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1
NEURAL NETWORK OBJECT DETECTION

BACKGROUND

A vehicle can be equipped with electronic and electro-
mechanical components, e.g., computing devices, networks,
sensors, controllers, etc. A vehicle computer can acquire data
regarding the vehicle’s environment and can operate the
vehicle or at least some components thereof based on the
acquired data. Vehicle sensors can provide data concerning
routes to be traveled and objects to be avoided in the
vehicle’s environment. Operation of the vehicle can rely

upon acquiring accurate and timely data regarding objects in
a vehicle’s environment while the vehicle 1s being operated.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a block diagram illustrating an example vehicle
control system for a vehicle.

FIG. 2 1s a diagram of an example neural network.

FIG. 3 1s a diagram of an example object and example first
and second three-dimensional bounding boxes for the
object.

FIG. 4 1s a diagram of an example two-dimensional
ground truth bounding box for the object and example first
and second projections of the object.

FIG. 5 1s an example tlowchart for training the neural
network.

FIG. 6 1s an example tlowchart for operating a vehicle.

DETAILED DESCRIPTION

A vehicle computer 1n a vehicle can be programmed to
acquire data regarding the environment around the vehicle
and to use the data to determine a path upon which to operate
the vehicle 1n an autonomous or semi-autonomous mode.
The vehicle can operate on a roadway based on the path by
determining commands to direct the vehicle’s powertrain,
braking, and steering components to operate the vehicle to
travel along the path. The data regarding the environment
can include the location of one or more objects such as
vehicles and pedestrians, etc., 1n the environment around the

vehicle and can be used by the vehicle computer to operate
the vehicle.

Determining a path can include performing three-dimen-
sional (3D) object detection. That 1s, the vehicle computer
detects objects 1 3D space around the vehicle via sensor
data. Typically, the vehicle computer detects an object via
sensor data from a plurality of sensors, e.g., lidar, radar,
cameras, etc. The vehicle computer then fuses the various
forms of sensor data to determine a six degree-oi-freedom
(DoF) pose of the object relative to the vehicle. Six degree-
of-freedom refers to the freedom of movement of an object
in three-dimensional space (e.g., translation along three
perpendicular axes and rotation about each of the three
perpendicular axes). A s1x DoF pose of an object means a
location relative to a coordinate system (e.g., a set of
coordinates specifying a position 1n the coordinate system,
e.g., X, Y, Z coordinates) and an orientation (e.g., a yaw, a
pitch, and a roll) about each axis 1 the coordinate system.
However, determining the six DoF pose of the object based
on data fusion, 1.e., incorporating data from different sensors
and/or types of sensors into a common coordinate system of
frame of reference, requires time synchromization and pre-

cise calibration of the sensors. Further, 3D object detection
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based on sensor data requires manual data annotation, 1.¢.,
providing labels that indicate objects within the data, which
1s labor intensive.

Advantageously, a neural network can be trained to accept
a monocular 1image, 1.e., a two-dimensional (2D) represen-
tation of 3D space, from one 1mage sensor and to generate
an output of a six DoF pose of an object included 1n the
image. Techniques disclosed herein can train the neural
network using images provided from two 1mage sensors that
provide diflerent perspectives of an object. The neural
network outputs a respective six DoF pose of the object from
the perspective of the corresponding 1mage sensor. A pose
oflset (as discussed below) 1s determined between respective
3D bounding boxes (as discussed below) generated based on
corresponding six DoF poses. Further, projection oflsets are
determined between respective 2D projections (as discussed
below) generated based on the corresponding 3D bounding
box and a 2D ground truth bounding box. The pose oflset
and the projection oflsets are combined and used to update
parameters of a loss function for the neural network. The
updated parameters are used to train the neural network to
output an updated six DoF pose of the object. Techniques
disclosed herein improve 3D object detection by determin-
ing a s1x DoF pose of an object from a monocular image
without data annotation or data fusion, which can reduce
computational resources required to detect objects 1n 3D
space around the vehicle.

A system 1ncludes a first sensor a {irst 1image sensor
positioned to obtain a first 1mage of an object. A second
image sensor positioned to obtain a second image of the
object. a computer including a processor and a memory, the
memory storing instructions executable by the processor to
input the first image to a neural network that outputs a first
s1Xx DoF pose of the object from a perspective of the first
image sensor. The mstructions further include 1nstructions to
input the second 1image to the neural network that outputs a
second s1x DoF pose of the object from a perspective of the
second 1mage sensor. The instructions further include
instructions to determine a pose oflset between the first and
second six DoF poses by determining a difference between
respective 3D bounding boxes for the object determined
based on the first and second six DoF poses. The instructions
further include instructions to determine a first projection
oflset by determining a difference between a 2D ground truth
bounding box for the object and a first 2D bounding box
generated from the first six DoF pose. The instructions
turther include 1nstructions to determine a second projection
oflset by determining a difference between the 2D ground
truth bounding box for the object and a second 2D bounding
box generated from the second six DoF pose. The instruc-
tions further include instructions to determine a total oflset
by combining the pose oflset, the first projection offset, and
the second projection oflset. The instructions further include
instructions to update parameters of a loss function based on
the total offset and provide the updated parameters 1o the
neural network to obtain an updated pose oflset, updated first
projections oflset, and updated second projection offset that
are then combined to obtain an updated total oilset.

The mnstructions to determine the pose oflset can further
include structions to generate a first 3D bounding box for
the object from the perspective of the first 1mage sensor
based on the first s1ix DoF pose and first dimensions. The
instructions to determine the pose oflset can further include
instructions to generate a second 3D bounding box for the
object from the perspective of the second image sensor
based on the second six DoF pose and second dimensions.
The instructions to determine the pose oflset can further
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include structions to compare the first 3D bounding box to
the second 3D bounding box.

The structions determine the pose offset can further
include instructions to transform the second 3D bounding
box based on a six DoF pose of the second image sensor
relative to a six DoF pose of the first image sensor.

The transformed 3D bounding box may be determined in
coordinates of a first coordinate system based on orthogonal
X, v, and z axes having respective origins at the first image
SEensor.

The first 3D bounding box may be determined 1in coor-
dinates of a first coordinate system based on orthogonal x,
y, and z axes having respective origins at the first image
SENSor.

The second 3D bounding box may be determined in
coordinates of a second coordinate system based on orthogo-
nal x, y, and z axes having respective origins at the second
1mage sensor.

The instructions to determine the first projection can
turther include instructions to, upon generating a first 3D
bounding box for the object from the perspective of the first
image sensor, generate the first 2D bounding box for the
object by projecting the first 3D bounding box into an image
plane defined by the first image sensor. The 1nstructions to
determine the first projection can further include istructions
to compare the first 2D bounding box for the object to the 2D
ground truth bounding box for the object.

The 1nstructions to determine the second projection can
turther include 1nstructions to, upon generating a second 3D
bounding box for the object from the perspective of the
second 1mage sensor, transform the second 3D bounding box
based on a s1x DoF pose of the second image sensor relative
to a s1x DoF pose of the first image sensor. The nstructions
to determine the second projection can further include
instructions to then generate the second 2D bounding box
for the object by projecting the transformed 3D bounding
box into an 1mage plane defined by the first 1mage sensor.
The 1nstructions to determine the second projection can
turther include instructions to compare the second 2D
bounding box for the object to the 2D ground truth bounding,
box for the object.

The first six DoF pose may be determined 1n coordinates
of a first coordinate system based on orthogonal X, vy, and z
axes having respective origins at the first image sensor and
roll, pitch, and yaw rotations about the X, y, and z axes,
respectively.

The second six DoF pose may be determined 1n coordi-
nates of a second coordinate system based on orthogonal x,
y, and z axes having respective origins at the second 1mage
sensor and roll, pitch, and yaw rotations about the x, y, and
7 axes, respectively.

The instructions can further include instructions to update
parameters of the loss function until the updated total oflset
1s less than a predetermined threshold.

The neural network may be trained to output a six DoF
pose of the object when the updated total ofiset 1s less than
the predetermined threshold.

The perspective of the second image sensor may be
transverse and non-orthogonal to the perspective of the first
1mage sensor.

The first 1mage sensor may be spaced from the second
image sensor by at least one meter.

A method includes determining a first six DoF pose of an
object from a perspective of a first 1image sensor with a
neural network. The method further includes determining a
second s1x DoF pose of the object from a perspective of a
second 1mage sensor with the neural network. The method
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further imncludes determining a pose oflset between the first
and second six DoF poses by determining a difference
between respective 3D bounding boxes for the object deter-
mined based on the first and second six DoF poses. The
method further includes determining a first projection oflset
by determining a difference between a 2D ground truth
bounding box for the object and a first 2D bounding box
generated from the first six DoF pose. The method further
includes determining a second projection offset by deter-
mining a difference between the 2D ground truth bounding
box for the object and a second 2D bounding box generated
from the second six DoF pose. The method further includes
determining a total oflset by combining the pose oflset, the
first projection oflset, and the second projection oflset. The
method further includes updating parameters of a loss func-
tion based on the total oflset and provide the updated
parameters to the neural network to obtain an updated pose
oflset, updated first projections oflset, and updated second
projection oflset that are then combined to obtained an
updated total oflset.

The method can further include updating parameters of
the loss function until the updated total offset 1s less than a
predetermined threshold.

The neural network may be trained to output a six DoF
pose of the object when the updated total offset 1s less than
the predetermined threshold.

The perspective of the second i1mage sensor may be
transverse and non-orthogonal to the perspective of the first
1mage sensor.

The first 1mage sensor may be spaced from the second
image sensor by at least one meter.

A system includes a computer including a processor and
a memory, the memory storing instructions executable by
the processor to determine a first six DoF pose of an object
from a perspective of a first image sensor with a neural
network. The instructions further include instructions to
determine a second six DoF pose of the object from a
perspective of a second 1mage sensor with the neural net-
work. The instructions further include nstructions to deter-
mine a pose ollset between the first and second six DoF
poses by determining a difference between respective 3D
bounding boxes for the object determined based on the first
and second s1x DoF poses. The instructions further include
instructions to determine a {first projection oilset by deter-
mining a difference between a 2D ground truth bounding
box for the object and a first 2D bounding box generated
from the first s1x DoF pose. The istructions further include
istructions to determine a second projection oflset by
determining a difference between the 2D ground truth
bounding box for the object and a second 2D bounding box
generated from the second six DoF pose. The instructions
further include instructions to determine a total offset by
combining the pose offset, the first projection oflset, and the
second projection oflset. The instructions further include
instructions to update parameters of a loss function based on
the total offset and provide the updated parameters to the
neural network to obtain an updated pose oflset, updated first
projections oflset, and updated second projection offset that
are then combined to obtained an updated total oflset.

Further disclosed herein 1s a computing device pro-
grammed to execute any of the above method steps. Yet
further disclosed heremn 1s a computer program product,
including a computer readable medium storing instructions
executable by a computer processor, to execute an of the
above method steps.

With reference to FIGS. 1-4, an example control system
100 1ncludes a vehicle 105 and a remote computer 140. A
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vehicle computer 110 1n the vehicle 105 receives data from
sensors 115. The vehicle computer 110 1s programmed to
operate the vehicle 105 using a trained neural network, as
discussed below.

To train the neural network, the remote computer 140
receives data, e.g., image data, from a first image sensor 145
and a second 1image sensor 150. The remote computer 140 1s
programmed to mnput a first image to the neural network that
outputs a first s1x degree-of-freedom (DoF ) pose of an object
155 from a perspective of the first image sensor 145. The
remote computer 140 1s further programmed to input a
second 1mage to the neural network that outputs a second si1x
DoF pose of the object 155 from a perspective of the second
image sensor 150. The remote computer 140 1s further
programmed to determine a pose oilset between the first and
second six DoF poses by determining a difference between
respective 3D bounding boxes 320, 325 for the object 155
determined based on the first and second six DoF poses. The
remote computer 140 1s further programmed to determine a
first projection oflset by determiming a difference between a
2D ground truth bounding box 405 for the object 155 and a
first 2D bounding box 410 generated from the first six DoF
pose. The remote computer 140 1s further programmed to
determine a second projection oflset by determining a dii-
terence between the 2D ground truth bounding box 405 for
the object 135 and a second 2D bounding box 415 generated
from the second six DoF pose. The remote computer 140 1s
turther programmed to determine a total ofiset by combining
the pose oflset, the first projection offset, and the second
projection oflset. The remote computer 140 1s further pro-
grammed to update parameters of a loss function based on
the total offset and provide the updated parameters to the
neural network to obtain an updated pose oflset, updated first
projections oflset, and updated second projection oflset that
are then combined to obtained an updated total oflset.

Turning now to FIG. 1, the vehicle 105 includes the
vehicle computer 110, sensors 1135, actuators 120 to actuate
various vehicle components 125, and a vehicle communi-
cations module 130. The commumnications module 130
allows the vehicle computer 110 to communicate with the
remote computer 140, and/or other vehicles, e.g., via a
messaging or broadcast protocol such as Dedicated Short
Range Communications (DSRC), cellular, and/or other pro-
tocol that can support vehicle-to-vehicle, vehicle-to infra-
structure, vehicle-to-cloud communications, or the like, and/
or via a packet network 135.

The vehicle computer 110 includes a processor and a
memory such as are known. The memory includes one or
more forms ol computer-readable media, and stores mnstruc-
tions executable by the vehicle computer 110 for performing,
various operations, including as disclosed herein. The
vehicle computer 110 can further include two or more
computing devices operating 1n concert to carry out vehicle
105 operations including as described herein. Further, the
vehicle computer 110 can be a generic computer with a
processor and memory as described above, and/or may
include an electronic control unit (ECU) or electronic con-
troller or the like for a specific function or set of functions,
and/or may include a dedicated electronic circuit including
an ASIC that 1s manufactured for a particular operation, e.g.,
an ASIC for processing sensor data and/or communicating
the sensor data. In another example, the vehicle computer
110 may include an FPGA (Field-Programmable Gate
Array) which 1s an integrated circuit manufactured to be
configurable by a user. Typically, a hardware description
language such as VHDL (Very High Speed Integrated Cir-
cuit Hardware Description Language) 1s used 1n electronic
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design automation to describe digital and mixed-signal
systems such as FPGA and ASIC. For example, an ASIC 1s
manufactured based on VHDL programming provided pre-
manufacturing, whereas logical components inside an FPGA
may be configured based on VHDL programming, e.g.
stored 1n a memory electrically connected to the FPGA
circuit. In some examples, a combination of processor(s),
ASIC(s), and/or FPGA circuits may be included in the
vehicle computer 110.

The vehicle computer 110 may operate and/or monitor the
vehicle 105 1in an autonomous mode, a semi-autonomous
mode, or a non-autonomous (or manual) mode, 1.€., can
control and/or monitor operation of the vehicle 105, includ-
ing controlling and/or monitoring components 125. For
purposes of this disclosure, an autonomous mode 1s defined
as one 1n which each of vehicle 103 propulsion, braking, and
steering are controlled by the vehicle computer 110; 1n a
semi-autonomous mode the vehicle computer 110 controls
one or two of vehicle 105 propulsion, braking, and steering;
in a non-autonomous mode a human operator controls each
of vehicle 105 propulsion, braking, and steering.

The vehicle computer 110 may include programming to
operate one or more of vehicle 105 brakes, propulsion (e.g.,
control of acceleration 1n the vehicle 105 by controlling one
or more of an internal combustion engine, electric motor,
hybrid engine, etc.), steering, transmission, climate control,
interior and/or exterior lights, horn, doors, etc., as well as to
determine whether and when the vehicle computer 110, as
opposed to a human operator, 1s to control such operations.

The vehicle computer 110 may include or be communi-
catively coupled to, e.g., via a vehicle communications
network such as a communications bus as described turther
below, more than one processor, e.g., included 1n electronic
controller units (ECUs) or the like included 1n the vehicle
105 for monitoring and/or controlling various vehicle com-
ponents 125, e.g., a transmission controller, a brake control-
ler, a steering controller, etc. The vehicle computer 110 1s
generally arranged for communications on a vehicle com-
munication network that can include a bus in the vehicle 105
such as a controller area network (CAN) or the like, and/or
other wired and/or wireless mechanisms.

Via the vehicle 105 network, the vehicle computer 110
may transmit messages to various devices 1n the vehicle 105
and/or receive messages (e.g., CAN messages) from the
various devices, e.g., sensors 115, an actuator 120, ECUS,
ctc. Alternatively, or additionally, 1n cases where the vehicle
computer 110 actually comprises a plurality of devices, the
vehicle communication network may be used for commu-
nications between devices represented as the vehicle com-
puter 110 1n this disclosure. Further, as mentioned below,
various controllers and/or sensors 115 may provide data to
the vehicle computer 110 via the vehicle communication
network.

Vehicle 105 sensors 115 may include a variety of devices
such as are known to provide data to the vehicle computer
110. For example, the sensors 115 may include Light Detec-
tion And Ranging (LIDAR) sensor(s) 113, etc., disposed on
a top of the vehicle 105, behind a vehicle 105 front wind-
shield, around the vehicle 105, etc., that provide relative
locations, sizes, and shapes of objects surrounding the
vehicle 105. As another example, one or more radar sensors
115 fixed to vehicle 105 bumpers may provide data to
provide locations of the objects, second vehicles, etc., rela-
tive to the location of the vehicle 105. The sensors 115 may
turther alternatively or additionally, for example, include
camera sensor(s) 115, e.g. front view, side view, etc., pro-
viding 1mages ifrom an area surrounding the vehicle 103. In
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the context of this disclosure, an object 1s a physical, 1.e.,
maternal, 1tem that has mass and that can be represented by
physical phenomena (e.g., light or other electromagnetic
waves, or sound, etc.) detectable by sensors 115. Thus, the
vehicle 105, as well as other items including as discussed
below, fall within the definition of “object” herein.

The vehicle computer 110 1s programmed to recerve data
from one or more sensors 115 substantially continuously,
periodically, and/or when instructed by a remote computer
140, etc. The data may, for example, include a location of the
vehicle 105. Location data specifies a point or points on a
ground surface and may be in a known form, e.g., geo-
coordinates such as latitude and longitude coordinates
obtained via a navigation system, as 1s known, that uses the
Global Positioning System (GPS). Additionally, or alterna-
tively, the data can include a location of an object, e.g., a
vehicle, a sign, a tree, etc., relative to the vehicle 105. As one
example, the data may be image data of the environment
around the vehicle 105. In such an example, the 1mage data
may include one or more objects and/or markings, e.g., lane
markings, on or along a road. Image data herein means
digital image data, e.g., comprising pixels with intensity and
color values, that can be acquired by camera sensors 115.
The sensors 115 can be mounted to any suitable location 1n
or on the vehicle 105, e.g., on a vehicle 105 bumper, on a
vehicle 105 roof, etc., to collect images of the environment
around the vehicle 105.

The vehicle 105 actuators 120 are implemented via cir-
cuits, chips, or other electronic and or mechanical compo-
nents that can actuate various vehicle subsystems 1n accor-
dance with appropriate control signals as 1s known. The
actuators 120 may be used to control components 125,
including braking, acceleration, and steering of a vehicle
105.

In the context of the present disclosure, a vehicle com-
ponent 125 1s one or more hardware components adapted to
perform a mechanical or electro-mechanical function or
operation—such as moving the vehicle 105, slowing or
stopping the vehicle 1035, steering the vehicle 103, eftc.
Non-limiting examples of components 125 include a pro-
pulsion component (that includes, e.g., an internal combus-
tion engine and/or an electric motor, etc.), a transmission
component, a steering component (e.g., that may include one
or more of a steering wheel, a steering rack, etc.), a suspen-
sion component (e.g., that may include one or more of a
damper, €.g., a shock or a strut, a bushing, a spring, a control
arm, a ball joint, a linkage, etc.), a brake component, a park
assist component, an adaptive cruise control component, an
adaptive steering component, one or more passive restraint
systems (e.g., airbags), a movable seat, etc.

In addition, the vehicle computer 110 may be configured
for communicating via a vehicle-to-vehicle communication
module 130 or interface with devices outside of the vehicle
105, e.g., through a vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2X) wireless communications (cellular and/
or DSRC., etc.) to another vehicle, and/or to a remote
computer 140 (typically via direct radio frequency commu-
nications). The communications module 130 could include
one or more mechanisms, such as a transceiver, by which the
computers of vehicles may communicate, including any
desired combination of wireless (e.g., cellular, wireless,
satellite, microwave and radio frequency) communication
mechanisms and any desired network topology (or topolo-
gies when a plurality of communication mechanisms are
utilized). Exemplary communications provided via the com-
munications module 130 include cellular, Bluetooth, IEEE
802.11, dedicated short range communications (DSRC),
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and/or wide area networks (WAN), including the Internet,
providing data communication services.

The network 133 represents one or more mechanisms by
which a vehicle computer 110 may communicate with
remote computing devices, e.g., the remote computer 140,
another vehicle computer, etc. Accordingly, the network 135
can be one or more of various wired or wireless communi-
cation mechanisms, including any desired combination of
wired (e.g., cable and fiber) and/or wireless (e.g., cellular,
wireless, satellite, microwave, and radio frequency) com-
munication mechanisms and any desired network topology
(or topologies when multiple communication mechanisms
are utilized). Exemplary communication networks include
wireless communication networks (e.g., using Bluetooth®,

Bluetooth® Low Energy (BLE), IEEE 802.11, vehicle-to-
vehicle (V2V) such as Dedicated Short Range Communi-
cations (DSRC), etc.), local area networks (LAN) and/or

wide area networks (WAN), including the Internet, provid-
ing data communication services.

The remote computer 140 can be a conventional comput-
ing device, 1.¢., including one or more processors and one or
more memories, programmed to provide operations such as
disclosed herein. Further, the remote computer 140 can be
accessed via the network 135, e.g., the Internet, a cellular
network, and/or or some other wide area network.

The vehicle computer 110 can receive sensor 115 data,
¢.g., image data obtained from a monocular camera, of the
environment around the vehicle 105. The image data can
include one or more objects around the vehicle 105. The
vehicle computer 110 can determine a six DoF pose of an
object 210 1 an environment around the vehicle 105 by
inputting a monocular 1image including the object mnto a
neural network, such as a deep neural network (DNN) 200
(See FIG. 2). The DNN 200 can be tramned (as discussed
below) to accept the monocular 1mage 202 as mput and
generate an output of a determination of a six DoF pose of
the object 210. The six DoF pose of the object 210 can be
determined in real world coordinates based on orthogonal x
y, and z axes and roll, pitch, and yaw rotations about the x,
y, and z axes, respectively. The six DoF pose of the object
210 locates the object with respect to the sensor 115 that
obtained the monocular 1mage.

Upon determining the six DoF pose of the object 210, the
vehicle computer 110 can, for example, generate a path to
avoid the object. The vehicle computer 110 can then actuate
one or more vehicle components to operate the vehicle 105
along the path to avoid the object. As used herein, a “path”
1s a set of points, e.g., that can be specified as coordinates
with respect to a vehicle coordinate system and/or geo-
coordinates, that the vehicle computer 110 1s programmed to
determine with a conventional navigation and/or path plan-
ning algorithm. A path can be specified according to one or
more path polynomials. A path polynomial 1s a polynomial
function of degree three or less that describes the motion of
a vehicle on a ground surface. Motion of a vehicle on a
roadway 1s described by a multi-dimensional state vector
that includes vehicle location, orientation, speed, and accel-
eration. Specifically, the vehicle motion vector can include
positions 1n X, y, z, yaw, pitch, roll, yaw rate, pitch rate, roll
rate, heading velocity and heading acceleration that can be
determined by fitting a polynomial function to successive
2D locations included 1n the vehicle motion vector with
respect to the ground surface, for example.

Further for example, the path polynomial p(x) 1s a model
that predicts the path as a line traced by a polynomial
equation. The path polynomial p(x) predicts the path for a
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predetermined upcoming distance X, by determining a lateral
coordinate p, €.g., measured 1n meters:

p(x)zag+alx+a2x2+ﬂ3x3 (3)

where a, an oflset, 1.e., a lateral distance between the path
and a center line of the host vehicle 105 at the upcoming
distance x, a, 1s a heading angle of the path, a, 1s the
curvature of the path, and a, 1s the curvature rate of the path.

FIG. 2 1s a diagram of a deep neural network (DNN) 200.
The DNN 200 can be a software program executing on the
remote computer 140. Once trained, the DNN 200 can be
downloaded to the vehicle computer 110. The vehicle com-
puter 110 can use the DNN 200 to operate the vehicle 105.
For example, the vehicle computer 110 can use the six DoF
poses for objects around the vehicle 105 to determine a path
for operating the vehicle 105, as discussed above.

The DNN 200 can include a plurality of convolutional
layers (CONYV) 204 that process input images (IN) 202 by
convolving the mput images 202 using convolution kernels
to determine latent varnables (LV) 206. The DNN 200
includes a plurality of tully-connected layers (FC) 208 that
process the latent variables 206 to produce a six DoF pose
of an object (OP) 210. The DNN 200 can input an image 202
from a camera sensor 1135 included in a vehicle 1035 that
includes an object to determine a s1x DoF pose of the object
210.

The DNN 200 1s trained by processing a dataset that
includes a plurality of sets of 1images including various
objects 1355. The sets of 1mages include a first 1mage
obtained from a first image sensor 145 and a second image
obtained from a second image sensor 150.

The first and second image sensors 145, 150 can be
deployed 1n a fixed or stationary manner, €.g., mounted to a
pole, mounted to a building, etc. The fields of view of the
first and second 1mage sensors 145, 150 are substantially
unmoving and unchanging. The fields of view of the first and
second 1mage sensors 1435, 150 include an object 155, That
1s, the first and second 1image sensors 143, 150 are positioned
to detect the object 155 (see FI1G. 3). Said differently, the first
and second 1mage sensors 145, 150 are each positioned to
obtain a respective image of the object 155.

The second 1mage sensor 150 provides a perspective of
the object 155 that 1s different than the first 1image sensor
145. For example, the perspective from the second 1mage
sensor 150 may be transverse and non-orthogonal to the
perspective from the first image sensor 145. That 1s, while
the perspectives are different, the perspective from the
second 1mage sensor 130 includes a same side of the object
155, e.g., a front, as the perspective from the first 1mage
sensor 145.

The first and second 1mage sensors 145, 150 are mon-
ocular cameras arranged to view the object 155 with lateral
separation. The lateral separation, also referred to as the
baseline, 1s a shortest distance between the first and second
image sensors 145, 150. The lateral separation causes the
first and second 1mage sensors 145, 150 to generate 1mages
where corresponding points 1n each image will be displaced
with respect to the image by an amount that 1s a function of
the lateral separation of the first and second 1mage sensors
145, 150 and the distance of the point 1n space from the first
and second 1mage sensors 143, 150. For example, the first
and second image sensors 1435, 150 may be spaced from
cach other by at least one meter.

The first and second 1image sensors 145, 150 can provide
digital 1images, e.g., as frames ol video 1n a compressed
tormat such as MPEG or the like. MPEG refers to a set of
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dards Organization/International Electrical Commission
Moving Picture Experts Group (MPEG). Each frame 1n
video data from the first and second 1image sensors 145, 150
can be a specified number of pixels wide by a specified
number of pixels tall. An object 155 can be identified 1n a
frame, 1including location(s) of pixels 1n the image used to
depict the object 155, according to various 1mage or pattern
recognition techniques.

The first and second 1image sensors 145, 150 may provide
the first and second images, respectively, to the remote
computer 140, e.g., via the network 135. As another
example, the first and second 1mage sensors 145, 150 each
may be directly connected to the remote computer 140, e.g.,
via a wired connection through which the first and second
image sensors 145, 150 can provide the first and second
images, respectively.

To train the DNN 200, the remote computer 140 receives
a first image from the first image sensor 145 and a second
image from the second 1mage sensor 150. Upon receiving
the first image, the remote computer 140 can input the first
image nto the DNN 200 that outputs a first six DoF pose of
the object 155 from the perspective of the first image sensor
145. The first six DoF pose can be determined in coordinates
of a first coordinate system based on orthogonal X, vy, and z
axes having respective origins at the first image sensor 145
and roll, pitch, and yaw rotations about the x, y, and z axes,
respectively. That 1s, the first six DoF pose can include a
location 1n three orthogonal coordinates relative to the first
image sensor 145 and an orientation in three rotations about
the axes of each of the three orthogonal coordinates. In
addition to determining the first s1x DoF pose of the object
155, the DNN 200 can output first dimensions (e.g., length,
width, height) for the object 155 from the perspective of the
first 1mage sensor 145.

Similarly, upon receiving the second image, the remote
computer 140 can input the second 1image into the DNN 200
that outputs a second six DoF pose of the object 155 from
the perspective of the second 1mage sensor 150. The second
s1X DoF pose can be determined 1n coordinates of a second
coordinate system based on orthogonal x, v, and z axes
having respective origins at the second image sensor 150
and roll, pitch, and yaw rotations about the x, y, and z axes,
respectively. That 1s, the second six DoF pose can include a
location 1n three orthogonal coordinates relative to the
second 1mage sensor 150 and an orientation 1n three rota-
tions about the axes of each of the three orthogonal coor-
dinates. In addition to determining the second six DoF pose
of the object 155, the DNN 200 can output second dimen-
s1ons (e.g., length, width, height) for the object 155 from the
perspective of the second image sensor 150.

Turning now to FIG. 3, the remote computer 140 can
generate a first three dimensional (3D) bounding box 320 for
the object 155 based on the first si1x DoF pose and the first
dimensions. That 1s, the first 3D bounding box 320 is
generated from the perspective of the first image sensor 145.
A “bounding box” 1s a closed boundary defining a set of
pixels. For example, the pixels within a bounding box can
represent a same object, e.g., a bounding box can define
pixels representing an image ol an object. Said differently, a
bounding box 1s typically defined as a smallest rectangular
prism that includes all of the pixels of the corresponding
object. The first 3D bounding box 320 1s described by
contextual mnformation including a center and eight corners,
which are expressed as X, y, and z coordinates in the first
coordinate system. The first six DoF pose can be the center
of the first 3D bounding box 320. The remote computer 140
can then determine the coordinates of the eight corners from
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the first dimensions by using geometric transformation.
Because the first 3D bounding box 320 1s generated from the
perspective of the first image sensor 1435, the first 3D
bounding box 320 may be offset relative to real-world
coordinates of the object 155 prior to the DNN 200 being
trained.

For example, the remote computer 140 can determine a
lower front right corner of the first 3D bounding box 320
based on 1) a first line that 1s half the length of the object and
extends forward from the center along the x axis of the first
coordinate system and at the pitch specified by the first six
DoF pose, 11) a second line that 1s half the width of the object
and extends rightward from an end of the first line along the
y axis of the first coordinate system and at the yaw specified
by the first six DoF pose, and 111) a third line that 1s halt the
height of the object and extends downward from an end of
the second line along the z axis of the first coordinate system
and at the roll specified by the first six DoF pose. The
coordinates for the lower front right cormer are determined
from an end of the third line. The other seven corners can be
determined by changing the directionality of at least one of
the first line, the second line, or the third line (e.g., forward
to backward, leftward to rightward, and/or upward to down-
ward).

The remote computer 140 can generate a second 3D
bounding box 325 for the object 155 based on the second six
DoF pose and the second dimensions. That 1s, the second 3D
bounding box 325 1s generated from the perspective of the
second 1mage sensor 150. The second 3D bounding box 325
1s described by contextual information including a center
and eight corners, which are expressed as X, y, and z
coordinates 1n the second coordinate system. The second six
DoF pose can be the center of the second 3D bounding box.
The remote computer 140 can then determine the coordi-
nates of the eight corners from the second dimensions by
using geometric transiformation., €.g., 1 substantially the
same manner as discussed above with respect to the first 3D
bounding box 320. Because the second 3D bounding box
325 1s generated from the perspective of the second image
sensor 150, the second 3D bounding box 325 may be offset
relative to real-world coordinates of the object 155 prior to
the DNN 200 being trained. When the DNN 200 1s trained,
the coordinates of the second 3D bounding box 325 may
correspond, within a predetermined threshold (as discussed
below), to real-world coordinates of the object 155 such that
the second 3D bounding box 325 matches the first 3D
bounding box 320, within a predetermined threshold (as
discussed below). In this situation, the first and second 3D
bounding boxes 320, 325 enclose the object 155 regardless
of the perspective of the image sensor 145, 150.

After generating the second 3D bounding box 3235, the
remote computer 140 can transform the second 3D bounding,
box 325 based on a six DoF pose of the second 1image sensor
150 relative to a s1x DoF pose of the first image sensor 145.
The respective six DoF poses of the first and second 1image
sensors 145, 150 may be stored, e.g., in a memory of the
remote computer 140. The respective six DoF poses of the
first and second 1mage sensors 145, 150 may, for example,
be manually mput by a user. The respective six DoF poses
locates the first and second image sensors 145, 150 with
respect to global coordinates. The remote computer 140 can
compare the six DoF pose of the first image sensor 145 to the
s1Xx DoF pose of the second image sensor 150 to determine
a transformation oflset. A transformation oflset specifies a
translational difference, e.g., measured in meters, along each
of the three orthogonal axes and a rotational difference, e.g.,
measured 1n degrees, about each of the three orthogonal axes
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between the six DoF pose of the first image sensor 145 and
the si1x DoF pose of the second image sensor 150. The
remote computer 140 can then generate a transformed 3D
bounding box based on the transformation oifset.

The transformed 3D bounding box is described by con-
textual information including a center and eight corners,
which are expressed as X, y, and z coordinates in the first
coordinate system. The remote computer 140 determines the
center of the transformed 3D bounding box by combining
the transformation offset and the center of the second 3D
bounding box 325, e.g., using a geometric transiformation to
update the center of the second 3D bounding box 3235
according to the translational and rotation differences speci-
fied by the transformation offset. Additionally, the remote
computer 140 determines the coordinates of the eight cor-
ners by combining the transformation oflset and the coor-
dinates of each corner of the second 3D bounding box 325,
¢.g., 1n substantially the same manner as discussed 1mme-
diately above.

Alternatively, the remote computer 140 can transform the
first 3D bounding box 320 based on the six DoF pose of the
first 1image sensor 143 relative to the six DoF pose of the
second 1mage sensor 150, e.g., 1n substantially the same
manner as discussed immediately above. In this situation,
the transformed 3D bounding box 1s determined in coordi-
nates of the second coordinate system.

The remote computer 140 can then determine a pose oflset
between the transformed 3D bounding box and the first 3D
bounding box 320 (or second 3D bounding box 325). A pose
oflset 1s a difference between the coordinates of the eight
corners of the transformed 3D bounding box and the corre-
sponding coordinates of the eight corners of the first 3D
bounding box 320 (or second 3D bounding box 325). In an
example 1n which the remote computer 140 transforms the
second 3D bounding box 325, the remote computer 140 can
compare the first 3D bounding box 320 to the transformed
3D bounding box to determine the pose oflset. To determine
the pose offset, the remote computer 140 can determine a
difference between corresponding coordinates of the first 3D
bounding box 320 and the transformed 3D bounding box.
For example, the remote computer 140 can determine a
distance from each corner of the first 3D bounding box 320
to the corresponding corner of the transformed 3D bounding
box. In such an example, after determining the distances
between each of the corresponding corners, the remote
computer 140 can use a mean square error (MSE) to
determine an average diflerence between the corners of the
first 3D bounding box 320 and the transformed 3D bounding
box relative to the first coordinate system. The pose oflset 1s
determined from the average difference. In an example 1n
which the remote computer 140 transforms the first 3D
bounding box 320, the remote computer 140 can compare
the second 3D bounding box 325 to the transformed 3D
bounding box to determine the pose oflset, e.g., 1n substan-
tially the same manner as discussed immediately above.

Turning now to FIG. 4, 1n an example 1n which the remote
computer 140 transforms the second 3D bounding box 325,
the remote computer 140 can generate a first 2D bounding
box 410 based on the first 3D bounding box 320. Addition-
ally, the remote computer 140 can generate a second 2D
bounding box 415 based on the transformed 3D bounding
box, e.g., in substantially the same manner as discussed
immediately below with respect to generating the first 2D
bounding box 410. For example, the remote computer 140
can generate the first 2D bounding box 410 by rendering the
first 3D bounding box 320. Rendering can produce a first 2D
bounding box 410 from a first 3D bounding box 320 by
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determining a virtual camera point of view from which to
project the first 3D bounding box 320 to a 2D plane. That 1s,

the first 2D bounding box 410 and the second 2D bounding

box 415 are described by contextual information including
four corners, which are expressed as x and z coordinates 1n
the first coordinate system.

A virtual camera can be provided by programming of the
remote computer 140 to generate a first 2D bounding box
410 from a first 3D bounding box 320. The remote computer
140 can generate virtual light rays that pass from a virtual
image sensor through a virtual lens, obeying the laws of
physics just as if the image sensor and lens were physical
objects. The remote computer 140 1inserts data into the
virtual 1image sensor corresponding to the appearance of the
portion of a first 3D bounding box 320 that a ray of light
emitted by the feature points of the first 3D bounding box
320 and passing through a physical lens would produce on
a physical image sensor. By situating a virtual camera at a
selected location and orientation with respect to the first 3D
bounding box 320, a first 2D bounding box 410 correspond-
ing to a selected viewpoint with respect to an object 155 can
be generated.

The virtual camera point of view includes location and
orientation data for an optical axis of the virtual camera and
data regarding the magnification of the virtual camera lens.
The virtual camera point of view 1s determined based on the
location and onentation of a virtual camera with respect to
an object 155. The location of the virtual camera 1s selected
to be the location of the first image sensor 145, and the
orientation of the virtual camera corresponds to the orien-
tation of the first image sensor 145. The location and the
orientation of the first image sensor 145 are determined from

the six DoF pose of the first image sensor 145. That 1s, the
2D plane 1s an 1mage plane defined by the first image sensor
145. Projecting the first 3D bounding box 320 onto a 2D
plane corresponds to determining which feature points of the
first 3D bounding box 320 would be visible to a camera
acquiring an image of the first 3D bounding box 320 from
the selected location and orientation. Because the first 2D
bounding box 410 was generated from a first 3D bounding
box 320 based on a virtual camera at a selected location and
orientation, data regarding the location and orientation of the
teature points illustrated 1n the first 2D bounding box 410 1s
known.

Alternatively, the first 2D bounding box 410 can be
constructed from the first 3D bounding box 320 based on
coordinates of feature points in the first 3D bounding box
320. Specifically, the remote computer 140 can plot the x
and z coordinates of each feature in the first 3D bounding
box 320 1nto a 2D plane. In this situation, the x coordinates
can be plotted along a horizontal axis, and the z coordinates
can be plotted along a vertical axis. The first 2D bounding
box 410 includes a field of view within which all of the
feature points of the first 3D bounding box 320 are plotted.
The field of view 1s defined by the first image sensor 145.

In an example 1n which the remote computer 140 trans-
forms the first 3D bounding box 320, the remote computer
140 can generate the first 2D bounding box 410 based on the
transformed 3D bounding box, ¢.g., in substantially the same
manner as discussed immediately above. Additionally, the
remote computer 140 can generate the second 2D bounding,
box 415 based on the second 3D bounding box 325, e.g., in
substantially the same manner as discussed immediately
above. In this situation, the 2D plane 1s an image plane
defined by the second 1image sensor 150. That 1s, the first 2D
bounding box 410 and the second 2D bounding box 415 are
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described by contextual information including four corners,
which are expressed as X and z coordinates in the second
coordinate system.

The remote computer 140 can determine a first projection
oflset between the first 2D bounding box 410 and a 2D
ground truth bounding box 405 (as discussed below). A first
projection oflset 1s a diflerence between the coordinates of
the first 2D bounding box 410 and the corresponding coor-
dinates of the 2D ground truth bounding box 4035. The
remote computer 140 can compare the first 2D bounding box
410 to the 2D ground truth bounding box 405 to determine
the first projection offset. To determine the first projection
oflset, the remote computer 140 can determine a difference
between corresponding coordinates of the first 2D bounding
box 410 and the 2D ground truth bounding box 405, e.g., in
substantially the same manner as discussed above with
respect to determining the pose oflset, €.g., using MSE. As
another example, the remote computer 140 can use an
intersection over union (IoU) to determine a ratio of an area
of intersection between the first 2D bounding box 410 and
the 2D ground truth bounding box 405 to a total area of the
first 2D bounding box 410 and the 2D ground truth bounding
box 405. In this situation, the first projection oflset i1s
determined from the ratio.

The remote computer 140 can determine a second pro-
jection offset between the second 2D bounding box 415 and
the 2D ground truth bounding box 405. A second projection
oflset 1s a diflerence between the coordinates of the second
2D bounding box 4135 and the corresponding coordinates of
the 2D ground truth bounding box 405. The remote com-
puter 140 can compare the second 2D bounding box 415 to
the 2D ground truth bounding box 405 to determine the
second projection oflset. To determine the second projection
oflset, the remote computer 140 can determine a diflerence
between corresponding coordinates of the second 2D bound-
ing box 415 and the 2D ground truth bounding box 405, e.g.,
in substantially the same manner as discussed above with
respect to determining the first projection offset.

A 2D object detector can be used to generate the 2D
ground truth bounding box 405 for the object 155. The 2D
object detector, as 1s known, 1s a neural network trained to
detect objects 1n an 1mage and generate a 2D bounding box
for the detected objects. The 2D object detector can be
trained using 1mage data as ground truth. Image data can be
manually labelled by human operators. The human operators
can also determine 2D bounding boxes for the labeled
objects. The ground truth including labeled 2D bounding
boxes can be compared to the output from the 2D object
detector to train the 2D object detector to correctly label the
image data. In an example in which the remote computer
140 transforms the second 3D bounding box 3235, the remote
computer 140 can mput the first image to the 2D object
detector that can be trained to output the 2D ground truth
bounding box 405 for the object 155 from the perspective of
the first 1mage sensor 145. That 1s, the 2D ground truth
bounding box 405 1s described by contextual information
including four corners, which are expressed as X and z
coordinates 1n the first coordinate system. In an example 1n
which the remote computer 140 transforms the first 3D
bounding box 320, the remote computer 140 can mnput the
second 1mage to the 2D object detector that can be trained
to output the 2D ground truth bounding box 405 for the
object 1535 from the perspective of the second 1image sensor
150. That 1s, the 2D ground truth bounding box 4035 1s
described by contextual information 1including four corners,
which are expressed as x and z coordinates 1n the second
coordinate system.
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The remote computer 140 can determine a total offset by
combining the pose offset, the first projection offset, and the
second projection offset. That 1s, the total offset may be a
function, e.g., an average, a weighted sum, a weighted
product, etc., of the pose offset, the first projection offset,
and the second projection offset. For example, the total offset
can be determined according to Equation 1 below

Az

1
Total Offset = A, P, + ?(Pf +Fs) -

where P 1s the pose offset, P.1s the first projection offset, P,
is the second projection offset, and A, A, are loss weights,
e.g., between 0 and 1. The loss weights A,, A, may be
predetermined based on empirical testing to determine how
much the pose offset, the first projection offset, and a second

projection offset influence generation of a s1x DoF pose for
an object 155.

The remote computer 140 can update parameters of a loss
function based on the total offset. Back-propagation can
compute a loss function based on the first s1x DoF pose and
the second s1x DoF pose. A loss function 1s a mathematical
function that maps values such as the first and second six
DoF poses mto real numbers that can be compared to
determine a cost during training. In this example, the cost 1s
the total offset. The loss function determines how closely the
first s1x DoF pose matches the second six DoF pose and 1s
used to adjust the parameters or weights that control the
DNN.

Parameters or weights imnclude coefficients used by linear
and/or non-linear equations included 1n fully-connected lay-
ers. Fully-connected layers process the latent variables out-
put by other hidden layers. Upon determining the total offset,
the remote computer 140 can update the parameters of the
loss function. For example, the remote computer 140 can
systematically vary these parameters or weights and com-
pare the output results to a desired result minimizing the loss
function. As a result of varying the parameters or weights
over a plurality of trials over a plurality of input 1mages, a
set of parameters or weights that achieve a result that
minimizes the loss function can be determined. As another
example, the remote computer 140 can optimize parameters
of the loss function by applying gradient descent to the loss
function. Gradient descent calculates a gradient of the loss
function with respect to the current parameters. The gradient
indicates a direction and magnitude to move along the loss
function to determine a new set of parameters. That 1s, the
remote computer 140 can determine a new set of parameters
based on the gradient and the loss function. Applying
gradient descent reduces an amount of time for training by
using the loss function to 1dentify specific adjustments to the
parameters as opposed to selecting new parameters at ran-
dom.

The remote computer 140 can then provide the updated
parameters to the DNN 200. The remote computer 140 can
then determine an updated total offset based on the first and
second 1images and the updated DNN 200. For example, the
remote computer 140 can mnput the first image to the updated
DNN 200 that can output an updated first six DoF pose of
the object 155 from the perspective of the first image sensor
145. Additionally, the remote computer 140 can input the
second 1mage to the updated DNN 200 that can output an
updated second six DoF pose of the object 155 from the
perspective of the second image sensor 150. The remote
computer 140 can then determine an updated pose offset

16

based on the updated first and second six DoF poses, e.g., 1n
substantially the same manner as discussed above with
respect to determining the pose offset. Further, the remote
computer 140 can determine updated first and second pro-
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poses, e.g., 1n substantially the same manner as discussed
above with respect to determining the respective projection
offset. The remote computer 140 can then combine the
updated pose offset, the updated first projection offset, and
the updated second projection offset, e.g., according to
Equation 1 above, to determine the updated total offset.

The remote computer 140 can subsequently determine
updated parameters, e.g., 1n substantially the same manner
as discussed above with respect to updating the parameters
of the loss function, until the updated total offset 1s less than
a predetermined threshold. That 1s, parameters controlling
the DNN 200 processing are varied until output first six DoF
poses matches, within the predetermined threshold, the
output second six DoF poses for each of the plurality of
objects 1n the training dataset. The predetermined threshold
may be determined based on, e.g., empirical testing to
determine a maximum total offset at which a vehicle com-
puter 110 can operate a vehicle 105 without impacting
detected objects (e.g., based on resolution in sensor 115
data). Upon determining the total offset, the remote com-
puter 140 can compare the total offset to the predetermined
threshold. The predetermined threshold may be stored, e.g.,
1n a memory of the remote computer 140. When the updated
total offset 1s less than the predetermined threshold, the
DNN 200 1s trained to accept one monocular 1mage 202
including an object as mput and to generate a s1x DoF pose
of the object 210.

FIG. 515 a diagram of an example process 500 for training
a neural network to accept a monocular 1mage as mput and
to generate a six DoF pose of an object included 1n the
monocular 1mage. The process 500 begins 1n a block 505.
The process 500 can be carried out by a remote computer
140 executing program instructions stored 1 a memory
thereof.

In the block 505, the remote computer 140 receives the
first 1image from a first 1mage sensor 145 and the second
image from a second 1image sensor 150, e.g., via the network
135. The first and second 1mages each include an object 155.
The second 1mage provides a different perspective of the
object 155 than the first 1mage, as discussed above. The
process 500 continues 1 a block 510.

In the block 510, the remote computer 140 determines a
first s1x DoF pose of the object 155 from the perspective of
the first image sensor 145. For example, the remote com-
puter 140 can mnput the first 1image into the DNN 200 that
outputs the first s1x DoF pose of the object 155 and first
dimensions for the object 155 from the perspective of the
first 1mage sensor 145. The first six DoF pose can be
determined 1n coordinates of a first coordinate system, as
discussed above.

Additionally, the remote computer 140 determines a sec-
ond six DoF pose of the object 155 from the perspective of
the second 1mage sensor 150. For example, the remote
computer 140 can input the second 1image into the DNN 200
that outputs the second six DoF pose of the object 155 and
second dimensions for the object 155 from the perspective
of the second 1mage sensor 150. The second six DoF pose
can be determined 1n coordinates of a second coordinate
system, as discussed above. The process 500 continues 1n a
block 515.

In the block 515, the remote computer 140 generates a
first 3D bounding box 320 for the object 155 based on the
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first s1x DoF pose and the first dimensions. The first s1x DoF
pose can be the center of the first 3D bounding box 320, and
the remote computer 140 can determine the coordlnates of
the corners of the first 3D bounding box 320 from the first
dimensions, €.g., using geometric transformation, as dis-
cussed above.

Additionally, the remote computer 140 generates a second
3D bounding box 325 for the object 155 based on the second
s1Xx DoF pose and the second dimensions. The second six
DoF pose can be the center of the second 3D bounding box
325, and the remote computer 140 can determine the coor-
dinates of the corners of the second 3D bounding box 3235
from the second dimensions, €.g., using geometric transior-
mation, as discussed above. The process 500 continues 1n a
block 520.

In the block 520, the remote computer 140 transforms the
second 3D bounding box 325 based on a s1x DoF pose of the
second 1mage sensor 150 relative to a six DoF pose of the
first 1mage sensor 145. The remote computer 140 can
compare the six DoF pose of the first image sensor 145 to the
s1Xx DoF pose of the second image sensor 150 to determine
a transformation offset, as discussed above. The remote
computer 140 can then generate a transformed 3D bounding
box by combining the second 3D bounding box 325 and the
transformation oflset, e.g., using geometric transformation,
as discussed above. In this situation, the transformed 3D
bounding box 1s determined in coordinates of the first
coordinate system.

Alternatively, the remote computer 140 can transform the
first 3D bounding box 320 based on a six DoF pose of the
second 1mage sensor 150 relative to a six DoF pose of the
first image sensor 1435, as discussed above. In this situation,
the transformed 3D bounding box 1s determined in coordi-
nates of the second coordinate system. The process 500
continues 1n a block 325.

In the block 525, in an example i which the remote
computer 140 transforms the second 3D bounding box, the
remote computer 140 determines a pose oflset between the
first 3D bounding box 320 and the transformed 3D boundlng
box. The remote computer 140 can determine a difference
between corresponding coordinates of the first 3D bounding,
box 320 and the transformed 3D bounding box, as discussed
above. The pose oflset 1s determined from the difference.
Alternatively, 1n an example 1n which the remote computer
140 transforms the first 3D bounding box, the remote
computer 140 determine the pose oflset between the second
3D bounding box and the transformed 3D bounding box,
¢.g., 1n substantially the same manner as discussed 1mme-
diately above. The process 500 continues in a block 530.

In the block 530, the remote computer 140 generates a
first 2D bounding box 410 based on the first 3D bounding
box 320 1 an example 1n which the remote computer 140
transiformed the second 3D bounding box 325. For example,
the remote computer 140 can generate the first 2D bounding,
box 410 by rendering the first 3D bounding box 320, as
discussed above. As another example, the remote computer
140 can plot the x and z coordinates of each feature 1n the
first 3D bounding box 320 into a 2D plane, e.g., an 1image
plane defined by the first image sensor 145. Alternatively,
the remote computer 140 can generate the first 2D bounding
box based on the transformed 3D bounding box in an
example 1n which the remote computer 140 transformed the
first 3D bounding box 320, e¢.g., 1n substantially the same
manner as discussed above.

Additionally, the remote computer 140 generates a second
2D bounding box 413 based on the transformed 3D bound-

ing box 1 an example in which the remote computer 140
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transformed the second 3D bounding box 3235, e.g., i
substantially the same manner as discussed above with
respect to generating the first 2D bounding box 410. Alter-
natively, the remote computer 140 can generate the second
2D bounding box based on the second 3D bounding box 325
in an example, in which the remote computer 140 trans-
formed the first 3D bounding box 320, e.g., in substantially
the same manner as discussed above. The process 500
continues 1n a block 335.

In the block 335, the remote computer 140 determines a
first projection oflset between the first 2D bounding box 410
and a 2D ground truth bounding box 405 from a diflerence
between corresponding coordinates of the first 2D bounding
box 410 and the 2D ground truth bounding box 405, as
discussed above. A 2D object detector can be used to
generate the 2D ground truth bounding box 405 for the
object 155, as discussed above. Ad(:ltlonally, the remote
computer 140 determines a second projection oflset between
the second 2D bounding box 415 and the 2D ground truth
bounding box 405, ¢.g., in substantially the same manner as
determining the first projection offset. The process 500
continues 1n a block 3540.

In the block 540, the remote computer 140 determines
whether a total offset 1s less than a predetermined threshold.
The remote computer 140 determine the total offset by
combining the pose oflset, the first projection offset, and the
second projection oflset, e.g., according to Equation 1, as
discussed above. If the total offset 1s less than the predeter-
mined threshold, then the process 500 continues 1n a block
550. Otherwise, the process 500 continues 1n a block 545.

In the block 545, the remote computer 140 updates
parameters of a loss function based on the total offset, as
discussed above. The remote computer 140 can then provide
the updated parameters to the DNN 200. The process 500
returns to the block 510.

In the block 550, the remote computer 140 determines that
the DNN 200 1s trained to output a six DoF for an object 210.
The remote computer 140 can then provide the DNN 200,
e.g., data describing the DNN 200, to a vehicle computer
110, e.g., via the network 135. The process 500 ends
following the block 550.

FIG. 6 1s a diagram of an example process 600 for
determining a six DoF pose of an object around a vehicle
105 based on a monocular image. The process 600 begins 1n
a block 605. The process 600 can be carried out by a vehicle
computer 110 included in the vehicle 1035 executing program
instructions stored in a memory thereof.

In the block 6035, the vehicle computer 110 receives data
from one or more sensors 1135, e.g., via a vehicle network.
For example, the vehicle computer 110 can receive image
data, e.g., from one or more 1image sensors 115. The image
data may include data about the environment around the
vehicle 105, e.g., one or more objects. The process 600
continues 1n a block 610.

In the block 610, the vehicle computer 110 uses the
trained DNN 200 to determine a six DoF pose of an object
210 around the wvehicle 105. For example, the vehicle

computer 110 can 1input an 1image 202 obtained 1n the block
605 to the DNN 200. The image can include an object

around the vehicle 105. The DNN 200 can the output the six
DoF pose of the object 210. The process 600 continues 1n a
block 615.

In the block 615, the vehicle computer 110 operates the
vehicle 105 based on the six DoF pose of the object 210. For
example, the vehicle computer 110 can generate a planned
path that avoids the object, as discussed above. The vehicle
computer 110 can then actuate one or more vehicle compo-
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nents 125 to move the vehicle along the planned path to
avoid the object. The process 600 ends following the block
615.

As used herein, the adverb “substantially” means that a
shape, structure, measurement, quantity, time, etc. may
deviate from an exact described geometry, distance, mea-
surement, quantity, time, etc., because of imperfections 1n
materials, machining, manufacturing, transmission of data,
computational speed, etc.

In general, the computing systems and/or devices
described may employ any of a number of computer oper-
ating systems, including, but by no means limited to, ver-
sions and/or varieties of the Ford Sync® application, App-
Link/Smart Device Link middleware, the Microsoit
Automotive® operating system, the Microsoit Windows®
operating system, the Unix operating system (e.g., the
Solaris® operating system distributed by Oracle Corpora-
tion of Redwood Shores, Calif.), the AIX UNIX operating
system distributed by International Business Machines of
Armonk, N.Y., the Linux operating system, the Mac OSX
and 10S operating systems distributed by Apple Inc. of
Cupertino, Califormia, the BlackBerry OS distributed by
Blackberry, Ltd. of Waterloo, Canada, and the Android
operating system developed by Google, Inc. and the Open
Handset Alliance, or the QNX® CAR Platform for Infotain-
ment offered by QNX Software Systems. Examples of
computing devices include, without limitation, an on-board
first computer, a computer workstation, a server, a desktop,
notebook, laptop, or handheld computer, or some other
computing system and/or device.

Computers and computing devices generally include
computer-executable instructions, where the instructions
may be executable by one or more computing devices such
as those listed above. Computer executable instructions may
be compiled or interpreted from computer programs created
using a variety of programming languages and/or technolo-
gies, mncluding, without limitation, and either alone or 1n
combination, Java™, C, C++, Matlab, Simulink, Stateflow,
Visual Basic, Java Script, Perl, HIML, etc. Some of these
applications may be compiled and executed on a virtual
machine, such as the Java Virtual Machine, the Dalvik
virtual machine, or the like. In general, a processor (e.g., a
mICroprocessor) receives instructions, €.g., from a memory,
a computer readable medium, etc., and executes these
istructions, thereby performing one or more processes,
including one or more of the processes described herein.
Such instructions and other data may be stored and trans-
mitted using a variety of computer readable media. A file in
a computing device 1s generally a collection of data stored
on a computer readable medium, such as a storage medium,
a random access memory, efc.

Memory may include a computer-readable medium (also
referred to as a processor-readable medium) that includes
any non-transitory (e.g., tangible) medium that participates
in providing data (e.g., instructions) that may be read by a
computer (e.g., by a processor of a computer). Such a
medium may take many forms, including, but not limaited to,
non-volatile media and volatile media. Non-volatile media
may include, for example, optical or magnetic disks and
other persistent memory. Volatile media may include, for
example, dynamic random access memory (DRAM), which
typically constitutes a main memory. Such 1nstructions may
be transmitted by one or more transmission media, including,
coaxial cables, copper wire and fiber optics, including the
wires that comprise a system bus coupled to a processor of
an ECU. Common forms of computer-readable media
include, for example, a tloppy disk, a flexible disk, hard disk,
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magnetic tape, any other magnetic medium, a CD-ROM,
DVD, any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, a RAM,
a PROM, an EPROM, a FLASH-EEPROM, any other
memory chip or cartridge, or any other medium from which
a computer can read.

Databases, data repositories or other data stores described
herein may 1nclude various kinds of mechanisms for storing,
accessing, and retrieving various kinds of data, including a
hierarchical database, a set of files 1 a file system, an
application database in a proprietary format, a relational
database management system (RDBMS), etc. Each such
data store 1s generally included within a computing device
employing a computer operating system such as one of those
mentioned above, and are accessed via a network 1n any one
or more of a variety ol manners. A file system may be
accessible from a computer operating system, and may
include files stored 1n various formats. An RDBMS gener-
ally employs the Structured Query Language (SQL) 1n
addition to a language for creating, storing, editing, and
executing stored procedures, such as the PL/SQL language
mentioned above.

In some examples, system elements may be implemented
as computer-readable instructions (e.g., software) on one or
more computing devices (e.g., servers, personal computers,
etc.), stored on computer readable media associated there-
with (e.g., disks, memories, etc.). A computer program
product may comprise such instructions stored on computer
readable media for carrying out the functions described
herein.

With regard to the media, processes, systems, methods,
heuristics, etc. described herein, i1t should be understood
that, although the steps of such processes, etc. have been
described as occurring according to a certain ordered
sequence, such processes may be practiced with the
described steps performed 1n an order other than the order
described herein. It further should be understood that certain
steps may be performed simultaneously, that other steps may
be added, or that certain steps described herein may be
omitted. In other words, the descriptions of processes herein
are provided for the purpose of illustrating certain embodi-

ments and should 1n no way be construed so as to limit the
claims.

Accordingly, it 1s to be understood that the above descrip-
tion 1s 1ntended to be 1llustrative and not restrictive. Many
embodiments and applications other than the examples
provided would be apparent to those of skill in the art upon
reading the above description. The scope of the invention
should be determined, not with reference to the above
description, but should instead be determined with reference
to the appended claims, along with the full scope of equiva-
lents to which such claims are entitled. It 1s anticipated and
intended that future developments will occur in the arts
discussed herein, and that the disclosed systems and meth-
ods will be mcorporated into such future embodiments. In
sum, 1t should be understood that the invention 1s capable of
modification and variation and 1s limited only by the fol-
lowing claims.

All terms used 1n the claims are intended to be given their
plain and ordinary meanings as understood by those skilled
in the art unless an explicit indication to the contrary in made
herein. In particular, use of the singular articles such as “a,”
“the,” “said,” etc. should be read to recite one or more of the
indicated elements unless a claim recites an explicit limita-
tion to the contrary.
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What 1s claimed 1s:
1. A system, comprising:

a first 1image sensor positioned to obtain a first 1mage of

an object;

a second i1mage sensor positioned to obtain a second
image of the object;

a computer including a processor and a memory, the
memory storing instructions executable by the proces-
sor to:

input the first image to a neural network that outputs a first
s1x degree-of-ireedom (DoF) pose of the object from a
perspective of the first image sensor;

input the second 1image to the neural network that outputs
a second s1x DoF pose of the object from a perspective
of the second 1image sensor;

determine a pose oflset between the first and second six
DoF poses by determiming a diflerence between respec-
tive three-dimensional (3D) bounding boxes for the
object determined based on the first and second six DoF
poses;

determine a first projection oflset by determining a dif-

ference between a two-dimensional (2D) ground truth

bounding box for the object and a first 2D bounding
box generated from the first six DoF pose;

determine a second projection offset by determining a
difference between the 2D ground truth bounding box
for the object and a second 2D bounding box generated
from the second six DoF pose;

determine a total offset by combining the pose oflset, the
first projection offset, and the second projection oflset;
and

update parameters of a loss function based on the total
oflset and provide the updated parameters to the neural
network to obtain an updated pose offset, updated first
projections oilset, and updated second projection oflset
that are then combined to obtain an updated total oif:

set.

2. The system of claim 1, wherein the instructions to
determine the pose oflset further include instructions to:

generate a first 3D bounding box for the object from the

perspective of the first image sensor based on the first
s1X DoF pose and first dimensions;
generate a second 3D bounding box for the object from
the perspective of the second 1mage sensor based on the
second s1x DoF pose and second dimensions; and

compare the first 3D bounding box to the second 3D
bounding box.

3. The system of claim 2, wherein the instructions to
determine the pose oflset further include instructions to
transiform the second 3D bounding box based on a six DoF
pose of the second 1image sensor relative to a six DoF pose
of the first 1mage sensor.

4. The system of claim 3, whereimn the transformed 3D
bounding box 1s determined 1n coordinates of a first coor-
dinate system based on orthogonal X, vy, and z axes having
respective origins at the first image sensor.

5. The system of claim 2, wherein the first 3D bounding
box 1s determined 1n coordinates of a first coordinate system
based on orthogonal X, vy, and z axes having respective
origins at the first image sensor.

6. The system of claim 2, wherein the second 3D bound-
ing box 1s determined 1n coordinates of a second coordinate
system based on orthogonal X, v, and z axes having respec-
tive origins at the second 1mage sensor.

7. The system of claim 1, wherein the instructions to
determine the first projection further include instructions to:

upon generating a first 3D bounding box for the object

from the perspective of the first image sensor, generate
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the first 2D bounding box for the object by projecting
the first 3D bounding box into an 1mage plane defined
by the first 1mage sensor; and

compare the first 2D bounding box for the object to the 2D
ground truth bounding box for the object.

8. The system of claam 1, wherein the istructions to

determine the second projection further include istructions

to:
upon generating a second 3D bounding box for the object
from the perspective of the second 1image sensor, trans-
form the second 3D bounding box based on a six DoF
pose of the second 1mage sensor relative to a six DoF
pose of the first image sensor;
then generate the second 2D bounding box for the object
by projecting the transformed 3D bounding box into an
image plane defined by the first image sensor; and

compare the second 2D bounding box for the object to the
2D ground truth bounding box for the object.
9. The system of claim 1, wherein the first six DoF pose
1s determined in coordinates of a first coordinate system
based on orthogonal x, y, and z axes having respective
origins at the first image sensor and roll, pitch, and yaw
rotations about the x, y, and z axes, respectively.
10. The system of claim 1, wherein the second six DoF
pose 1s determined in coordinates of a second coordinate
system based on orthogonal X, y, and z axes having respec-
tive origins at the second 1image sensor and roll, pitch, and
yaw rotations about the X, vy, and z axes, respectively.
11. The system of claim 1, wherein the instructions further
include mstructions to update parameters of the loss function
until the updated total offset 1s less than a predetermined
threshold.
12. The system of claim 11, wherein the neural network
1s trained to output a six DoF pose of the object when the
updated total oflset 1s less than the predetermined threshold.
13. The system of claim 1, wherein the perspective of the
second 1mage sensor 1s transverse and non-orthogonal to the
perspective of the first 1mage sensor.
14. The system of claim 1, wherein the first image sensor
1s spaced from the second 1image sensor by at least one meter.
15. A method, comprising:
determiming a first s1x degree-of-freedom (DoF) pose of
an object from a perspective of a first image sensor with
a neural network:

determining a second six DoF pose of the object from a
perspective of a second 1mage sensor with the neural
network;
determining a pose oilset between the first and second six
DoF poses by determiming a diflerence between respec-
tive three-dimensional (3D) bounding boxes for the
object determined based on the first and second six DoF
POSES;

determiming a first projection oilset by determining a
difference between a two-dimensional (2D) ground
truth bounding box for the object and a first 2D
bounding box generated from the first si1x DoF pose;

determiming a second projection ofiset by determining a

difference between the 2D ground truth bounding box
for the object and a second 2D bounding box generated
from the second six DoF pose;

determining a total offset by combining the pose oflset,

the first projection offset, and the second projection
offset; and
updating parameters of a loss function based on the total
offset and provide the updated parameters to the neural
network to obtain an updated pose offset, updated first
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projections oflset, and updated second projection oilset determine a pose oflset between the first and second six
that are then combined to obtain an updated total oflset. DoF poses by determining a difference between respec-
16. The method of claim 15, further comprising updating tive three-dimensional (3D) bounding boxes for the
parameters of the loss function until the updated total offset object determined based on the first and second six DoF

1s less than a predetermined threshold. 5

17. The method of claim 16, wherein the neural network
1s trained to output a six DoF pose of the object when the
updated total oflset 1s less than the predetermined threshold.

18. The method of claim 15, wherein the perspective of
the second 1mage sensor 1s transverse and non-orthogonal to 19
the perspective of the first image sensor.

19. The method of claim 15, wherein the first image
sensor 1s spaced from the second 1mage sensor by at least
one meter.

20. A system, comprising a computer including a proces- 15
sor and a memory, the memory storing 1nstructions execut-
able by the processor to:

determine a first six degree-of-freedom (DoF) pose of an

object from a perspective of a first image sensor with a
neural network; 20
determine a second six DoF pose of the object from a
perspective of a second 1mage sensor with the neural
network; £ % % % %

POSES;

determine a {first projection oflset by determining a dif-
ference between a two-dimensional (2D) ground truth
bounding box for the object and a first 2D bounding
box generated from the first six DoF pose;

determine a second projection offset by determiming a
difference between the 2D ground truth bounding box
for the object and a second 2D bounding box generated
from the second six DoF pose;

determine a total oflset by combining the pose offset, the
first projection offset, and the second projection oflset;
and

update parameters of a loss function based on the total

offset and provide the updated parameters to the neural

network to obtain an updated pose offset, updated first
projections oflset, and updated second projection oilset

that are then combined to obtain an updated total ofiset.

e




	Front Page
	Drawings
	Specification
	Claims

