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1

VEHICLE NEURAL NETWORK
LOCALIZATION

BACKGROUND

Vehicles can be equipped with computing devices, net-
works, sensors, and controllers to acquire data regarding the
vehicle’s environment and to operate the vehicle based on
the data. Vehicle sensors can provide data concerning routes
to be traveled and objects to be avoided in the vehicle’s
environment. Operation of the vehicle can rely upon acquir-
ing accurate and timely data regarding objects 1n a vehicle’s
environment while the vehicle 1s being operated on a road-
way.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an example traflic infrastructure
system.

FIG. 2 1s a diagram of an example illustration of a
topological map.

FIG. 3 1s a diagram of example stereo 1images.

FIG. 4 1s a diagram of an example point cloud image.

FIG. SA 1s a diagram of an example semantic birds-eye
VIew 1mage.

FIG. 5B 1s a diagram of an example averaged semantic
birds-eye view 1mage generated from the sematic birds-eye
view 1mage ol FIG. SA.

FIG. 6 1s an example node system that generates topo-
logical nodes.

FI1G. 7 1s an example of a topological convolutional neural
network.

FIG. 8 1s a flowchart diagram of an example process to
operate a vehicle based on three degree-of-freedom local-
1zation.

BRIEF SUMMARY

A system includes a computer including a processor and
a memory, the memory storing instructions executable by
the processor to recerve a plurality of temporally successive
vehicle sensor images as iput to a variational autoencoder
neural network that outputs an averaged semantic birds-eye
view 1mage that includes respective pixels determined by
averaging semantic class values of corresponding pixels 1n
respective 1mages 1n the plurality of temporally successive
vehicle sensor images. The instructions further include
istructions to, from a plurality of topological nodes that
cach specily respective real-world locations, determine a
topological node closest to the vehicle, and a three degree-
of-freedom pose for the vehicle relative to the topological
node closest to the vehicle, based on the averaged semantic
birds-eye view image. The instructions further include
instructions to determine a real-world three degree-of-iree-
dom pose for the vehicle by combining the three degree-oi-
freedom pose for the vehicle relative to the topological node
and the real-world location of the topological node closest to
the vehicle

The 1nstructions can further include 1nstructions to gen-
crate the averaged semantic birds-eye view image based on
rendering a semantic point cloud 1mage of an environment
around the vehicle into a two dimensional plane.

The 1nstructions can further include 1nstructions to gen-
erate the semantic point cloud image based on combining a
semantic image that includes regions labeled by region type
and a stereo point cloud image that includes regions labeled
by region distance relative to the vehicle.
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2

The mstructions can further include instructions to gen-
erate the stereo point cloud image based on a pair of stereo
images acquired by a sensor in the vehicle.

The mstructions can further include instructions to gen-
crate the semantic 1mage based on a single stereo 1mage
acquired by a sensor 1n the vehicle.

The region types can include roadway, sidewalk, vehicle,
building, and foliage.

The instructions can further include mstructions to deter-
mine the topological nodes by acquiring point cloud 1images
with a stereo camera and determining locations of the point
cloud images 1n real-world coordinates with visual odom-
etry.

The real-world three degree-of-ireedom pose for the
vehicle can be determined in coordinates based on orthogo-
nal x and y axes and a yaw rotation about a z axis orthogonal
to the x and y axes.

The instructions can further include instructions to train
the variational autoencoder neural network to output the
averaged semantic birds-eye view 1image using a plurality of
modified semantic birds-eye view 1mages.

The mstructions can further include instructions to gen-
crate each of the plurality of modified sematic birds-eye
view 1mages based on at least one of translating or rotating
the semantic birds-eye view image.

The variational autoencoder neural network can deter-
mine the three degree-of-freedom pose for the vehicle
relative to the topological node closest to the vehicle by
outputting latent variables to fully connected layers.

The varniational autoencoder neural network can deter-
mine the topological node closest to the vehicle by mputting
latent variables of the averaged semantic birds-eye view to
a nearest neighbor classifier trained to determine the topo-
logical node closest to the vehicle.

A method includes receiving a plurality of temporally
successive vehicle sensor 1mages as mput to a variational
autoencoder neural network that outputs an averaged seman-
tic birds-eye view image that includes respective pixels
determined by averaging semantic class values of corre-
sponding pixels i respective images in the plurality of
temporally successive vehicle sensor images. The method
turther includes, from a plurality of topological nodes that
cach specily respective real-world locations, determining a
topological node closest to the vehicle, and a three degree-
of-freedom pose for the vehicle relative to the topological
node closest to the vehicle, based on the averaged semantic
birds-eye view 1mage. The method further includes deter-
mining a real-world three degree-of-freedom pose for the
vehicle by combining the three degree-of-freedom pose for
the vehicle relative to the topological node and the real-
world location of the topological node closest to the vehicle.

The method can further include generating the averaged
semantic birds-eye view image based on rendering a seman-
tic point cloud 1mage of an environment around the vehicle
into a two dimensional plane.

The method can further include generating the semantic
point cloud image based on combining a semantic 1mage
that includes regions labeled by region type and a stereo
point cloud image that includes regions labeled by region
distance relative to the vehicle.

The method can further include determining the topologi-
cal nodes by acquiring point cloud images with a stereo
camera and determiming locations of the point cloud images
in real-world coordinates with visual odometry.
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The real-world three degree-of-freedom pose for the
vehicle can be determined in coordinates based on orthogo-

nal x and y axes and a yaw rotation about a z axis orthogonal
to the x and y axes.

The method can further include training the variational 3
autoencoder neural network to output the averaged semantic
birds-eye view 1mage using a plurality of modified semantic
birds-eye view 1mages.

The vanational autoencoder neural network can deter-
mine the three degree-of-freedom pose for the vehicle 10
relative to the topological node closest to the vehicle by
outputting latent variables to fully connected layers.

The vanational autoencoder neural network can deter-
mine the topological node closest to the vehicle by inputting
latent variables of the averaged semantic birds-eye view to 15
a nearest neighbor classifier trained to determine the topo-
logical node closest to the vehicle.

Further disclosed heremn 1s a computing device pro-
grammed to execute any of the above method steps. Yet
turther disclosed heremn 1s a computer program product, 20
including a computer readable medium storing instructions
executable by a computer processor, to execute any of the
above method steps.

DETAILED DESCRIPTION 25

A vehicle computer 1n a vehicle can be programmed to
acquire data regarding the environment around the vehicle
and to use the data to determine a path upon which to operate
the vehicle 1n an autonomous or semi-autonomous mode. 30
The vehicle can operate on a roadway based on the path by
determining commands to direct the vehicle’s powertrain,
braking, and steering components to operate the vehicle to
travel along the path. The data regarding the environment
can include the location of one or more objects such as 35
vehicles and pedestrians, etc., in the environment around the
vehicle and can be used by the vehicle computer to operate
the vehicle.

Determining a path can include solving a localization
problem. Localization includes determining a three degree- 40
of-freedom (DoF) pose for the vehicle with respect to a map
of the environment around the vehicle. A three DoF pose
includes a location 1n two orthogonal coordinates (X, and y
for example) and orientation in one rotation about an axis of
a third orthogonal coordinate (yaw, for example). Localizing 45
the vehicle with respect to a map and perceiving objects in
the environment around the vehicle can permit the vehicle
computer to determine a path upon which the vehicle can
travel to reach a destination on the map while avoiding
contact with objects 1n the environment around the vehicle. 50
A path can be a polynomial function determined to maintain
lateral and longitudinal accelerations of the vehicle within
upper and lower limits as 1t travels on the vehicle path.

Solving localization problems for vehicle routing can
begin by recognizing that vehicles typically travel repeat- 55
edly along the same routes. Techniques disclosed herein can
take advantage of predictable travel patterns by creating a
topological map of repeatedly traveled routes that can be
used by the vehicle computer to solve the localization
problem using less expensive equipment and fewer com- 60
puter resources that would otherwise be required to deter-
mine a path for the vehicle. Techniques described herein
perform localization of the environment around the vehicle
by first determiming a topological map of a route to be
traveled by the vehicle. A route 1s defined as a path that 65
describes successive locations of a vehicle as 1t travels from
one point to a second point on a map, typically on roadways.

4

The topological map 1s a map that includes location and
image data that can be used by the vehicle computer to
determine data including vehicle location and locations of
objects 1n the environment around the vehicle. Each node
includes three DoF data for a location along a route and an
averaged semantic birds-eye view 1mage of the location. The
three DoF data and the averaged semantic birds-eye view
image are used to train a neural network to input temporally
successive 1mages acquired by a sensor included 1n a vehicle
and output data 1dentiiying the closest node of the topologi-
cal map to the vehicle and the three DoF pose of the vehicle
with respect to the topological map. Techniques disclosed
herein improve localization by determining a three DoF
location of the vehicle based on an averaged semantic
birds-eye view 1image, which can determine the three DoF
location of the vehicle regardless of weather and lighting
conditions around the vehicle.

With reference to FIGS. 1-3, an example control system
100 includes a vehicle 105. A first computer 110 1n the
vehicle 105 recerves data from sensors 115. The {irst com-
puter 110 1s programmed to receive a plurality of temporally
successive sensor 115 1mages as input to a variational
autoencoder neural network that outputs an averaged seman-
tic birds-eye view i1mage that includes respective pixels
determined by averaging semantic class values of corre-
sponding pixels 1n respective images 1n the plurality of
temporally successive vehicle sensor images. The first com-
puter 110 1s further programmed to, from a plurality of
topological nodes that each specily respective real-world
locations, determine a topological node closest to the vehicle
105, and a three degree-of-freedom pose for the vehicle 105
relative to the topological node closest to the vehicle 105,
based on the averaged semantic birds-eye view 1image. The
first computer 110 1s further programmed to determine a
real-world three degree-of-freedom pose for the vehicle 105
by combining the three degree-of-freedom pose for the
vehicle 105 relative to the topological node and the real-
world location of the topological node closest to the vehicle
105. The first computer 110 can then generate a path for the
vehicle 105 based on the real-world three degree-of-freedom
pose and operate the vehicle 1035 along the path.

Turning now to FIG. 1, the vehicle 105 includes the first
computer 110, sensors 115, actuators 120 to actuate various
vehicle components 125, and a vehicle communications
module 130. The communications module 130 allows the
first computer 110 to communicate with a remote server
computer 140 and/or other vehicles, e.g., via a messaging or
broadcast protocol such as Dedicated Short Range Commu-
nications (DSRC), cellular, and/or other protocol that can
support  vehicle-to-vehicle, vehicle-to infrastructure,
vehicle-to-cloud communications, or the like, and/or via a
packet network 135.

The first computer 110 includes a processor and a memory
such as are known. The memory includes one or more forms
of computer-readable media, and stores 1nstructions execut-
able by the first computer 110 for performing various
operations, mncluding as disclosed herein. The first computer
110 can further include two or more computing devices
operating in concert to carry out vehicle 105 operations
including as described herein. Further, the first computer 110
can be a generic computer with a processor and memory as
described above and/or may include a dedicated electronic
circuit including an ASIC that 1s manufactured for a par-
ticular operation, e.g., an ASIC for processing sensor data
and/or communicating the sensor data. In another example,
the first computer 110 may include an FPGA (Field-Pro-
grammable Gate Array) which 1s an integrated circuit manu-
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factured to be configurable by a user. Typically, a hardware
description language such as VHDL (Very High Speed
Integrated Circuit Hardware Description Language) 1s used
in electronic design automation to describe digital and
mixed-signal systems such as FPGA and ASIC. For
example, an ASIC 1s manufactured based on VHDL pro-
gramming provided pre-manufacturing, whereas logical
components mside an FPGA may be configured based on
VHDL programming, ¢.g. stored in a memory electrically
connected to the FPGA circuit. In some examples, a com-
bination of processor(s), ASIC(s), and/or FPGA circuits may
be included 1n the first computer 110.

The first computer 110 may operate the vehicle 105 1n an
autonomous, a semi-autonomous mode, or a non-autono-
mous (or manual) mode. For purposes of this disclosure, an
autonomous mode 1s defined as one 1n which each of vehicle
105 propulsion, braking, and steering are controlled by the
first computer 110; in a semi-autonomous mode the {first
computer 110 controls one or two of vehicle 105 propulsion,
braking, and steering; in a non-autonomous mode a human
operator controls each of vehicle 105 propulsion, braking,
and steering.

The first computer 110 may include programming to
operate one or more of vehicle 105 brakes, propulsion (e.g.,
control of acceleration 1n the vehicle 105 by controlling one
or more of an internal combustion engine, electric motor,
hybrid engine, etc.), steering, transmission, climate control,
interior and/or exterior lights, horn, doors, etc., as well as to
determine whether and when the first computer 110, as
opposed to a human operator, 1s to control such operations.

The first computer 110 may include or be communica-
tively coupled to, e.g., via a vehicle communications net-
work such as a communications bus as described further
below, more than one processor, e.g., included 1n electronic
controller unmits (ECUs) or the like included 1n the vehicle
105 for monitoring and/or controlling various vehicle com-
ponents 125, e.g., a transmission controller, a brake control-
ler, a steering controller, etc. The first computer 110 1s
generally arranged for communications on a vehicle com-
munication network that can include a bus in the vehicle 105
such as a controller area network (CAN) or the like, and/or
other wired and/or wireless mechanisms.

Via the vehicle 1035 network, the first computer 110 may
transmit messages to various devices in the vehicle 105
and/or receive messages (e.g., CAN messages) from the
various devices, e.g., sensors 115, an actuator 120, ECUS,
ctc. Alternatively, or additionally, in cases where the {first
computer 110 actually comprises a plurality of devices, the
vehicle communication network may be used for commu-
nications between devices represented as the first computer
110 1n this disclosure. Further, as mentioned below, various
controllers and/or sensors 115 may provide data to the first
computer 110 via the vehicle communication network.

Vehicle sensors 115 may include a variety of devices such
as are known to provide data to the first computer 110. For
example, the sensors 115 may include Light Detection And
Ranging (LIDAR) sensor(s) 115, etc., disposed on a top of
the wvehicle 105, behind a vehicle 105 front windshield,
around the vehicle 105, etc., that provide relative locations,
s1zes, and shapes of objects surrounding the vehicle 105. As
another example, one or more radar sensors 115 fixed to
vehicle 105 bumpers may provide data to provide locations
of the objects, other vehicles, etc., relative to the location of
the vehicle 105. The sensors 115 may further alternatively or
additionally, for example, include camera sensor(s) 115, e.g.
front view, side view, etc., providing 1mages from an area
surrounding the vehicle 105. In the context of this disclo-
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sure, an object 1s a physical, 1.e., material, 1tem that has mass
and that can be represented by physical phenomena (e.g.,
light or other electromagnetic waves, or sound, etc.) detect-
able by sensors 115. Thus, the vehicle 105, as well as other
items discussed herein, fall within the definition of “object™
herein.

The first computer 110 1s programmed to receive data
from one or more sensors 115 substantially continuously,
periodically, and/or when instructed by a remote server
computer 140, etc. The data may, for example, include a
location of the vehicle 105. Location data specifies a point
or points on a ground surface and may be 1n a known form,
¢.g., geo-coordinates such as latitude and longitude coordi-
nates obtained via a navigation system, as 1s known, that
uses the Global Positioning System (GPS). Additionally, or
alternatively, the data can include a location of an object,
¢.g., a vehicle, a sign, a tree, etc., relative to the vehicle 105.
As one example, the data may be image data of the envi-
ronment around the vehicle 105. In such an example, the
image data may include one or more objects, e.g., vehicles,
trees, buildings, etc., and/or markings, e.g., lane markings,
on or along a road on which a vehicle 105 i1s currently
operating. Image data herein means digital image data, e.g.,
comprising pixels with intensity and color values, that can
be acquired by camera sensors 115. The sensors 1135 can be
mounted to any suitable location in or on the vehicle 105,
¢.g., on a vehicle 105 bumper, on a vehicle 105 roof, etc., to
collect 1images of the environment around the vehicle 105.

The vehicle actuators 120 are implemented via circuits,
chips, or other electronic and or mechanical components that
can actuate various vehicle subsystems in accordance with
appropriate control signals as 1s known. The actuators 120
may be used to control components 125, including braking,
acceleration, and steering of a vehicle 105.

In the context of the present disclosure, a vehicle com-
ponent 125 1s one or more hardware components adapted to
perform a mechanical or electro-mechanical function or
operation—such as moving the vehicle 105, slowing or
stopping the vehicle 103, steering the vehicle 103, eftc.
Non-limiting examples of components 125 include a pro-
pulsion component (that includes, e.g., an internal combus-
tion engine and/or an electric motor, etc.), a transmission
component, a steering component (e.g., that may 1include one
or more of a steering wheel, a steering rack, etc.), a suspen-
sion component 125 (e.g., that may include one or more of
a damper, e.g., a shock or a strut, a bushing, a spring, a
control arm, a ball joint, a linkage, etc.), a brake component,
a park assist component, an adaptive cruise control compo-
nent, an adaptive steering component, one or more passive
restraint systems (e.g., airbags), a movable seat, efc.

In addition, the first computer 110 may be configured for
communicating via a vehicle-to-vehicle communication
module 130 or interface with devices outside of the vehicle
105, e.g., through a vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2X) wireless communications (cellular and/
or DSRC., etc.) to another vehicle, and/or to a remote server
computer 140 (typically via direct radio frequency commu-
nications). The communications module 130 could include
one or more mechanisms, such as a transceiver, by which the
computers ol vehicles may communicate, including any
desired combination of wireless (e.g., cellular, wireless,
satellite, microwave and radio frequency) communication
mechanisms and any desired network topology (or topolo-
gies when a plurality of communication mechanisms are
utilized). Exemplary communications provided via the com-
munications module 130 include cellular, Bluetooth, IEEE
802.11, dedicated short range communications (DSRC),
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and/or wide area networks (WAN), including the Internet,
providing data communication services.

The network 135 represents one or more mechanisms by
which a first computer 110 may communicate with remote
computing devices, €.g., the remote server computer 140,
another vehicle computer, etc. Accordingly, the network 1335
can be one or more of various wired or wireless communi-
cation mechanisms, including any desired combination of
wired (e.g., cable and fiber) and/or wireless (e.g., cellular,
wireless, satellite, microwave, and radio frequency) com-
munication mechanisms and any desired network topology
(or topologies when multiple communication mechanisms
are utilized). Exemplary communication networks include
wireless communication networks (e. 2. using Bluetooth®,
Bluetooth® Low Energy (BLE), IEEE 802.11, vehicle-to-
vehicle (V2V) such as Dedicated Short Range Communi-
cations (DSRC), etc.), local area networks (LAN) and/or
wide area networks (WAN), including the Internet, provid-
ing data communication services.

The remote server computer 140 can be a conventional
computing device, 1.¢., including one or more processors and
one or more memories, programmed to provide operations
such as disclosed herein. Further, the remote server com-
puter 140 can be accessed via the network 1335, e.g., the
Internet, a cellular network, and/or or some other wide area
network.

The control system 100 can include a mapping vehicle
145. The mapping vehicle 145 may include a second, 1.e.,
mapping vehicle, computer 150. The second computer 150
includes a second processor and a second memory such as
are known. The second memory includes one or more forms
of computer-readable media, and stores instructions execut-
able by the second computer 150 for performing various
operations, including as disclosed herein.

Additionally, the mapping vehicle 145 may include sen-
sors, actuators to actuate various vehicle components, and a
vehicle communications module. The sensors, actuators to
actuate various vehicle components, and the vehicle com-
munications module typically have features in common with
the sensors 115, actuators 120 to actuate various host vehicle
components 125, and the vehicle communications module
130, and therefore will not be described further to avoid
redundancy.

FIG. 2 1s a diagram of a topological map 200. A topo-
logical map 200 1s a map that includes a set of nodes 202,
cach of which includes real-world coordinate data regarding
the location of the node 202 and an averaged semantic
birds-eve view 1mage 504 (as discussed below in regards to
FIG. SB) for the node 202 dernived from the stereo video
data. A topodoglcal map 1s generated by processing stereo
video data of the route to form a plurality of nodes 202, as
discussed below. For example, the topological map 200 can
be constructed by using video odometry to determine topo-
logical nodes 202 along a route or roadway 204, 206. The
terms roadways and routes will be used interchangeably
herein. A topological map 200 can be illustrated as 1n FIG.
2 by modifying a street map by adding nodes 202, illustrated
as circles on roadways or routes, 204, 206. The topological
map 200 can be stored, e.g., in a memory of the remote
server computer 140, and provided to vehicles 105, 145,
¢.g., via the network 135.

Each node 202 is located on a roadway 204, 206 that can
be traveled along by a vehicle 105, 145. Nodes 202 are
located with one to 10 meters distance between adjacent
nodes 202. Spacing out nodes 202 1n this fashion permits
location of a vehicle 105, 145 within a few centimeters, for
example, one to 25 centimeters, in X and y directions (1.e.,
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lateral and longitudinal directions) relative to the roadway
204, 206 while maintaining a limit on the amount of data
required to represent the roadway 204, 206. The roadway
204, 206 1s mapped using a mapping vehicle 145 equipped
with a stereo camera to obtain stereo video data of each node
202 along the roadway 204, 206. The mapping vehicle 145
can then generate a semantic point cloud image 402 for each
node 202 based on the stereo video data, as discussed below.
Additionally, the mapping vehicle 143 can generate, for each
node 202 in the topological map 200, an averaged semantic
birds-eye view 1image 504 with corresponding feature points
using latent variables from a neural network, as discussed
below. Alternatively, the mapping vehicle 145 can provide
the stereo video data to the remote server computer 140 that
can generate the semantic point cloud 1mage 402 and the
averaged semantic birds-eye view 1mage 504 for the respec-
tive node 202.

In this context, a “semantic point cloud 1mage” 1s a point
cloud image that includes labels that identity regions within
the 1mage corresponding to objects. In this context, a “point
cloud 1mage” 1s point cloud data that includes distances or
ranges to points in the image. Said differently, a semantic
point cloud 1s a point cloud 1image where the point cloud data
corresponding to distances 1s also labeled with semantic
class values to 1dentity the type of object or region. Regions
so labeled can include roadways, sidewalks, vehicles, pedes-
trians, buildings and foliage, etc. A semantic class value 1s
an nteger that corresponds to one type of object or region.

FIG. 3 1s a diagram of a pair of stereo images 302, 304.
Stereo 1mages 302, 304 can be acquired by a stereo camera
sensor 115, where two cameras are arranged to view the
same scene with a lateral separation. The lateral separation,
also referred to as the baseline, causes the cameras to
generate 1mages where corresponding points 1 each image
will be displaced with respect to the 1mage by an amount that
1s a function of the lateral separation of the cameras and the
distance of the point in space from the cameras. Because the
lateral separation of the cameras can be precisely deter-
mined, a straightforward geometric transformation can yield
distances to points in the 1mages, e.g., as described further
below.

FIG. 4 1s a diagram of a semantic point cloud image 402
generated from an averaged stereo point cloud 1mage and a
semantic 1mage. In this context, “a semantic 1mage™ 1s an
image that 1s labeled with semantic class values that identify
the type of object or region within the image. That 1s, each
pixel in the 1image 1s labeled with one semantic class value
corresponding to the type of object or region detected 1n the
pixel, as discussed further below. In this context, an “aver-
aged stereo point cloud 1image™ 1s a stereo point cloud 1image
that includes pixels corresponding to an average distance
from the point corresponding to the respective pixel 1in each
of a plurality of stereo point cloud images to the stereo
camera sensor 113.

The averaged stereo point cloud image 1s generated from
a plurality of temporally successive pairs of stereo 1images,
1.€., stereo video data. While the pixels values in a pair of
stereo 1mages 302, 304 correspond to the amount of light
received by the stereo camera sensor 115, in a stereo point
cloud image the value of the pixels correspond to distances
from the point corresponding to the pixel to the stereo
camera sensor 1135. In other words, a stereo point cloud
image icludes regions labeled by region distance relative to
the stereo camera sensor 115.

A stereo point cloud 1image can be constructed from a pair
of stereo 1mages 302, 304 based on stereo disparity. Stereo
disparity 1s defined as the difference in corresponding fea-
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ture point locations 1 a pair of stereo images 302, 304.
Corresponding feature points are defined as locations in the

pair of stereo 1mages 302, 304 that share similar pixel values
including regions around the locations. For example, cor-
ners, edges and textures 1n the pair of stereo 1mages 302, 304
can be corresponding feature points. The feature points can
be determined by known machine vision techniques which
determine feature points by processing regions in images to
find pixel locations that can be defined by patterns of abrupt
changes in pixel values, for example edges and comers and
textures. Patterns of pixel values around feature points can
be compared between pairs ol stereo 1mages to identify
corresponding feature points that occur in both 1mages. The
difference 1n location with respect to the array of image
points can be used to measure stereo disparity. Feature point
detection can be found using machine vision techniques,
¢.g., such as speeded up robust features (SURF).

Once corresponding feature points 1 a pair ol stereo
images 302, 304 are identified by determining similar
arrangements of pixel values, a distance from the stereo
camera sensor 115 to the feature points can be determined.
Because the distance between the two cameras 1s determined
by the fixed mount to which the cameras are attached, a
baseline 1s established that permits the distance from the
cameras to corresponding feature points to be determined by
triangulation. An equation for determining the distance from
the stereo camera sensor 115 to a feature pomnt P=x,, y,, z,
in overlapping fields of view of a pair of stereo image
sensors corresponding to 1mage feature locations P(u,, v, ),
P(u,, v,) in first and second stereo 1mages 302, 304 based on
stereo disparity 1s given by the equations:

d =uy —up (1)
le (2)
=g
bvl
=T
bf
Zp — E

where d 1s the disparity determined by a difference 1n feature
coordinates locations u,-u, 1n the x-direction, b 1s the
baseline between the centers of the two cameras and 1 1s the
common focal distance of the two cameras. Distances to a
plurality of corresponding feature points determined 1n this
fashion can be assembled 1nto a stereo point cloud 1image. A
stereo point cloud 1mage can be generated for each pair of
stereo 1mages 302, 304. The stereo point cloud 1mages can
then be combined, e.g., by averaging the distances to each of
the plurality of corresponding feature points in the respec-
tive stereo point cloud images, to generate the averaged
stereo point cloud image.

An averaged stereo point cloud image can also be deter-
mined by training a convolutional neural network (CNN) to
determine the averaged stereo point cloud image from a
plurality of temporally successive pairs of stereo 1mages
302, 304. A convolutional neural network includes a plural-
ity of convolutional layers followed by a plurality of fully
connected layers. The convolutional layers can determine
the feature points, which are passed as latent variables to the
tully connected layers, which calculate the equivalent of
equations (1) and (2). A CNN can be trained to determine an
averaged stereo point cloud image from a plurality of
temporally successive pairs of stereo 1mages 302, 304 using,
a training dataset that includes pairs of stereo 1mages 302,
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304 along with ground truth point cloud images that have
been determined using feature points and geometric pro-
cessing based on equations (1) and (2). Ground truth 1s data
corresponding to a correct result output from a CNN, 1.e.,
data correctly representing a real-world state, where the
ground truth data 1s acquired from a source independent
from the CNN. Ground truth 1s used to compare to the result
output from a CNN when training the CNN to determine
when the CNN 1s outputting a correct result. For example,
ground truth for point cloud data can be determined by
manually selecting corresponding feature points 1n a pair of
stereo 1mages and manually calculating distances based on
measured baseline and camera focal length to form ground
truth point cloud data.

In addition to distances, the pixel values of the semantic
point cloud image 402 can correspond to regions from a
semantic 1mage. That 1s, 1n the semantic point cloud 1image
402, objects corresponding to a roadway, vehicles, trees and
buildings adjacent to the roadway have been labeled to
identify the regions of pixels in the semantic point cloud
image 402 corresponding to the labeled objects in the
semantic 1mage. The semantic image includes regions
labeled by region type, e.g., vehicles, roadways, buildings,
foliage, etc. The semantic 1image 1s generated from one
image of the stereo 1image pair 302, 304. For example, one
of the RGB 1mages included 1n the stereo 1mage pairs 302,
304 can be mput to a convolutional neural network (CNN)
that has been trained to segment 1mages Image segmentation
1s a machine vision technique that labels objects 1n 1mage
data. That 1s, the CNN can be programmed to segment and
classily objects based on connected regions of pixels 1n
RGB 1mage data.

The connected regions can be classified by labeling each
connected region with one of a number of different semantic
class values corresponding to objects. As set forth above,
cach semantic class value 1s an integer that corresponds to
one type of object or region. The semantic class values can
be selected by the CNN based on the size, shape, and
location of the objects in an RGB 1mage. For example, a
CNN can include different semantic class values, e.g., for
different makes and models of vehicles, different types of
terrain (e.g., grass, mud, gravel, etc.), diflerent types of
foliage (e.g., trees, bushes, shrubs, etc.), etc. The CNN can
label objects in an mmput 1mage and then the labels can be
combined with the point cloud 1image, as discussed below.

The CNN can be trained to label regions in RGB 1mage
data by first constructing a training dataset, where RGB
images are labeled manually by humans using image pro-
cessing soltware to draw boundaries around objects and
filling 1n the boundaries with pixel values corresponding to
the objects. The manually labeled RGB 1mages are ground
truth to be compared with the output of the CNN. The
dataset can include more than 1000 RGB images with
corresponding ground truth. The CNN 1s executed a plurality
of times with the same RGB 1mage as input while changing
sets ol parameters that govern the operation of the convo-
lutional layers and fully connected layer included in the
CNN. The sets of parameters are graded depending upon
how similar the output 1s to the corresponding ground truth.
The highest scoring sets of parameters over the training
dataset are retained as the set of parameters to use when
operating the trained CNN.

FIG. 5A 1s a diagram of a semantic birds-eye view 1mage
502 generated from an example semantic point cloud image.
A semantic birds-eye view 1image 502 1s a two-dimensional
(2D) image produced by rendering a semantic point cloud
image. Rendering can produce a semantic birds-eye view




US 11,670,088 B2

11

image of a semantic point cloud image by determining a
virtual camera point of view from which to project the
semantic point cloud images to a 2D plane.

A virtual camera can be provided by programming of a
computer 110, 140, 150 to generate a 2D semantic birds-eye
view 1mage Irom a semantic point cloud 1mage. The com-
puter 110, 140, 150 can generate virtual light rays that pass
from a virtual image sensor through a virtual lens, obeying
the laws of physics just as 1f the 1mage sensor and lens were
physical objects. The computer 110, 140, 150 nserts data
into the virtual image sensor corresponding to the appear-
ance ol the portion of a semantic point cloud image that a ray
of light emitted by the feature points of the semantic point
cloud image and passing through a physical lens would
produce on a physical image sensor. By situating a virtual
camera at a selected location and orientation with respect to
the semantic point cloud image, a 2D semantic birds-eye
view 1mage corresponding to a selected viewpoint with
respect to a vehicle 105, 145 can be generated.

The virtual camera point of view includes location and
orientation data for an optical axis of the virtual camera and
data regarding the magnification of the virtual camera lens.
The virtual camera point of view 1s determined based on the
location and orientation of a virtual camera with respect to
a vehicle 105, 145. The location of the virtual camera 1s
selected to be above the vehicle 105, 145 and on a y axis of
a semantic point cloud image. Additionally, the orientation
of the virtual camera corresponds to the orientation of the
vehicle 105, 145. That 1s, the point of view of the virtual
camera 1s a top view of the environment included in the
semantic point cloud image. Projecting the semantic point
cloud image onto a 2D plane corresponds to determining
which feature points of the semantic point cloud image
would be visible to a camera acquiring an image of the
semantic point cloud image from the selected location and
orientation. Because the semantic birds-eye view image 502
was generated from a semantic point cloud 1image based on
a virtual camera at a selected location and orientation, data
regarding the location and orientation of the feature points
illustrated 1n the semantic birds-eye view image 502 is
known.

Alternatively, the semantic birds-eye view 1image 502 can
be constructed from the semantic point cloud 1mage based
on coordinates of feature points in the semantic point cloud
image. Specifically, the computer 110, 140, 150 can plot the
x and z coordinates ol each feature in the semantic point
cloud mmage into a 2D plane. In this situation, the x coor-
dinates can be plotted along a horizontal axis, e¢.g., generally
parallel to a vehicle-lateral axis, and the z coordinates can be
plotted along a vertical axis, e.g., generally parallel to a
vehicle-longitudinal axis. The semantic birds-eye view
image 502 includes a field of view within which all of the
teature points of the semantic point cloud image are plotted.
The field of view 1s defined by the sensor 1135, e.g., the stereo
cameras.

FIG. 5B 1s a diagram of an averaged semantic birds-eye
view 1mage 504 generated from a semantic birds-eye view
image 502. An “averaged semantic birds-eye view image” 1s
a semantic birds-eye view 1mage that includes pixels corre-
sponding to an average distance from the point correspond-
ing to the respective pixel i each of a semantic birds-eye
view 1mage and a plurality of modified semantic birds-eye
view 1mages to the stereo camera sensor 115 and an average
semantic class value corresponding to the respective pixel 1n
cach of the semantic birds-eye view 1mage and the plurality
of modified semantic birds-eye view i1mages. That 1s, cor-
responding pixel values in the semantic birds-eye view
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image and the plurality of modified semantic birds-eye view
images are averaged to generate the averaged semantic
birds-eye view 1mage.

The averaged semantic birds-eye view 1mage 504 1s
generated from a plurality of modified semantic birds-eye
view 1mages. The computer 110, 140, 150 can generate the
plurality of modified semantic birds- -eye view 1mages by
transforming a semantic birds-eye view image 302 for the
node 202. For example, the computer 110, 140, 150 can
translate, e.g., along at least one of the x or z axes, the field
of view of the semantic birds-eye view 1mage 502 relative to
the feature points such that some of the feature points are
outside of the field of view of the modified semantic
birds-eye view i1mage. Additionally, or alternatively, the
computer 110, 140, 150 can rotate, e.g., about they axis, the
field of view of the semantic birds-eye view image 502
relative to the feature points such that some of the feature
points are outside of the field of view of the modified
semantic birds-eye view 1mage.

Said differently, the computer 110, 140, 150 can update
the location, e.g., by translating a predetermined amount
along the x axis, and/or orientation, e.g., by rotating a
predetermined amount about the y axis, of the virtual camera
relative to the semantic point cloud 1mage. After updating
the location and/or orientation of the virtual camera, the
computer 110, 140, 150 can obtain a modified semantic
birds-eye view. The computer 110, 140, 150 can generate
any suitable number of modified semantic birds-eye view
1mages.

The modified semantic birds-eye view images are then
combined with the semantic birds-eye view image 502 for
the node 202 to construct the averaged semantic birds-eye
view 1mage 504 for the node 202. Specifically, the computer
110, 140, 150 determines respective pixels in the averaged
semantic birds-eye view 1mage 504 by averaging semantic
class values and distances of corresponding pixels in the
semantic birds-eye view 1mage 502 and respective modified
semantic birds-eye view images. The computer 110, 140,
150 can then include the averaged semantic birds-eye view
image 504 with the node 202 data.

FIG. 6 1s a diagram of a node system 600 that generates
node 202 data from pairs of stereo images (STEREQO) 602
acquired as a mapping vehicle 145 equipped with stereo
video sensors travels along a roadway 204, 206 to be
mapped. Node system 600 can be implemented as software
operating on the second computer 150. In this situation, the
second computer 150 can include the node 202 data in the
topological map 200 and provide the topologlcal map 200 to
the remote server computer 140, e.g., via the network 135.
As another example, node system 600 can be implemented
as software operating on the remote server computer 140. In
this situation, the remote server computer 140 can generate
node 202 data and include the node 202 data in the topo-
logical map 200. The remote server computer 140 can then
provide the topological map 200 to the vehicles 105, 145,
¢.g., via the network 135.

When the mapping vehicle 1435 has progressed along the
roadway 204, 206 a specified distance from a previous node
202, which can be one to 10 meters, for example, the second
computer 150, or the remote server computer 140, can create
a new node 202 and place 1n into the topological map 200.
Each node 202 in the topological map 200 includes an
averaged semantic birds-eye view image 504 and a three
DoF pose corresponding to the location of the node 202 on
the topological map 200.

As the mapping vehicle 145 travels along a route 204,
206, the mapping vehicle 143 acquires pairs of stereo images
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602, 1.e., stereo video data, via the stereo video sensor. The
second computer 150 can then input the pairs of stereo
images 602 into the node system 600. The pairs of stereo
images 602 are processed by point cloud processor (PCP)
604 to form an averaged stereco point cloud image by
determining three dimensional locations of corresponding
teature points based on stereo disparity between the pairs of
stereo 1mages 602. PCP 604 can be a CNN as discussed
above 1n relation to FIG. 4.

Additionally, the pairs of stereo images 602 are passed to
an 1mage segmentation processor (SIS) 606. Image segmen-
tation processor 606 segments one of the RGB 1mages in the
pairs of stereo images 602 to generate a semantic 1mage
using a CNN as discussed above i relation to FIG. 4. The
pairs of stereo images 602 are processed one at a time as
RGB 1mages by segmentation processor (SIS) 606. SIS 606
1s a CNN ftrained to label regions in RGB image data, as
discussed above 1n relation to FIG. 4.

The sematic 1mage 1s passed to point cloud labeling
processor (PCL) 610 where a point cloud image from PCP
604 1s combined with the sematic 1image formed from the
pairs of stereo 1mages 602 that generated the averaged stereo
point cloud 1image to form a semantic point cloud image 612.
For example, 1n FIG. 4, a roadway 404, vehicles 406, 408,
buildings 410, 412, 414 and foliage 416, 418 have been
labeled, making a stereo point cloud 1mage a semantic point
cloud 1mage 402.

The semantic point cloud image 612 1s input nto a
birds-eye view processor (BEV) 614 where a semantic
birds-eye view 1mage 616 1s generated from the semantic
point cloud image 612. For example, the semantic point
cloud mmage 612 can be rendered to produce the semantic
birds-eye view 1mage 616 1 a 2D plane by determining a
location and orientation of a virtual camera, as discussed
above. As another example, the x and z coordinates of the
feature points 1n the semantic point cloud image 612 can be
plotted to generate the semantic birds-eye view image 616,
as discussed above.

The semantic birds-eye view 616 i1mage i1s input into
birds-eye view moditying processor (BEVM) 618 where an
averaged semantic birds-eye view image 620 1s generated
from the semantic birds-eye view 1mage 616. For example,
the BEVM 618 can generate a plurality of modified semantic
birds-eye view i1mages from the semantic birds-eye view
image 616, ¢.g., by transforming the semantic birds-eye
view 1mage 620 for the node 202, as discussed above
regarding FI1G. 5B. The modified semantic birds-eye view
images are then combined with the semantic birds-eye view
image 616 for the node 202 to construct the averaged
semantic birds-eye view image 620 for the node, as dis-
cussed above regarding FIG. 5B.

Additionally, a plurality of pairs of stereo 1images 602 are
input to a visual odometry processor (VO) 608. Stereo visual
odometry 1s a technique for determining a three DoF
(3DOF) pose 622 for the mapping vehicle 145 based on
determining changes in the locations of feature points
extracted from the i1mages as the mapping vehicle 145
moves through a scene. Visual odometry can be performed
by a trained variational autoencoder (VAE). A VAE 1s a
neural network that includes an encoder, a decoder and a loss
function. A VAE can be trained to mput image data, encode
the 1mage data to form latent variables that correspond to an
encoded representation of the input image data and decode
the latent variables to output an 1image that includes portions
of the mput image data modified 1n a deterministic fashion.
The VAE can be trained by determining a loss function
which measures how accurately the VAE has encoded and
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decoded the 1image data. Once a VAE 1s trained, the encoder
portion, or “head” can be removed from the VAE and used
to form latent variables that correspond to the mput images.
The latent vaniables formed by the encoder can be processed
by decoding sections that derive additional types of data, for
example three DoF data that describes the pose of the
camera that acquired the input 1image as discussed below.

Visual odometry 1s a known techmque for determining
three DoF data from a sequential series of images. Visual
odometery can be determined by traiming a VAE to mput
stereo pairs of 1images and outputting three DoF data. The
VAE determines corresponding feature points 1n sequential
images and calculates the change in location of the sensor
between 1mages. A three DoF pose for the camera can be
determined by triangulating two or more sets of feature
points to determine translation and rotation to determine a
frame of reference for the sensor 1n global coordinates. The
VAE can be tramned by determiming ground truth using an
inertial measurement unit (IMU) and real time kinematic-
enhanced global positioming systems (GPS-RTK).

A VAEFE 1ncludes an encoder, a decoder and a loss function.
The encoder mputs image data and encodes the input image
data into latent variables. The latent variables are then
decoded to form a three DoF pose for the mapping vehicle
145 based on the mput image data. The loss function 1s used
to train the encoder and decoder by determining whether the
three DoF poses 622 are valid poses for a vehicle on a
roadway based on traiming the encoder and decoder using
ground truth data regarding three DoF poses 622 corre-
sponding to the mput images determined based on real-
world measurements of a vehicle three DoF pose 622. Visual
odometry processor 608 determines three DoF poses 622
based on a plurality of pairs of stereo 1images 602 acquired
as the mapping vehicle 145 travels along the path to be
topologically mapped. The three DoF pose 622 locates the
mapping vehicle 145 with respect to global coordinates. The
computer 140, 150 can then include the three DoF pose 62
with the node 202 data.

FIG. 7 1s a diagram of a topological CNN 700. A
topological CNN 700 1s a type of VAE. A topological CNN
700 1s a neural network that can be trained to iput a
plurality of temporally successive images 702, e.g., stereo
video data, and output an averaged semantic birds-eye view
image 710. The VAE includes an encoder (EN) 704 which
includes convolutional layers that encode the mput images
702 1nto latent variables (LAT) 706 and a decoder (DEC)
708, that uses fully-connected layers and convolutional
layers to decode the latent variables 706 into an averaged
semantic birds-eye view 1image 710. The VAE can be trained
using averaged semantic birds-eye view images manually
labeled by human operators as ground truth. For example,
the VAE can be trained using averaged semantic birds-eye
view 1mages that labeled for a node and averaged semantic
birds-eye view 1mages that are labeled for adjacent nodes.
The ground truth can be compared to the output from the
VAE to train the VAE to correctly label averaged semantic
birds-eye view 1mages for a node.

Since the stereo 1mages obtained by a vehicle 105 may
vary from the stereo 1images obtained by a mapping vehicle
145 at a node 202 (e.g., due to deviations in the sensor
calibrations between vehicles, deviations 1n vehicle posi-
tions on the roadway when the stereo 1images are obtained,
etc.), the decoder 708 can be detached from the rest of the
VAE and the averaged semantic birds-eye view image 710
can be mput to the encoder 704. The encoder 704 can then
encode the averaged semantic birds-eye view 1mage 710 into
latent variables 706, which are used to determine the closest
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node 202 to the vehicle 105 and the three DoF pose of the
vehicle 105 relative to the closest node 202. Encoding the
averaged semantic birds-eye view image into latent vari-
ables allows the first computer 110 to identify the topologi-
cal node 202 closest to the vehicle 105 and the three DoF
pose of the vehicle 105 relative to the closest topological
node 202 regardless of any variations between the stereo
images obtained by the vehicle 105 and stereo images
obtained by the mapping vehicle 145 at the corresponding
node 202. The closest topological node 202 is defined as the
topological node with a three DoF location that has the least
Euclidian distance in three dimensions from the three DoF
location of the vehicle 105.

The first computer 110 can obtain a plurality of tempo-
rally successive images, e.g., stereo video data, and can
input the plurality of temporally successive images 1nto the
topological CNN 700, which 1s trained to output an averaged
semantic birds-eye view image 710 based on the plurality of
temporally successive images. The first computer 110 can
then mput the averaged semantic birds-eye view image 710
into the CNN 700 after detaching the decoder 708, such that
the encoder 704 outputs latent variables 706 for the averaged
semantic birds-eye view image 710. Upon generating the
latent variables 706, the first computer 110 can, for example,
input the latent variables 706 to a nearest neighbor classifier
that comprises programming to compare the latent variables
706 to latent variables of the averaged semantic birds-eye
view 1mage for each of the topological nodes 202. For
example, the classifier can use a machine learning technique
in which latent varnables labeled as representing various
topological nodes 1s provided to a machine learning program
for traiming the classifier. Once trained, the classifier can
accept as mput latent variables and then provide as output an
identification of a topological node nearest the vehicle 105.
Additionally, the first computer 110 can input the latent
variables 706 to fully connected layers that process the latent
variables 706 to output the three DoF pose of the vehicle 105
relative to the closest node 202.

Upon determining the closest node 202 and the three DoF
pose of the vehicle 105 relative to the closest node 202, the
first computer 110 can determine a three DoF pose 1n
real-world coordinates for the vehicle 105 using the equa-
tion:

Pﬂ'v:Pﬂ'n .P?'Iv (3)

where P_" 1s the three DoF pose of the vehicle 105 in
real-world coordinates measured with respect to the origin
of the topological map 200, P_" 1s the three DoF pose of the
closest node 202 measured with respect to the topological
map 200 origin, and P, " 1s the three DoF pose of the vehicle
105 measured with respect to the closest topological node
202.

Upon determining the DoF pose 1n real-world coordinates
tor the vehicle 105, the first computer 110 can, for example,
generate a path along which to operate the vehicle 105. The
first computer 110 can then actuate one or more vehicle
components 125 to operate the vehicle 105 along the path.
As used herein, a “path™ 1s a set of points, e.g., that can be
specified as coordinates with respect to a vehicle coordinate
system and/or geo-coordinates, that the first computer 110 1s
programmed to determine with a conventional navigation
and/or path planning algorithm. A path can be specified
according to one or more path polynomials. A path polyno-
mial 1s a polynomial function of degree three or less that
describes the motion of a vehicle on a ground surface.
Motion of a vehicle on a roadway 1s described by a multi-
dimensional state vector that includes wvehicle location,
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orientation, speed, and acceleration. Specifically, the vehicle
motion vector can include positions 1n X, vy, Z, yaw, pitch,
roll, yvaw rate, pitch rate, roll rate, heading velocity and
heading acceleration that can be determined by fitting a
polynomial function to successive 2D locations included in
the vehicle motion vector with respect to the ground surface,
for example.

Further for example, the path polynomial p(x) 1s a model
that predicts the path as a line traced by a polynomial
equation. The path polynomial p(x) predicts the path for a
predetermined upcoming distance x, by determining a lateral
coordinate p, €.g., measured 1n meters:

(3)

where a, an offset, 1.e., a lateral distance between the path
and a center line of the host vehicle 105 at the upcoming
distance x, a, 1s a heading angle of the path, a, 1s the
curvature of the path, and a, 1s the curvature rate of the path.

Techniques described herein improve vehicle localization
by generating and processing a birds-eye view 1mage to
improve the estimate of the three DoF pose for the vehicle
105. The birds-eye view 1mage improves the ability of the
vehicle computer 110 to locate objects in the environment
around the vehicle 105 regardless of the weather and/or
lighting conditions, which allows for improved localization
of the vehicle 105 despite changes 1n environmental condi-
tions at a node 202 after node 202 data was acquired.
Further, techniques described herein improves computation
by processing the 2D birds-eye view 1image as compared to
a 3D semantic point cloud image. Further, the CNN 700
requires one set of ground truth data for each node 202 to be
trained to output an averaged birds-eye view image for a
node 202 based on temporally successive stereo images.
That 1s, the CNN 700 can output the averaged semantic
birds-eye view i1mage for a node 202 based on temporally
successive stereo 1mages obtained in environment, 1.e.,
weather and/or lighting, conditions that are not included in
the ground truth data. Said differently, the ground truth data
does not need to include ground truth data for each node 202
in each environment condition, thereby reducing the amount
of ground truth data required to train the CNN 700.

FIG. 8 1s a diagram of an example process 800 for
determining a three DoF pose of a vehicle 105 based on a
plurality of temporally successive stereo 1mages, 1.€., stereo
video data. The process 800 begins 1n a block 805. The
process 800 can be carried out by a first computer 110
included 1n the vehicle 1035 executing program instructions
stored 1n a memory thereof.

In the block 803, a topological map 200 1s determined for
a roadway 204, 206 by traversing the roadway with a mobile
plattorm equipped with a stereo camera as discussed in
relation to FIG. 2. For example, a mapping vehicle 145 can
traverse the roadway 204, 206 and obtain stereo video data.
Alternatively, any mobile platform, e.g., robots, drones,
boats, etc., can be used to determine a route. The topological
map 200 includes a plurality of nodes 202, where each node
202 1ncludes a three DoF location and an averaged semantic
birds-eye view 1mage 504.

A second computer 150 can 1dentify a node 202 1n the
topological map 200, or the second computer 150 can
provide the stereo video data to a remote server computer
140 that can be programmed to identily the node 202. A
plurality of temporally successive stereo 1mages from the
stereo video data are processed by a computer 140, 150 to
produce a semantic point cloud image 402, where distance
to points 1n the 1mage are grouped and labeled as discussed
in relation to FIG. 4. For example, a semantic point cloud

px)=as+a 1x+a2x2+a 3.1:3
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image 402 can include labels for roadways, vehicles, pedes-
trians, buildings and foliage. The computer 140, 150 can
determine a three DoF pose for the node 202 based on the
semantic point cloud image 402, as discussed above. Addi-
tionally, the semantic point cloud image 402 1s processed by
the computer 140, 150 to produce a semantic birds-eye view
image 502 for the node 202, as discussed above. The
computer 140, 150 then generates an averaged semantic
birds-eye view based on the semantic birds-eye view 1mage
502 and a plurality of modified semantic birds-eye views, as
discussed above. The process 800 continues 1n a block 810

In the block 810, a first computer 110 1n a vehicle 105
trains a topological CNN 700 to input a plurality of tempo-
rally successive stereo images and output an averaged
semantic birds-eye view image 504 for a node 202 in the
topological map 200, as discussed 1n relation to FIG. 7. The
topological CNN 700 can also be trained to output a three
DoF pose for the vehicle 105 that acquired the plurality of
temporally successive stereo 1images and a closest topologi-
cal node 202 to the vehicle 105. The process 800 continues
in a block 815.

In the block 815, the first computer 110 uses the trained
topological CNN 700 to determine a three DoF pose for the
vehicle 105 relative to the closest node 202 and the closest
topological node 202 in the topological map 200. For
example, the first computer 110 can obtain a plurality of
temporally successive stereo 1mages, 1.€., stereo video data,
of an environment around the vehicle 105 while operating
the vehicle 105 along a roadway 204, 206. The first com-
puter 110 can then mput the plurality of temporally succes-
sive stereo 1mages to the topological CNN 700.

Upon receiving the averaged semantic birds-eye view
image 504 for the node 202, the first computer 110 can mnput
the averaged semantic birds-eye view 1mage 304 into the
topological CNN 700 with a decoder 708 detached such that
an encoder 704 of the topological CNN 700 outputs latent
variables 706 corresponding to the averaged semantic birds-
eye view 1mage 504. The first computer 110 can then process
the latent variables 706 to determine a closest topological
node 202 to the vehicle 105 and a three DoF pose of the
vehicle 105 relative to the closest topological node 202, as
discussed above. The first computer 110 can then determine
a three DoF pose for the vehicle 105 relative to the topo-
logical map 200 by combiming the three DoF pose for the
vehicle 105 relative to the closest node 202 and the three
DoF of the closest node 202 relative to the topological map
200, as discussed above. The process 800 continues 1n a
block 820.

In the block 820, the first computer 110 can use the three
DoF pose of the vehicle 105 with respect to the topological
map 200 to operate the vehicle 105. That 1s, after localizing,
the vehicle 105, the first computer 110 can determine a path
along which to operate the vehicle 105, as discussed above.
The first computer 110 can then actuate one or more vehicle
components 125, e.g., braking, steering, and/or propulsion,
to move the vehicle 103 along the path. Following the block
820, the process 800 ends.

As used herein, the adverb “substantially” means that a
shape, structure, measurement, quantity, time, etc. may
deviate from an exact described geometry, distance, mea-
surement, quantity, time, etc., because of imperfections 1n
materials, machining, manufacturing, transmission of data,
computational speed, etc.

In general, the computing systems and/or devices
described may employ any of a number of computer oper-
ating systems, including, but by no means limited to, ver-
sions and/or varieties of the Ford Sync® application, App-
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Link/Smart Device Link middleware, the Microsoit
Automotive® operating system, the Microsoit Windows®
operating system, the Unix operating system (e.g., the
Solaris® operating system distributed by Oracle Corpora-
tion of Redwood Shores, Calif.), the AIX UNIX operating
system distributed by International Business Machines of
Armonk, N.Y., the Linux operating system, the Mac OSX
and 10S operating systems distributed by Apple Inc. of
Cupertino, Calif., the BlackBerry OS distributed by Black-
berry, Ltd. of Waterloo, Canada, and the Android operating
system developed by Google, Inc. and the Open Handset
Alliance, or the QNX® CAR Platform for Infotainment
offered by QNX Software Systems. Examples of computing
devices include, without limitation, an on-board first com-
puter, a computer workstation, a server, a desktop, notebook,
laptop, or handheld computer, or some other computing
system and/or device.

Computers and computing devices generally include
computer-executable 1nstructions, where the instructions
may be executable by one or more computing devices such
as those listed above. Computer executable instructions may
be compiled or interpreted from computer programs created
using a variety of programming languages and/or technolo-
gies, mncluding, without limitation, and either alone or in
combination, Java™, C, C++, Matlab, Simulink, Stateflow,
Visual Basic, Java Script, Perl, HTML, etc. Some of these
applications may be compiled and executed on a virtual
machine, such as the Java Virtual Machine, the Dalvik
virtual machine, or the like. In general, a processor (e.g., a
miCroprocessor) receives mstructions, €.g., from a memory,
a computer readable medium, etc., and executes these
istructions, thereby performing one or more processes,
including one or more of the processes described herein.
Such istructions and other data may be stored and trans-
mitted using a variety of computer readable media. A file in
a computing device 1s generally a collection of data stored
on a computer readable medium, such as a storage medium,
a random access memory, etc.

Memory may include a computer-readable medium (also
referred to as a processor-readable medium) that icludes
any non-transitory (e.g., tangible) medium that participates
in providing data (e.g., instructions) that may be read by a
computer (e.g., by a processor of a computer). Such a
medium may take many forms, including, but not limaited to,
non-volatile media and volatile media. Non-volatile media
may include, for example, optical or magnetic disks and
other persistent memory. Volatile media may include, for
example, dynamic random access memory (DRAM), which
typically constitutes a main memory. Such instructions may
be transmitted by one or more transmission media, including
coaxial cables, copper wire and fiber optics, including the
wires that comprise a system bus coupled to a processor of
an ECU. Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk, hard disk,
magnetic tape, any other magnetic medium, a CD-ROM,
DVD, any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, a RAM,
a PROM, an EPROM, a FLASH-EEPROM, any other
memory chip or cartridge, or any other medium from which
a computer can read.

Databases, data repositories or other data stores described
herein may include various kinds of mechanisms for storing,
accessing, and retrieving various kinds of data, including a
hierarchical database, a set of files 1n a file system, an
application database in a proprietary format, a relational
database management system (RDBMS), etc. Each such
data store 1s generally included within a computing device
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employing a computer operating system such as one of those
mentioned above, and are accessed via a network 1n any one

or more of a variety of manners. A file system may be
accessible from a computer operating system, and may
include files stored 1n various formats. An RDBMS gener- 5
ally employs the Structured Query Language (SQL) 1n
addition to a language for creating, storing, editing, and
executing stored procedures, such as the PL/SQL language
mentioned above.

In some examples, system elements may be implemented 10
as computer-readable nstructions (e.g., software) on one or
more computing devices (e.g., servers, personal computers,
etc.), stored on computer readable media associated there-
with (e.g., disks, memories, etc.). A computer program
product may comprise such instructions stored on computer 15
readable media for carrying out the functions described
herein.

With regard to the media, processes, systems, methods,
heuristics, etc. described herein, 1t should be understood
that, although the steps of such processes, etc. have been 20
described as occurring according to a certain ordered
sequence, such processes may be practiced with the
described steps performed 1n an order other than the order
described herein. It further should be understood that certain
steps may be performed simultaneously, that other steps may 25
be added, or that certain steps described herein may be
omitted. In other words, the descriptions of processes herein
are provided for the purpose of illustrating certain embodi-
ments and should 1n no way be construed so as to limit the
claims. 30

Accordingly, 1t 1s to be understood that the above descrip-
tion 1s mntended to be illustrative and not restrictive. Many
embodiments and applications other than the examples
provided would be apparent to those of skill in the art upon
reading the above description. The scope of the invention 35
should be determined, not with reference to the above
description, but should mstead be determined with reference
to the appended claims, along with the full scope of equiva-
lents to which such claims are entitled. It 1s anticipated and
intended that future developments will occur 1in the arts 40
discussed herein, and that the disclosed systems and meth-
ods will be mcorporated into such future embodiments. In
sum, 1t should be understood that the invention 1s capable of
modification and variation and 1s limited only by the fol-
lowing claims. 45

All terms used 1n the claims are imntended to be given their
plain and ordinary meanings as understood by those skilled
in the art unless an explicit indication to the contrary 1n made
herein. In particular, use of the singular articles such as “a,”
“the,” “said,” etc. should be read to recite one or more of the 50
indicated elements unless a claim recites an explicit limita-
tion to the contrary.

The 1nvention claimed 1s:

1. A system, comprising a computer including a processor
and a memory, the memory storing instructions executable 55
by the processor to:

receive a plurality of temporally successive vehicle sensor

images as input to a variational autoencoder neural
network that outputs an averaged semantic birds-eye
view 1mage that imncludes respective pixels determined 60
by averaging semantic class values of corresponding
pixels 1n respective 1images 1n the plurality of tempo-
rally successive vehicle sensor images;

from a plurality of topological nodes that each specily

respective real-world locations, determine a topologi- 65
cal node closest to a vehicle, and a three degree-oi-
freedom pose for the vehicle relative to the topological
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node closest to the vehicle, based on the averaged
semantic birds-eye view 1mage; and

determine a real-world three degree-of-freedom pose for

the vehicle by combining the three degree-of-freedom
pose for the vehicle relative to the topological node and
a real-world location of the topological node closest to
the vehicle.

2. The system of claim 1, wherein the 1nstructions further
include instructions to generate the averaged semantic birds-
eye view 1mage based on rendering a semantic point cloud
image ol an environment around the vehicle into a two
dimensional plane.

3. The system of claim 2, wherein the instructions further
include instructions to generate the semantic point cloud
image based on combining a semantic 1mage that includes
regions labeled by region type and a stereo point cloud
image that includes regions labeled by region distance
relative to the vehicle.

4. The system of claim 3, wherein the 1nstructions further
include nstructions to generate the stereo point cloud image
based on a pair of stereo 1images acquired by a sensor 1n the
vehicle.

5. The system of claim 3, wherein the 1nstructions further
include instructions to generate the semantic 1mage based on
a single stereo 1mage acquired by a sensor 1n the vehicle.

6. The system of claim 3, wherein the region types include
roadway, sidewalk, vehicle, building, and folage.

7. The system of claim 1, wherein the instructions further
include 1instructions to determine the topological nodes by
acquiring point cloud images with a stereo camera and
determining locations of the point cloud images in real-
world coordinates with visual odometry.

8. The system of claim 1, wherein the real-world three
degree-ol-freedom pose for the vehicle 1s determined 1n
coordinates based on orthogonal x and vy axes and a yaw
rotation about a z axis orthogonal to the x and y axes.

9. The system of claim 1, wherein the 1nstructions further
include 1instructions to train the variational autoencoder
neural network to output the averaged semantic birds-eye
view 1mage using a plurality of modified semantic birds-eye
VIEW 1mages.

10. The system of claim 9, wherein the 1nstructions further
include instructions to generate each of the plurality of
modified sematic birds-eye view 1mages based on at least
one of translating or rotating the semantic birds-eye view
image.

11. The system of claim 1, wherein the variational auto-
encoder neural network determines the three degree-of-
freedom pose for the vehicle relative to the topological node
closest to the vehicle by outputting latent variables to fully
connected layers.

12. The system of claim 1, wherein the variational auto-
encoder neural network determines the topological node
closest to the vehicle by inputting latent variables of the
averaged semantic birds-eye view to a nearest neighbor
classifier trained to determine the topological node closest to
the vehicle.

13. A method, comprising:

recerving a plurality of temporally successive vehicle

sensor 1mages as input to a varnational autoencoder
neural network that outputs an averaged semantic
birds-eye view 1mage that includes respective pixels
determined by averaging semantic class values of cor-
responding pixels in respective images in the plurality
of temporally successive vehicle sensor images;

from a plurality of topological nodes that each specily

respective real-world locations, determining a topo-
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logical node closest to a vehicle, and a three degree-
of-freedom pose for the vehicle relative to the topo-
logical node closest to the vehicle, based on the
averaged semantic birds-eye view 1mage; and

determining a real-world three degree-of-freedom pose
for the vehicle by combining the three degree-of-
freedom pose for the vehicle relative to the topological
node and a real-world location of the topological node
closest to the vehicle.

14. The method of claim 13, further comprising generat-
ing the averaged semantic birds-eye view i1mage based on
rendering a semantic point cloud 1mage of an environment
around the vehicle into a two dimensional plane.

15. The method of claim 14, further comprising generat-
ing the semantic point cloud image based on combining a
semantic image that includes regions labeled by region type
and a stereo point cloud image that includes regions labeled
by region distance relative to the vehicle.

16. The method of claim 13, further comprising deter-
miming the topological nodes by acquiring point cloud

10

15

images with a stereo camera and determining locations of 20

the point cloud 1mages in real-world coordinates with visual
odometry.

22

17. The method of claim 13, wherein the real-world three
degree-of-freedom pose for the vehicle 1s determined 1n
coordinates based on orthogonal x and v axes and a yaw
rotation about a z axis orthogonal to the x and y axes.

18. The method of claim 13, further comprising training
the vanational autoencoder neural network to output the
averaged semantic birds-eye view 1mage using a plurality of
modified semantic birds-eye view 1mages.

19. The method of claim 13, wherein the wvariational
autoencoder neural network determines the three degree-oi-
freedom pose for the vehicle relative to the topological node
closest to the vehicle by outputting latent variables to fully
connected layers.

20. The method of claim 13, wherein the variational
autoencoder neural network determines the topological node
closest to the vehicle by inputting latent variables of the
averaged semantic birds-eye view to a nearest neighbor
classifier trained to determine the topological node closest to
the vehicle.
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