US011599445B2

a2 United States Patent (10) Patent No.: US 11,599,445 B2

Liu et al. 45) Date of Patent: Mar. 7, 2023
(54) WATCHER: PRECISE AND (38) Field of Classification Search
FULLY-AUTOMATIC ON-SITE FAILURE CPC . GO6F 9/30098; GO6F 9/3861; GO6F 11/3612
DIAGNOSIS See application file for complete search history.
(71) Applicant: The Board of Regents of The (56) References Cited
University of Texas System, Austin, U.S. PATENT DOCUMENTS
TX (US)
5,050,168 A * 9/1991 Paterson GO6F 11/3664
(72) Inventors: Tongping Liu, San Antonio, TX (US); 714/34
Hongyu Iliu:J San An‘[onioj 1TX (US),, 7,676,795 B2* 3/2010 Elnozahy GO6F 11/3636
Sam Albert Silvestro, San Antonio, TX 714/21
(US) (Continued)
(73) Assignee: Board of Regents, The University of OTHER PUBLICATIONS

Texas System, Austin, TX (US)

Bhansali et al., “Framework for Instruction-level Tracing and Analy-

(*) Notice: Subject to any disclaimer, the term of this sis of Program Executions”, published by ACM, VEE’06 Jun.
patent 1s extended or adjusted under 35 14-16, 2006, Ottawa, Ontario, Canada, pp. 154-163 (Year: 2006).*

u.s.C. 154(]3) by 763 days (an‘[inued)
(21) Appl NoO.° 16/442,042 Primary Lxaminer — S. Sough
Assistant Examiner — Zheng Wei
(22) Filed: Jun. 14, 2019 (74) Attorney, Agent, or Firm — Smith, Gambrell &
Russell LLP
(65) Prior Publication Data (57) ABRSTRACT
US 2019/0384692 Al Dec. 19, 2019 The techniques described herein may provide techniques for

precise and fully-automatic on-site software failure diagno-
s1s that overcomes 1ssues ol existing systems and general

Related U.S. Application Data challenges of in-production software failure diagnosis.
(60) Provisional application No. 62/685,853, filed on Jun. Embodiments of the present systems and methods may
15. 2018. provide a tool capable of automatically pinpointing a fault
| propagation chain of program failures, with explicit symp-
(51) Int. Cl. toms. The combination of binary analysis, in-situ/identical
GOGF 11/36 (2006.01) replay, and debugging registers may be used together to
GO6F 9/38 (2018.01) simulate the debugging procedures of a programmer auto-
GO6F 9/30 (2018.01) matically. Overhead, privacy, transparency, convenience,
(52) U.S. Cl and completeness challenges of in-production failure analy-
CPC GOG6F 11/3612 (2013.01); GO6F 9/30098 s1s are improved, making it suitable for deployment uses.
(2013.01); GO6F 9/3861 (2013.01) 15 Claims, 11 Drawing Sheets
y 14 110
! /
.................. o , £
 iReplayer 106 e Faitura/Trap Monitaring ﬁ.-%gjf;

Lightweight o | {3EGV, ABRT, FPE, TRAP} |
Recording |t - a , : s 128

Frogramsg .

| In-situ & lenticsl ; e 0R Context Anslysiz e | Happens-Bafore]| |
: Reptaying & .~ }; {Calistack, 1P, Value, Pos, eto.) | Analysis |4
R . AR .
. o - o 114
| y %ﬁ}qﬁ:} ',-?j meunrmene.s .}“ SRtk 130
j /o ; Busary Ansiysss
§ W~ Identifying Branches | G ot €
119 ST {Aborts/ Assertions) : Anabysis
118 Debug Registers + P 128

o ©

instatimg , identifying Fafling

- Greakpoints Atrstraction and Registess{s Multi-Loved

- . ,L, Analysis A

S - identifying Register o 122 | h 4 7

E Assignments ! = 11
. | X baiissre :

126 : Heporime
- Instaliing identifying Fating "
Watchpoints Address

US 11,599,445 B2
Page 2

(56)

2007/0079292 Al*

2009/0089547 Al*

20
20

8,719,791 BI1 *

18/0181480 Al1* 6/201

20

8
18/0253369 Al1* 9/2018 O’Dowd
19/0121646 Al1* 4/2019

References Cited

U.S. PATENT DOCUM

5/2014 MacPherson

EINTTS

4/2007 Chencooovinnnn,

4/2009 Moyer

ttttttttttttt

OTHER PUBLICATIONS

iiiiiii

GOO6F 11/3636

717/124

GOO6F 11/362

717/127

GO6F 9/3861

712/205

GOO6F 11/364
GOOF 11/3636
GO6F 9/30105

Kashikci et al., “Failure Sketching: A Technique for Automated

Root Cause Diagnosis of in-Production Failures”, published by
ACM, SOSP’15, Oct. 4-7, 2015,Monterey,CA., pp. 344-360 (Year:

2015).*

* cited by examiner

SRSy

Suipe4 FuAnusp

___ . = N g7 L

| SIUILLUBISSY

AU eday
Sl e

US 11,599,445 B2

/e 77 | esiEey Sumnuspy

| sisApuy | I A -
A1 A 51935182y pue UOIDNIISLY| siuiodyeaisg

Bunres Suidgniuapy |1 M Supieisy

sishieuy | | [[suonuassy/s10qy)
FSNET 100Y sausueg FUiAjnuap]

Sheet 1 of 11

OEl

515 s0q aniEA 'l AoEH
SISAIBUY 1X21UDT)

£

 sieiBoig

Mar. 7, 2023

DHIPIODIY

o~ (AYEL Td3 LHBY ‘ADIS) [~r Wdiemaysn

| vV Buisonuow deay fainjed | 901 T hedaw

U.S. Patent

U.S. Patent Mar. 7, 2023 Sheet 2 of 11 US 11,599,445 B2

Fig. 2

[1: mov -0x18(%rcx),%rbx

ﬁﬁﬁﬁﬁﬁ

& & % Q2 @

O WX %R

U.S. Patent Mar. 7, 2023 Sheet 3 of 11 US 11,599.445 B2

Fig. 3

aa6b: mov -0x18(%rbp),%rdx
aaa: xor %1s:0x28,%rdx

ab3: jne abd

i i

US 11,599,445 B2

-
i
»

_ _ il
-"
y— A A A A A A
_ - TP P T LE T P P rT P P T T Y PP T
0 ..”Hu.] lu.Il.
.
Fit | " A A A A A A A A A A A A A A A A
na Tl .“.._u.ls_...u_ B I :.I"
Fit | M o)
A] .
M T ” ; ¥
- !
» » .]
Fit | gl)
o Il [
’ - ¥
." ! 3 e » ’
A " - *
L . [
’ M w. T]
- " gl)
= !
[. L
P ; : | :
= k
T I s
M - %
" .
» .
» k »
S ’-”-’-“.’-’. '"
Al A *
X
AW
. W N]
A)
” .p.h.p..._...p...__......_.......__...”.._.....t......_....“..__......_..p...__..p..._..p.t......_....”..__.p..._..p...__trhttrhahrtkhrtntutnh;”tk .
aoa A L)
K NN
KK N
..p.”.p...__.p.... ¥

;E

L NN]
L
.
#'H *‘H

]
-,

-
ey

*-

*-

i

*'I-

.

d
AUt Ut S s s P Al Tl Tt

g Wl el e N Bl e

Fur®

Mar. 7, 2023

S0V POV

U.S. Patent
e
o0
23

US 11,599,445 B2

Sheet 5 of 11

Mar. 7, 2023

U.S. Patent

L1°0
600
A
CL0
6 {3

S0t

L0
3!
RG'%
9¢"]
b8y
960
690
60°L
LTS
CE0
L1
b0
06°0
CS0
)
AR

91

oD "5'-3' LY
3

-.{:i-

——y

¢

P

i
64
81

/

(Y

¥

1

1

&r

(¢

909

2 U

L0
Q70
$T'8
£9°0
QL0
SS'
£40
g
PO

tco

19°¢
L1°9
R€°0
29°0
E0

£L 0

Ly 0
0
L0

AL,

N = o Q0 o) W

e

oue
L

T e B R,
Lt

4 TS A N o

S TS ALY

.
&3

ADUBLINGUG)
eiusnbag

ASUBLINGUO Y

iniusnbeg
entanbag
Mﬁwﬁ@ﬁ@@m
renpionbog
ADUILINOUC Y

b

AJU3TITOUD))

pruanbay
jeianbag
RIBUANDbIY
piusnbag
ESBHRIN
ADUILITOU0
pnuanbag
BIusnbag
jRLIoNnhag
AUALINOUOY
jeianbog
(RIUINbag
jenusnbag
fenuonbag

S{iB} UOIIASSY
SSAIDPE PUBAUT
0GR "S{IRY Y00t
STTR] BOLTASSY
rautod AN
AOLJIIAD YouIg.
S[Ie] HOLISsY
Tsutod [N
soyaiod [nn
SSAIPPR PIBALY
0402-£G-9PIAL.
S11B] UOIHASSY
wpgod [N
0107-EG-0DIAI(T
S[IE] UOILIOESY
sepurod N
S[IB] UOILIDESY
roymod [N
soprod N
0137 AGOpIAKY

JAdUVOIS
ADHSHIN
JHHVOIS
LHIYDIS
ADASOIES
AdADIS
JAGVOIS
Ld9VS
ADASIN
ADESOIS
ALYASHIN
HdAUIES
ALFASIIN
JAHVOIS
ADVASIS
ERELIR
LAdd VIS
ADHSIR
LdVLIS
AASIIN
ADASOIS
HdADIS
JABYDIS

BT84 2055]
¢ S-L107
-FAD {ZT] SISOIQIUAS
ROBITEIOH 1231,
COO91-L107-3A0

LEH
ansst o7] youaadng
(777 S1501quAS
¢ 1] seqBng
CPPL-9107-dAD
LY HIOT-HAD
COSLLIOCHAL
PLSL-RIOT-AAD
LOLE9I0THAD
LYTOTH anss|
POLHRIOT-HAD
COLO-RIOT-HAD
¢ 1] eseqdng
| 71 SISOHUAG
(1] osugdng
|£1]9s8q5ng
POOLT-LTI0T-HAD
(ZER-TI0T-AAD

UOISSRUSLRT |,
dumpdoy
T nafurng
bs

- ﬁMMHEm S

| ~d7UIRg
YAIOWAJO]
HRISid
7iZqd
godfuad(y
POYIRIUIOIA]
J+H4E]
SUTUGITY
wdsey

AaBA] LH
T-TA
[-gAI
PCL-ED
JAYSTET

751 ;Mumﬁu&&U

p1-yoayaddy

oy
du-Agjdosry

99°0
(5)

WL

(#)
sAvjdoy

(8)

U

()
SARIAIN

_

[3AY] JULY

MO[IIIAD MoBIS

aondridsog

[BHAIS

SAHEREIBYY

HOTE T A

_S{aadT] sjdnngn

G 314

U.S. Patent Mar. 7, 2023 Sheet 6 of 11 US 11,599.445 B2

Fig. 6

static void process bin update(conn *c¢) {

L1: vlen=c->binary header.request.bodylen-
(nkey+c->bmary header.request.extlen);

ﬂﬂﬂﬂﬂﬂﬂ

ﬁﬁﬁﬁﬁﬁ

[.3: int tocopy = c->rbytes > ¢c->rlbytes ?
c->rlbytes . ¢c->rbytes;

ﬁﬁﬁﬁﬁﬁﬁ

ﬁﬁﬁﬁﬁﬁ

U.S. Patent Mar. 7, 2023 Sheet 7 of 11 US 11,599.445 B2

Fig. 7

int pqueue put(PQUEUE *qgp, void *item) |

uuuuuu

IIIII

L2: qp—-“mwumed 4
L.3: unlﬂck(&qp-?:}mm)ﬁ

ﬁﬁﬁﬁﬁﬁ

lllll

L4 E@Cl{(&qu>~1mx)

L5: if (gp->occupied > 0) {

L6: unlock{&qgp->mtx);

L7: lock(&gp->mtx);

L8: assert(gp->occupied > 0);

L9: gp->occupied = gp->occupied - 1;

unlock{&qp->mtx);

J
5

U.S. Patent Mar. 7, 2023 Sheet 8 of 11 US 11,599.445 B2

Fig. 8

int tep_test(char® 1p_str, const short port){
L.1: unsigned char packet|1024|;

ﬁﬁﬁﬁﬁﬁ

L2: len = getkromHeader();
L3: caplen = read(sock, packet, len);

ﬁﬁﬁﬁﬁﬁﬁ

U.S. Patent

Mar. 7, 2023

Fig. 9

Sheet 9 of 11

US 11,599,445 B2

Total Information Epoch Info

Application |Epochs 8%{: alls | Synes, | Length \Memory

i {s) | (MB)
blackscholes I 3 38 59.50 <1
bodvtrack i 13602 | 2176k | 35.00 &4
canneal I 12499 207 2888 <}
dedup I R{6k 1004k | 12.40 RE
terret | 527 3744 | 4.66 <}
fluidanimate g i 4420 1723345k 6.32 8218
raytrace | 53588 | 12793 |48.09 4
streamcluster {03 | 2991k |58.99 114
aget 35 262k 131k 0.16 <}
apache™ - 190k 10002 - 2
memcached? .| 26448 | 52654 : !
nbzip? L 352 2448 | 1.3R <
pfscan ooy 22 sl 177 <}
sqlite 9 | 11517k | 10609k | 596 | 123

U.S. Patent Mar. 7, 2023 Sheet 10 of 11 US 11,599,445 B2

)
o

ok ke

L el Nl Sll Sl Mol Nk Sl Sk i Nk Nl Nl Nl Rl Ty Rl Sy il Tl Sl Sl Nl Tl Sk Nl Nal Rl Sl Nl Nl Nall Tl Nkl Nl Nl Nl T Tl ik i Nl el Nl Sl Nl Nl Nl Sl Nl Mol Rl T Rl Nl

e
M

-I-'-I-‘-I- ‘-I-‘-I- ‘-I-‘-I- ‘-I-‘-I- ‘-I-‘-I- ‘-I-‘-I- ‘-I-'-I-'-I-'-I-

L LS N SN SN NN
L L B B

L]
L]

R e e A

L]
L]

-+
E]
vy w by wwry

L}

-
. - . .
K o

L4

L

TR R ERERRRRE RN ll-l-l-l-l-l-l-l-l-l-l-ii‘

TR R R RETW

(L8
£

L}
L}
L4
L}
L4
L}
L}
.r-l‘
. L]
. oy
-)

. . P

L4

L L L WL P NN WL L NN CBEL NN WL M)

Ak hh kA ko h
FEFERFEE R R L]

.1*
. L]

rmal

r
i
r
r
; i

- N S ST T T n.i.l.i.n.l.ii"

- e e BOEE R R R R

. 1‘. -
- B

. B
- B
. .
. B

NG
on R v B

¥
¥
¥
- " L
. S .
TR R R R
. ¥
¥
¥
¥

- A
. L]

L}
. P
L4

. .
. "

- . - . i
4_+4_ & 4 %+ 4 4+ 4 4+ 4 4+ 4 & 4 4 4 -+ "
!l!l!l!l!l!l!l'!l!l!l!l!l!l!l!l!l!ll!l!l!l!l!l!l!l!l!l‘ll!l!l!l!l!l!l!l!l!lll'
= L] | L
L} ¥ L] *

o

%
1,
<

.......
R R T T T T T T T I T T T I T T T T T T T T T T T I T T T I T N T N T I T I e

PARSEC Applicatio Real Applications

L it el al it il el el il el il el Jal il el el it il el il il el il el el il il el Jal il el i il Sl i Jalt il el el i el il il e el il el el il el el il el Il it il il il el el il el el il il el il el Jal il Sl el it ki a0 il e i il el el il il i it il el it it dalt el el el il il el il el el Jal il il i il il el it il il it ol el el il el el il

*
‘.l'
L]
*
"1‘

-

U.S. Patent Mar. 7, 2023 Sheet 11 of 11 US 11,599,445 B2

1100
COMPUTING DEVICE
E ooy st - . q.i ,E ’%G
1104 | [1102A 1 [1102N1] 1106 -
INPUT/ || CPU ®®@| CPU | NETWORK | NETWORK | '
OUTPUT | § ; | ADAPTER s

1108
MEM@RY

RECORDING AND REF’LAY?NG MODULE

1114
FAILURE/TRAP MQNETORENG ROUTINES

CONTEXT ANALYSES ROUTINES

1118
BINARY ANALYSIS ROUTINES

HAPPENS-BEFORE ANALYSBS ROUTINES
1122
ROOT CAUSE ANALY SIS ROUTINES
1124
FAILURE REPORTING ROUTINES

''

DEBUG REGISTERS

1130
OFERATING SYSTEM

US 11,599,445 B2

1

WATCHER: PRECISE AND
FULLY-AUTOMATIC ON-SITE FAILURE
DIAGNOSIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/685,853, filed Jun. 15, 2018, the con-
tents of which are hereby incorporated by reference herein
in their entirety.

BACKGROUND OF THE INVENTION

The present invention relates to precise and fully-auto-
matic on-site software failure diagnosis that overcomes
1ssues of existing systems and general challenges of 1n-
production soitware failure diagnosis.

In-production software failure diagnosis remains a chal-
lenging task even after decades of research. Failure diagno-
s1s, with the ultimate goal of i1dentifying statements and
sequences of memory accesses leading to a failure, may
consume substantial amounts of overall development costs
and developers’ time. It can be extremely challenging to
diagnose mn-production software failures for multiple rea-
sons. For example, some failures are not always reproduc-
ible. Normal users of in-production software (such as
MICROSOFT OFFICE®) are typically not experts, and may
not have the ability or willingness to perform failure diag-
nosis, especially when existing tools require either nontrivial
manual eflort or expertise to operate. Programmers gener-
ally cannot access the in-production environment, due to
business or privacy concerns.

As a result of these challenges, current state-of-practice
systems mainly focus on post-mortem analysis of crash
dumps collected from users. Such systems may pinpoint call
stacks or even root causes of partial sequential errors by
employing oflline core dump and binary analysis. However,
they share some common 1ssues, since core dumps only
include the states at the time of failure, but lack state changes
prior to failures. Therefore, they cannot diagnose concur-
rency failures, due to the lack of interleaved accesses from
multiple threads. Further, they cannot diagnose a large
portion of sequential failures due to imncomplete states and
information-destroying instructions. Finally, users may still
have privacy concerns with regard to sharing core dumps
with software vendors.

To overcome some of these 1ssues, some conventional
approaches may record partial execution information to
assist offline failure analysis. Likewise, some conventional
approaches may record control tflow tracing and coarse
timing information, relying on modern hardware support.
After obtaining the trace data, such approaches may per-
forms 1inter-procedural static analysis, only on executed
code, and employ the timing information to perform partial
flow sensitive analysis. However, such conventional
approaches still have 1ssues such as requiring multiple
successiul and failed traces to statistically infer the control
flow differences which lead to concurrency failures. Such
conventional approaches are not designed to diagnose
sequential failures and may not be able to diagnose highly
concurrent failures, failures caused by multiple vaniables, or
fallures where failing instructions are not inside the bug
pattern, such as software aborts/assertions, and nonstop
failures.

Other conventional approaches may employ record-and
replay (RnR) systems to replay failures offline 1n an in-house

10

15

20

25

30

35

40

45

50

55

60

65

2

setting. However, there are multiple 1ssues with such sys-
tems, for example: oflline replay also requires the same
runtime environment, which may not be accessible due to
privacy reasons, such as private iputs or all related third-
party libraries. Many existing record-and-replay systems
may impose prohibitively high performance overhead.
Accordingly, a need arises for techmiques that provide
precise and fully-automatic on-site software failure diagno-
s1s that overcomes 1ssues of existing systems and general
challenges of mn-production software failure diagnosis.

SUMMARY OF THE INVENTION

The techniques described herein may provide techniques
for precise and fully-automatic on-site software failure diag-
nosis that overcomes 1ssues of existing systems and general
challenges of m-production software failure diagnosis.

Embodiments of the present systems and methods may
provide a tool capable of automatically pinpointing a fault
propagation chain of program failures, with explicit symp-
toms, such as crashes or program hangs. The combination of
binary analysis, in-situ/identical record and replay, and
debugging registers can be used together to automatically
simulate the debugging procedures of a programmer auto-
matically. The challenges of overhead, privacy, transpar-
ency, convenience, and completeness 1n in-production fail-
ure analysis may be overcome, making it suitable for
deployment uses.

For example, 1n an embodiment, a method may comprise
recording information during the original execution of soft-
ware code, when a failure 1s detected 1n the execution of the
soltware code, performing failure analysis using the
recorded information up re-execution of software code, and
generating a failure report indicating a root cause of the fault
detected 1n the execution of the soitware code.

In embodiments, the failure analysis may comprise inter-
cepting a failure signal indicating a failure detected in the
execution of the software code, 1dentifying a failing call
stack and the 1nstruction pointer to determine a fault location
in the software code of the failure detected in the execution
of the software code, 1 necessary, identifying all possible
branches of execution leading to the determined fault loca-
tion in the software code of the failure detected in the
execution of the software code, and placing breakpoints on
corresponding jump 1nstructions to determine a failing
branch, determining the memory address fault values are
loaded from, tracing data flow on that memory address by
debugging registers, determining which accesses occurred
before other accesses using happens-before analysis, and
extracting important information for generating the failure
report. The method may further comprise after determining
the failing branch, determining a failing instruction and
corresponding registers. Determining the failing instruction
and register may comprise determining the failing register
using the failing instruction pointed by the instruction
pointer, setting breakpoints to determine a last assignment to
the failing register before the failure, computing a failing
address based on a value 1n the failing register upon the last
assignment, 1stalling a watchpoint on the failing address,
and tracing potential mstructions that attempt to access the
failing address using the watchpoint, a mechanism that 1s
widely used 1n the debugging environment. The method may
turther comprise after determining which accesses occurred
betore other accesses, pruning accesses that cannot be part
of the root cause of the failure in the execution of the
software code.

US 11,599,445 B2

3

In an embodiment, a system may comprise: a processor,
memory accessible by the processor and adapted to store
program 1nstructions, and program 1nstructions stored 1n the
memory and executable by the processor to perform: record-
ing information relating to execution of software code, when
a failure 1s detected 1n the execution of the software code,
performing failure analysis using the recorded information
relating to the execution of software code, and generating a
failure report indicating a cause of the fault detected 1n the
execution of the software code.

In an embodiment, a computer program product may
comprise a non-transitory computer readable storage having
program 1nstructions embodied therewith, the program
instructions executable by a computer system, to cause the
computer system to perform a method comprising: record-
ing, at the computer system, information relating to execu-
tion of software code, when a failure 1s detected 1n the
execution of the software code, performing, at the computer
system, failure analysis using the recorded information
relating to the execution of software code, and generating, at
the computer system, a failure report indicating a cause of
the fault detected 1n the execution of the soiftware code.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner 1n which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, brietly summarized
above, may be referenced to embodiments, some of which
are 1llustrated in the appended drawings. It 1s to be noted,
however, that the appended drawings 1llustrate only typical
embodiments of this invention and the invention may admut
to other equally eflective embodiments.

FIG. 1 1s an exemplary block diagram and data flow
diagram of embodiments of the present systems and meth-
ods.

FIG. 2 illustrates examples of methods of setting break-
points.

FIG. 3 illustrates an example workilow of a real assertion.

FIG. 4 illustrates an example of tracking the relative
placement of each memory access by recording the position
in per-thread lists.

FIG. 5 illustrates exemplary results of an experiment to
determine the eflectiveness of embodiments of the present
systems and methods.

FIG. 6 1illustrates an example of the Memcached bug.

FIG. 7 1llustrates an example of an assertion failure.

FIG. 8 illustrates an example of a stack bufler overtlow
bug.

FIG. 9 illustrates an example of data that was collected on
the number of epochs, synchronizations, and system calls.

FIG. 10 1llustrates an exemplary results of an experiment
to determine performance overhead of embodiments of the
present systems and methods.

FIG. 11 illustrates an example of a computer system in
which embodiments of the present systems and methods
may be implemented.

Other features of the present embodiments will be appar-
ent from the Detailed Description that follows.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1

In the following detailed description of the preferred
embodiments, reference 1s made to the accompanying draw-
ings, which form a part hereot, and within which are shown
by way of illustration specific embodiments by which the

10

15

20

25

30

35

40

45

50

55

60

65

4

invention may be practiced. It 1s to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the invention.
Electrical, mechanical, logical, and structural changes may
be made to the embodiments without departing from the
spirit and scope of the present teachings. The following
detailed description 1s therefore not to be taken 1n a limiting
sense, and the scope of the present disclosure 1s defined by
the appended claims and their equivalents.

The techniques described herein may provide techniques
for precise and fully-automatic on-site software failure diag-
nosis that overcomes issues of existing systems and general
challenges of in-production software failure diagnosis.

Embodiments of the present systems and methods may
use the combination of binary-based analysis and 1dentical
replay to perform precise on-site failure diagnosis. Embodi-
ments of the present systems and methods may combine
static analysis and dynamic analysis into the same system.
Binary analysis (for example, based on XED2) may be used
to precisely identity all possible branches or instructions.
Then an 1dentical replay or re-execution (for example, based
on 1Replayer) may be performed to confirm the target one.
Identical re-execution may supply the complete and accurate
execution information needed for analysis, avoiding the
issues that may arise due to incomplete information.
Embodiments of the present systems and methods may not
require pointer aliasing analysis, overcoming the impreci-
sion of static analysis, but relying on precise information of
register assignments that can be collected using a typical
binary analysis. Given that an application may be identically
reproduced, the root cause of a failure can be diagnosed due
to the precise properties of the present techniques.

Embodiments of the present systems and methods may
turther use multiple practical mechanisms to simulate pro-
grammers’ presence at user sites, to watch the execution of
programs, perform failure diagnosis, and report the fault
propagation chain in the end.

An exemplary block diagram and data tlow diagram of
embodiments of the present systems and methods 1s shown
in FIG. 1. In the example shown i FIG. 1, one or more
programs 102 which are under analysis may execute. A
recording and replay module 104, such as 1Replayer, may
record 106 information relating to the execution of programs
102. For example, 1Replayer may perform lightweight
recording that does not create significant overhead for the
execution of programs 102. Recording and replay mecha-
nism 104 may further include a replay function 108 that may
provide 1n-situ and identical replay of the execution of
programs 102.

In embodiments, 11, for example, iReplayer 1s used, it may
be extended with a “Failure Monitoring” module 110 that
intercepts diflerent failure signals, for example, SIGSEGYV,
SIGABRT, and SIGFPE. To detect program hangs, an addi-
tional monitor thread may keep monitoring the position of
cach thread, which indicates a potential hang problem 1f
there are no state changes for a particular thread. If programs
102 do not have explicit failures, the present techniques may
impose no additional overhead on top of 1Replayer, which
may only impose, for example, 3% performance overhead
for common cases.

Upon failures, the present techniques may invoke failure
analysis on demand by handling failure signals, “Context
Analysis” 112 may be performed, for example, 1nside the
signal handler (step 1), 1n order to i1dentily the failing call
stack and instruction pointer (IP). Depending upon the
instruction information and signal type: for SIGABRT sig-
nals caused by aborts or assertions, binary analysis 114 may

US 11,599,445 B2

S

be employed to identify all possible branches 116 (step 2),
to place breakpoints 118 on the corresponding jump 1nstruc-
tions (step 3), for example 1 debug registers 119, and to
determine the failing branch during replays, where the
failing branch 1s the last branch executed before the failure.
After determining the failing branch, binary analysis may be
employed to determine the failing instruction and registers
120 (step 4). Processing may then proceed similarly to the
processing of other signals.

For other types of signals, embodiments may employ the
tailing instruction (pointed to by the instruction pointer) to
determine the failing registers 120 inside (step 4). In many
situations, there are multiple instructions that may operate
on the failing register. Therefore, breakpoints (using debug-
ging registers) may again be employed to determine the
corresponding assignment 122 (step 5), which 1s the last
assignment before the failure. After identifying each register
assignment, the failing address 124 may be computed (step
6) based on the register value, then watchpoints 126 may be
installed on the failing address (step 7), for example 1n
debug registers 119. Accordingly, potential instructions (or
statements) that attempt to read/write on the corresponding
address may be traced.

After collecting information about one or more accesses
(with value and position information) from various threads,
happens-before analysis 128 may be performed on the
access information (step 8). Unnecessary accesses that are
impossible to be a part of the root cause may be pruned, then
root cause analysis 130 (step 9) may be performed to extract
important information for reporting. The processing may be
configured to proceed with multi-level analysis (step 10), or
to 1ssue a report 132 immediately (step 11).

Embodiments of the present systems and methods may
employ two types of debug registers 119—breakpoints 118
and watchpoints 126—to perform operations on behalf of
programmers, and may perform precise analysis by simu-
lating programmers who debug the failure using debuggers,
without resorting to any additional tools.

Embodiments of the present systems and methods may
deal with multiple general challenges of diagnosing in-
production software failures. For example, the present tech-
niques may deal with the challenge of excessive overhead by
only mvoking failure analysis on demand, which imposes
the recording overhead inhernited from 1Replayer (3% on
average) for common cases in which programs do not sufler
failures. Embodiments of the present systems and methods
may deal with the challenge of privacy issues that may arise,
for example, due to reliance on core dumps, execution
records, control flow information, or both the same execu-
tion environment and execution record, while business and
privacy concerns may prevent users from sharing these with
programmers. Embodiments of the present systems and
methods may conduct on-site failure analysis and only
report the statements leading to failures, which does not leak
any sensitive information to programmers. Embodiments of
the present systems and methods may deal with the chal-
lenge of transparency arising from, for example, post-
mortem core dump analysis, or statistical failure analysis,
which may still require some degree of expertise and manual
cllort. Embodiments of the present systems and methods
may require little or no eflort from users, who only need to
wait a short amount of time for performing 1ts precise and
tully-automatic failure diagnosis. Embodiments of the pres-
ent systems and methods may deal with the challenge of
convenience by implementing a drop-in library that requires
no special hardware support, no custom OS support, and no
re-compilation or changes of applications.

10

15

20

25

30

35

40

45

50

55

60

65

6

Scope of Program Failures. Embodiments of the present
systems and methods may diagnose a range of serious
program failures with explicit symptoms, which raise certain
signals to assist detection. These failures may include, but
are not limited to, sequential and concurrency failures such
as segmentation faults, assertion failures, aborts, and divide-
by-zero errors. These failures also include program hangs
caused by deadlocks, lost signals, etc. Failing instructions
are not required to be a part of the bug pattern, where the
present techmques may precisely diagnose program aborts
and assertion failures. Embodiments of the present systems
and methods may also diagnose software failures that are
caused by multiple variables, or highly concurrent bugs
(possibly with multiple re-executions). Embodiments of the
present systems and methods may determine whether a
failure 1s a sequential or concurrency failure via happens-
before analysis. For concurrency failures, embodiments of
the present systems and methods may further determine
whether it 1s caused by race conditions or by other reasons.
Although 1t can identily the statements (from diflerent
threads) causing the failure, 1t cannot tell whether a failure
1s an atomicity violation or order violation, which will be left
to programmers to determine based on the program seman-
tics.

Embodiments of the present systems and methods may
provide a number of advantages. For example, methodologi-
cally, embodiments of the present systems and methods may
provide the combination of the in-situ and identical re-
execution and binary analysis to perform precise on-site
failure diagnosis. By pushing the detection to user sites and
employing the complete execution information supplied via
identical re-executions, 1t overcomes the eflectiveness prob-
lems of existing work caused by reliance on incomplete
information. From an implementation perspective, embodi-
ments of the present systems and methods may provide
multiple practical techniques to simulate the behavior of
programmers at user sites in order to precisely debug the
tailing applications. It employs debug registers to perform
operations on behalf of programmers, and designs happens-
before analysis to refine its root cause analysis. Embodi-
ments of the present systems and methods may overcome
challenges of overhead, privacy, transparency, and conve-
nience in n-production failure analysis, making 1t suitable
for deployment uses.

Embodiments of the present systems and methods may
utilize an m-situ and 1dentical record-and-replay system 104,
such as 1Replayer, that always replays the last epoch 1n the
same process as the original execution. Although 1Replayer
1s used as an example, embodiments of the present systems
and methods may utilize any in-situ and identical record-
and-replay system 104, including, for example, other exist-
ing systems and/or any newly developed 1n-situ and 1denti-
cal record-and-replay system.

System 104 may employ multiple mechanisms to reduce
its recording overhead. For example, 1t may avoid recording
memory accesses by handling race conditions in replay
phases, as described below; 1t may avoid recording file
reads/writes due to its 1n-situ setting; 1t may avoid recording
memory allocations using a custom heap; 1t may efliciently
record synchronizations and system calls using a novel data
structure. System 104 may ensure a number of aspects. For
example, Identical System States: system 104 may classily
system calls into five categories: repeatable, recordable,
revocable, deferrable, and irrevocable. System 104 may
record the results of recordable system calls during the
original execution, and may employ the recorded results
during re-executions. For revocable system calls, for

US 11,599,445 B2

7

example, file reads/writes, system 104 may save the posi-
tions of all opened files, and may reproduce all read-/writes
during the replay after recovering positions. System 104
may defer munmaps, closes, and thread exits, 1n order to
preserve the same system states. System 104 may close the
current epoch upon 1rrevocable system calls.

Identical Synchronizations: System 104 may support a
range ol common synchronization primitives, including
thread creation, multiple forms of mutex locks, conditional
variables, barriers, signals, and thread joins. During original
executions, system 104 may record the order and results of
synchronizations, and may reproduce the same order during
replay. System 104 may introduce per-thread lists and per-
variable lists to store syncs and syscall events, without using,
the global order. Each event may be initially recorded 1n its
per-thread list, which may be added into the corresponding
per-variable list for synchronizations. This design may be
helptul for checking the divergence during re-executions:
cach thread i1s only required to check the next event of 1ts
per-thread list. IT the actual event 1s not the same as the
expected one, system 104 may immediately mmvoke a re-
execution 1n order to search for a matching schedule. This
implementation may also be helpful for root cause analysis,
as described 1n below.

Identical Memory Uses: System 104 may support deter-
ministic memory allocations and deallocations by designing,
a custom memory allocator. Its allocator adapts the per-
thread heap organization so that memory allocations and
deallocations of one thread will not interfere with those of
another thread, which also avoids the use of locks. System
104 may further guarantee that per-thread heaps will interact
with the outside world deterministically: (1) When the
memory ol a per-thread heap 1s exhausted, 1t will determin-
istically fetch a new block from the super heap. (2) Memory
deallocations are all handled deterministically, where deal-
located objects will be returned to the current thread 1ssuing
the free mvocation.

Implementation: As described above, system 104 may
perform lightweight recording and in-situ and 1dentical
replay. Embodiments of the present systems and methods
may intercept failure signals to start failure diagnosis. Upon
program failures, embodiments of the present systems and
methods may be notified via the pre-registered signal han-
dlers. For example, Linux always delivers the faulting signal
to the failing thread by default, which allows embodiments
of the present systems and methods to precisely determine
the failing instruction. Since embodiments of the present
systems and methods may require binary analysis 1in differ-
ent steps, 1t decodes all instructions inside the application
and libraries 1n the beginning. However, the XED?2 library,
for example, generates 196 bytes of information for each
instruction, which may impose significant memory over-
head. Instead, embodiments of the present systems and
methods may create a block of memory to save only the
instruction length and address for every instruction, and later
decodes each instruction on-demand.

Context Analysis: Embodiments of the present systems
and methods may handle failure signals and traps caused by
accessing breakpoints and watchpoints. Inside the signal
handler, the failing thread coordinates other threads to stop,
which represents the failure points for different threads.
These points also serve as stopping points for root cause
analysis, since the faillure must be caused by statements
occurring prior to them. For failure signals, embodiments of
the present systems and methods may mainly collect the
calling context and instruction pointers. For traps, embodi-
ments of the present systems and methods may collect more

5

10

15

20

25

30

35

40

45

50

55

60

65

8

additional information, such as the value of an accessed
memory location for watchpoints, and the position of each
access 1side per-thread lists. The value and position infor-
mation will be employed to perform happens-before analy-
sis, as further described below.

Identifying Branches for SIGABRT Failures. Most fail-
ures, except SIGABRI, do not require this step. Abort
failures have a significant difference from other failures: the
failure reason 1s not located in the same 1nstruction as that
raising the signal. SIGABRT can be raised in multiple
situations. First, user programs or libraries may explicitly
invoke the abort API to terminate a program, when detecting
an error or unrecoverable issue. Second, compilers (for
example, GCC) place a canary immediately prior to the
return address on the stack, which may cause the SIGABRT
signal to be raised 1f 1t 1s found to be corrupted. For stack
smashing, the inserted handler will simply print “stack
smashing detected” for GCC-compiled programs, without
describing the root cause. Third, the assert macro, typically
enabled 1n debugging mode, invokes the abort() function
upon assertion failures. For these failures, there may exist
multiple branches prior to the failure. Therefore, 1t 1s 1impor-
tant to determine the branch leading to the failure, which
serves as the starting point for root cause analysis, after
which the actual failing instruction may be i1dentified.
Embodiments of the present systems and methods may use
the combination of replay and breakpoints to determine the
failing branch. Prior to replay, all instructions inside the
current function may be decoded, and breakpoints may be
place on all possible jump instructions (step 3). During
re-executions, the traps caused by attempting to execute
corresponding 1nstructions related to these breakpoints may
be handled. Upon each trap, the calling context of the current
trapping instruction may be recorded. Then, the program
may be instructed to proceed forward. If the abort subse-
quently occurs, then the last recorded trap instruction must
be 1n the branch responsible for the abort. Binary analysis
may be used to determine all near jumps 1nside the current
function. It assumes that the abort 1s not caused by a far jump
instruction, jumping into the middle of the program, if the
program 1s not intentionally tampered with. The call stack of
the failure may be utilized to determine the starting address
of the current function, which 1s the target address of the
calling instruction just belfore the second-to-last level of the
call stack.

Identifying Failing Instructions/Registers. For failures
caused by SIGABRT, after determining the failing branch, a
backward search may be performed 1n order to identify the
first 1nstruction with comparison operations, which 1s the
failing mstruction leading to the abort. For other failures, the
IP information may be utilized to directly identily the failing
instruction. After that, the failing registers within each
failing nstruction may be determined. Segmentation faults
are always caused by accessing an invalid address, thus the
registers that contribute to the computation of the invalid
address should be 1dentified. More complicatedly, multiple
registers may exist 1n the failing instruction for some fail-
ures, for example, the program aborts when x 1s less than .
During failure analysis, the assignments on both x and y’s
corresponding registers may be ivestigated. For such cases,
the root cause of one failing register may be tracked before
working on others.

Identifying Register Assignments. After determining the
failing register, the corresponding address may be identified.
Binary analysis may be performed to identify all instructions
inside the current function that have the write property, and
have a destination operand equaling to the failing register.

US 11,599,445 B2

9

The failing register’s value may come from other registers,
a memory address, an immediate value, or an mput param-
cter. Diflerent actions may be taken for diflerent situations.
If the register value 1s only assigned from one 1nput param-
cter, the caller may be inferred based on the calling context
of the failure. The next level of the call stack may be entered
into, and the same analysis may be performed for identifying
failling addresses. For an extreme case, such as pbzip2,
several levels of calling context may be analyzed 1n order to
identily the failing address. If the register value i1s only
assigned with the immediate value, then the failure identi-
fication may be stopped and happens-before analysis may be
performed.

For other situations, the combination of replay and break-
points may be employed to identily the situation. For
example, as shown 1n the example of FIG. 2, there may be
two methods of setting breakpoints. One method 1s to set
them on the next istruction following I1, 12, and I3.
However, this method cannot work 11 information-destroy-
ing instructions exist, for example, 13, since the instruction
will destroy the original value of the rbx register. Therefore,
breakpoints may actually be set on register assignment
instructions, such as on I1, 12, and I3 for this example.
During re-executions, the breakpoints may be fired before
executing such instructions. Inside the trap handler, the
values of all corresponding registers may be stored, such as
rbp’s value for the instruction I1. Then, when the failure
occurs, the correct assignment instruction may be deter-
mined: the last assignment instruction prior to the failure
will be the 1nstruction that leads to failure, and should be the
target.

Identitying Failing Addresses. After determining a spe-
cific register assignment, the corresponding memory
addresses that lead to the failure may be determined. Typi-
cally, the corresponding value of registers may be saved
upon each trap. Based on these saved register values, the
failling address may be computed. For example, FIG. 3
shows a real assertion, with rdx being the failing register and
the instruction aa6 being the register assignment. Break-
points may be installed on the instruction aa6. Since the
value of rbp register has been stored at instruction aa6, the
memory address may be computed by subtracting 0x18 from
the value of rbp register.

Happens-Before Analysis. After identitying {failing
memory addresses, hardware watchpoints may be installed
at these locations 1n order to collect memory accesses during
re-executions, which allows for 1dentifying the root causes
leading to the failure. Upon accesses, notification may occur
via the preregistered trap handler. Inside the trap handler, the
values from multiple threads may be collected. As described
betore, this collection also relies on the identical replay
supported by an in-situ and identical record-and-replay
system 104, such as iReplayer.

As described above, watchpoints may be used 1n order to
determine where the memory address was operated before
this assignment. Since one memory address may be accessed
by different threads numerous times, happens-before analy-
s1s may be performed to prune unnecessary accesses. 1o
support this, the relative placement of each memory access
may be tracked by recording the position 1n per-thread lists,
as shown 1n the example 1 FIG. 4. Each synchronization
event may first be added to 1its per-thread list, may be
inserted into the corresponding per-synchronization-variable
list.

In this example, lockl 402 was acquired by Threadl 404,
and then by Thread2 406, and lock2 408 was first acquired
by Threadl 404. The locks held by each thread may be

5

10

15

20

25

30

35

40

45

50

55

60

65

10

continuously tracked, which allows turther difierentiation of
whether a memory access occurs within the protection of
locks, or 1s unprotected. In the example shown 1n FIG. 4,
memory references occurring under lock protection, such as
W1_1 410 and W2_1 412, may be placed within the
synchronization event, while the memory references outside
all locks, such as W1_2 416, may be placed between events.
The happens-before relationship between each memory
access may be inferred by employing, for example, the data
structure shown 1 FIG. 4. If there are multiple memory
references 1nside a thread, then the latest one will overwrite
previous ones. In the example shown 1n FIG. 4, the reference
W1 2 416 overwrites the reference W1 1 410, and W1 1
410 will be discarded during the recording. The same lock
can 1ndicate the happens-betfore relationship between difler-
ent threads. In the example shown in FIG. 4, W1_1 410
happens before W2_1 412. Based on the happens-before
relationship, all unnecessary memory references may be
pruned 1n order to simplify root cause analysis. The order of
other synchronizations may be recorded to assist the analy-
s1s, such as barriers or thread creations and joins.

Root Cause Analysis and Report. After performing hap-
pens-betfore analysis, the following steps may be performed:
(1) 1t may be determined whether the failure 1s a sequential
or concurrency failure. (2) For concurrency bugs, the actual
type ol concurrency bug may be further identified, for
example, whether race conditions exist. (3) It may further be
determined whether further diagnosis 1s to be performed. (4)
The output may be assembled and generated. To determine
a sequential failure, processing may start from the failing
thread, and may confirm whether the value of the failing
address 1s last written by the current thread. If so, then 1t may
be determined that the failure 1s a sequential failure. Oth-
erwise, 1t 1s a concurrency failure. Then further checks may
be performed to determine whether the last write from
another thread and the failing reference are protected by the
same lock. If not, the failure may be reported as a race
condition. Otherwise, this may be caused by atomicity
violation, order violation, or other reasons. Programmers
may determine the real type of the failure, since the seman-
tics may not be known and the differential schedule may not
be utilized to determine 1t. Instead, only the statements
leading to the failure may be reported. Then the system can
determine whether or not to stop the diagnosis. If the system
1s configured to be one-level analysis, or there are no more
memory accesses that are detected, the failure diagnosis may
be stopped immediately. Otherwise, the placement of dif-
terent threads may be tracked, and then 1t may be determined
to perform more diagnosis. If the corresponding instruction
includes the register assignment, the processing may go to
step 4 again. Otherwise, the processing goes directly to step
6. Root causes of software crashes may be reported, for
example, on the screen, with detailed calling contexts pro-
vided. Based on the pre-set value, the root cause chain of
fallures may be reported, which may help 1n understanding
the roadmap of software failures. In embodiments, a report
may be sent via email, given the permission of users.

Evaluation. In an exemplary evaluation of the present
techniques, experiments were performed on a two-socket
Intel(R) Xeon(R) CPU E5-2640 processors, each with 8
cores. The machine was installed with 256 GB main
memory, and 256 KB L1, 2 MB L2 and 20 MB L3 cache
separately. The underlying OS was Ubuntu 16.04, 1nstalled
with Linux-4.4.25 kernel, GCC-4.9.1, with -O2 and -g flags,
was used to compile all applications and libraries.

Effectiveness. The eflectiveness of embodiments of the
present systems and methods was determined utilizing 20

US 11,599,445 B2

11

real world programs with 23 known sequential and concur-
rency bugs, as shown in FIG. 5. In this example, the bugs
included segtaults, divide-by-zero, assertion, and abort fail-
ures. Embodiments of the present systems and methods may
be applied to other types of bugs, such as floating point
tailures or even no-stop failures, such as program hangs. In
embodiments, the present systems and methods may be
configured to perform one level and/or multi-level root
cause diagnosis. For one-level analysis, only the most recent
statements that directly cause the failure were considered as
the root cause, which 1s the same as thin slicing.

However, some failures are much more complicated, as
described below. For example, when a program crashes due
to accessing one field of object A, such as A—ptr, but A—ptr
was copied from another object B, a crash may occur. When
the multi-level diagnosis 1s enabled, the fault propagation
chain inside the current epoch may be collected, providing
abundant imformation to assist bug fixes.

Overhead of Failure Diagnosis. FIG. § shows the over-
head of failure diagnosis. These applications typically crash
very soon after starting, with typically less than 2 seconds of
execution time, due to the use of buggy inputs. After crashes,
automatic failure diagnosis may be performed. For one-level
tailure diagnosis, the median, average, and maximum analy-
s1s time found 1n these exemplary experiments was 0.616,
1.8, and 8.2 seconds.

Multi-level diagnosis generally takes more time to finish,
since the fault propagation chain inside the current epoch
must be collected. Thus, the median, average, and maximum
analysis time was 0.96, 2.4, and 10.5 seconds. Note that 1f
the original length of an epoch 1s longer, more time may be
taken to perform failure analysis. These results indicate that
embodiments ol the present systems and methods may
quickly diagnosis failures.

As shown 1 FIG. 5, the median, average, and maximum
number of replays required was 4 times, 8.4 times, and 50
times for one-level failure diagnosis, while multilevel diag-
nosis typically requires more replays. However, 1f a register
has been assigned an immediate value, such as 1 “MOV
AX, OxFOOF”, then there 1s no need to perform further
diagnosis on this register. This explains why multi-level
diagnosis sometimes utilizes the same number of replays as
one-level diagnosis. Multiple replays may be required for
some bugs, such as Memcached. This behavior may be due
to the following reasons: (1) some bugs may mmvolve mul-
tiple branches (for example, aborts) or multiple varnables
(for example, multivariable failures). (2) One failing address
can be aflected by multiple registers on each level. Recur-
sively, 1t may require multiple replays to 1dentity multi-level
root causes. (3) When tracking of multiple registers 1s
needed, diagnosis of one register may be finished before
tracking others.

Case Studies. In this section, three exemplary case studies
show how embodiments of the present systems and methods
may help programmers by assisting their bug fixes.

Multi-Level Root Cause: FI1G. 6 shows an example of the
Memcached bug, a complicated bug that requires multilevel
tailure diagnosis. Memcached crashes inside the memmove
function, as shown in line L4, which actually interprets a
negative parameter as an “unsigned” value (the third param-
cter ol the memmove function). Inside the signal handler,
first the mstruction that accesses an invalid memory address,
for example, “movps -0x20(%rcx), Yoxmm?2”, may {irst be
identified and then tracing of the assignments of rcx register
may be started. In this example, nine such nstructions may
be 1dentified 1n the current function. Breakpoints may be

10

15

20

25

30

35

40

45

50

55

60

65

12

placed on these instructions, and multiple replays may be
utilized to determine which one 1s the last assignment before
the crash.

The relevant struction 1s found to be “lea -0x10(%rsi,
Yordx, 1), %rcx”, which is related to line L.4: rdx 1s the third
parameter (tocopy), and rsi1 1s the second parameter (c—r-
crr). From this point, the origin of these two registers may
be tracked. The rdx register, relating to the tocopy parameter,
1s actually assigned in statement 3. After obtaining the
address of the tocopy variable, a watchpoint may be installed
here, and all memory accesses tracked on 1t during replays.
Finally, 1t 1s confirmed that statement .2 performs a write
operation on this address, which 1s the last assignment to it,
using the root cause analysis as described 1n above. This 1s
the first level of root cause, which employs the watchpoint
once. In fact, in this instruction, vlen i1s a negative value,
which causes memmove to touch an mvalid address.

If the system 1s configured to collect one-level root
causes, at this point processing may stop. Otherwise, the
fault propagation chain may be continued to be traced, until
there are no other memory accesses to trace in the current
epoch.

Assertion Caused by Concurrency Failure: FIG. 7 1llus-
trates an assertion failure in L8. Three threads are involved
in this bug. A producer thread calls pqueue_put to write the
data to a shared queue, with the gp->occupied being updated
to be 1. After that, two consumer threads may invoke pqueue
get to fetch the data simultaneously, since the critical section
1s broken into two parts (as L6 and L7). Then the second
consumer thread will detect that the gp->occupied 1s equal
to 0, which leads to an assertion violation caused by atomi-
city violation.

The SIGABRT signal may be caught because the assert
macro finally invokes abort. Then all branch instructions in
the current function may be identified, and breakpoints may
be placed on each jump instruction. During replays, the
causal branch that is affected by the comparison operation
may be 1dentified, which 1s “test ecx, ecx” mnstruction 1nside.
Therefore, the origin of the ecx register may be tracked. As
long as the memory address of gp->occupied 1s found, a
watchpoint 1s 1nstalled at that location to collect data tlow.
Assuming a given schedule with TO{L1;L.2;1.3};T1{L4;L5;
L6}, T2{L4;L5.L6;L7;L.8;1.9};T1{L7;L8}, both TO and T2
write 1 and O to gp->occupied respectively. Happen-before
analysis may be performed based on recorded events.
According to the aforementioned scheduling, TO obtains
lock gqp->mitx first, and T2 acquires 1t later. Thus, there 1s a
happens-betore relationship between TO and T2 on this
memory unit. Therefore, TO does not contribute to the
tailure, which will be pruned for the diagnosis. By 1denti-
tying the accesses from 11 and T2, 1t may be inferred that
12 occurs betore T1 on this address, since L8 and L9 are
under the same lock, gp->mtx. However, the process cannot
know program semantics; it can only report it why the
assertion will fail. This 1s the first level root cause. After that,
another level of root cause from L9 1s tracked, which 1s 1n
the 1nitialization function where gp->occupied 1s nitialized
to 0. Tracking may then stop, since the memory 1s assigned
to an 1mmediate value.

Stack Overtlows Invoking Abort: An example of a stack
bufler overtlow bug 1n the tcp test function of Aireplay-ng 1s
shown 1n FIG. 8. For this bug, the socket reads may
overwrite the local bufler packet (at line L3), which 1is
declared to be 1024 bytes at 1. As described before, the
GCC compiler mnvokes abort to report such failure, but does
not report root cause, or even the function name associated
with the stack smashing. In contrast, embodiments of the

US 11,599,445 B2

13

present systems and methods may report the exact root cause
for this type of failure, by indicating the relevant statements.

For this example, the SIGABRT signal may be handled
such that it knows the failure 1s caused by invoking the
abort() function. For aborts/assertions, the failing branch
may be determined, since typically there are multiple
branches before the mvocation of abort(). As such, there are
34 branch mstructions 1n the current function. Thus, break-
points may be placed on each, and multiple replays may be
employed to confirm the failing branch, which should be the
last branch prior to the failure. In the end, the branch 1s found
to be a JNE 1nstruction. Then, in reverse, all instructions 1in
the current basic block may be checked one-by-one, and the
XOR may be identified as the failing instruction, which 1s
used to compare the register value with a magic word.
Further, the register assignment may be determined using
the same procedure of using breakpoints. After identifying
the register, the address of this variable may be collected
during replay, and the watchpoint may be installed on the
stack address that contains the corrupted canary. By han-
dling the traps, 1t may be determined that statement 1.4 1s the
last write on this canary, which 1s the root cause for this bug.
Since this statement 1s a read system call, and the bug 1s a
stack overflow, another level may be traced.

Note embodiments of the present systems and methods
may surpass the static binary analysis approach for this
tailure. For example, the read system call may block static
analysis completely, since the dynamic information about
the size of data chunks and the memory address may not be
available. This 1ssue may be avoided by pushing the binary
analysis to the user site.

Performance Overhead. As described above, embodi-
ments ol the present systems and methods may employ an
existing work—iReplayer—to perform 1n-situ and 1dentical
record-and-replay. Therefore, such embodiments may
inherit the overhead of iReplayer. In the following examples,
the performance overhead may be evaluated for common
cases that applications do not have explicit failures. The
performance was evaluated using the popular PARSEC
benchmark suite, and multiple widely-utilized real applica-
tions, such as Apache, Memcached, aget, pbzip2, and
piscan. In total, there are 16 multithreaded applications in
this example.

Examples of the performance overhead of embodiments
of the present systems and methods can be seen 1 FIG. 10.
For comparison purposes, the performance of “Default” and
“Watcher” are listed 1n the same figure, where “Default”
represents the performance overhead when using the default
libraries on the Linux machine. The figure shows the nor-
malized runtime for different applications. That 1s, 1f the bar
i1s higher than 1.0, thus indicates that the corresponding
application runs slower than with the Linux default pthreads
library. In total, embodiments of the present systems and
methods 1mposes around 3% performance overhead, which
makes 1t suitable for being employed 1n 1mn-production mode
software.

For some applications, such as raytrace and dedup,
embodiments of the present systems and methods run faster
than the default. To mvestigate the internal reasons behind
this, the performance data for the memory allocator was
ispected, although this 1s not shown in the figure. These
results show that the memory allocator (actually 1Replayer’s
allocator) boosts performance by around 2% overall, and
also contributes to the performance improvement of these
two applications. The memory allocator always returns the
deallocated objects to the current thread, which avoids the
usage of locks and boosts performance. The default memory

5

10

15

20

25

30

35

40

45

50

55

60

65

14

allocator invokes a large number of unnecessary madvise
system calls for dedup, which also contributes to the per-
formance difference.

We also observed that embodiments of the present sys-
tems and methods introduce less than 7% runtime overhead
for most applications, except for fluidanimate. Data was
collected on the number of epochs, synchronizations, and
system calls, as shown 1n FIG. 9. If an application contains
multiple epochs, or a large number of synchronizations or
system calls, this can significantly increase its runtime
overhead. As described above, in the beginning of each
epoch, embodiments of the present systems and methods
(actually 1Replayer) should take a snapshot of the memory
state, by copying out all writable memory. For each syn-
chronization and system call, the process should check
whether 1t 1s time to stop the current epoch and record the
corresponding events. The extreme case 1s fluidanimate,
which acquires 1.7 billion locks during an execution lasting
around 30 seconds. Therefore, the checking and recording
overhead 1s mtensively large for this application.

FIG. 9 also shows the epoch length and possible recording,
overhead for embodiments of the present systems and meth-
ods. The epoch length varies between 0.16 and 59.50
seconds, with an average of 21.01 seconds. As acknowl-
edged above, embodiments of the present systems and
methods may only diagnose root causes located within the
last epoch. With an epoch length of dozens of seconds, most
soltware failures may actually be diagnosed. The recording
overhead shown 1n FIG. 9 does not represent real overhead,
but 1s a computed result based on the number of synchro-
nizations and system calls. The data show that embodiments
of the present systems and methods actually imposes less
than 125 megabytes of overhead for almost all applications
except fluidanimate. As can be seen 1n the figure, fluidani-
mate 1s an extreme case that imposes a notoriously large
number of synchromzations, which should not be represen-
tative of real applications.

Limitations. Embodiments of the present systems and
methods that use 1Replayer may inherit some limitations
from 1Replayer. (1) iIReplayer only replays the last epoch 1n
order to reduce recording overhead, which implies that the
root causes of some failures theoretically may not be 1den-
tified 1f the root cause exists in a different epoch. In
embodiments, an average epoch duration 1s more than 21
seconds, which greatly reduces such possibilities. Further,
many bugs have a very short distance of error propagation,
which indicates that the root cause may be located shortly
prior to a failure. (2) Applications with self-defined syn-
chronizations may not be supported, since iReplayer cannot
identically reproduce such applications. To overcome these
1ssues, some explicit mstrumentation, may be used. For
applications with race conditions, multiple re-executions
may be needed to identily the root cause, which may
increase the analysis time. However, as shown in the
example of FIG. 5, the average analysis time 1s around 2.4
seconds, while the longest 1s only around 10 seconds.

Note that embodiments of the present systems and meth-
ods may support program hangs, with some additional
extensions. Further, embodiments of the present systems and
methods should be easily extendable to a varniety of proces-
sor architectures, such as those with RISC instruction sets.

An exemplary block diagram of a computer system 1100,
in which entities and processes involved in the embodiments
described herein may be implemented, 1s shown in FIG. 11.
Computer system 1100 may typically be implemented using
one or more programmed general-purpose computer sys-
tems, such as embedded processors, systems on a chip,

US 11,599,445 B2

15

personal computers, workstations, server systems, and mini-
computers or mainirame computers, or in distributed, net-
worked computing environments. Computer system 1100
may include one or more processors (CPUs) 1102A-1102N,
input/output circuitry 1104, network adapter 1106, and
memory 1108. CPUs 1102A-1102N execute program
instructions in order to carry out the functions of the present
communications systems and methods. Typically, CPUs
1102A-1102N are one or more microprocessors, such as an
INTEL CORE® processor.

FIG. 11 illustrates an embodiment 1n which computer
system 1100 1s implemented as a single multi-processor
computer system, 1 which multiple processors 1102A-
1102N share system resources, such as memory 1108, input/
output circuitry 1104, and network adapter 1106. However,
the present communications systems and methods also
include embodiments 1n which computer system 1100 1is
implemented as a plurality of networked computer systems,
which may be single-processor computer systems, multi-
processor computer systems, or a mix thereof.

Input/output circuitry 1104 provides the capability to
input data to, or output data from, computer system 1100.
For example, mput/output circuitry may 1include input
devices, such as keyboards, mice, touchpads, trackballs,
scanners, analog to digital converters, etc., output devices,
such as video adapters, monitors, printers, etc., and mput/
output devices, such as, modems, etc. Network adapter 1106
interfaces device 1100 with a network 1110. Network 1110
may be any public or proprietary LAN or WAN, including,
but not limited to the Internet.

Memory 1108 stores program instructions that are
executed by, and data that are used and processed by, CPU
1102 to perform the functions of computer system 1100.
Memory 1108 may include, for example, electronic memory
devices, such as random-access memory (RAM), read-only
memory (ROM), programmable read-only memory
(PROM), electrically erasable programmable read-only
memory (EEPROM), flash memory, etc., and electro-me-
chanical memory, such as magnetic disk drives, tape drives,
optical disk drives, etc., which may use an integrated drive
clectronics (IDE) interface, or a variation or enhancement
thereof, such as enhanced IDE (EIDE) or ultra-direct
memory access (UDMA), or a small computer system
interface (SCSI) based interface, or a variation or enhance-
ment thereof, such as fast-SCSI, wide-SCSI, fast and wide-
SCSI, etc., or Serial Advanced Technology Attachment
(SATA), or a variation or enhancement thereof, or a fiber
channel-arbitrated loop (FC-AL) interface.

The contents of memory 1108 may vary depending upon
the function that computer system 1100 i1s programmed to
perform. In the example shown mn FIG. 11, exemplary
memory contents are shown representing routines and data
for embodiments of the processes described above. How-
ever, one of skill in the art would recognize that these
routines, along with the memory contents related to those
routines, may not be included on one system or device, but
rather distributed among a plurality of systems or devices,
based on well-known engineering considerations. The pres-
ent communications systems and methods may include any
and all such arrangements.

In the example shown in FIG. 11, memory 1108 may
include recording and replaying module 1112, failure/trap
monitoring routines 1114, context analysis routines 1116,
binary analysis routines 1118, happens-before analysis rou-
tines 1120, root cause analysis routines 1122 failure report-
ing routines 1124, program(s) under test 1126, debug reg-
isters 1128, and operating system 1130. Recording and

10

15

20

25

30

35

40

45

50

55

60

65

16

replaying module 1112 may include software routines to
perform recording of information relating to the execution of
program(s) under test 1124, as well as a replay function 108
that may provide in-situ and 1dentical replay of the execution
of program(s) under test 1124, as described above. Failure/
trap monitoring routines 1114 may include software routines
to intercept diflerent failure signals, as described above.
Context analysis routines 1116 may include software rou-
tines to 1dentity the failing call stack and 1nstruction pointer
(IP), as described above. Binary analysis routines 1118 may
include software routines to 1dentify all possible branches, to
place breakpoints on the corresponding jump instructions,
and to determine the failing branch during replays, as
described above. Happens-before analysis routines 1120
may include software routines to determine which access
occurred before other accesses, as described above. Root
cause analysis routines 1122 may include software routines
to extract important information for reporting, as described
above. Failure reporting routines 1124 may include software
routines to generate failure reports, as described above.
Program(s) under test 1124 may include software programs,
packages, routines, etc. that are to be analyzed by the present
systems and method, as described above. Detection data
1118 may include data relating to detected performance
issues that was generated by detection routines 1112 as
described above. Diagnosis data 1120 may include data
relating to diagnosed performance 1ssues that was generated
by diagnosis routines 1114 as described above. Debug
registers 1128 may include memory locations and logic to
implement breakpoints and watchpoints, as described above.
Operating system 1122 may provide overall system func-
tionalities.

As shown 1n FIG. 11, the present communications sys-
tems and methods may include implementation on a system
or systems that provide multi-processor, multi-tasking,
multi-process, and/or multi-thread computing, as well as
implementation on systems that provide only single proces-
sor, single thread computing. Multi-processor computing
involves performing computing using more than one pro-
cessor. Multi-tasking computing involves performing com-
puting using more than one operating system task. A task 1s
an operating system concept that refers to the combination
of a program being executed and bookkeeping information
used by the operating system. Whenever a program 1s
executed, the operating system creates a new task for it. The
task 1s like an envelope for the program in that 1t identifies
the program with a task number and attaches other book-
keeping information to it.

Many operating systems, including Linux, UNIX®,
OS/2®, and Windows®, are capable of running many tasks
at the same time and are called multitasking operating
systems. Multi-tasking 1s the ability of an operating system
to execute more than one executable at the same time. Each
executable 1s running 1n 1ts own address space, meaning that
the executables have no way to share any of their memory.
Thus, 1t 1s 1mpossible for any program to damage the
execution of any of the other programs running on the
system. However, the programs have no way to exchange
any 1nformation except through the operating system (or by
reading files stored on the file system).

Multi-process computing 1s similar to multi-tasking com-
puting, as the terms task and process are often used inter-
changeably, although some operating systems make a dis-
tinction between the two. The present invention may be a
system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer
program product may include a computer readable storage

US 11,599,445 B2

17

medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present imvention. The computer readable
storage medium can be a tangible device that can retain and
store structions for use by an nstruction execution device.

The computer readable storage medium may be, for
example, but 1s not limited to, an electronic storage device,
a magnetic storage device, an optical storage device, an
clectromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having instructions recorded thereon,
and any suitable combination of the foregoing.

A computer readable storage medium, as used herein, 1s
not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (for example, light pulses
passing through a fiber-optic cable), or electrical signals
transmitted through a wire. Computer readable program
instructions described herein can be downloaded to respec-
tive computing/processing devices from a computer read-
able storage medium or to an external computer or external
storage device via a network, for example, the Internet, a
local area network, a wide area network and/or a wireless
network. The network may comprise copper transmission
cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers, and/or edge
servers. A network adapter card or network interface 1n each
computing/processing device receives computer readable
program 1instructions from the network and forwards the
computer readable program instructions for storage in a
computer readable storage medium within the respective
computing/processing device.

Computer readable program 1nstructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone soitware package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).

In some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by

10

15

20

25

30

35

40

45

50

55

60

65

18

utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions. These
computer readable program instructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the flowchart and/or
block diagram block or blocks.

These computer readable program instructions may also
be stored 1n a computer readable storage medium that can
direct a computer, a programmable data processing appara-
tus, and/or other devices to function 1n a particular manner,
such that the computer readable storage medium having
instructions stored therein comprises an article of manufac-
ture including instructions which implement aspects of the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer readable program instruc-
tions may also be loaded onto a computer, other program-
mable data processing apparatus, or other device to cause a
series of operational steps to be performed on the computer,
other programmable apparatus or other device to produce a
computer implemented process, such that the instructions
which execute on the computer, other programmable appa-
ratus, or other device implement the functions/acts specified
in the tlowchart and/or block diagram block or blocks. The
flowchart and block diagrams in the Figures illustrate the
architecture, functionality, and operation of possible imple-
mentations of systems, methods, and computer program
products according to various embodiments of the present
invention. In this regard, each block 1n the flowchart or block
diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable
instructions for implementing the specified logical function
(s).

In some alternative implementations, the functions noted
in the blocks may occur out of the order noted 1n the Figures.
For example, two blocks shown 1n succession may, in fact,
be executed substantially concurrently, or in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or
flowchart 1llustration, and combinations of blocks 1n the
block diagrams and/or flowchart illustration, can be 1imple-
mented by special purpose hardware-based systems that
perform the specified functions or acts, or that carry out
combinations of special purpose hardware and computer
instructions. Although specific embodiments of the present
invention have been described, 1t will be understood by
those of skill in the art that there are other embodiments that
are equivalent to the described embodiments. Accordingly, 1t
1s to be understood that the invention 1s not to be limited by
the specific i1llustrated embodiments, but only by the scope
of the appended claims.

From the above description, it can be seen that the present
invention provides a system, computer program product, and
method for the eflicient execution of the described tech-
niques. References 1n the claims to an element in the

US 11,599,445 B2

19

singular 1s not intended to mean “one and only” unless
explicitly so stated, but rather “one or more.” All structural
and functional equivalents to the elements of the above-
described exemplary embodiment that are currently known
or later come to be known to those of ordinary skill in the
art are intended to be encompassed by the present claims. No
claim element herein 1s to be construed under the provisions
of 35 U.S.C. section 112, sixth paragraph, unless the element
1s expressly recited using the phrase “means for” or “step
for.”

While the foregoing written description of the ivention
cnables one of ordinary skill to make and use what 1s
considered presently to be the best mode thereof, those of
ordinary skill will understand and appreciate the existence of
alternatives, adaptations, variations, combinations, and
equivalents of the specific embodiment, method, and
examples herein. Those skilled 1n the art will appreciate that
the within disclosures are exemplary only and that various
modifications may be made within the scope of the present
invention. In addition, while a particular feature of the
teachings may have been disclosed with respect to only one
of several implementations, such feature may be combined
with one or more other features of the other implementations
as may be desired and advantageous for any given or
particular function. Furthermore, to the extent that the terms
“including™, “includes™, “having”, “has”, “with”, or variants
thereot are used in either the detailed description and the
claims, such terms are intended to be inclusive in a manner
similar to the term “comprising.”

Other embodiments of the teachings will be apparent to
those skilled in the art from consideration of the specifica-
tion and practice of the teachings disclosed herein. The
invention should therefore not be limited by the described
embodiment, method, and examples, but by all embodi-
ments and methods within the scope and spirit of the
invention. Accordingly, the present invention 1s not limited
to the specific embodiments as 1llustrated herein, but 1s only
limited by the following claims.

What 1s claimed 1s:

1. A method implemented 1n a computer system compris-
Ing a processor, memory accessible by the processor and
adapted to store program instructions, and the program
instructions stored in the memory and executable by the
processor, the method comprising:

recording, at the computer system, information relating to

execution of software code;

intercepting, at the computer system, a failure signal

indicating a failure detected i1n the execution of the
software code;

identifying, at the computer system, a failing register and

an instruction pointer associated with the failure signal
to determine a location of the failure in the software
code;

identifying, at the computer system, all possible branches

of execution at the location of the failure 1n the software
code and placing breakpoints on corresponding jump
instructions to determine a failing branch;

replaying the execution of the software code based on the

recorded information;

determining, at the computer system, the failing register

using a failing instruction pointed to by the instruction
pointer;

determining, at the computer system, using the break-

points, a last assignment to the failing register before
the failure:

if at the breakpoints during the replay of the execution of

the software code a value of the last assignment asso-

10

15

20

25

30

35

40

45

50

55

60

65

20

ciated with the failing register 1s determined to come
from an additional register, setting an additional break-
point and replaying the execution of the software code
based on the recorded information and the additional
breakpoint; and

i1 at the breakpoints during the replay of the execution of
the software code the value of the last assignment
associated with the failing register 1s determined not to
come from the additional register, generating, at the
computer system, a failure report indicating the failing
register and the failing instruction as a root cause of the
failure detected in the execution of the software code.

2. The method of claim 1, further comprising:

iI the value of the last assignment associated with the
failing register originates from a memory address, then
computing, at the computer system, a failling memory
address based on a value 1n the failing register after the
last assignment;

installing, at the computer system, a watchpoint on the
failing memory address; and

tracing, at the computer system, potential instructions that
attempt to access the failling memory address using the
watchpoint by replaying the execution of the software
code based on the recorded information and the watch-
point; and

alter determining that a first plurality of memory accesses
occurred before at least one second memory access,
pruning, at the computer system, the plurality of
memory accesses that cannot be part of the root cause
of the failure 1n the execution of the software code.

3. The method of claim 2, wherein generating the failure

report comprises:
i1 the value of the failling memory address 1s last written
by a first thread, then identilying the failure as a
sequential failure;
11 the failure 1s not a sequential failure, then i1dentiiying
the failure as a concurrency failure;
if the failure 1s a concurrency failure and a last write
from a second thread and the failing memory address
are protected by a lock, then further identifying the
concurrency failure as a race condition;

if the failure 1s a concurrency failure but not a race
condition, then further identitying the concurrency
failure as due to another condition; and

reporting a type of failure in the software code and a
location of the failure in the software code to a user.

4. The method of claim 3, wherein generating the failure

report further comprises:

1f the method 1s configured to diagnose more than one
level or there are more memory accesses that are
detected, continuing the determination of the root cause
of the failure;

11 the method 1s only configured to diagnose a single level
or there are no more memory accesses that are detected,
stopping the determination of the root cause of the
failure;

reporting the root cause of the failure 1n the software code
to the user.

5. The method of claim 1, further comprising;:

1f the value of the last assignment associated with the

failing register originates from one of the following: a
memory address, an immediate value, or an input
parameter; or

11 the failure diagnosis reaches a beginning of a last epoch;

US 11,599,445 B2

21

then reporting the origin of the value of the last assign-
ment associated with the failing register and reporting
that the failure diagnosis has reached the beginning of
the last epoch.

22

if the failure 1s a concurrency failure but not a race

condition, then further identitying the concurrency
failure as due to another condition; and

reporting a type of failure in the software code and a

6. A system comprising: 5 location of the failure in the software code to a user.
a processor, memory accessible by the processor and 9. The system of claim 8, wherein generating the failure
adapted to store program instructions, and the program report further comprises:
instructions stored 1n the memory and executable by the 11 the method 1s configured to diagnose more than one
processor to perform: level or there are more memory accesses that are
recording information relating to execution of software 10 detected, continuing the determination of the root cause
code; of the failure;
intercepting a failure signal indicating a failure detected 11 the method 1s only configured to diagnose a single level
in the execution of the software code: or there are no more memory accesses that are detected,
identifying a failing register and an instruction pointer stopping the determination of the root cause of the
associated with the failure signal to determine a 15 failure;
location of the failure 1n the software code; reporting the root cause of the failure 1n the software code
identifying all possible branches of execution at the to the user.
location of the failure in the software code and 10. The system of claim 6, the processor further to
placing breakpoints on corresponding jump instruc- perform:
tions to determine a failing branch; 20 1f the value of the last assignment associated with the
replaying the execution of the software code based on failing register originates from one of the following: a
the recorded information; memory address, an immediate value, or an input
determining the failing register using a failing instruc- parameter; or
tion pointed to by the instruction pointer; 11 the failure diagnosis reaches a beginning of a last epoch;
determining, using the breakpoints, a last assignmentto 25 then reporting the origin of the value of the last assign-

the failing register before the failure;

i’ at the breakpoints during the replay of the execution
of the soitware code a value of the last assignment
associated with the failing register 1s determined to

ment associated with the failing register and reporting
that the failure diagnosis has reached the beginning of
the last epoch.

11. A computer program product comprising a non-tran-

sitory computer readable storage having program instruc-
tions embodied therewith, the program instructions execut-
able by a computer system, to cause the computer system to
perform a method comprising:

come from an additional register, setting an addi- 30
tional breakpoint and replaying the execution of the
software code based on the recorded imnformation and
the additional breakpoint; and

i’ at the breakpoints during the replay of the execution

are protected by a lock, then further identifying the
concurrency failure as a race condition;

recording, at the computer system, information relating to

of the software code the value of the last assignment 35 execution of software code;
associated with the failing register 1s determined not intercepting, at the computer system, a failure signal
to come from the additional register, generating a indicating a failure detected in the execution of the
tailure report indicating the failing register and the soltware code;
failling 1instruction as a root cause of the failure identifying, at the computer system, a failing register
detected in the execution of the software code. 40 and an 1nstruction pointer associated with the failure
7. The system of claim 6, the processor further to perform: signal to determine a location of the failure in the
if the value of the last assignment associated with the soltware code;
failing register originates from a memory address, then identifying, at the computer system, all possible
computing a failing memory address based on a value branches of execution at the location of the failure 1n
in the failing register after the last assignment; 45 the software code and placing breakpoints on corre-
installing a watchpoint on the failing memory address; sponding jump 1instructions to determine a failing
and branch;
tracing potential instructions that attempt to access the replaying the execution of the software code based on
failing memory address using the watchpoint by replay- the recorded information;
ing the execution of the software code based on the 50 determining, at the computer system, the failing regis-
recorded information and the watchpoint; and ter using a failing instruction pointed to by the
after determining that a first plurality of memory accesses instruction pointer;
occurred before at least one second memory access, determining, at the computer system, using the break-
pruning the plurality of memory accesses that cannot be points, a last assignment to the failing register before
part of the root cause of the failure 1n the execution of 55 the failure;
the software code. i’ at the breakpoints during the replay of the execution
8. The system of claim 7, wherein generating the failure of the software code a value of the last assignment
report comprises: associated with the failing register 1s determined to
if the value of the failing memory address 1s last written come from an additional register, setting an addi-
by a first thread, then identifying the failure as a 60 tional breakpoint and replaying the execution of the
sequential failure; software code, based on the recorded information
if the failure 1s not a sequential failure, then identifying and the additional breakpoint; and
the failure as a concurrency failure; i’ at the breakpoints during the replay of the execution
if the failure 1s a concurrency failure and a last write of the software code the value of the last assignment
from a second thread and the failing memory address 65 associated with the failing register 1s determined not

to come from the additional register, generating, at
the computer system, a failure report indicating the

US 11,599,445 B2

23

failing register and the failing instruction as a root

cause of the failure detected 1n the execution of the
software code.

12. The computer program product of claim 11, wherein

the method further comprising:

if the value of the last assignment associated with the

failing register originates from a memory address, then

computing, at the computer system, a failing memory

address based on a value 1n the failing register after the
last assignment;

installing, at the computer system, a watchpoint on the
falling memory address; and

tracing, at the computer system, potential instructions that
attempt to access the failing memory address using the
watchpoint by replaying the execution of the software
code based on the recorded miformation and the watch-
point; and

after determining that a first plurality of memory accesses
occurred before at least one second memory access,
pruning, at the computer system, the plurality o
memory accesses that cannot be part of the root cause
of the failure 1n the execution of the software code.

13. The computer program product of claim 12, wherein

generating the failure report comprises:

if the value of the failing memory address 1s last written
by a first thread, then identifying the failure as a
sequential failure;

if the failure 1s not a sequential failure, then identifying
the failure as a concurrency failure;
if the failure 1s a concurrency failure and a last write

from a second thread and the failing memory address

5

10

15

f20

25

30

24

are protected by a lock, then further identifying the
concurrency failure as a race condition;

if the failure 1s a concurrency failure but not a race
condition, then further identitying the concurrency
failure as due to another condition; and

reporting a type of failure in the software code and a
location of the failure in the software code to a user.

14. The computer program product of claim 13, wherein

generating the failure report further comprises:

11 the method 1s configured to diagnose more than one
level or there are more memory accesses that are
detected, continuing the determination of the root cause
of the failure;

11 the method 1s only configured to diagnose a single level
or there are no more memory accesses that are detected,
stopping the determination of the root cause of the
failure;

reporting the root cause of the failure 1n the software code
to the user.

15. The computer program product of claim 11, wherein

the method further comprising:

iI the value of the last assignment associated with the
failing register originates from one of the following: a
memory address, an immediate value, or an input
parameter; or

11 the failure diagnosis reaches a beginning of a last epoch:;

then reporting the origin of the value of the last assign-
ment associated with the failing register and reporting
that the failure diagnosis has reached the beginning of
the last epoch.

	Front Page
	Drawings
	Specification
	Claims

