US011593483B2

a2y United States Patent (10) Patent No.: US 11,593,483 B2

Liu et al. 45) Date of Patent: *Feb. 28, 2023

(54) GUARDER: AN EFFICIENT HEAP (58) Field of Classification Search
ALLOCATOR WITH STRONGEST AND CPC GO6F 9/485; GO6F 9/5016; GO6F 12/0646:
TUNABLE SECURITY GO6F 12/023; GO6F 2212/1052; GO6F
2212/083; GO6F 21/52; GO6F 21/566

(71) Applicant: The Board of Regents of The

University of Texas System, Austin, (Continued)
IX (US) (56) References Cited
(72) Inventors: Tongping Liu, Belchertown, MA ‘(US); U.S PATENT DOCUMENTS
Sam Albert Silvestro, San Antonio, X
(US); Hongyu Liu, Sunnyvale, CA 2007/0234296 A1* 10/2007 Zorn GO6F 11/1494
(US); Tianyi Liu, San Antonio, TX 717/124
(US) 2007/0234297 Al* 10/2007 Zorn GO6F 11/3612
717/124
(73) Assignee: The Board of Regents of The (Continued)
University of Texas System, Austin,
TX (US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Silvestro, Sam, Hongyu Liu, Tiany1 Liu, Zhiqiang Lin, and Tongping
patent i1s extended or adjusted under 35 Liu. “Guarder: A tunable secure allocator.” In 27th USENIX Secu-

U.S.C. 154(b) by 583 days. rity Symposium (USENIX Security 18), pp. 117-133. 2018. (Year:
2018).%

This patent 1s subject to a terminal dis-

claimer. (Continued)

Primary Examiner — Reginald G Bragdon
Assistant Examiner — Aaron D Ho

(22) Filed: Oct. 18, 2019 (74) Attorney, Agent, or Firm — Smith, Gambrell &
Russell LLP

(21) Appl. No.: 16/656,853

(65) Prior Publication Data
(37) ABSTRACT
US 2020/0201997 Al Jun. 25, 2020 _ _ o
Memory allocation techniques may provide improved secu-
Related U.S. Application Data rity and performance: A plethod may comprise mapPing a
block of memory, dividing the block of memory nto a
(60) Provisional application No. 62/781,811, filed on Dec. plurality of heaps, dividing each heap into a plurality of
19, 2018. sub-heaps, wherein each sub-heap 1s associated with one
thread of software executing 1n the computer system, divid-
(51) Int. CL. ing each sub-heap 1nto a plurality of bags, wherein each bag
Goor 12/02 (2006.01) 1s associated with one size class of objects, creating an
GO6E 21/56 (2013.01) allocation buffer and a deallocation bufler for each bag,
(Continued) storing a plurality of objects in at least some of the bags,
(52) U.S. CL wherein each object 1s stored 1n a bag having size class
CPC GO6F 21/566 (2013.01); GO6F 9/485 corresponding to a size of the object, storing 1n the allocation
(2013.01); GO6F 9/5016 (2013.01); buffer of each bag information relating to available objects
(Continued) (Continued)

202
REQUEST LARGE BLOCK OF
MEMORY

l

204
DIVIDE HEAP INTO sUB-
HEAPS

l

208
DIVIDE SUB-HEAPS INTO
BAGS IN RANDOMIZED
ORDER

l

208
ORGANIZE INTO SIZE
CLASSES

l

210
PAIR BAGS WITH
ALLOCATION BUFFERS AND
DE-ALLOCATION BUFFERS

200 / l

212
FILL AND FREE ALLOCATION
AND DE-ALLOCATION
BUFFERS

US 11,593,483 B2
Page 2

stored 1n that bag, and storing 1n the deallocation bufller of
cach bag information relating to freed objects that were
stored 1n that bag.

18 Claims, 6 Drawing Sheets

(51) Int. CL

GO6F 9/50 (2006.01)
GOGF 9/48 (2006.01)
GO6F 12/06 (2006.01)
GO6F 21/52 (2013.01)
(52) U.S. CL
CPC ... GO6F 12/0646 (2013.01); GO6F 21/52

(2013.01); GO6F 12/023 (2013.01); GOG6F
2212/1052 (2013.01); GO6F 2221/033
(2013.01)

(58) Field of Classification Search
USPC e 711/170

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0168552 Al* 7/2008 Devendran GOOF 21/79
726/17

2010/0211756 Al* 8/2010 Kamunski GOoF 12/023
711/E12.001

2012/0185700 Al* 7/2012 Vidrine GO6F 21/52
717/148

2014/0348101 Al* 11/2014 Wang HO4W 88/08
370/329

2016/0004861 Al* 1/2016 Momot GO6F 21/552
726/23

2017/0061012 Al* 3/2017 Bortnikov GO6F 16/951
2018/0052662 Al* 2/2018 Dale ..., GOOF 7/582
2019/0065152 Al* 2/2019 Jaroch GOOF 7/588

2019/0073481 Al* 3/2019 Angelino GOO6F 8/65
2020/0026847 Al* 1/2020 Bottioocevvvvnnnnn, GOo6F 21/604
2020/0097392 Al* 3/2020 Pizlo GO6F 12/0826

OTHER PUBLICATTIONS

Sam Silvestro, Hongyu Liu, Corey Grosser, Zhiqiang Lin, and
Tongping Liu. 2017. FreeGuard: A Faster Secure Heap Allocator. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security (CCS ’17). Association for Comput-

ing Machinery, New York, NY, USA, 2389-2403. (Year: 2017).*
Akritidis, Periklis. “Cling: A memory allocator to mitigate dangling
pointers.” In 19th USENIX Security Symposium (USENIX Secu-
rity 10). 2010. (Year: 2010).*

Novark, Gene, and Emery D. Berger. “DieHarder: securing the
heap.” In Proceedings of the 17th ACM conference on Computer
and communications security, pp. 573-584. 2010. (Year: 2010).*
Y1 Feng and Emery D. Berger. 2005. A locality-improving dynamic
memory allocator. In Proceedings of the 2005 workshop on Memory
system performance (MSP *05). Association for Computing Machin-
ery, New York, NY, USA, 68-77. DOIhttps://do1.org/10.1145/
1111583.1111594 (Year: 2005).*

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy
Blelloch. 2016. Hierarchical memory management for parallel
programs. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming (ICFP 2016). Assoclation
for Computing Machinery, New York, NY, USA, 392-406 (Year:
2016).*

Q. Zeng, M. Zhao and P. Liu, “HeapTherapy: An Eflicient End-to-
End Solution against Heap Bufier Overflows,” 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, 2015, pp. 485-496, do1: 10.1109/DSN.2015.54. (Year:
2015).%

Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos,
and Crstiano Guuilnda. 2018. Delta pointers: bufler overflow
checks without the checks. In Proceedings of the Thirteenth EuroSys
Conference (EuroSys ’18). Association for Computing Machinery,
New York, NY, USA, Article 22, 1-14. (Year: 2018).*
Marco-Gisbert, Hector, and Ismael Ripoll. “On the Effectiveness of
Full-ASLR on 64-bit Linux.” In Proceedings of the In-Depth
Security Conference. 2014. (Year: 2014).*

* cited by examiner

001
\

US 11,593,483 B2

104rdo

dd41vOO0T1Vv
ANVO L

Sheet 1 of 6

104rdo 104rdo

ddd44
V801

dd1lvOO 11V
440

Feb. 28, 2023

y344Ng W y344ng oLl
NOILYDOT1v-3a | NOILYOOT1TV
901 201

U.S. Patent

["SI

U.S. Patent Feb. 28, 2023 Sheet 2 of 6 US 11,593.483 B2

Fig. 2

202
REQUEST LARGE BLOCK OF
MEMORY

204

DIVIDE HEAP INTO SUB-
HEAPS

206
DIVIDE SUB-HEAPS INTO
BAGS IN RANDOMIZED
ORDER

208
ORGANIZE INTO SIZE
CLASSES

210
PAIR BAGS WITH
ALLOCATION BUFFERS AND
DE-ALLOCATION BUFFERS

200 /

212

FILL AND FREE ALLOCATION
AND DE-ALLOCATION

BUFFERS

IN-80¢€

US 11,593,483 B2

A VP ¢ ¢ 1 01147 t ¢ 1 O
q+9:sse[)
- W peaIy |
>
er;
w h@@%ﬁm OO——@Q hﬁﬁﬁohwo .MD.%,%.Sm QQ:J\
7
T T
(NN [
m., Sl
S| avosserd TR
=
S w peary

deoy

N-0€E c0¢€ i\

U.S. Patent

=

[

h’

.Ho(m:m JO[[3(] Te[nalr))

-1

d95C-558])

My

o

TR

90€
3
N |

v\ 00¢€

1-80¢

o
——

0 T-143¢

.a,unm 00[[Y

]
L

as
=

[peasy],

l-v0¢

¢ "1

-
~
g
—

e
0
R

-
3
=

g
2
S

[D

91 :SSe]D
1 peaIy[

U.S. Patent Feb. 28, 2023 Sheet 4 of 6 US 11,593.483 B2

<
- ?SLP'G

[

L }&é&\}%ﬂ%ﬂ@%@%ym}m: E’S

. :
S

'\5»- N \%‘g\,}\&

B E* mmmmwmw 3
- égmmmm
g\‘;“ -;----~\m\>\@\;\m\}wﬁx\w\}\@\;\m\w =

hmwx\m@m 3
u——-—-————-n—n—m— «

o wmmmmm §

<t 3
~ | m}x\‘,\f\vmxxm\fwx\v\z\» ol
\,L N x,' S \Z \,‘ xu\m' \,' ’L \,‘ \Z "\:}k,,‘ N \,f' W

x\\\\\xﬂ.\\\ﬂx}s\}'\}.\x\ﬁ\}'\\}\}*

.

~ FreeGuard = Guarder

S S S S S s
P N NN N NI IS S

: mmmmmﬁnuumlnl.nmmw -
: Tﬁ;\%\é\ E\Eﬁ%\%\ﬁ\;\z‘%\;\k\%\aﬁ ;\h\%\a\% ’Q\’Q

Soms ;mg%—gﬁmw = ﬁf”“; o o
ggg;}%%x}} S0 (O

NI mé%mm
5@ Lo & }?:-x\}:- SN x\»mm
ﬂjf*« sf-jﬂﬂ;wwm “%Mh}a %‘é‘}a N E EE W
I E{% TS ’@c‘
#xx%&mwf_mm mﬁ
m@;@ﬁmm '

o i x mm:*\u*gﬁ; H:; t__‘aﬁ X _‘5_.‘:_?‘. SRR

41’2
4R FESESIER

Fig. 4
7 OpenBSD

L

()l

™ DieHarder

& Default

<t 0 N — O\ 0~ O N A e O
T) —

st o
— = I o TR i s S e S o S R e R

AWNUNY PAZI[BULION]

U.S. Patent Feb. 28, 2023 Sheet 5 of 6 US 11,593.483 B2

F

r
J“—
-

r

r

bl

F

! L 1

- 3
-__M

| V////’//m
D R o e e avav. e
__M

5 R A v av eV avaviie
g———Mm
: 777777
—__ "

B

B
Size Class

Y DieHarder X1 OpenBSD &3 FreeGuard M Guarder

Average Allocation Entropy by Size Class of Secure Allocators

Vo v,

: | .////9{\ —
Q) |

T -—— =

////099g ;

——— o

F’/(/W S

I -

P e ot o s

I -

;////}WW e

é I R -

r////WW q

z N R S -

///%}WW =

v e O s & G\ -

14

N
—

10 -

(s11q) Adonuyg

U.S. Patent Feb. 28, 2023 Sheet 6 of 6 US 11,593,483 B2

Fig. 6
600
COMPUTER SYSTEM
610
604 602A 602N 606 .
INPUT/ || CPU |®@ ®@ ®| CPU | |NETWORK NETWORK
ADAPTER
608
MEMORY

612

ALLOCATION ROUTINES AND BUFFERS
612

DE- ALLOCATION ROUTINES AND BUFFERS

614
SUPERHEAP

616A
HEAP

618A-X
SUB-HEAP

620A-Y
BAG

B622A-7
OBJECT

HEAP

US 11,593,483 B2

1

GUARDER: AN EFFICIENT HEAP
ALLOCATOR WITH STRONGEST AND
TUNABLE SECURITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/781,811, filed Dec. 19, 2018, the con-
tents of which are incorporated by reference herein 1n their
entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
Grant Number 1566134, awarded by the National Science
Foundation. The government has certain rights 1n the inven-
tion.

FIELD OF TECHNOLOGY

The present mvention relates to the technical field of
memory allocation 1n software.

BACKGROUND OF THE INVENTION

Many software programs, such as web browsers, network
servers, etc., often require dynamically managed heap
memory. However, it 1s very challenging to guarantee heap
security. A range of heap vulnerabilities, such as heap
overreads, heap over-writes, use-alter-frees, invalid-frees,
and double-frees, still plague applications written in, for
example, the C/C++ languages. Such heap vulnerabilities
not only cause unexpected program behavior, but may also
lead to security breaches, including information leakage and
control flow hyjacking. For example, the Heartbleed bug, a
bufler over-read problem 1n the OpenSSL cryptography
library, may result 1n the leakage of sensitive private data.
Another example of a recent buller overtlow problem 1s the
WannaCry ransomware attack, which takes advantage of a
vulnerability 1nside the Server Message Block, aflecting a
series of Windows versions. Heap vulnerabilities still widely
exist 1n different types of in-production software. Table 1
shows some recently reported examples.

TABLE 1

Vulnerability Occurrences (#)

Heap Overflow 673
Heap Over-read 125
Invalid-iree 35
Double-free 33
Use-after-free 264

Secure memory allocators typically serve as the first line
ol defense against heap vulnerabilities. However, existing
secure allocators, such as the OpenBSD allocator
(“OpenBSD”), DieHarder, Cling, and FreeGuard, possess
their own deficiencies.

First, these allocators provide either low randomization
entropy, or cannot support a stable randomization guarantee,
which indicates they may not eflectively defend against heap
overtlows and use-after-free attacks. Cling does not provide
any randomization, while FreeGuard only provides two bits
of entropy. Although OpenBSD and DieHarder supply
higher entropy levels, their entropies are not stable, and vary

10

15

20

25

30

35

40

45

50

55

60

65

2

across different size classes, execution phases, iputs, and
applications. Typically, their entropies are inversely propor-

tional to an object’s size class. For mstance, OpenBSD has
the highest entropy for 16 byte objects, with as many as 10
bits, while the entropy for objects with 2048 bytes 1s at most
3 bits. Therefore, attackers may exploit this fact to breach
security at the weakest point.

Second, existing allocators cannot easily change their
security guarantees, which prevents users from choosing
protection based on their budget for performance or memory
consumption. For instance, their randomization entropy 1s
primarlly limited by bag size (e.g. DieHarder and
OpenBSD), or the number of free lists (e.g. FreeGuard). For
instance, simply incrementing FreeGuard’s entropy by a
single bit may significantly increase memory consumption,
due to doubling 1ts number of free lists.

Third, existing secure allocators have other problems that
may aflect their adoption. Both OpenBSD and DieHarder
impose large performance overhead, with 31% and 74% on
average. Also, they may slow down some applications by 4x
and 9x respectively, as shown 1n FIG. 4. This prohibitively
high overhead may prevent their adoption i performance-
sensitive scenarios. On the other hand, although FreeGuard
1s very ellicient, 1ts low entropy and deterministic memory
layout make 1t an easier target to attack.

Accordingly, a need arises for memory allocation tech-
niques that provide improved security and performance.

SUMMARY OF THE INVENTION

The techmiques described herein may include memory
allocation techniques that provide improved security and
performance. For example:

The techniques described herein may provide a novel
allocator that provides a strong security guarantee, but
without compromising performance. The present techniques
may support the necessary security features of existing
secure allocators, and may offer improved randomization
entropy stably. In addition, the present techniques may allow
users to specily their desired security guarantee.

In an embodiment, a method implemented 1n a computer
system 1ncluding a processor and a memory may comprise
mapping a block of memory, dividing the block of memory
into a plurality of heaps, dividing each heap into a plurality
of sub-heaps, wherein each sub-heap 1s associated with one
thread of soitware executing 1n the computer system, divid-
ing each sub-heap into a plurality of bags, wherein each bag
1s associated with one size class of objects, creating an
allocation bufler and a deallocation bufler for each bag,
storing a plurality of objects 1n at least some of the bags,
wherein each object 1s stored 1 a bag having size class
corresponding to a size of the object, storing 1n the allocation
bufler of each bag information relating to available objects
stored 1n that bag, and storing 1n the deallocation builer of
cach bag information relating to ireed objects that were
stored 1n that bag.

In embodiments, the method may further comprise ran-
domizing the order of bags within each sub-heap associated
with each thread of software executing in the computer
system. The method may further comprise randomly 1nsert-
ing a plurality of guard pages within each bag. A number of
guard pages to be mserted 1s customizable. The method may
turther comprise maintaining object status metadata for each
object, 1 response to allocation of an object by a program,
marking the object status metadata for the object as in-use,
and 1n response to deallocation of an object by the program,
determining whether the deallocation 1s mvalid or double-

US 11,593,483 B2

3

free, and when the deallocation 1s invalid or double-free,
halting execution of the program. The method may further
comprise maintaining a plurality of bump pointers for each
s1ze class of each per-thread heap, which always point to a
first never-allocated object.

In an embodiment, a system may comprise a processor,
memory accessible by the processor, and program instruc-
tions and data stored in the memory, the program instruc-
tions executable by the processor to perform: mapping a
block of memory, dividing the block of memory mnto a
plurality of heaps, dividing each heap into a plurality of
sub-heaps, wherein each sub-heap 1s associated with one
thread of software executing 1n the computer system, divid-
ing each sub-heap into a plurality of bags, wherein each bag
1s associated with one size class of objects, creating an
allocation bufler and a deallocation bufler for each bag,
storing a plurality of objects 1n at least some of the bags,
wherein each object 1s stored 1 a bag having size class
corresponding to a size of the object, storing 1n the allocation
builer of each bag information relating to available objects
stored 1n that bag, and storing 1n the deallocation bufler of
cach bag information relating to freed objects that were
stored 1n that bag.

In an embodiment, a computer program product may
comprise a non-transitory computer readable medium stor-
ing program instructions that when executed by a processor
perform: mapping a block of memory, dividing the block of
memory 1nto a plurality of heaps, dividing each heap 1nto a
plurality of sub-heaps, wherein each sub-heap 1s associated
with one thread of software executing in the computer
system, dividing each sub-heap into a plurality of bags,
wherein each bag 1s associated with one size class of objects,
creating an allocation bufler and a deallocation bufler for
cach bag, storing a plurality of objects 1n at least some of the
bags, wherein each object 1s stored in a bag having size class
corresponding to a size of the object, storing 1n the allocation
bufler of each bag information relating to available objects
stored 1n that bag, and storing 1n the deallocation buifer of
cach bag information relating to freed objects that were
stored 1n that bag.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner 1n which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, brietly summarized
above, may be had by reference to embodiments, some of
which are illustrated 1n the appended drawings. It 1s to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and the invention may
admuit to other equally effective embodiments.

FIG. 1 1s an exemplary block diagram of secure allocation
memory layout.

FIG. 2 1s an exemplary flow diagram of a secure alloca-
tion process.

FIG. 3 1s an exemplary block diagram of secure allocator
operation.

FI1G. 4 1llustrates an example of performance overhead of
secure allocators.

FIG. § illustrates an example of average randomization
entropies of existing secure allocators.

FIG. 6 1s an exemplary block diagram of a computer
system 1n which embodiments of the present techniques may
be implemented.

10

15

20

25

30

35

40

45

50

55

60

65

4

Other features of the present embodiments will be appar-
ent from the Detailed Description that follows.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1

In the following detailed description of the preferred
embodiments, reference 1s made to the accompanying draw-
ings, which form a part hereot, and within which are shown
by way of illustration specific embodiments by which the
invention may be practiced. It 1s to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the invention.
Electrical, mechanical, logical, and structural changes may
be made to the embodiments without departing from the
spirtt and scope of the present teachings. The following
detailed description 1s therefore not to be taken 1n a limiting
sense, and the scope of the present disclosure 1s defined by
the appended claims and their equivalents.

An exemplary block diagram of secure allocation memory
layout 100 1s shown in FIG. 1. Embodiments of the present
systems and methods may utilize an allocation bufler 102 to
track available objects 104 A-M for each size class, then may
randomly choose one object from the bulfler upon each
allocation. The allocation buller may be dynamically filled
using both new and recently-freed objects on-demand,
avoiding this decrease of entropy. The allocation bufler may
simultaneously satisity the following properties: (1) The
bufler size may be easily adjusted, where a larger size will
provide a higher randomization entropy; (2) The bufler size
may be defined independently from any size class 1n order
to provide stable entropy for objects of diflerent size classes;
(3) It 1s very eflicient to locate an 1tem inside the butler, even
when given an index randomly; (4) It 1s more eflicient to
search for an available object by separating available objects
from the large amount of 1n-use ones.

However, although 1t 1s possible to place deallocated
objects into the allocation bufler directly, it can be very
expensive to search for an empty slot 1n which to do so. In
addition, 1t 1s diflicult to handle a freed object when the
allocation bufler 1s full. Instead, embodiments may utilize a
separate deallocation builer 106 to track freed objects 108 A-
N: freed objects 108A-N may be recorded into the deallo-
cation builer 106 sequentially, which will be more eflicient
due to avoiding the need for searching; these freed objects
will be moved to the allocation bufler upon each allocation,
and 1n a batched mode when the allocation butler 1s reduced
to half-tull. More implementation details are described
below.

The combination of allocation and deallocation builers
also seamlessly integrates with other customization mecha-
nisms, such as guard pages and overprovisioning. When
filling the allocation bufler with new heap objects, embodi-
ments may maintain a bump pointer 110 that always refers
to the next new object at the top of the heap. It will skip all
objects tied to randomly-selected guard pages (and set them
as non-accessible), and randomly skip objects 1n proportion
to the user-defined over-provisioning factor. This mecha-
nism ensures these skipped objects will never participate in
future allocations and deallocations.

Embodiments may utilize multiple mechanisms to further
improve performance. Embodiments may utilize a novel
heap layout to quickly locate the metadata of each freed
object 1n order to detect double and 1mvalid frees. Embodi-
ments may minimize lock acquisitions to further improve
scalability and performance. Embodiments may utilize man-
age pointers to available objects directly within the alloca-

US 11,593,483 B2

S

tion buller, removing a level of indirection compared to
existing bitmap based (for example, DieHarder or
OpenBSD) or {free-list-based (for example, FreeGuard)
approaches. Embodiments may also overcome the short-
comings ol a deterministic layout by constructing per-thread
heaps randomly.

Embodiments may provide a stable and tunable security
guarantee. For example, customizable security guarantees
on randomization entropy, guard pages, and over-provision-
ing may be provided, which allows users to choose the
appropriate security level based on their performance or
memory budget. Embodiments may implement a combina-
tion of allocation and deallocation buflers to support its
customizable security. Embodiments may implement all
necessary security features of existing secure allocators, and
provides around, for example, 9.89 bits of entropy, while
only imposing less than, for example, 3% performance
overhead and, for example, 27% memory overhead when
compared to the, for example, default Linux allocator.

Security
Features

BIBOP style

Fully-
segregated
metadata
Destroy-on-
free

Guard pages

Randomized

allocation

Over-
provisional
allocation

10

15

Check canaries

on free

Randomization

entropy™®

Heap Vulnerabilities. Heap vulnerabilities that can be
defended or reduced by embodiments of the present systems
and methods may include bufler overtlows, use-aiter-irees,
and double/invalid frees. These memory vulnerabilities can
result 1n information leakage, denial-of-service, illegitimate
privilege elevation, or execution of arbitrary code. A bufler
overtlow occurs when a program reads or writes outside the
boundaries of an allocated object, which further includes
bufler undertlows. Use-alter-free occurs when an applica-
tion accesses memory that has previously been deallocated,
and has possibly been reutilized for other live objects. A
double-free problem takes place when an object 1s freed
more than once. Finally, an mvalid-free occurs when an
invalid pointer 1s passed to heap deallocation functions.

Threat Model—an example of a threat model 1s as fol-
lows. First, assume the underlying OS (for example, Linux,
WINDOWS®, etc.) 1s trusted. However, the ASLR mecha-
nism 1s not necessarily required to be valid, since embodi-
ments may manage memory allocations using a separate
randomization mechanism, making its layout dificult to
predict even 1 ASLR 1n the underlying OS is broken.

Second, assume that the platform will use a 64-bit virtual
address space, 1 order to support the specific layout of this

45

50

55

60

65

6

allocator. For a target program, the present techniques may
assume the attacker may obtain the source code of the target
program, such that they may know of possible vulnerabili-
ties within. The present techniques may further assume the
attackers have no knowledge related to the status of the
heap, and cannot take control of the allocator. They cannot
utilize a data leakage channel, such as /proc/pid/maps, to
discover the location of metadata (in fact, such a leakage
channel can be easily disabled). The present techniques may
also assume the attackers cannot interfere with the memory
management of the allocator, such as by hacking the random
generator. Otherwise, they would be able to change the order
of memory allocations to increase their predictability.

Given these assumptions, the present techniques may
provide defense against a wide range of heap vulnerabilities,
such as heap overtlows, use-after-frees, double and 1nvalid
frees, as well as reduce heap spraying attacks. The present
techniques may implement almost all security features of
existing secure allocators, as listed 1n Table 2.

TABLE 2

Security Benefit DieHarder OpenBSD FreeGuard GUARDER

Defends against Has Has Has Has

metadata-based attacks
Defends against
metadata-based attacks

Has Has Has Has

Exposes un-initialized Has Optional Optional Optional
reads or use-after-frees
Defends against buffer
over-reads and over-
writes Defends against
heap spraying
Increases attack
complexity of
overflows and UAFs
Mitigates harmiul

effects of overtlows

Weak Has Has Has

Has Has Has Has

Has Has

Early detection of Weak Has Has
overtlows
Increases attack

complexity

O(logN) 2-10 2.01 F

Table 2 shows a comparison of security features of existing
secure allocators. Table 2, indicates whether the allocator
has the indicated feature, whether the allocator has a weak
implementation of the indicated feature, or whether the
allocator optionally has the feature.

In embodiments, the only feature disabled by default may
be destroy-on-iree. This feature may not be necessary, since
the strong randomization of embodiments of the present
systems and methods will decrease the predictability of
every allocation, which will significantly decrease the
exploitability of dangling pointers and makes meaningful
information leakage much more diflicult. Compared to exist-
ing solutions, embodiments of the present systems and
methods may significantly increase randomization (for
example, entropy may be increased by 7.8 bits, over 200
times), may adopt the over-provisional mechanism, and may
discard a deterministic layout. Additionally, embodiments of
the present systems and methods may support customizable
security guarantees, without changing code or recompiling,
which allows users to specily their desired level of security
by setting the corresponding environment variables.

Embodiments of the present systems and methods, as a
shared library, may be preloaded to replace the default

US 11,593,483 B2

7

allocator, and may intercept all memory management func-
tions of applications automatically. Embodiments may not
target support for applications with their own custom allo-
cators, although these applications may be changed to use
standard memory functions i order to benefit from the
present techniques.

Embodiments of the present systems and methods may
employ different mechanisms for managing small and large
objects. Embodiments of the present systems and methods
may borrow existing mechanisms for handling large objects,
but may define large objects as those larger than 512
kilobytes. A major contribution of the present techniques lies
in its management of small objects; 1n fact, most objects
belong to this class, and have a dominant impact on appli-
cation performance.

An exemplary flow diagram of a secure allocation process
200 1s shown 1 FIG. 2. It 1s best viewed 1n conjunction with
FIG. 3, which 1s an exemplary block diagram of secure
allocator operation 300. In order to reduce the performance
overhead caused by a high number of mmap system calls, at
202, embodiments may request a large block of memory
once from the underlying OS to serve as the heap 302. Then,
at 204, embodiments may divide the heap to multiple
per-thread sub-heaps 304-1-304-M. At 206, each sub-heap
will be further divided into a set of bags 306 1n randomized
order, as described below. At 208, objects may be organized
into power-ol-two size classes 308-1-308-M, starting from,
for example, 16 bytes and ending with 512 KB, and places
metadata 1n a separate location. Each bag may have the same
s1ze, such as 4 GB. Due to the vast address space of 64-bit
machines, the address space should accommodate all types
ol applications.

Per-thread design: Embodiments may employ a per-
thread heap design such that each thread has 1ts own heap
segment, and always returns ireed objects to the heap
belonging to the current thread. There 1s no need for embodi-
ments to acquire locks upon allocations and deallocations,
which avoids lock acquisition overhead and prevents poten-
tial lock contention. However, this design may introduce
memory blowup, where memory consumption 1S unneces-
sarily increased because freed memory cannot be used to
satisty future memory requests. Embodiments may include
mechanisms to alleviate this problem, as described below.

Obfuscating bag order: At 206, embodiments may ran-
domize the order of bags within each per-thread sub-heap.
To shuflle the ordering of size classes, embodiments may
employ a hash map to manage the relationship between each
bag and its metadata. Further, metadata may be randomly
allocated using mmap system calls, rather than using a
pre-allocated block. More importantly, embodiments may
utilize separate allocation and deallocation buflers for each
size class of each thread, which 1s a difference between
embodiments of the present systems and methods and other
secure allocators. This design allows embodiments to sup-
port multiple customizable security features, including the
over-provisioning mechanism that, for example, OpenBSD
and FreeGuard do not support.

Allocation butler. At 210, each bag may be paired with an
allocation bufler that holds the addresses of available objects
in the bag. This allocation bufler may support a user-defined
entropy. For example, if E 1s the desired entropy, then
allocating an object randomly from 2” objects will guarantee
E bits of entropy.

Embodiments may design the allocation butiler as follows:
the allocation buffer capacity may be set to 2°*' (not 2”), to
ensure 1t will never fall below half-full. This design guar-
antees one out of at least 2 objects will be chosen randomly

10

15

20

25

30

35

40

45

50

55

60

65

8

upon each allocation request, and reduces the number of
filling operations by using double this size. The allocation
bufler will be filled by objects from a separate deallocation
bufler, described below, or from new heap objects.
Circular deallocation buffer. Further at 210, embodiments
may utilize a separate deallocation bufler to track freed
objects for a given thread and size class. This design,
separating the activities of allocations and deallocations into
two different buflers, benefits performance, since freed
objects can be recorded sequentially i the deallocation
bufler. Because there 1s no need to search for an available
slot, the deallocation step will be completed 1n constant

time.

At 212, the allocation bufler may be filled after each
allocation 11 at least one free object exists 1n the correspond-
ing deallocation bufler. The empty slot created by the
allocation may be filled immediately, which helps reduce the
number of trials needed to find an available object during
allocations. The allocation bufler may also be filled when the
number of available objects falls below 2%, in order to ensure
the randomization guarantee. In this case, freed objects from
the deallocation bufler will be utilized first, followed by
those from a global object bufler. It this 1s still mnsufficient,
new objects from the associated per-thread heap may be
imported. This design helps minimize the number of
searches upon each allocation, since the allocation butler
will never be less than half-full.

Defending Against Different Attacks. Embodiments may
defend against heap vulnerabilities by employing a combi-
nation of multiple mechanisms.

Defending exploits of bufler overflows. Embodiments
may defend against the exploitation of bufler overflows in
several ways. First, 1ts strong randomization makes attacks
much more difficult, since attackers must know the target
chunk addresses at which to 1ssue attacks. When objects are
highly randomized, 1t 1s extremely diflicult to know where
an allocation will be satisfied, even it source code 1s avail-
able. Second, over-provisioning may tolerate overtlows
landing on unused objects, thus nullifying them. Third,
guard pages can thwart overtlow attempts. Finally, if some
attacks modity the canaries placed at the end of each object,
embodiments may detect such attacks.

Detfending exploits of use-aiter-frees. Similarly, embodi-
ments may defend against such exploits 1n multiple ways.
First, embodiments may separate the metadata from the
actual heap, making 1t impossible to 1ssue use-after free
attacks on free list pointers. Second, its strong randomiza-
tion makes meaningful attacks extremely diflicult, with only
a 0.11% success rate per try due to 1ts 9.8 bits of entropy, as
evaluated 1in Section 5.4. Since each subsequent free 15 a
Bernoulli trial following a geometric distribution, 1t 1s
expected to achieve the first successtul attack after 891 tries.
Finally, unsuccessiul attacks may crash programs inciden-
tally, due to guard pages placed inside, therefore the brute-
force approach may not easily succeed.

Defending exploits of double and invalid frees. As dis-
cussed above, embodiments may detect against every double
and 1nvalid free, due to its custom allocator. Therefore,
embodiments may choose to stop the program immediately
or skip these invalid operations. Therefore, embodiments
may defend against such vulnerabilities.

Implementation Details. Embodiments may support dif-
ferent security mechanisms based on the unique design of
allocation and deallocation buflers. Additionally, embodi-
ments may support certain optimizations to further reduce
performance overhead and memory blowup.

US 11,593,483 B2

9

Customizable Randomization Entropy. Embodiments
may support customizable randomization to meet the vari-
ous performance and security requirements of different
users. As described above, this mechanism may be achieved
by altering the number of entries 1n each allocation butler.
For example, 9 bits of entropy may be chosen by default,
which guarantees that the number of available objects will
never be less than 512 (2°), where each buffer has 1024
entries.

Object selection may be performed as follows: upon every
allocation, a random index into the allocation bufler is
generated. It will then acquire the object address stored at
this index, 11 the object 1s available. If the index refers to an
empty slot (1.e., contains a null value), the allocator will
initiate a forward search starting from the selected index.
The required number of searches 1s expected to be around
two on average, given the fact that the allocation bufler 1s
never less than half-full. However, this i1s actually not true
due to certain worst cases. Therefore, the allocation bufler
may be divided into, for example, eight separate regions, and
may record the number of available objects within each.
Thus, an entire region may be skipped 1f no objects are
present.

Customizable Over-Provisioning. Over-provisioning 1s a
technique 1 which a certain number of heap objects are
designated as never-to-be used. Therefore, an overtlow that
occurs 1 a place containing no useful data can easily be
tolerated. Embodiments may implement over-provisioning,
by controlling the filling step of allocation buflers. For
example, the over-provisioning factor may be set to 15 by
default, resulting in s of objects from each bag being
skipped. This also indicates that a given object may be
pulled into the corresponding allocation bufler with a like-
lihood of 87.5%. However, the naive method of computing
and comparing probabilities for each object 1s too expensive.
Instead, embodiments may utilize an associated overprovi-
sional bufler, with a capacity equal to half the allocation
bufler, in which new objects from a given bag are first
placed. Then, the specified proportion, for example, 15 of
these objects will be deleted from this bufler randomly, and
will never participate 1n future allocations or deallocations.
This method may reduce the amount of computing and
comparing by 74 compared to the naive method. Embodi-
ments utilizing the overprovisional mechanism may signifi-
cantly reduce their memory footprint and cache loadings,
since “skipped” objects will never be accessed 1n the future.

Customizable Guard Pages. Embodiments may place
guard pages within each bag to thwart overtlow or heap
spraying attacks. In contrast, existing techniques, such as
DieHarder cannot place guard pages internally, since every
heap object has some probability of being utilized. For this
reason, DieHarder has a “weak implementation” listed under
“Guard Pages™ 1n Table 2, as 1t cannot stop heap spraying or
bufler overtlow attacks that only occur within each bag.
OpenBSD designs each bag to occupy a single page, which
practically places guard pages between bags.

Embodiments may support a flexible ratio of guard pages,
obtained from an environment variable. When pulling from
new heap objects during the filling procedure, embodiments
may randomly choose which pages to protect, in proportion
to this value. For size classes less than one page, all objects
within the page may be protected. It a size class exceeds one
page, then multiple pages (equaling the size class) may be
protected 1 order to not change the mapping between
objects and their metadata.

Detecting Double and Invalid Frees. Embodiments may
detect double and 1nvalid frees by employing an additional

10

15

20

25

30

35

40

45

50

55

60

65

10

status byte associated with each object. The object status
metadata for each bag are located in a separate area. For each
allocation, embodiments may mark its status as in-use. Upon
deallocation, embodiments may first compute the index of
its status byte, then confirm whether 1t 1s an mvalid or
double-free. If so, 1t will stop the program immediately;
otherwise, 1t will update the status accordingly. Embodi-
ments may detect all double and invalid frees. Due to
complexities brought by memalign, embodiments may treat
any address within a valid object as a valid free, and
consequently frees the object.

Checking Canaries on Free. Embodiments may also uti-
lize canaries to help thwart bufler overtlow attacks. A single
byte placed at the end of every object may be reserved for
use as a canary. This byte may be located beyond the
boundary of the size requested by the application. Upon
deallocation, this byte’s value may be inspected; 1f modified,
this serves as evidence of a buller overflow. Then, embodi-
ments may immediately halt the execution and report to the
user. Embodiments may additionally check the canary val-
ues ol an object’s four adjacent neighbors at the same time,
which provides additional protection for long-lived objects
that may never be freed by the application.

Optimizations. Embodiments may utilize multiple opti-
mizations to further reduce its performance and memory
overhead. To this end, embodiments may also employ, for
example, the Intel SSE2-optimized fast random number
generator (RNG).

Accessing Per-Thread Data. Embodiments may access a
per-thread heap upon every allocation and deallocation.
Theretore, 1t 1s important for embodiments to quickly access
per-thread data. However, the implementation of Thread
Local Storage (TLS) (declared using the *_thread” storage
class keyword) 1s not eflicient, and introduces at least an
external library call, a system call to obtain the thread ID,
and a table lookup. Instead, embodiments may employ the
stack address to determine the index of each thread and fetch
per thread data quickly. Embodiments may allocate a large
block of memory that will be utilized for threads’ stack
arcas. Upon thread creation, embodiments may assign a
specific stack area to each thread, such as its thread index
multiplied by 8 MB. Then, embodiments may obtain the
thread index quickly by dividing any stack ofiset by 8 MB.

Reducing Startup Overhead. In order to support a speci-
fled randomization entropy, embodiments may 1initialize
each allocation buffer with 2°*' objects, then place the
specified ratio of guard pages within. However, some appli-
cations may only utilize a subset of size classes, which
indicates that the time spent placing guard pages 1n unused
bags 1s wasted. Therefore, embodiments may employ on-
demand 1nitialization and only 1initialize the allocation butler
and 1nstalls guard pages upon the first allocation request for
the bag.

Reducing Memory Consumption. To reduce memory con-
sumption, embodiments may return memory to the under-
lying OS when the size of a freed object 1s larger than, for
example, 64 kilobytes, by invoking, for example, madvise
with the MADV_DONTNEED flag. Embodiments may
design a global deallocation bufler to reduce the memory
blowup caused by returning freed objects to the current
thread’s sub-heap. This problem 1s serious for producer-
consumer applications, since new heap objects would con-
tinually be allocated by the producer. If a thread’s deallo-
cation bufler reaches capacity, the thread will attempt to
donate a portion of 1ts free objects to a global deallocation
bufler. Conversely, when a thread has no freed objects 1n its

US 11,593,483 B2

11

deallocation butfler, embodiments may first pull objects from
the global deallocation bufler before attempting to utilize
new heap objects.

Experimental Evaluation. Exemplary experiments were
performed on a 16-core machine, istalled with INTEL
XEON® CPU E3-2640 processors. This machine has 256
GB of main memory and 20 MB of shared L3 cache, while
cach core has a 256 KB L1 and 2 MB L2 cache. The
underlying OS 1s Linux-4.4.25. All applications were com-
piled using GCC-4.9.1, with -O2 and -g flags.

The default settings for each allocator were utilized,
except where explicitly described. By default, embodiments
may use 9 bits of randomization entropy, a 10% proportion
of random guard pages, and a Y3 over-provisioning factor.
OpenBSD’s object junking feature was disabled in order to
provide a fair comparison.

In order to evaluate the performance and memory over-
head of these allocators, experiments were performed on a
total of 21 applications, including 13 PARSEC applications,
as well as Apache httpd-2.4.25, Firefox-52.0, MySQL-
5.6.10, Memcached-1.4.25, SQLite-3.12.0, Aget, Piscan,
and Pbzip2. Note that Firefox uses an allocator based on
jemalloc by detfault, although all figures and tables label 1t as
“Linux” 1n this section. Single-threaded applications, such
as SPEC CPU2006, were not evaluated due to the following
reasons. First, multithreaded applications have become the
norm, resulting from ubiquitous multicore hardware. Sec-
ond, allocators such as DieHarder and OpenBSD have a
severe scalability 1ssue, which cannot be observed using
single threaded applications.

Performance Overhead. To evaluate performance, the
average results of 10 executions were utilized, as shown 1n
FIG. 4, which shows the performance overhead of secure
allocators, where all values are normalized to the default
Linux allocator. DieHarder’s destroy-on-iree feature was
disabled to allow for comparison with embodiments of the
present systems and methods. A value larger than 1.0 rep-
resents a runtime slower than the Linux allocator, while
those below 1.0 are faster. On average, the performance
overhead of these secure allocators are: DieHarder-74%,
OpenBSD-31%, FreeGuard-1%, and embodiments of the
present systems and methods-3% by comparing to the Linux
allocator, while a known performance oriented allocator—
TCMalloc—is shightly faster, with 1.6% performance
improvement. That 1s, embodiments of the present systems
and methods may impose negligible performance overhead,
while providing the strongest security guarantee. Embodi-
ments of the present systems and methods may have per-
formance overhead similar to FreeGuard, but with much
higher randomization entropy and support for heap over-
provisioning, as evaluated and described below. Embodi-
ments of the present systems and methods run faster than
DieHarder and OpenBSD, and why it 1s comparable to
FreeGuard were 1investigated. Two factors may significantly
aflect the performance of allocators.

System call overhead. The first factor 1s the overhead of
system calls related to memory management. These include
mmap, mprotect, madvise, and munmap, however, this data
was omitted due to space limitations. Based on the evalua-
tion, while the actual data 1s omitted due to the space limat,
embodiments of the present systems and methods and Free-
Guard impose much less overhead from mmap system calls,
since they obtain a large block of memory initially 1n order
to reduce the number of mmap calls. Although they impose
more mprotect calls, this evaluation indicates that mprotect
requires only about 4o the time needed to perform an mmap
system call.

10

15

20

25

30

35

40

45

50

55

60

65

12

Heap allocation overhead. The overhead associated with
heap allocations was also evaluated by focusing on the
number of searches/trials performed during allocations and
deallocations, as well as the number of synchronizations. An
allocator will impose more overhead when the number of
searches/trials 1s larger. Similarly, 11 the number of synchro-
nizations (mostly lock acquisitions) 1s larger, the allocator
will also 1impose more overhead.

The average number of trials for allocations and deallo-
cations of each allocator 1s shown in Table 3, where the
Linux allocator and TCMalloc typically only require a single
trial upon each allocation and deallocation. These values
were computed by dividing the total number of trials by the
number of allocations or deallocations. For both allocations
and deallocations, FreeGuard only requires a single trial due
to 1ts free-list-based design. In comparison, embodiments
may make random selections from allocation buflers that are
consistently maintained to remain at least hali-full. As a
consequence, the average number of allocation *“‘tries” of
embodiments may be about 1.77. Both OpenBSD and Die-
Harder exceed this value, at 3.79 and 1.99, respectively. For
cach deallocation, DieHarder performs 12.4 trials, while
OpenBSD, FreeGuard, and embodiments may only require
a single trial. This large number of trials 1s a major reason
why DieHarder performs much worse than other secure
allocators. During each deallocation, DieHarder will com-
pare against all existing minibags one-by-one to locate the
specific minibag (and mark 1ts bit as free 1nside), loading
multiple cache lines unnecessarily. Embodiments may uti-
lize a special design (see FIG. 2) to avoid this overhead.

TABLE 3
Present
Embodi-
Trials DieHarder OpenBSD FreeGuard — ments
Allocation Average 1.99 3.79 1.77
Maximum 93 45 131
Deallocation Average 12.40 1]
Maximum 141 1

Synchronization overhead can be indicated by the number
of allocations, as shown 1n Table 4. For the other secure
allocators, each allocation and deallocation should acquire a
lock, although FreeGuard will have less contention. In
comparison, embodiments may avoid most lock acquisitions
by always returning freed objects to the current thread’s
deallocation bufler. Embodiments may only mmvolve lock
acquisitions when using the global deallocation bufler,
employed to reduce memory blowup (described above).
This indicates that embodiments may actually imposes less
synchronization overhead than FreeGuard, which 1s part of
reason why GUARDER has a similar overhead to Free-
Guard, while providing a higher security guarantee.

Performance Sensitivity Studies. Further evaluation was
performed into how sensitive performance ol embodiments
of the present systems and methods are to diflerent customi-
zable factors, such as the randomization entropy, the pro-
portion of each bag dedicated to random guard pages, and

the level of heap overprovisioming. The average results of all
applications were shown in Table 4, which shows the
performance sensitivity to each parameter, normalized to the
default settings of embodiments of the present system and
methods and in which EB=Entropy Bits, GPR=Guard Page
Ratio, and OPF=0Over-Provisioning Factor. In Table 4, the

US 11,593,483 B2

13

data 1s normalized to that of the default setting: 9 bits of
randomization entropy, 10% guard pages, and & of over-
provisioning factor.

TABLE 4 5

Entropy (bits) GPR = 10%, OPF = 1%

8 9 10 11 12
1.003 1.000 1.016 1.031 1.047
Guard Page Ratio EB =9, OPF = Y 10
2% 5% 10% 20% 50%
0.987 0.990 1.000 1.016 1.046

Over-provisioning Factor EB = 9, GPR = 10%

LA L/16 L L/ LA

0.998 0.995 1.000 1.001 1.011 15

Randomization Entropy. Different randomization entro-
pies were evaluated, ranging from 8 to 12 bits. As shown in
Table 4, a higher entropy, indicating it 1s harder to be 5,
predicted and more secure, typically implies a higher per-
formance overhead. For instance, 12 entropy bits may
impose 4.7% performance overhead when comparing to the
default setting. With a higher entropy, deallocated objects
have a lower chance to be re-utilized immediately, which ,4
may access more physical memory unnecessarily, causing
more page faults and less cache hits.

14
not as large as expected, as over-provisiomng will not affect
cache utilization when skipped objects are completely

removed from future allocations and deallocations. How-

ever, 1t may cause a much larger performance impact on
DieHarder.

Memory Overhead. Maximum memory consumption
information was collected for all five allocators. For server
applications, such as MySQL and Memcached, memory
consumption was collected via the VmHWM field of /proc/
pid/status file. For other applications, memory consumption
was collected using the maxresident output of the time
utility. To ensure a fair comparison, the canary checking
functionality was disabled for both FreeGuard and embodi-
ments of the present systems and methods (and 1s disabled
by default 1n OpenBSD), since adding even a single-byte
canary may cause an object to be allocated from the next
largest size class.

In total, the memory overhead (shown in Table 5) of
FreeGuard 1s around 37%, while DieHarder and OpenBSD
feature slightly less memory consumption than the Linux
allocator, with —-3% and -6%, respectively. Embodiments
may 1mpose 27% memory overhead on evaluated applica-
tions, when using the default 9 bits of entropy. It especially

imposes more than 4x memory overhead for Swaptions,
MySQL, and SQLite.

TABLE 3
Allocations Deallocations Memory Usage (MB)
Application (#) (#) Linux DieHarder OpenBSD FreeGuard GUARDER
blackscholes 18 14 627 634 628 630 655
bodytrack 424519 424515 34 42 32 63 111
canneal 30728189 30728185 963 1153 828 932 1186
dedup 4045531 1750969 1684 1926 1020 2693 1474
facesim 4729653 4495883 327 377 324 374 491
ferret 137968 137960 66 94 71 100 132
Auidanimate 229992 229918 213 270 235 237 477
freqmine 456 347 1543 1344 1426 1631 1885
raytrace 45037352 45037316 1162 1724 1111 1511 1770
streamcluster 8O0 RROK 111 114 111 117 149
swaptions 48001811 48000397 6 12 7 12 383
VIpS 1422138 1421738 32 37 32 820 104
x264 71120 71111 491 506 497 494 604
Aget 49 24 69 59 32 51 82
Apache 102216 101919 4 5 2 6 12
Firefox 20874509 20290076 159 163 169 163 172
Memcached 7601 76 6 8 4 7 13
MySQL 491544 491433 126 135 277 158 535
Pbzip2 67 61 97 102 99 261 1035
Pfscan 51 15 753 K00 837 803 708
SQLite 1458486 1458447 41 64 35 125 331
Normalized Total 1.00 0.97 0.94 1.37 1.27

Guard Page Ratio. A higher ratio of guard pages will have

a higher chance to stop any brute-force attacks. The pertor-
mance eflects of different ratios of random guard pages,
including 2%, 5%, 10%, 20%, and 50%, were similarly
evaluated. For the 50% ratio, almost every page (or object
with size greater than 4 kilobytes), will be separated by a
guard page. Similarly, a larger ratio of installed guard pages

typically implies a larger performance overhead, due to
invoking more mprotect system calls.

Over-provisioming factor. Diflerent heap over-provision-
ing factors, including 142, 16, 14, 14, and 14, were evaluated.
In the extreme case of 2, haltf of the heap will not be
utilized. This evaluation shows two results: (1) A larger
over-provisioning factor will typically imply larger over-
head. (2) The performance impact of over-provisioning 1s

55

60

65

Memory overhead of embodiments on certain applica-

tions may be attributed to multiple reasons, mostly relating
to 1its management of small objects. First, embodiments may
increase memory consumption due to its randomized allo-
cation. For any given size class, embodiments may place
more than 2” objects into the allocation builer, then ran-
domly allocate an object from among them. Therefore,
embodiments may access other pages (due to the random-
1zed allocation policy) when there are still available/free
objects 1n existing pages. Second, the over-provisional
mechanism may itroduce more memory consumption,
since some objects will be randomly skipped and thus never
utilized. Note that embodiments may also achieves compa-
rable average memory overhead to FreeGuard, due to its

US 11,593,483 B2

15

global free cache mechanism, which better balances
memory usage among threads (particularly for producer-

consumer patterns).

Memory overhead of embodiments may be near 0% when

16

typically result 1n a program crash. Heartbleed 1s unique in
that 1t results 1n the silent leakage of heap data. Embodi-

ments of the present systems and methods were shown to
avoid the 1ll effects of these bugs, and/or report their

7 bits of entropy are utilized. This further indicates the occurrences to the user, as shown in Table 6, which shows
advantage of providing customizable security, as users may cllectiveness evaluation on known wvulnerabilities. More
choose a lower entropy to reduce performance and memory information about these buggy applications 1s described
consumption as needed. below.
TABLE 6
Application Vulnerability Original DieHarder OpenBSD FreeGuard GUARDER
bc-1.06 Buffer Over-write Crash No crash No crash No crash No crash
ed-1.14.1 Invalid-Free Crash No crash Halt—=report Halt—report Halt—=report
gzip-1.2.4 Buffer Over-write Crash No crash No crash p-protect p-protect
Heartbleed Buffer Over-read Data Leak Data Leak Data LLeak p-protect p-protect
Libtiff-4.0.1 Buffer Over-write Crash No crash Crash Halt—report Halt—report
PHP-5.3.6 Use-After-Free Crash No crash Halt—=report Halt—report Halt—report
Use-After-Free Crash No crash Halt—=report Halt—report Halt—report
Double-Free Crash No crash Halt—=report Halt—report Halt—report
polymorph-0.4.0 Buffer Overflow Crash No crash No crash p-protect p-protect
Squid-2.3 Buffer Overtlow Crash No crash No crash Halt—=report Halt—report

No crash: Program completes normally

Halt—=report: Halts execution & reports to user

Data Leak: Leakage of arbitrary heap data occurred

p-protect: Probabilistic protection, p = 0.10 (default)

Randomization Entropy. The randomization entropies of
the secure allocators was further evaluated, with results
shown i FIG. 5. In the example shown in FIG. §, the
average randomization entropies of existing secure alloca-
tors, grouped by object size class are shown. The entropies
of each size class was experimentally evaluated by explicitly
moditying the allocators. The basic i1dea 1s to update a
per-size class global variable upon each allocation, then
compute the average entropy of each size class for different
applications. The entropy was computed based on the maxi-
mum number of available choices upon each allocation
using a log,(N) formula. Note that the maximum number of

entries was utilized 1n four bags to compute the entropy for

[

OpenBSD upon each allocation. Because the bag size for
OpenBSD 1s just one page, the entropies are not shown for
objects larger than 4 kilobytes.

Both DieHarder and OpenBSD were seen to exhibit
unstable entropy, and FreeGuard shows a constant low
entropy (approximately 2 bits). By contrast, the measured
entropy of embodiments of the present systems and methods
1s >9.89 bits for every size class, when the specified entropy
1s set to 9 bits. Taking the size class of 64 kilobytes for
example, embodiments may randomly allocate one object
from over 831 objects, while DieHarder and FreeGuard will
allocate from just 32 and 4 objects, respectively. This
indicates that embodiments of the present systems and
methods may have significantly higher security than these
existing allocators. DieHarder only exceeds the entropy of
embodiments of the present systems and methods 1n the first
four size classes, when compared to its default configuration
with 9 bits. However, this evaluation also shows that
embodiments may guarantee virtually the same high entropy
across diflerent size classes, execution phases, applications,
or inputs, providing improved security.

Effectiveness ol Defending Against Attacks. The eflec-
tiveness of embodiments of the present systems and methods
and other allocators was evaluated using a collection of
real-world vulnerabilities, including bufler over-writes, bui-
fer over-reads, use-after frees, and double/invalid frees. With

the exception of Heartbleed, each of the reported bugs will

30

35

40

45

50

55

60

65

be-1.06. Arbitrary-precision numeric processing language
interpreter. The aflected copy of this program was obtained
from BugBench, and includes a bufler overtlow as the result
of an ofl-by-one array indexing error, caused by a specific
bad input, which will produce a program crash. Based on
their powers-ol-two size classes, each secure allocator
places the aflected array 1n a bag serving objects larger than

the needed size. As such, this small one element overtflow 1s
harmlessly contained within unused space, thus preventing
the crash. ed-1.14.1. Line-oriented text editor ed contains a
simple invalid-free bug, caused by a call to free() that was
forgotten by the developer after moving a bufler from
dynamic to static memory. Embodiments may guarantee
detection of all double/invalid free problems, and thus
provides an immediate report of the error, including the
current call stack.

gzip-1.2.4. GNU compression utility. Gzip, obtained from
BugBench, contains a stack based bufler overtlow. For
testing purposes, it was moved to the heap. This bug would
normally corrupt the adjacent metadata, however, when
testing each secure allocator, this crash 1s avoided due to
theirr metadata segregation. Additionally, around 10% of
tests of embodiments and FreeGuard resulted in halting
execution, caused by accessing an adjacent random guard
page.

Libtifl-4.0.1. TIFF image library A malformed input will
cause the aflected version of Libtifl’s gif2tifl converter tool
to experience a buller overtlow, normally resulting in a
program crash. When veritying this bug with embodiments,
this will always result in (1) an immediate halt due to 1llegal
access on an adjacent random guard page, or (2) a report to
the user indicating the discovery of a modified canary value.
OpenBSD aborts with a “chunk info corrupted” error, while
DieHarder produces no report and exits normally.

Heartbleed. Cryptographic library. The Heartbleed bug
exploits a bufler over-read in OpenSSL-1.0.11. Both
embodiments and FreeGuard will probabilistically guard
against this attack, with protection in proportion to the
amount of random guard pages 1nstalled. By default, this 1s
10%. Neither OpenBSD nor DieHarder can provide protec-
tion against this bug.

US 11,593,483 B2

17

PHP-5.3.6. Scripting language interpreter. A variety of
malicious XML data are provided as input, resulting in
use-after-free and double-free conditions. Embodiments,
FreeGuard, and OpenBSD halt and report each of these
bugs, while DieHarder exits normally with no report made.

polymorph-0.4.0. File renaming utility The aflected ver-
s1on of polymorph suflers from a stack based builer overtlow
that was adapted to the heap for testing purposes, and results
in a program crash due to corrupted object metadata. Due to
their segregated metadata, all of the secure allocators allow
the application to exit normally. However, both embodi-
ments and FreeGuard also provide probabilistic protection in
proportion to the amount of installed random guard pages.

Squid-2.3. Caching Internet proxy server Squid 2.3 con-
tains a heap-based bufler overtlow caused by an incorrect
bufler size calculation. Normally, this bug will cause the
program to crash due to corrupting adjacent metadata. When
tested with embodiments, the overwritten canary value at the
site of the overflow 1s detected, and the program i1s 1mme-
diately halted. FreeGuard exhibits similar behavior, while
OpenBSD and DieHarder do not detect the overtlow at all.

Conclusion: For all evaluated bugs, embodiments were
capable of either probabailistically detecting the attack—such
as through the use of random guard pages to thwart buller
overtlow—or 1mmediately provided a report to the user
when the error condition occurred (e.g., double-free). How-
ever, the results of embodiments and FreeGuard are very
similar. Based on the investigation, these evaluated bugs
(mostly static) cannot show the benefit of the improved
security of embodiments, as described below, such as higher
entropy and over-provisioning. For instance, 1t 1s not easy to
cvaluate higher randomization entropy providing more
resistance to attacks, but 1n reality, 1t does. Additionally, for
example, 1 a one-element overflow 1s already contained
within unused space, over-provisioning provides no addi-
tional benefit.

Customization (a) Why 1s Customization Helpful?
Embodiments may support customizable security. Based on
the evaluation above, higher security may come at the cost
of increased performance overhead and memory consump-
tion. Sometimes, this difference could be sufliciently large
that 1t may aflect users” choices. For instance, the memory
overhead of embodiments using 7 bits of entropy 1s around
0% (not shown due to space limitations), while 1ts memory
overhead with 9 bits 1s around 27%. Therefore, users may
choose a level of security that reduces memory consumption
when required by resource-constrained environments, such
as mobile phones. Embodiments may provide this flexibility
without changing implementation.

(b) How many bits of entropy could embodiments sup-
port? Embodiments may support up to, for example, 16 bits
of entropy on machines with 48 address bits, although with
the potential of higher overhead. In the example shown in
FIG. 3, the number of supported threads may limit entropy
choices, since there are 16 bags 1n each thread, and every
bag has the same size. If there are 128 threads 1n total, with
a heap space of 128 terabytes, every bag will be 64 giga-
bytes, which can support up to 16 bits of entropy. Since there
1s room for at most 217 objects of size 512 kilobytes 1n such
a bag, 1t may only support 16 bits of entropy iI over-
provisioning and guard pages are also supported. In embodi-
ments, each bag may be allocated on-demand, and may use
different bag sizes, 1n order to support even higher levels of
entropy.

Embodiments may utilize the combination of allocation
and deallocation buflers to support different customizable
security guarantees, including randomization entropy, guard

10

15

20

25

30

35

40

45

50

55

60

65

18

pages, and over-provisioning. Embodiments may implement
almost all security features of other secure allocators, while
only imposing less than, for example, 3% performance
overhead, and featuring comparable memory overhead.

An exemplary block diagram of a computer system 600,
in which entities and processes involved in the embodiments
described herein may be implemented, 1s shown in FIG. 6.
Computer system 600 may typically be implemented using
one or more programmed general-purpose computer sys-
tems, such as embedded processors, systems on a chip,
personal computers, workstations, server systems, and mini-
computers or mainframe computers, or i distributed, net-
worked computing environments. Computer system 600
may include one or more processors (CPUs) 602A-602N,
input/output circuitry 604, network adapter 606, and
memory 608. CPUs 602A-602N execute program instruc-
tions 1n order to carry out the functions of the present
communications systems and methods. Typically, CPUs
602A-602N are one or more microprocessors, such as an
INTEL CORE® processor.

FIG. 6 illustrates an embodiment in which computer
system 600 1s implemented as a single multi-processor
computer system, in which multiple processors 602A-602N
share system resources, such as memory 608, input/output
circuitry 604, and network adapter 606. However, the pres-
ent communications systems and methods also include
embodiments 1n which computer system 600 1s implemented
as a plurality of networked computer systems, which may be
single-processor computer systems, multi-processor com-
puter systems, or a mix thereof.

Input/output circuitry 604 provides the capability to input
data to, or output data from, computer system 600. For
example, mput/output circuitry may include mput devices,
such as keyboards, mice, touchpads, trackballs, scanners,
analog to digital converters, etc., output devices, such as
video adapters, monitors, printers, etc., and nput/output
devices, such as, modems, etc. Network adapter 606 inter-
taces device 600 with a network 610. Network 610 may be
any public or proprietary LAN or WAN, including, but not
limited to the Internet.

Memory 608 stores program instructions that are executed
by, and data that are used and processed by, CPU 602 to
perform the functions of computer system 600. Memory 608
may include, for example, electronic memory devices, such
as random-access memory (RAM), read-only memory
(ROM), programmable read-only memory (PROM), electri-
cally erasable programmable read-only memory (EE-
PROM), flash memory, etc., and electro-mechanical
memory, such as magnetic disk drives, tape drives, optical
disk drives, etc., which may use an integrated drive elec-
tronics (IDE) interface, or a variation or enhancement
thereof, such as enhanced IDE (EIDE) or ultra-direct
memory access (UDMA), or a small computer system
interface (SCSI) based interface, or a variation or enhance-
ment thereot, such as fast-SCSI, wide-SCSI, fast and wide-
SCSI, etc.,, or Sertal Advanced Technology Attachment
(SATA), or a vanation or enhancement thereof, or a fiber
channel-arbitrated loop (FC-AL) intertace.

The contents of memory 608 may vary depending upon
the function that computer system 600 1s programmed to
perform. In the example shown i FIG. 6, exemplary
memory contents are shown representing routines and data
for embodiments of the processes described above. How-
ever, one of skill in the art would recogmize that these
routines, along with the memory contents related to those
routines, may not be included on one system or device, but
rather distributed among a plurality of systems or devices,

US 11,593,483 B2

19

based on well-known engineering considerations. The pres-
ent communications systems and methods may include any
and all such arrangements.

In the example shown 1n FIG. 6, memory 608 may include
allocation routines and buffers 612, de-allocation routines
and buflers 613, superheap 614, and operating system 620.
Allocation routines 612 may include soitware routines and
memory bullers to perform processing to i1mplement
memory allocation according to the present techniques as
described above. De-allocation routines 613 may include
soltware routines and memory builers to perform processing
to implement memory de-allocation according to the present
techniques as described above. Superheap 614 may include
a top layer memory chunk that contains one or more heap
structures 616A-N. Each heap 616 A-N may include a plu-
rality of sub-heap memory structures 618A-X. A heap may
be a collection of data from many threads, with each thread
having a dedicated sub-heap 618A-X. Each sub-heap
618A-X may include a plurality of bag memory structures
620A-Y. Each bag 620A-Y may hold a plurality of objects
622A-7, with each bag holding objects of the same size
class. Operating system 620 may provide overall system
functionalities.

As shown 1n FIG. 6, the present communications systems
and methods may include implementation on a system or
systems that provide multi-processor, multi-tasking, multi-
process, and/or multi-thread computing, as well as 1imple-
mentation on systems that provide only single processor,
single thread computing. Multi-processor computing
involves performing computing using more than one pro-
cessor. Multi-tasking computing involves performing com-
puting using more than one operating system task. A task 1s
an operating system concept that refers to the combination
of a program being executed and bookkeeping information
used by the operating system. Whenever a program 1s
executed, the operating system creates a new task for 1t. The
task 1s like an envelope for the program in that 1t identifies
the program with a task number and attaches other book-
keeping information to it.

Many operating systems, including Linux, UNIX®,
OS/2®, and Windows®, are capable of running many tasks
at the same time and are called multitasking operating
systems. Multi-tasking 1s the ability of an operating system
to execute more than one executable at the same time. Each
executable 1s running 1n 1ts own address space, meaning that
the executables have no way to share any of their memory.
Thus, 1t 1s 1mpossible for any program to damage the
execution of any of the other programs running on the
system. However, the programs have no way to exchange
any information except through the operating system (or by
reading files stored on the file system).

Multi-process computing 1s similar to multi-tasking com-
puting, as the terms task and process are often used inter-
changeably, although some operating systems make a dis-
tinction between the two. The present mnvention may be a
system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer
program product may include a computer readable storage
medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present invention. The computer readable
storage medium can be a tangible device that can retain and
store nstructions for use by an nstruction execution device.

The computer readable storage medium may be, for
example, but 1s not limited to, an electronic storage device,
a magnetic storage device, an optical storage device, an
clectromagnetic storage device, a semiconductor storage

10

15

20

25

30

35

40

45

50

55

60

65

20

device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having instructions recorded thereon,
and any suitable combination of the foregoing.

A computer readable storage medium, as used herein, 1s
not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e. g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire. Computer readable program instructions
described herein can be downloaded to respective comput-
ing/processing devices from a computer readable storage
medium or to an external computer or external storage
device via a network, for example, the Internet, a local area
network, a wide area network and/or a wireless network. The
network may comprise copper transmission cables, optical
transmission fibers, wireless transmission, routers, firewalls,
switches, gateway computers, and/or edge servers. A net-
work adapter card or network interface in each computing/
processing device receives computer readable program
instructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium within the respective computing/
processing device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).

In some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the

US 11,593,483 B2

21

flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions. These
computer readable program instructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the tlowchart and/or
block diagram block or blocks.

These computer readable program instructions may also
be stored 1n a computer readable storage medium that can
direct a computer, a programmable data processing appara-
tus, and/or other devices to function 1n a particular manner,
such that the computer readable storage medium having
instructions stored therein comprises an article of manufac-
ture including instructions which implement aspects of the
function/act specified 1n the flowchart and/or block diagram
block or blocks. The computer readable program instruc-
tions may also be loaded onto a computer, other program-
mable data processing apparatus, or other device to cause a
series ol operational steps to be performed on the computer,
other programmable apparatus or other device to produce a
computer implemented process, such that the instructions
which execute on the computer, other programmable appa-
ratus, or other device implement the functions/acts specified
in the flowchart and/or block diagram block or blocks. The
flowchart and block diagrams in the Figures illustrate the
architecture, functionality, and operation of possible imple-
mentations of systems, methods, and computer program
products according to various embodiments of the present
invention. In this regard, each block 1n the flowchart or block
diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable
instructions for 1mplementing the specified logical
function(s).

In some alternative implementations, the functions noted
in the blocks may occur out of the order noted in the Figures.
For example, two blocks shown 1n succession may, in fact,
be executed substantially concurrently, or in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or
flowchart illustration, and combinations of blocks in the
block diagrams and/or flowchart illustration, can be 1mple-
mented by special purpose hardware-based systems that
perform the specified functions or acts, or that carry out
combinations ol special purpose hardware and computer
instructions. Although specific embodiments of the present
invention have been described, 1t will be understood by
those of skill 1n the art that there are other embodiments that
are equivalent to the described embodiments. Accordingly, 1t
1s to be understood that the invention 1s not to be limited by
the specific illustrated embodiments, but only by the scope
of the appended claims.

From the above description, 1t can be seen that the present
invention provides a system, computer program product, and
method for the eflicient execution of the described tech-
niques. References in the claims to an element n the
singular 1s not intended to mean “one and only” unless
explicitly so stated, but rather “one or more.” All structural
and functional equivalents to the elements of the above-
described exemplary embodiment that are currently known
or later come to be known to those of ordinary skill in the
art are intended to be encompassed by the present claims. No
claim element herein 1s to be construed under the provisions

10

15

20

25

30

35

40

45

50

55

60

65

22

of 35 U. S. C. section 112, sixth paragraph, unless the
clement 1s expressly recited using the phrase “means for” or
“step for.”

While the foregoing written description of the invention
ecnables one of ordinary skill to make and use what 1is
considered presently to be the best mode thereot, those of
ordinary skill will understand and appreciate the existence of
alternatives, adaptations, variations, combinations, and
equivalents of the specific embodiment, method, and
examples herein. Those skilled 1n the art will appreciate that
the within disclosures are exemplary only and that various
modifications may be made within the scope of the present
invention. In addition, while a particular feature of the
teachings may have been disclosed with respect to only one
of several implementations, such feature may be combined
with one or more other features of the other implementations
as may be desired and advantageous for any given or
particular function. Furthermore, to the extent that the terms
“including™, “includes™, “having”, “has™, “with”, or variants
thereol are used in either the detailed description and the
claims, such terms are intended to be inclusive in a manner
similar to the term “comprising.”

Other embodiments of the teachings will be apparent to
those skilled in the art from consideration of the specifica-
tion and practice of the teachings disclosed herein. The
invention should therefore not be limited by the described
embodiment, method, and examples, but by all embodi-
ments and methods within the scope and spirit of the
invention. Accordingly, the present invention i1s not limited
to the specific embodiments as 1llustrated herein, but 1s only
limited by the following claims.

What 1s claimed 1s:

1. A method implemented 1n a computer system including
a processor and a memory, the method comprising:

mapping a block of memory;

dividing the block of memory into a plurality of heaps;

dividing each heap into a plurality of sub-heaps, wherein

cach sub-heap 1s associated with one thread of software
executing in the computer system:;

dividing each sub-heap into a plurality of bags, wherein

cach bag 1s associated with one size class of objects;
creating an allocation builer and a deallocation bufler for
cach bag;

setting a capacity for each allocation bufler to

wherein E 1s a customizable value of a randomization
entropy;

storing a plurality of objects 1n at least some of the bags,

wherein each object 1s stored 1n a bag having size class
corresponding to a size of the object;

storing 1n the allocation bufler of each bag information

relating to available objects stored 1n that bag; and
storing 1n the deallocation builer of each bag information
relating to freed objects that were stored 1n that bag.

2. The method of claim 1, further comprising;:

randomizing the order of bags within each sub-heap

associated with each thread of software executing in the
computer system.

3. The method of claim 1, further comprising: randomly
iserting a plurality of guard pages within each bag, wherein
a number of guard pages to be iserted 1s customizable.

4. The method of claim 3, wherein an over-provisioning,
factor defines a fraction of heap objects from each bag which
are skipped and which never participate in any future
allocations or deallocations.

2E+l

US 11,593,483 B2

23

5. The method of claim 1, further comprising:

maintaining object status metadata for each object;

in response to allocation of an object by a program,

marking the object status metadata for the object as
in-use; and

in response to deallocation of an object by the program,

determining whether the deallocation 1s invalid or
double-free, and when the deallocation 1s invalid or
double-free, halting execution of the program.

6. The method of claim 4, further comprising:

maintaiming a plurality of bump pointers for each size

class of each per-thread heap, which always point to a
first never-allocated object.

7. A system comprising a processor, memory accessible
by the processor, and program instructions and data stored in
the memory, the program instructions executable by the
processor to perform:

mapping a block of memory;

dividing the block of memory into a plurality of heaps;

dividing each heap into a plurality of sub-heaps, wherein

cach sub-heap 1s associated with one thread of software
executing 1n the computer system;

dividing each sub-heap into a plurality of bags, wherein

cach bag 1s associated with one size class ol objects;
creating an allocation bufler and a deallocation bufler for
cach bag;

setting a capacity for each allocation bufler to

wherein E 1s a customizable value of a randomization
entropy;

storing a plurality of objects 1n at least some of the bags,

wherein each object 1s stored 1n a bag having size class
corresponding to a size of the object;

storing 1n the allocation bufler of each bag information

relating to available objects stored 1n that bag; and
storing 1n the deallocation buifer of each bag information
relating to freed objects that were stored 1n that bag.

8. The system of claim 7, further comprising:

randomizing the order of bags within each sub-heap

associated with each thread of software executing in the
computer system.

9. The system of claim 7, further comprising: randomly
inserting a plurality of guard pages within each bag, wherein
a number of guard pages to be inserted 1s customizable.

10. The system of claim 9, wherein an over-provisioning
tactor defines a fraction of heap objects from each bag which
are skipped and which never participate 1 any future
allocations or deallocations.

11. The system of claim 7, further comprising:

maintaining object status metadata for each object;

in response to allocation of an object by a program,

marking the object status metadata for the object as
in-use; and

in response to deallocation of an object by the program,

determining whether the deallocation 1s invalid or
double-free, and when the deallocation 1s invalid or
double-free, halting execution of the program.

2E+l

5

10

15

20

25

30

35

40

45

50

55

24

12. The system of claim 10, further comprising:

maintaining a plurality of bump pointers for each size
class of each per-thread heap, which always point to a
first never-allocated object.

13. A computer program product comprising a non-
transitory computer readable medium storing program
instructions that when executed by a processor perform:

mapping a block of memory;

dividing the block of memory into a plurality of heaps;

dividing each heap into a plurality of sub-heaps, wherein

cach sub-heap 1s associated with one thread of software
executing 1n the computer system;

dividing each sub-heap into a plurality of bags, wherein

cach bag 1s associated with one size class of objects;
creating an allocation builer and a deallocation builer for
cach bag;

setting a capacity for each allocation bufler to

wherein E 1s a customizable value of a randomization
entropy;

storing a plurality of objects 1n at least some of the bags,

wherein each object 1s stored 1n a bag having size class
corresponding to a size of the object;

storing 1n the allocation bufler of each bag information

relating to available objects stored 1n that bag; and
storing 1n the deallocation bufler of each bag information
relating to freed objects that were stored 1n that bag.

14. The computer program product of claim 13, further
comprising;

randomizing the order of bags within each sub-heap

associated with each thread of soitware executing in the
computer system.

15. The computer program product of claim 13, further
comprising;

randomly 1nserting a plurality of guard pages within each

bag, wherein a number of guard pages to be inserted 1s
customizable.

16. The computer program product of claim 15, wherein
an over-provisioning factor defines a fraction of heap objects
from each bag which are skipped and which never partici-
pate 1n any future allocations or deallocations.

17. The computer program product of claim 13, further
comprising;

maintaining object status metadata for each object;

in response to allocation of an object by a program,

marking the object status metadata for the object as
in-use; and

in response to deallocation of an object by the program,

determining whether the deallocation 1s invalid or
double-free, and when the deallocation 1s invalid or
double-iree, halting execution of the program.

18. The computer program product of claim 16, further
comprising:

maintaining a plurality of bump pointers for each size

class of each per-thread heap, which always point to a
first never-allocated object.

2E+l

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

