An example equation for determining such loss 1is:

L =La?p" »w)+L{(a® p? w)+L{a" . p",n")

In embodiments, such a variant can perform best 1n cross-
domain matching scenarios.

Matching component 214 can be utilized to match images
with renders. In particular, the cross-domain embedding
function can be used to match an nput 1image with a render.
As an example, an mput 1image can be mput mto a model
(e.g., a neural network trained using techniques described
heremn). The model can then be used to aid descriptor
matching to compare similarity between descriptors of the
input 1image and renders. Such descriptors can generally be
represented using a feature vector and/or feature map. For
instance, patches of the mput image and patches of the
renders can be compared using descriptors generated by the
model. Such patches can be an area around keypoints 1n the
input 1mage and keypoints in the renders. Such keypoints
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can be, for example, areas of interest in an 1mage. Some
non-limiting examples of such keypoints can be transition
points based on color (e.g., sky and land), interesting struc-
ture features (e.g., mountain peak, rock, glacier, etc.), etc. In
this way, the cross-domain embedding function of the model
can be used to generate descriptors, which can be used to
find matching patches between the mput image and the
renders.

For instance, in accordance with generating a set of
renders 1n relation to an input image, general location
information related to the input image can be used to identily
a corresponding general location on a terrain model. This set
of renders can be generated with various fields-of-view
based on the corresponding general location on a terrain
model. By way of example only, a set of 12 images can be
rendered with a field-of-view of 60° rotated by 30° around
a vertical axis. In embodiments, the mput 1mage can be
scaled by a scale factor (e.g., s). This scale factor can be
proportional to the field-of-view (e.g., 1: s=(I-M)/(m'1 ). In
such an equation, M can be the maximum resolution that
corresponds to a field-of-view of 180°. In addition, I can
generally be defined as the width of the image. A keypoint
detector (e.g., SIFT) can be used to determine keypoints 1n
the mmput 1image and/or renders. Based on the detected
keypoints, a patch can be taken around each keypoint. For
example, a 64x64 patch can be taken around each keypoint.
These patches can then be mput into the model to generate
descriptors. Augmentation engine 208 can be used to deter-
mine a camera pose and generate an augmented reality scene
in relation to an outdoor scene utilizing the determined
camera pose. As shown, augmentation engine 208 can
include camera pose component 216 and application com-
ponent 218. The foregoing components of the augmentation
engine can be 1mplemented, for example, 1n operating
environment 100 of FIG. 1A and/or operating environment
112 of FIG. 1B. In particular, these components may be
integrated into any suitable combination of user devices
102a and 1025 through 1027 and server(s) 106 and/or user
device 114. It should be appreciated that while camera pose
component and application component are depicted as a
separate components, 1n implementations, the functionality
of these components can be performed using a single
components and/or additional components.

Camera pose component 216 can be utilized to determine
a best camera pose based on descriptors of an mput 1image
and renders indicating matched patches between the mput
image and renders. In particular, the camera pose component
216 can receive descriptors related to an mput 1mage. Such
descriptors can be for one or more patches of the input image
and/or one or more patches of renders. From these descrip-
tors, a set of top candidates can be determined. These top
candidates can be the best matches between the input image
and the renders. To determine the best matches, a voting
strategy can be used. For example, this voting strategy can
be used to determine a number of mutual nearest neighbor
matches of the renders with the input 1mage. To determine
such mutual nearest neighbor matches, a difference between
the renders descriptors and the 1image descriptor can be used
(c.g., smallest difference).

In some embodiments, the top three candidate renders can
be selected. Using three candidate renders can be advanta-
geous because an 1image 1s unlikely to span over more than
three consecutive renders, covering a field-of-view of 120°.
For each of the top candidates, the two-dimensional points
can be unprojected from the rendered images to three-
dimensions using rendered camera parameters and a depth
map. Then a full camera pose can be determined for the

10

15

20

25

30

35

40

45

50

55

60

65

14

input 1mage with respect to the three-dimensional coordi-
nates. This determination can be made using, for example,
an OpenCV mmplementation of EpnP algorithm.

From the top candidate renders, a best pose can be
selected. In particular, the best pose can be the pose that
minimizes the reprojection error while having a reasonable
(e.g., low) number of inliers. For instance, if a candidate
pose has more than N=60 inliers, then the render with the
lowest reprojection error can be selected. If none are found,
then the threshold of N can be lowered, and the best pose can
be determined 1n a new iteration. When there are no candi-
date poses with at least N=20 inliers, then the algorithm can
be deemed unsuccessiul.

Finally, the matches (e.g., all matches) can be reprojected
into the camera plane using the best pose. The matches that
are within the 1mage frame can be selected. In some embodi-
ments, the matching process can be repeated to obtain a
refined pose. For instance, the matching process and EpnP
can be repeated.

In some embodiments, the camera pose component 216
can recerve information related to keypoints of an image
received from a camera stream and at least one render (e.g.,
render with a synthetic view from the local terrain model and
ortho-photo textures). For instance, the camera pose com-
ponent can receirve mformation about feature(s) that match
across domains using the model to extract local features on
detected keypoints. The matched features can then be unpro-
jected from a render using camera parameters and a depth
map. Further, matches between two-dimensional keypoints
and three-dimensional rendered keypoints can be used to
estimate the camera pose. Camera pose component 216 can
use this estimated camera pose to update the camera position
and rotation to improve the alignment of the input camera
stream with the terrain model.

Application component 218 can generate an augmented
reality scene 1n relation to an outdoor scene utilizing a
determined camera pose. For example, application compo-
nent 218 can take a camera stream and render an augmented
reality scene over the outdoor scene. For example, the
augmented reality scene can include information needed to
visualize any of contour lines, gravel roads, trails. Applica-
tion component 218 can further apply the determined cam-
era pose for image annotation, dehazing, relighting, refo-
cusing, and/or depth-of-field simulation.

With reference to FIG. 3, a process flow 1s provided
showing an embodiment of method 300 for generating a
dataset for use 1n training a model with a robust cross-
domain embedding function, 1n accordance with embodi-
ments ol the present disclosure. Method 300 can be per-
formed, for example by data component 210 of augmented
scene system 204, as illustrated in FIG. 2.

At block 302, images are received. Such images can be
received, for example, from data store and/or from a remote
device, such as from a server or a user device. In some
embodiments, these 1mages can come from collections of
internet 1mages. Such 1mages can have viewpoint changes,
different weather and seasonal changes, and/or different
illumination. The 1mages can be mput within a given rect-
angle of 10x10 km.

At block 304, rendered views are obtained. For example,
the rendered views can be from the same area as the 1images.
These rendered views can be generated using panoramic
images that are sampled 1 km apart on a regular grid. For
cach sampled position, a set of images can be rendered. As
an example, six renders can be generated using a 60°
field-of-view with each rendered image rotated 60° around
a vertical axis. Information related to the rendered views can
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also be obtained. This information can comprise a depth
map, full camera pose, detected keypoints, and/or descrip-
tors. At block 306, rendered wviews are matched. For
instance, for the rendered views, matches can be determined
using terrain geometry. In some embodiments, matches can
be made using stored camera poses and depth maps that are
related to the rendered views. Such matching can be used,
for example, to generate an initial sparse three-dimensional
model using the rendered views.

At block 308, keypoints and descriptors are extracted.
These keypoints and descriptors can be extracted from the
images. For example, such keypoints and/or descriptors can
be obtained using, for example, the baseline feature descrip-
tor such as D2Net.

At block 310, descriptors are matched. For instance,
descriptors can be matched between the 1images (e.g., image-
image) and/or rendered views (e.g., image-renders). The
images can be matched using descriptor matching. As used
herein, descriptor matching can generally be the comparison
of descriptors (e.g., feature vector and/or feature map) from
an 1mage and/or render. For instance, a first descriptor can be
compared to a second descriptor. When the descriptors are
close 1n value, the first and second descriptors can indicate
a match. When the descriptors are not close in value, the first
and second descriptors can indicate there 1s not a match. In
embodiments, a nearest neighbor search approach 1s used.
For example, for each descriptor from a photograph, the
distance, e.g., the L2norm, 1s calculated to all descriptors
from the rendered 1mage. The closest rendered descriptor 1s
identified as a match. Further, in some cases, a “best buddy”™
matching approach 1s used. In this regard, the rendered
descriptor must be the closest one for the photo descriptor,
and the photo descriptor must also be the closest one for the
rendered descriptor. Advantageously, this can filter out
ambiguous and sporadic matches.

At block 312, images are localized to a terrain model. For
instance, the 1mages can be localized to a terrain model
using Structure-from-Motion based on renders relating to
matching descriptors. Global bundle adjustment can then be
used to refine camera parameters belonging to the images
and three-dimensional points. Using such a guided Struc-
ture-from-Motion techmque can generate training data that
aligns 1nput 1mages (e.g., photos) with renders (e.g., ren-
dered 1mages) from a terrain model. Such training data can
then be used 1n traiming a robust cross-domain embedding
function.

With reference to FIG. 4, a process flow i1s provided
showing an embodiment of method 400 for training a model
with a robust cross-domain embedding function, 1n accor-
dance with embodiments of the present disclosure. Method
400 can be performed, for example by training component
212 of augmented scene system 204, as 1llustrated 1n FIG. 2.

At block 402, a dataset 1s received. The dataset can
comprise training data. Such training data can be generated
using, for example, method 300. For instance, such training,
data can comprise accurately aligned pairs of 1images (e.g.,
photographs) and renders from a terrain model (e.g., DEM
renders). For each training photograph, precise camera pose
information can be determined. As used herein, camera pose
information can comprise camera translation (e.g., t), rota-
tion (e.g., R), and intrinsic parameters (e.g., K) with respect
to a reference frame of a virtual globe.

In some embodiments, a weakly supervised patch sam-
pling method can be used to select the traiming data. This can
result 1n avoiding bias 1n the system. Using such an approach
1s advantageous in the cross-domain approach of the present
system because the accuracy of existing keypoint detectors
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in cross-domain matching can be unknown. In addition, the
embedding function of the system can be used with any
keypoint detector without the need for re-training the sys-
tem.

At block 404, descriptor(s) related to 1mage(s) are gen-
erated. Such descriptors can be generated using a model.
This model can use a branched network architecture to
account for appearance differences between the two domains
(e.g., images and terrain model). This branched network can
be comprised of two branches, one branch for each of the
input domains (e.g., mput 1images and terrain model) fol-
lowed by a shared trunk. In embodiments, the architecture of
the branched network can be a fully convolutional network
with a receptive field of 63 px.

To obtain a descriptor using the network, an input patch
related to an 1mage with size 64x64 can be used. This input
patch to the network can be normalized. For instance, the
input patch can be normalized by subtracting the mean and
dividing by 1ts standard deviation.

At block 406, descriptor(s) related to render(s) are gen-
erated. Such descriptors can be generated using a model.
This model can use the same branched network architecture
that processes the 1mages (e.g., at block 404). To obtain a
descriptor using the network, an input patch related to a
render with size 64x64 can be used. This mput patch to the
network can be normalized. For instance, the input patch can
be normalized by subtracting the mean and dividing by its
standard deviation.

At block 408, descriptors are processed. In particular,
descriptors can be compared based on alignment. Such
descriptors can generally be represented using a vector. For
example, descriptors for positive patches (e.g., known
matching portion) of an image and patches of renders should
have highly similar descriptors generated by the model. On
the other hand, descriptors for negative patches (e.g., known
portion that does not match) of an 1mage and patches of
renders should not have highly similar descriptors generated
by the model.

At block 410, the network 1s corrected for error. Error can
be determined using one or more loss functions to minimize
loss 1n the model by backwards propagation of such errors.
Loss functions can include cross-domain triplet loss. Cross-
domain triplet loss can generally be defined with having an
anchor as an 1mage with positive patches (e.g., known
matching portion) and negative patches (e.g., known portion
that does not match) as related to patches of renders. Such
a loss function allows for optimization between the image
and render descriptors. In some embodiments, the loss
functions can comprise a variant with auxiliary loss func-
tions that can be used to optimize distances between 1mage-
image and render-render descriptors. As indicated in FIG. 4,
the foregoing blocks may be repeated any number of times
to train the neural network (e.g., using different training
images and corresponding renders for each iteration).

With reference to FIG. 5, a process flow 1s provided
showing an embodiment of method 500 for estimating
camera pose, 1n accordance with embodiments of the present
disclosure. Method 500 can be performed, for example, by
augmented scene system 204, as illustrated in FIG. 2.

At block 502, an 1mage 1s received. This image can be of
an outdoor scene. For example, the image can be taken
during a hike 1n the mountains. Based on information related
to this input image (e.g., GPS information), a rough estimate
can be determined as to where the 1image was taken. This
information can be used to generate a set of renders (e.g., 12
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renders) related to the location of the input image. This set
of renders can be generated using, for example, a terrain
model.

At 504, descriptors are generated. Such descriptors can be
generated using a model. This model can use a branched
network architecture to account for appearance diflerences
between the two domains (e.g., images and terrain model).
This branched network can be comprised of two branches,
one branch for each of the input domains (e.g., input images
and renders related to a terrain model) followed by a shared
trunk. To obtain descriptors using the network, input patches
related to the input 1image and/or the set of renders can be
used. These mput patches can have a size of 64x64. These
input patches that are run through the network can also be
normalized. For mstance, an imnput patch can be normalized
by subtracting the mean and dividing by 1ts standard devia-
tion. The network can then generate (e.g., output) a descrip-
tor for each input patch.

At block 506, a set of candidate renders 1s determined.
This set of candidate renders can be determined using the
descriptors related to the mput image and the set of renders.
Such descriptors can be for one or more patches of the input
image and/or one or more patches of the set of renders.
These descriptors can be analyzed to determine the set of
candidates. For instance, the candidates (e.g., top candi-
dates) can be the best matches between the mput 1mage and
renders. To determine the best matches, a voting strategy can
be used. For example, this voting strategy can be used to
determine a number of mutual nearest neighbor matches of
the renders with the mput image. To determine the mutual
nearest neighbor matches the difference between the renders
descriptors and the image descriptor can be used (e.g.,
smallest difference). In some embodiments, a top three
candidate renders can be selected.

At block 508, a best pose 15 selected using the set of
candidate renders. To determine the best pose, two-dimen-
sional points from a candidate render can be unprojected
and/or matched into three-dimensional points. For instance,
for each of the set of candidate renders, the two-dimensional
points can be unprojected from the rendered images into
three-dimensions using rendered camera parameters and a
depth map (e.g., which are known). Then a full camera pose
can be determined for the mput 1image with respect to the
three-dimensional coordinates (e.g., based on the known
camera parameters related to the candidate renders). This
determination can be made using, for example, an OpenCV
implementation of EpnP algorithm.

In particular, the best pose can be the pose that minimizes
a reprojection error while having a reasonable (e.g., low)
number of 1nliers. For instance, if a candidate pose has more
than N=60 1nliers, then the render with the lowest reprojec-
tion error can be selected. If none are found, then the
threshold of N can be lowered, and the best pose can be
determined 1n a new 1teration. When there are no candidate
pose with at least N=20 inliers, then the algorithm can be
deemed unsuccessiul.

At block 510, camera pose 1s estimated. For instance, all
keypoints 1n the renders can be unprojected into the three-
dimensional view and then projected back using the best
pose. The points that are projected into the mput 1image can
be maintained while points that are projected outside of the
input 1image can be discarded. These maintained points can
then be used to estimate the camera pose.

With reference to FIG. 6, a process flow i1s provided
showing an embodiment of method 600 for generating an
augmented reality scene 1n relation to an outdoor scene, 1n
accordance with embodiments of the present disclosure.
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Method 600 can be performed, for example, by augmenta-
tion engine 208 of augmented scene system 204, as 1llus-
trated 1n FIG. 2.

At block 602, an mput 1image 1s recerved. This image can
be of an outdoor scene. For example, the image can be taken
during a hike 1n the mountains. Based on information related
to this input image (e.g., GPS information), a rough estimate
can be determined as to where the 1image was taken. This
information can be used to generate a set of renders (e.g.,
using a terrain model) related to the location of the input
image. For example, a set of 12 images can be rendered with
a field-of-view of 60° rotated by 30° around a vertical axis.

At block 604, descriptors can be generated and matched.
Such descriptors can be generated using a model. This
model can use a branched network architecture to account
for appearance diflerences between the two domains (e.g.,
images and terrain model). This branched network can be
comprised of two branches, one branch for each of the input
domains (e.g., mput 1mages and renders related to a terrain
model) followed by a shared trunk. To obtain descriptors
using the network, mput patches related to the input 1image
and/or the set of renders can be used. These mput patches
can have a size of 64x64. These mput patches that are run
through the network can also be normalized. For instance, an
input patch can be normalized by subtracting the mean and
dividing by its standard deviation. The network can then
generate (e.g., output) a descriptor for the input patch.

This set of candidate renders can be determined using the
descriptors related to the input 1mage. Such descriptors can
be for one or more patches of the input image and/or one or
more patches of renders. These descriptors can be analyzed
to determine the set of candidates. For instance, the candi-
dates (e.g., top candidates) can be the best matches between
the input 1image and renders. To determine the best matches,
a volting strategy can be used. For example, this voting
strategy can be used to determine a number of mutual
nearest neighbor matches of the renders with the input
image. To determine the mutual nearest neighbor matches
the difference between the renders descriptors and the image
descriptor can be used (e.g., smallest difference). In some
embodiments, a top three candidate renders can be selected.

At block 606, camera pose 1s estimated. To determine the
best pose, two-dimensional points can be unprojected from
a render 1nto three-dimensional points. For instance, for each
of the set of candidate renders, the two-dimensional points
can be unprojected from the rendered images to three-
dimensions using rendered camera parameters and a depth
map. In some embodiments, all keypoints 1n the renders can
be unprojected into the three-dimensional view and then
projected back using the best pose. The points that are
projected into the input image can be maintained while
points that are projected outside of the mput 1mage can be
discarded. These maintained points can then be used to
estimate the camera pose.

At block 608, the input 1image 1s augmented. The camera
pose can then be used to augment information in relation to
the mput 1mage. Such augmented information can include,
for example, an overlay on the input image. This overlay can
display information such as altitude contour lines, map
features (e.g., roads, trails, etc.), three-dimensional created
content (e.g. educational geographic-focused features),
three-dimensional content animated 1n time, etc.

FIG. 7 depicts illustrative process 700 for generating a
dataset for use 1n training a model with a robust cross-
domain embedding function, 1n accordance with embodi-
ments of the present disclosure. In particular, a set of 1images
702 can be downloaded. Such a set of images 702 can be
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received, for example, from data store and/or from a remote
device, such as from a server or a user device. In some
embodiments, this set of 1mages 702 can come from col-
lections of internet images. Such 1mages can have viewpoint
changes, different weather and seasonal changes, and/or
different 1llumination. The set of images 702 can be 1n
relation to a particular location. For instance, the set of
images 702 can be from within a given rectangle of 10x10
km.

Based on the location of the set of images 702, terrain
model 704 can be used to obtain renders 706. Renders can
generally be rendered images generated using panoramic
images from generated using panoramic images that are
sampled 1 km apart on a regular grid that are sampled 1 km
apart on a regular grid. In embodiments, and as depicted,
renders 706 can comprise six images with a 60° field-oi-
view each rotated 60° around a vertical axis.

Matching 708 can be performed between renders 706. For
instance, matches between renders 706 can be determined
using terrain geometry. In particular, matches can be made
using stored camera poses and depth maps that are related to
the rendered wviews. Such matching can be used, for
example, to generate an mmtial sparse three-dimensional
model 712 using the rendered views. Matching 710 can also
be performed between images from the set of 1images 702
and/or between images from the set of images 702 and
renders 706. The 1images can be localized to a terrain model
using Structure-from-Motion to generate an updated sparse
three-dimensional model 714.

FIG. 8 depicts an illustrative generation of corresponding
patches from multiple views, 1n accordance with embodi-
ments of the present disclosure. Each image 1n the dataset
can contain a ground-truth camera pose (e.g., P=K[RIt])
which can transform synthetic world coordinates into the
camera space. In particular, for a pair ol 1mage-render,
render 802 (e.g., I,,) and 1image 806 (e.g., I ,,), two-dimen-
sional 1mage points can be unprojected into three-dimen-
sions using rendered depth map 804 (e.g., D,) and depth
map 808 (e.g., D,) along with ground truth camera poses
(e.g., P, and P,). For each domain, the three-dimensional
points visible 1n both views can be kept while those outside
such visibility can be discarded which results 1n filtered
points 810. Such filtered points 810 can then be use match
images to renders. These matched images and renders can be
used, for example, 1n training a model with a cross-domain
embedding function.

FIG. 9 depicts an 1llustrative architecture that can used for
a model 900 with a cross-domain embedding function, 1n
accordance with embodiments of the present disclosure. In
particular, to account for appearance differences between the
two domains (e.g., 1mages and terrain model), a branched
network can be used for the architecture of model 900. This
branched network can be comprised of two branches, first
branch 902 can be for input 1images and second branch 904
can be for renders based on a terrain model followed by
shared trunk 906. In embodiments, the architecture of the
branched network can be a fully convolutional network with
a receptive field of 63 px. To obtain a descriptor using the
network, an input patch with size 64x64 can be used.
Advantageously, such a network 1s compact and contains
only 261,536 trainable parameters. Having such a compact
network allows for deployment of a wide array of devices,
such as, for example, mobile devices.

FIG. 10 depicts an illustrative augmented reality scene in
relation to an outdoor scene, in accordance with embodi-
ments of the present disclosure. Image 1002 can be recerved.
For example, image 1002 can be received from a camera
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stream of a camera. Techniques as described herein can be
used to determine a camera pose (e.g., position and orien-
tattion of a camera i1n a three-dimensional space). For
instance, feature matching can be used between the image
1002 and terrain map 1004. Upon obtaining camera pose
information, augmented 1image 1006 can be generated. For
example, augmented 1image 1006 can display contour lines.

Having described embodiments of the present invention,
an example operating environment in which embodiments of
the present invention may be implemented i1s described
below 1n order to provide a general context for various
aspects of the present invention. Referring to FIG. 11, an
illustrative operating environment for 1mplementing
embodiments of the present invention 1s shown and desig-
nated generally as computing device 1100. Computing
device 1100 1s but one example of a suitable computing
environment and 1s not intended to suggest any limitation as
to the scope of use or functionality of the invention. Neither
should the computing device 1100 be interpreted as having
any dependency or requirement relating to any one or
combination ol components 1llustrated.

Embodiments of the mvention may be described in the
general context of computer code or machine-useable
instructions, 1ncluding computer-executable instructions
such as program modules, being executed by a computer or
other machine, such as a smartphone or other handheld
device. Generally, program modules, or engines, including
routines, programs, objects, components, data structures,
etc., refer to code that perform particular tasks or implement
particular abstract data types. Embodiments of the invention
may be practiced 1n a variety ol system configurations,
including hand-held devices, consumer electronics, general-
purpose computers, more specialized computing devices,
ctc. Embodiments of the mmvention may also be practiced 1n
distributed computing environments where tasks are per-
formed by remote-processing devices that are linked through
a communications network.

With reference to FIG. 11, computing device 1100
includes a bus 1110 that directly or indirectly couples the
following devices: memory 1112, one or more processors
1114, one or more presentation components 1116, mput/
output ports 1118, mput/output components 1120, and an
illustrative power supply 1122. Bus 1110 represents what
may be one or more busses (such as an address bus, data bus,
or combination thereof). Although the various blocks of
FIG. 11 are shown with clearly delineated lines for the sake
of clanty, in reality, such delineations are not so clear and
these lines may overlap. For example, one may consider a
presentation component such as a display device to be an I/O
component, as well. Also, processors generally have
memory 1n the form of cache. We recognize that such 1s the
nature of the art, and reiterate that the diagram of FIG. 11 1s
merely illustrative of an example computing device that can
be used 1n connection with one or more embodiments of the
present disclosure. Distinction 1s not made between such
categories as “workstation,” “server,” “laptop,” “hand-held
device,” etc., as all are contemplated within the scope of
FIG. 11 and reference to “computing device.”

Computing device 1100 typically includes a variety of
non-transitory computer-readable media. Non-transitory
Computer-readable media can be any available media that
can be accessed by computing device 1100 and includes
both volatile and nonvolatile media, removable and non-
removable media. By way of example, and not limitation,
non-transitory computer-readable media may comprise non-
transitory computer storage media and commumnication
media.
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Non-transitory computer storage media include volatile
and nonvolatile, removable and non-removable media
implemented 1n any method or technology for storage of
information such as computer-readable instructions, data
structures, program modules or other data. Non-transitory

computer storage media includes, but 1s not limited to,
RAM, ROM, EEPROM, flash memory or other memory

technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by computing device
1100. Non-transitory computer storage media excludes sig-
nals per se.

Communication media typically embodies computer-
readable 1nstructions, data structures, program modules or
other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information 1n the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be 1included within the
scope of computer-readable media.

Memory 1112 includes computer storage media in the
form of volatile and/or nonvolatile memory. As depicted,
memory 1112 includes 1nstructions 1124. Instructions 1124,
when executed by processor(s) 1114 are configured to cause
the computing device to perform any of the operations
described herein, 1n reference to the above discussed figures,
or to implement any program modules described herein. The
memory may be removable, non-removable, or a combina-
tion thereof. Illustrative hardware devices include solid-state
memory, hard drives, optical-disc drives, etc. Computing,
device 1100 includes one or more processors that read data
from various entities such as memory 1112 or I/O compo-
nents 1120. Presentation component(s) 1116 present data
indications to a user or other device. Illustrative presentation
components include a display device, speaker, printing com-
ponent, vibrating component, efc.

I/O ports 1118 allow computing device 1100 to be logi-
cally coupled to other devices including I/O components
1120, some of which may be built 1n. Illustrative compo-
nents include a microphone, joystick, game pad, satellite
dish, scanner, printer, wireless device, etc.

Embodiments presented herein have been described in
relation to particular embodiments which are mtended 1n all
respects to be illustrative rather than restrictive. Alternative
embodiments will become apparent to those of ordinary skill
in the art to which the present disclosure pertains without
departing from its scope.

From the foregoing, it will be seen that this disclosure in
one well adapted to attain all the ends and objects herein-
above set forth together with other advantages which are
obvious and which are inherent to the structure.

It will be understood that certain features and sub-com-
binations are of utility and may be employed without
reference to other features or sub-combinations. This 1s
contemplated by and 1s within the scope of the claims.

In the preceding detailed description, reference 1s made to
the accompanying drawings which form a part hereof
wherein like numerals designate like parts throughout, and
in which 1s shown, by way of illustration, embodiments that
may be practiced. It 1s to be understood that other embodi-

10

15

20

25

30

35

40

45

50

55

60

65

22

ments may be utilized and structural or logical changes may
be made without departing from the scope of the present
disclosure. Theretfore, the preceding detailed description 1s
not to be taken m a limiting sense, and the scope of
embodiments 1s defined by the appended claims and their
equivalents.

Various aspects of the illustrative embodiments have been
described using terms commonly employed by those skilled
in the art to convey the substance of their work to others
skilled 1n the art. However, 1t will be apparent to those
skilled 1n the art that alternate embodiments may be prac-
ticed with only some of the described aspects. For purposes
ol explanation, specific numbers, materials, and configura-
tions are set forth 1n order to provide a thorough understand-
ing of the illustrative embodiments. However, it will be
apparent to one skilled in the art that alternate embodiments
may be practiced without the specific details. In other
instances, well-known features have been omitted or sim-
plified 1n order not to obscure the illustrative embodiments.

Various operations have been described as multiple dis-
crete operations, 1n turn, in a manner that 1s most helpful 1n
understanding the illustrative embodiments; however, the
order of description should not be construed as to imply that
these operations are necessarily order dependent. In particu-
lar, these operations need not be performed 1n the order of
presentation. Further, descriptions of operations as separate
operations should not be construed as requiring that the
operations be necessarily performed independently and/or
by separate entities. Descriptions of entities and/or modules
as separate modules should likewise not be construed as
requiring that the modules be separate and/or perform sepa-
rate operations. In various embodiments, 1llustrated and/or
described operations, entities, data, and/or modules may be
merged, broken into further sub-parts, and/or omitted.

The phrase “in one embodiment™ or “in an embodiment™
1s used repeatedly. The phrase generally does not refer to the
same embodiment; however, 1t may. The terms “compris-
ing,” “having,” and “including” are synonymous, unless the

context dictates otherwise. The phrase “A/B” means “A or
B.” The phrase “A and/or B” means “(A), (B), or (Aand B).”

The phrase “at least one of A, B and C” means “(A), (B), (C),
(A and B), (Aand C), (B and C) or (A, B and C).”

What 1s claimed 1s:

1. One or more non-transitory computer-readable media
having a plurality of executable instructions embodied
thereon, which, when executed by one or more processors,
cause the one or more processors to perform operations
comprising;

recerving an 1mage, wherein the image has corresponding

location information;

recerving a set of renders based on a terrain model, the set

of renders related to the location information of the
1mage;

determiming keypoints from the image and each of the set

of renders;

generating, with a trained model, a first set of descriptors

including a descriptor for each keypoint from the 1mage
and a second set of descriptors including a descriptor
for each keypoint from the set of renders, the trained
model trained, using a cross-domain embedding func-
tion, to align an input 1mage to at least a portion of a
terrain model;

identifying candidate renders from the set of renders

based on comparing the first set of descriptors related
to the 1image with the second set of descriptors related
to the set of renders; and
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estimating camera pose related to the image using known
camera pose iformation related to the candidate ren-
ders.

2. The media of claim 1, the operations further compris-
ng: 5

generating the set of renders, each of the set of renders

comprising a rendered 1mage with a filed-of-view of
sixty degrees rotated by thirty degrees around a vertical
axis.

3. The media of claim 1, the operations further compris-
ng:

extracting 1image patches based on the determined key-

points from the 1mage;

extracting render patches based on the determined key-

points from the set of renders; and

inputting the image patches and render patches into a

trained model related to the cross-domain embedding
function to generate the descriptors for each keypoint.

4. The media of claim 1, the operations further compris-
ng:

generating an augmented 1mage using the camera pose

related to the image, wherein the augmented image
comprises the image and an overlay of augmentation
information.

5. The media of claim 4, wherein the augmentation
information comprises at least one of contour lines, gravel
roads, and trails.

6. The media of claim 4, further comprising:

outputting the augmentation image for display via a

device.

7. The media of claim 1, the operations further compris-
ng:

training a model related to the related to the cross-domain

embedding function.

8. The media of claim 7, further comprising:

generating training data to train the model, wherein the

training data comprises aligned pairs of traiming 1mages
and training renders based on the terrain model.

9. A computer-implemented method, the method compris-
ng:

receiving one or more 1image patches related to an 1mage,

wherein the 1mage has corresponding location infor-
mation;
receiving one or more render patches related to a set of
renders based on a terrain model, the set of renders
related to the location information of the image;

generating, with a trained model, a first set of descriptors
including a descriptor for each of the one or more
image patches and a second set of descriptors including
a descriptor for each of the one or more render patches,
the tramned model trained, using a cross-domain embed-
ding function, to align an mput 1mage to at least a
portion of a terrain model;

identifying candidate renders from the set of renders

based on comparing the first set of descriptors related
to the 1image with the second set of descriptors related
to the set of renders; and

estimating camera pose related to the 1image using known

camera pose information related to the candidate ren-
ders.

10. The computer-implemented method of claim 9, fur-
ther comprising:

generating the set of renders, each of the set of renders

comprising a rendered 1mage with a filed-of-view of
sixty degrees rotated by thirty degrees around a vertical 65
axis.
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11. The computer-implemented method of claim 9, further
comprising;

determining the image patches based on 1mage keypoints

in the 1image; and

determiming the render patches based on render keypoints

in the set of renders.

12. The computer-implemented method of claim 11, fur-
ther comprising:

generating an augmented 1mage using the camera pose

related to the image, wherein the augmented image
comprises the image and an overlay of augmentation
information; and

outputting the augmentation image for display via a

mobile device.

13. The computer-implemented method of claim 12,

wherein the augmentation information comprises at least

one of contour lines, gravel roads, and trails.

14. The computer-implemented method of claim 9,
wherein estimating the camera pose further comprises:

matching two-dimensional points of the candidate renders

in relation to a three-dimensional model using rendered
camera parameters and a depth map related to the
candidate renders; and

determining the camera pose for the image with respect to

the three-dimensional model.

15. The computer-implemented method of claim 9, fur-
ther comprising:

training a model related to the cross-domain embedding

function.

16. The computer-implemented method of claim 185,
wherein the model 1s trained using a neural network cor-
rected using cross-domain triplet loss.

17. The computer-implemented method of claim 15, fur-
ther comprising:

generating training data to train the model, wherein the

training data comprises aligned pairs of traiming 1mages
and training renders based on the terrain model.
18. A computing system comprising;
generating, using a trained model, one or more 1mage
descriptors related to an i1mage, the trained model
trained, using a cross-domain embedding function, to
align an mput 1image to at least a portion of a terrain
model, and wherein the 1mage 1s of an outdoor scene 1n
a location;

matching the one or more 1image descriptors related to the
image with one or more render descriptors related to a
set of renders generated based on the terrain model, the
set of renders related to the location of the 1image; and

estimating a camera pose for the image based on the one
or more render descriptors matched to the one or more
image descriptors.

19. The system of claim 18, further comprising:

generating training data for training a model related to the
cross-domain embedding function; and

training the model related to the cross-domain embedding
function.

20. The system of claim 18, further comprising:

generating an augmented 1mage using the camera pose
related to the image, wherein the augmented 1mage
comprises the image and an overlay of augmentation
information; and

displaying the augmentation image.
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It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 23, Line 33: In Claim 7, delete “related to the related to the” and insert -- related to the --.
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