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RECONSTRUCTION OF DYNAMIC SCENES
BASED ON DIFFERENCES BETWEEN

COLLECTED VIEW AND SYNTHESIZED
VIEW

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This imnvention was made with Government support under
Contract No. DE-AC52-07NA27344 awarded by the United
States Department of Energy. The Government has certain
rights in the mvention.

BACKGROUND

In many environments, there 1s a need to represent motion
of a dynamic scene (or object) from views collected from the
dynamic scene. For example, for clinical diagnosis, a medi-
cal provider may want to review motion of the heart of a
patient during 1ts cardiac cycles. A scanning technology,
such as computed tomography (“CT”), may be used to
collect views an object and generate a three-dimensional
(“3D”) image of the object from the views. The views are
typically collected at various angles around the object. If the
object 1s not i motion, an accurate 3D image may be
generated. However, 1f the object 1s dynamic (e.g., moving
or deforming), a 3D 1mage cannot eflectively represent the
dynamics. Dynamic computed tomography (DCT) have
been used to represent the dynamics of an object. However,
image reconstructed using DCT may have visible artifacts
and blurry edges, for example, depending on the amount of
movement or deformation. Moreover, existing DCT tech-
niques typically require views collected over multiple rota-
tions (e.g., 720 or 1080 degrees) relative to the object. In
contrast, static CT typically employs a half rotation or a full
rotation, and limited-view CT employs less than a half
rotation.

CT 1s a technique that noninvasively generates cross-
sectional 1mages (or views) of the linear attenuation coei-
ficients (“LACs™) of materials 1n an object of interest (target
volume). CT has been used extensively in medical and
security applications such as for generating a scan of a brain
or a scan of baggage at an airport. The LAC 1s a measure of
the attenuation of X-rays as the X-rays pass through a certain
material and 1s 1n units of 1nverse length (e.g., per centime-
ter). To generate the LACs, C'T employs an X-ray source and
an X-ray detector. The X-ray source transmits X-rays
through the object with an 1mitial intensity, and the X-ray
detector, which 1s on the opposite side of the object from the
source, measures the final intensities of the X-rays that pass
through the object and impinge on pixels of a detector. CT
collects measurements by positioning the source and detec-
tor at various angles relative to the object and collects the
measurements of the final intensity at each angle. The
measurements for an angle are referred to as a projection or
a view. The measurements of the intensities may be repre-
sented as a negative of a logarithm of a ratio of transmission
data of a scan of the object to transmission data of a scan
without the object (e.g., scan of air). Various techniques may
be used to collect measurements at different angles relative
to the object. For example, the source and detector may be
stationary and the object may be rotated, the object may be
stationary and the source and detector may be rotated, and
multiple stationary transmitters and detectors may be posi-
tioned at different angles. CT algorithms then reconstruct
from the collection of measurements a 3D 1mage of the
object that specifies the LAC for each volume element
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2

“voxel”) with the volume of the object. The cross-sectional
images are generated from the 3D image.

Conventional CT generally require that the number of
projections be roughly equal to the number of pixels 1n a
projection depending on scanner resolution and the view
row size. In practice, the number of projections that can be
collected may be severely limited for various reasons. For
example, some CT protocols require that the X-ray dose
delivered to the object (e.g., baggage or patient) be limited.
One way to reduce the dose 1s to limit the number of
projections that are collected. As another example, CT
systems that are flux-limited may employ long integration
times per projection to collect adequate measurements. CT
systems may be flux-limited because of dim sources (low
current), large source-to-detector distances, small detector
pixels, and/or highly attenuating objects. To increase
throughput, a flux-limited CT system may have time to
generate only a small number of projections. As another
example, when the object 1s moving or deforming (e.g., a
beating human heart), a CT system may deliberately collect
a limited number of projections to shorten the data acqui-
sition time to reduce the artifacts associated with the object
dynamics. As another example, some CT systems employ
multiple source-detector pairs mounted on a stationary gan-
try (e.g., for scanming carry-on baggage at an airport). The
projections of such a CT system are limited by the number
ol sources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram that 1llustrates a collected frame for
a slice collected based on a parallel-beam X-ray source.

FIG. 2 1s a block diagram that 1llustrates an architecture
of the 4DSR system 1n some embodiments.

FIG. 3 1s a tlow diagram that illustrates the processing of
a generate 4D representation component that generates a 4D
representation of the scene given a collected view of the
scene.

DETAILED DESCRIPTION

A method and system are provided for generating a 4D
scene representation of a 3D scene (referred to as a scene or
object) to illustrate the dynamics of the scene. A 4D scene
representation of the dynamics of a scene may include a
sequence of 3D scene representations (3D representations)
that vary over time. In some embodiments, a 4D scene
reconstruction (4DSR) system generates a 4D scene repre-
sentation (4D representation) of a scene given a collected
view ol the scene collected at various angles relative to the
scene, for example, using CT technology. The collected
view may be based on projections collected from angles
within a range (e.g., 180 or 360 degrees) over a collection
period. Each frame of the collected view may represent the
intensities of a single slice of the scene. For example, 1f an
X-ray detector collects intensities for 50 rows, then the
collected view includes 50 frames with each frame repre-
senting intensities for each angle and for each column of the
row. A collected view may be, for example, a sinogram
generated based on projections collected by an X-ray detec-
tor. The 4DSR system iteratively generates, based on the
collected view, a 4D representation that 1s a sequence of
possible 3D representations of that scene that iteratively
converge on a 4D representation that represents the dynam-
ics of the scene. As used 1n the following, the term “motion™
generally refers movement or deformation (that i1s the
dynamics) of a dynamic object.
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In some embodiments, during each iteration, the 4DSR
system generates a sequence of 3D representations based on
an 1mitial 3D representation generated for that iteration and
a sequence of 3D motion fields that represent motion of the
scene. The sequence of 3D representations 1s a 4D repre-
sentation of the scene. The 4DSR system generates a syn-
thesized view from the 4D representation and compares the
synthesized view to the collected view. Like a collected
view, the synthesized view may be a stnogram. Based on the
comparison, the 4DSR system optimizes weights (i.e.,
adjusts weights) used in generating the 1mitial 3D represen-
tation and the 3D motion fields. The 3D motion fields
compose a 4D motion field representing motion of the scene.
The 4DSR system then repeats this optimization process
until a termination criterion 1s satisfied such as the synthe-
s1zed view 1s suiliciently close to the collected view. When
the termination condition 1s satisfied, the 4D representation
that was last generated represents motion of the scene given
the collected view. The 4DSR system thus dynamically
learns the weights (also referred to as parameters) for
generating the initial 3D representations and the sequences
of 3D motion fields until the synthesized view matches the
collected view. Notably, the 4DSR system does not need a
training phase to learn the weights based on training data
prior to processing any collected views.

In some embodiments, the 4DSR system employs a 3D
representation generator to generate the nitial 3D represen-
tation for each iteration. Each 3D representation includes an
LAC for each voxel of the scene. The 3D representation
generator mncludes scene weights that control the generating
of the mmtial 3D representation, for example, given a static
iput (e.g., randomly generated). During each 1iteration, the
4DSR system adjusts the scene weights of the scene based
on differences between the collected view and the synthe-
s1zed view for that iteration. The 4DSR system may employ
vartous optimization techmiques when adjusting scene
welghts such as a loss function. (e.g., L1 loss) to assess the
differences and gradient descent to when determining scene
weights. The 3D representation generator may employ vari-
ous machine learning techmiques such as a multi-level
perceptron (MLP) which may be a convolutional neural
network (CNN). The mput to the MLP may be randomly
generated and static 1n the sense that the input does not
change from iteration to iteration. Thus, the 4DSR system
tends to learn scene weights so that the 3D representation
generator outputs an 1mitial 3D representation with LACs
that are similar to those of the scene prior to start of the
motion.

In some embodiments, the 4DSR system employs a 4D
motion generator to generate a sequence of 3D motion fields
that represent the motion of the scene. A 3D motion field
includes a motion value for each voxel of the scene. The
motion value for a voxel indicates movement of the portion
ol the scene represented by that voxel to a different voxel 1n
the next 3D representation. The motion value may be
represented by X, y, and z deltas indicating direction of
motion. For example, 1f a portion of the scene 1s currently in
voxel (4, 2, 12) and the motion value 1s (0, 1, -2), that
portion 1s indicated as moving to voxel (4, 3, 10). The deltas
may be relative to a default motion field that indicates a
default motion rather than no motion. The 4D motion
generator may employ a polynomial with a motion weight
(e.g., coellicient) for each coordinate (X, y, and z) of each
voxel. Given the coordinates of a voxel and time of the
motion, the 4D motion generator applies the polynomial to
generate the motion value for that voxel. The time of the
motion may be expressed as a value between 0.0 and 1.0. For
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example, 1f the scene 1s a cardiac cycle that 1s 0.9 seconds,
a time of motion of 0.5 represents 0.45 seconds into the
cardiac cycle. The scene may also cover multiple cardiac
cycles. Similar to the learning of the scene weights, the
4DSR system may learn the motion weights using gradient
descent to minimize a loss function. The number of 3D
representations 1n the 4D representation may correspond to
the number of angles from which the collected view was
collected.

In some embodiments, the 4DSR system may employ a
4D representation generator that mputs an 1nitial 3D repre-
sentation and a 4D motion field and generates a 4D repre-
sentation. During each 1teration, the 4D representation gen-
erator generates a sequence of 3D representations (1.e., the
4D representation) based on the 4D motion field. Continuing
with the example, the voxel (4, 3, 10) of a 3D representation
that 1s generated based on a 3D motion field may be assigned
the LAC that was assigned to voxel (4, 2, 12) 1n the mnitial
3D representation. In some embodiments, the 4D represen-
tation generator may assign the LAC that was assigned to a
voxel 1n an earlier 3D representation generated during that
iteration by the 4D representation generator.

In some embodiments, after generating the sequence of
3D representations (1.e., the 4D representation) for an itera-
tion, the 4DSR system may employ a synthesized view
generator that forward projects each the 3D representation to
generate a synthesized frame assuming a different angle of
projection for each 3D representation. The synthesized view
generator may generate the synthesized view using a Radon
transform assuming a parallel-beam C'T scanner. The 4DSR
system may be employed with other scanner geometries by
using different forward projection models, which may be
formulated as a matrix multiplication adapted to the scanner
geometry.

In some embodiments, the 4DSR system employs an
optimizer to adjust the scene weights and the motion weights
(1.e., parameters) to minimize a loss function. The 4DSR
system completes when a termination criterion 1s satisfied.
For example, the termination criterion may be when the loss
1s below a threshold loss, when the number of iterations 1s
greater than a threshold number, or when the value of the
loss function converges.

The 4DSR system may be used 1n a variety of applications
to generate a representation ol motion. For example, one
application may be to view motion of an organ such as a
heart or lungs. Another application may be to view a
geological process such as motion of lava 1n a lava dome.
Another application may be to view operation of an internal
component of a manufactured product. Although the 4DSR
system 1s described primarily 1n the context of CT, the 4DSR
system may be used with any technology that provides
views of an object that represent characteristics (e.g., LACs)
of material within the object.

FIG. 1 1s a diagram that 1llustrates a collected frame for
a slice collected based on a parallel-beam X-ray source. The
X-ray source 102 transmits X-rays represented by dashed
lines 103 through scene 101 that are detected by X-ray
detector 104. At each angle 0 and for each slice z a
projection p_(0,r) 1s collected where r represents a horizontal
location of the projection. Frame 1035 represents the inten-
sities for a slice collected at each angle 0. Arrow 106 points
to the intensities for one slice. At each angle, the intensities
for all the slices are typically collected simultaneously. The
collected view 1s collection of the per-slice, collected
frames.
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As described above, the optimizer may employ a Radon
transform that maps ILACs of a 3D representation to iten-
sities at an angle. The Radon transform may be represented
by the following equation:

Pol£D)=~0(x,v,2,0)-0(x cos(0)+y sin(8)—r)dxdy,

where t represents time of collection at an angle and o( )
represents a Dirac delta function. The 4DSR system may
assume that the LAC of each voxel remains constant during
a collection but assumes the LACs of each voxel may vary
from collection to collection resulting from the motion of the
scene.

In some embodiments, the 4DSR system may employ an
implicit neural representation architecture (e.g., MLP) to
implement the 3D representation generator. An implicit
neural network 1s implicitly defined on 1mage coordinates
for inverse optimization problems. (See, Ulyanov, D., Ved-
aldi, A. and Lempatsky, V., “Deep Image Prior,” Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, pp.
9446-9454, 2018, which 1s hereby incorporated by refer-
ence.) The 3D representation generator may be represented
by G, that maps coordinates (X, v, z) to LACs 6(X, vy, z). The
3D representation generator may employ a Gaussian random
Fourier feature (GRFF) layer that provides the input to an
MLP. (See, Tancik, M., Srinivasan, P. P., Mildenhall, B.,
Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoor-
th1, R., Barron, J. T., and Ng, R., “Founer Features Let
Networks Learn High Frequency Functions in Low Dimen-
sional Domains,” arX1v:2006.10739, 2020, which 1s hereby
incorporated by reference.) The computation of a GRFF may
be represented by the following equation:

Y(v)=[cos(2nKBY), sin(2aKBv)]

where v=(Xx, vy, z), B 1s a vector randomly sampled from a
Gaussian distribution N(0,1), cos and sin are performed
element-wise, and K 1s a bandwidth factor to control sharp-
ness of output of the 4DSR system. The bandwidth factor
allows the frequency bandwidth of the imitial 3D represen-
tation to be regularized to help ensure convergence on a
solution.

In some embodiments, the mnput to the 3D representation
generator may be an mput 3D representation with the LACs
set to random values. For example, if the 3D representation
is 80°, the value for voxel (0,0,0) may be (—1,—1,—1) and the
value for voxel (79,79,79) may be (1,1,1). The GRFF layer
converts this mput 3D representation into a frequency
domain.

In some embodiments, the 4D motion field generator
generates the 3D motion fields that are used to “warp” the
initial 3D representation to different times to reflect motion
of the scene as represented by the following equation:

(&—)G(x, V1), 0 %2,), . . ., 0(x,v,7,t5))

where N represents a time interval. The number of time
intervals may be adjusted factoring 1n speed of convergence,
desired accuracy, and so on. The motion fields may be
represented by a polynomial equation of order k as repre-
sented by the following;:

(
W,y 0)=" ¢, +c, t+ . . +c_ kt"cy .
Cytt ..ty e, e, L e, z’c>
where the coefficients (¢, c,, ¢ ), . , represent motion

welghts and te [0,1]. The 4D representation generator may
generate the sequence of the 3D representations based on the
following equation:

o(x,y,z,0)=warp_fn(W(x,y,2,0);0(x,%2))
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where warp_fn 1s a warping function that may employ
differential 1mage sampling such as that implemented by
orid_sample( ) of PyTorch. (See, Jaderberg, M., et al.,
“Spatial Transformer Networks,” Advances in Neural Infor-
mation Processing Systems, pp. 2017-2025, 2015 and
Paszke, A., et al., “Pytorch: An Imperative Style, High-
Performance Deep Learning Library,” Advances in Neural
Information Processing Systems, pp. 8026-8037, 2019, both
of which are hereby incorporated by reference.) The 4DSR
system may Optlmlze the values of the coefficients until
convergence using gradient descent.

In some embodiments, the 4DSR system may employ a
hierarchical coarse-to-fine approach for generating the
motion fields where coarse motion 1s estimated first, and
then 1teratively refined to higher resolution. The nitial
motion field may be at the base resolution, and then pro-
gressively increased in resolution (e.g. 2°, 4°, 87, .. .). The
progressive increase 1n resolution may improve 1image qual-
ity and speed of convergence of the optimization process.

After generating the synthesized view for an iteration, the
4DSR system compares that synthesized view to the col-
lected view. To enforce a loss, the 4DSR system employs the
3D Radon transform 1n a differentiable programming fash-
10on where the 1ntensity of each synthesized pixel 1s differ-
entiable with respect to a view angle. In this way, the
derivatives can be backpropagated through this operation
and towards the scene weights and motion weights for
analysis-by-synthesis. The synthesized view generator may
employ PyTorch’s grid_sample( ) function which uses tri-
linear 1nterpolations to rotate a 3D representation according
the view angle and then sums along the columns to generate
the 3D Radon transform and leverage the automatic differ-
entiation functionality of PyTorch to calculate derivatives.
The optimizer updates the scene Weights and the motion
welghts via gradient descent to minimize a loss function,

which may, for example, be represented by the following
equation:

. 1
I{?iﬂ'}”IHRH(I} (o(x, Vs 2 1) — Rﬁ(a‘}(GT))” T + '?LZ TV(szﬂ,... .,FC): I € [O: 1]

where GT (ground truth) represents the collected view, TV
is a total variation term to regularize the motion fields, A,
and A, are weights for the loss and regularizer. The fist term
1s an L1 loss function based on the collected view and the
synthesized view. The weights A, may be tuned to the
expected amount of motion 1n the scene. For example, the
welght may be small for rapid motion and large for slow
motion.

The 4DSR system may be employed 1in a wide variety of
applications. For example, one application may be to 1den-
tify the activation site of a cardiac arrhythmia. A cardiologist
can view the 4D representation of a patient’s heart to help
identify a target location for an ablation procedure. The
4DSR system may also be employed 1n additive manufac-
turing to help identify problems in the manufacturing pro-
cess. For example, 1f analysis of the 4D representation
indicates an unplanned bulge 1n a product, the manufactur-
ing may be adjusted manually or automatically. The 4D
representation may be compared to a ground truth 4D
representation to determine whether a problem has occurred
and the needed correction. The 4DSR system may also be
used 1n material science application to study deformation of
a product under pressure. For example, since different
designs of a component of a product may result 1n different
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types of deformations, the 4DSR system can be used study
of the eflects of the designs when the product 1s subject to
various physical conditions that affect movement or defor-
mation of the component.

The computing systems on which the 4DSR system may
be implemented may include a central processing unit, input
devices, output devices (e.g., display devices and speakers),
storage devices (e.g., memory and disk drives), network
interfaces, graphics processing units, cellular radio link
interfaces, global positioning system devices, and so on. The
iput devices may include keyboards, pointing devices,
touch screens, gesture recognition devices (e.g., for air
gestures), head and eye tracking devices, microphones for
voice recognition, and so on. The computing systems may
include desktop computers, laptops, tablets, e-readers, per-
sonal digital assistants, smartphones, gaming devices, serv-
ers, and so on. The computing systems may access com-
puter-readable media that include computer-readable storage
media (or mediums) and data transmission media. The
computer-readable storage media are tangible storage means
that do not include a ftransitory, propagating signal.
Examples of computer-readable storage media include
memory such as primary memory, cache memory, and
secondary memory (e.g., DVD) and other storage. The
computer-readable storage media may have recorded on 1t or
may be encoded with computer-executable instructions or
logic that implements the 4DSR system. The data transmis-
sion media 1s used for transmitting data via transitory,
propagating signals or carrier waves (e.g., electromagne-
tism) via a wired or wireless connection. The computing
systems may include a secure cryptoprocessor as part of a
central processing unit for generating and securely storing
keys and for encrypting and decrypting data using the keys.
The computing systems may be servers that are housed 1n a
data center such as a cloud-based data center.

The 4DSR system may be described 1n the general context
ol computer-executable instructions, such as program mod-
ules and components, executed by one or more computers,
processors, or other devices. Generally, program modules or
components include routines, programs, objects, data struc-
tures, and so on that perform particular tasks or implement
particular data types. Typically, the functionality of the
program modules may be combined or distributed as desired
in various embodiments. Aspects of the 4DSR system may
be implemented in hardware using, for example, an appli-
cation-specific integrated circuit (ASIC) or field program-
mable gate array (“FPGA”).

As described above, the 3D representation generator of
the 4DSR system may be implemented by a CNN. A CNN
has multiple layers such as a convolutional layer, a rectified
linear unmit (“RelLU”) layer, a pooling layer, a fully connected
(“FC”) layer, and so on. Some more complex CNNs may
have multiple convolutional layers, ReLU layers, pooling
layers, and FC layers. The 3D representation generator
inputs a static image that does not change from iteration to
iteration and outputs an 1nitial 3D representation.

A convolutional layer may include multiple filters (also
referred to as kernels or activation functions). A filter mnputs
a convolutional window, for example, of an 1image, applies
welghts to each pixel of the convolutional window, and
outputs an activation value for that convolutional window.
For example, if the static image 1s 256 by 236 pixels, the
convolutional window may be 8 by 8 pixels. The {filter may
apply a different weight to each of the 64 pixels 1n a
convolutional window to generate the activation value also
referred to as a feature value. The convolutional layer may
include, for each filter, a node (also referred to a neuron) for
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cach pixel of the image assuming a stride of one with
appropriate padding. Each node outputs a feature value
based on a set of weights for the filter that are learned by the
optimizer of the 4DSR system by adjusting the scene
weilghts after each iteration

The RelLU layer may have a node for each node of the
convolutional layer that generates a feature value. The
generated feature values form a ReLLU feature map. The
RelLU layer applies a filter to each feature value of a
convolutional feature map to generate feature values for a
RelLU feature map. For example, a filter such as max(0,
activation value) may be used to ensure that the feature
values of the ReLU feature map are not negative.

The pooling layer may be used to reduce the size of the
ReL.U feature map by downsampling the ReLU feature map
to form a pooling feature map. The pooling layer includes a
pooling function that inputs a group of feature values of the
RelLU feature map and outputs a feature value.

The FC layer includes some number of nodes that are each
connected to every feature value of the pooling feature
maps. Each node has a filter with its own set of weights that
are adapted to the LAC of a voxel of a 3D representation.

FIG. 2 1s a block diagram that 1llustrates an architecture
of the 4DSR system in some embodiments. The 4DSR
system 1ncludes a 3D representation generator 201, a 4D
motion generator 202, a 4D representation generator 203, a
synthesized view generator 204, a loss function 203, a scene
optimizer 201a, and a motion optimizer 202a. During each
iteration, the 3D representation generator mputs a base 3D
representation and outputs an 1nitial 3D representation 212
based on the scene weights that are learned. The 4D motion
generator outputs 3D motion fields 213 generated based
upon the motion weights. The 4D representation generator
inputs the mitial 3D representation and the 3D motion fields
and outputs a 4D representation of the scene that 1s a
sequence ol 3D representations 214 representing the motion
of the mitial 3D representation based on the 4D motion
fields. The synthesized view generator inputs the 34 repre-
sentation and generates a synthesized view 215 of the scene.
The loss function inputs the synthesized view and a col-
lected view 210 and calculates the loss between the synthe-
sized view and the collected view. The scene optimizer
inputs the loss and applies a gradient descent technique to
adjust the scene weights. The motion optimizer mputs the
loss and applies a gradient descent technique to adjust the
motion weights. The 4DSR system that performs the next
iteration. Although not shown, when a termination criterion
1s satisfied, the 4D representation that was generated during
the last iteration represent the motion of the scene as
represented by the collected view.

FIG. 3 1s a tlow diagram that illustrates the processing of
a generate 4D representation component that generates a 4D
representation of the scene given a collected view of the
scene. The generate 4D representation component performs
iterations to generate 4D representations of the scene based
on the collected view until a termination criterion 1s satis-
fied. In block 301, the component applies a 3D representa-
tion generator to generate an 1nitial 3D representation of the
scene based on scene weights that are learned during the
iterations. In block 302, the component applies a 4D motion
generator to generate a 4D motion field that 1s a sequence of
3D motion fields based on motion weights that are learned
during the iterations. In block 304, the component applies
the 4D representation generator to generate a 4D represen-
tation of the scene based on the initial 3D representation and
the 4D motion field. In block 304, the component applies a
synthesized view generator to generate a synthesized view
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of the scene given the 4D representation generated by the 4D
representation generator. In decision block 305, 11 a termi-
nation criterion 1s satisfied, then the component completes,
clse the component continues at block 306. In block 306, the
component applies a loss function to compute the loss
between the synthesized view and the collected view. In
block 307, the component applies a scene optimizer and a
motion optimizer to learn the scene weights and fields
weights based on the loss. The component then loops to
block 301 to perform the next iteration.

The following paragraphs describe various embodiments
of aspects of the CNNIR system. An implementation of the
4DSR system may employ any combination of the embodi-
ments. The processing described below may be performed
by a computing device with a processor that executes
computer-executable instructions stored on a computer-
readable storage medium that implements the 4DSR system.

In some embodiments, a method performed by one or
more computing systems 1s provided for generating a four-
dimensional (4D) representation of a three-dimensional
(3D) scene that has motion, the 4D representation represent-
ing the motion of the scene. The method accesses a collected
view of the scene. The collected view represents attenuation
of an electromagnetic signal transmitted through the scene at
various angles. For each of a plurality of iterations, the
method performs the following. The method applies a 3D
representation generator to generate an initial 3D represen-
tation of the scene for the iteration. The 3D representation
generator has scene weights. A 3D representation has voxels
that each represents a portion of the scene. The method
applies a 4D motion generator to generate a 4D motion field
as a sequence of 3D motion fields for the iteration. A 3D
motion field indicates location of voxels of the initial 3D
representation. The 4D motion generator has motion
weights. The method applies a 4D representation generator
to generate a 4D representation having a sequence of 3D
representations based on the initial 3D representation and
the 4D motion field. The method generates a synthesized
view of the scene from the generated 4D representation. The
method completes an 1teration by adjusting the scene
weights and the motion weights based on diflerences
between the collected view and the synthesized view. In
some embodiments, the electromagnetic signals are trans-
mitted by an electromagnetic transmitter and collected by an
clectromagnetic collector. In some embodiments, the 3D
representation generator 1s a neural network. In some
embodiments, the 3D representation generator comprises a
random sampling layer and a neural network. The random
sampling layer has an input and generates an output based on
a random sample of a distribution and a sharpness factor.
The generated output 1s input to the neural network which
outputs an 1nitial 3D representation. In some embodiments,
the 4D motion generator generates the 4D motion field based
on a polynomial equation with a motion weight for each
coordinate of each voxel for each order of the polynomaial
equation. In some embodiments, the 4D representation gen-
erator generates attenuation coeflicients using diflerentiable
image sampling. In some embodiments, the adjusting of the
scene weights and the motion weights applies a gradient
descent to minimize an objective function.

In some embodiments, a method performed by one or
more computing systems 1s provided for generating a four-
dimensional (4D) representation a scene based on a col-
lected view of the scene. The collected view 1s collected
while the scene 1s 1n motion. The method generates a 4D
representation of the scene based on an 1nitial three-dimen-
sional (3D) representation and a 4D motion field. The initial
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3D representation 1s generated based on scene parameters.
The 4D motion field 1s generated based on motion param-
cters. The method generates a synthesized view of the scene
from the generated 4D representation. The method adjusts
the scene parameters and the motion parameters based on
differences between the collected view and the synthesized
view. In some embodiments, the method generates the 3D
representation. A 3D representation has voxels that each
represents a portion of the scene. The method generates the
4D motion field that includes the motion field that indicates
motion of voxels of the mnitial 3D representation. In some
embodiments, the method repeats the generating of the
iitial 3D representation, the 4D motion field, the 4D
representation, and the synthesized view and the adjusting of
the scene parameters and motion parameters until a termi-
nation criterion 1s satisfied. In some embodiments, the scene
includes a body part. In some embodiments, the scene
includes an object that 1s being manufactured. In some
embodiments, the scene relates to a geological event.

In some embodiments, one or more computing systems
are provided for generating a four-dimensional (4D) repre-
sentation of an object 1n motion based on a collected view
of the object that 1s collected when the object 1s 1n motion.
The one or more computing systems include one or more
computer-readable storage mediums for storing computer-
executable instructions for controlling the one or more
computing systems and one or more processors for execut-
ing the computer-executable 1nstructions stored 1n the one or
more computer-readable storage mediums. Until a termina-
tion condition 1s satisfied, the instructions generate an 1nitial
three-dimensional (3D) representation of the object based on
object parameters. A 3D representation has voxels repre-
senting portions of the object. The instructions generate a 41D
motion field based on motion parameters. The 4D motion
field 1indicates location over time of voxels of the 1nitial 3D
representation. The instructions generate a 4D representa-
tion of the object based on the 1itial 3D representation and
the 4D motion fields. The 4D representation 1s a sequence of
3D representations that each represents a different time. The
4D representation comprises the 3D representations. The
instructions generate a synthesized view of the object based
on the 4D representation. The instructions then adjust the
object parameters and the motion parameters based on
differences between the collected view and the synthesized
view. In some embodiments, a linear attenuation coethcient
1s associlated with each voxel. In some embodiments, the
instructions that generate the 4D representation generate
linear attenuation coeflicients for voxels.

In some embodiments, one or more computer-readable
storage media stores instructions. The instructions include
instructions of a three-dimensional (3D) representation gen-
erator that generates an 1nitial 3D representation of a scene
based on scene parameters. A 3D representation has voxels
with values. The instructions include instructions of a four-
dimensional (4D) motion generator that generates a 4D
motion field based on motion parameters. The 4D motion
field indicates motion of voxels of the scene. The nstruc-
tions include instructions of a 4D representation generator
that generates a 4D representation of the scene based on the
initial 3D representation and the 4D motion field, the 4D
representation including a sequence of 3D representations
that voxels with voxel values. The istructions include a
synthesized view generator that generates a synthesized
view ol the scene based on the 4D representation. The
instructions include a loss function that calculates a difler-
ence between a collected view of the scene and the synthe-
s1zed view. The instructions include an optimizer that adjusts
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the scene parameters and the motion parameters based on
the difference. In some embodiments, the instructions fur-
ther comprise instructions that determine whether a termi-
nation criterion 1s satisfied based on the difference. In some
embodiments, the collected view and synthesized view are
sinograms. In some embodiments, the 3D representation
generator ncludes a multi-level perceptron.

Although the subject matter has been described in lan-
guage specilic to structural features and/or acts, 1t 1s to be
understood that the subject matter defined 1n the appended
claims 1s not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as example forms of imple-
menting the claims. Accordingly, the mnvention 1s not limited
except as by the appended claims.

The invention claimed 1s:

1. A method performed by one or more computing sys-
tems for generating a four-dimensional (4D) representation
of a three-dimensional (3D) scene that has motion, the 4D
representation representing the motion of the scene, the
method comprising:

accessing a collected view of the scene, the collected view

representing attenuation of an electromagnetic signal

transmitted through the scene at various angles; and

for each of a plurality of iterations,

applying a 3D representation generator to generate an
imtial 3D representation of the scene for the itera-
tion, the 3D representation generator having scene
weights, a 3D representation having voxels that each
represent a portion of the scene;

applying a 4D motion generator to generate a 4D
motion field as a sequence of 3D motion fields for the
iteration, a 3D motion field indicating location of
voxels of the mitial 3D representation, the 4D
motion generator having motion weights;

applying a 4D representation generator to generate a
4D representation having a sequence of 3D repre-
sentations based on the 1nitial 3D representation and
the 4D motion field;

generating a synthesized view of the scene from the
generated 4D representation; and

adjusting the scene weights and the motion weights
based on diflerences between the collected view and
the synthesized view.

2. The method of claim 1 wherein the electromagnetic
signals are transmitted by an electromagnetic transmitter and
collected by an electromagnetic collector.

3. The method of claim 1 wherein the 3D representation
generator 1s a neural network.

4. The method of claim 1 wherein the 3D representation
generator comprises a random sampling layer and a neural
network, the random sampling layer having an input and
generating an output based on a random sample of a distri-
bution and a sharpness factor, the generated output being
input to the neural network which outputs an mitial 3D
representation.

5. The method of claim 1 wherein the 4D motion gen-
crator generates the 4D motion field based on a polynomial
equation with a motion weight for each coordinate of each
voxel for each order of the polynomial equation.

6. The method of claim 1 wherein the 4D representation
generator generates attenuation coethicients using difleren-
tiable 1mage sampling.

7. The method of claim 1 wherein the adjusting of the
scene weights and the motion weights applies a gradient
descent to minimize an objective function.
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8. A method performed by one or more computing sys-
tems for generating a four-dimensional (4D) representation
of a scene based on a collected view of the scene, the
collected view being collected while the scene 1s 1n motion,
the method comprising:

generating a 4D representation of the scene based on an

initial three-dimensional (3D) representation and a 4D
motion field, the mitial 3D representation generated
based on scene parameters, the 4D motion field gen-
crated based on motion parameters;

generating a synthesized view of the scene from the

generated 4D representation; and

adjusting the scene parameters and the motion parameters

based on differences between the collected view and
the synthesized view.

9. The method of claim 8 further comprising

generating the 1mitial three-dimensional (3D) representa-

tion, a 3D representation having voxels that each rep-
resent a portion of the scene; and

generating the 4D motion field that includes the motion

field indicating motion of voxels of the mitial 3D
representation.

10. The method of claim 9 further comprising repeating
the generating of the initial 3D representation, the 4D
motion field, the 4D representation, and the synthesized
view and the adjusting of the scene parameters and motion
parameters until a termination criterion 1s satisfied.

11. The method of claim 8 wherein the scene includes a
body part.

12. The method of claim 8 wherein the scene includes an
object that 1s being manufactured.

13. The method of claim 8 wherein the scene relates to a
geological event.

14. One or more computing systems for generating a
tour-dimensional (4D) representation of an object 1n motion
based on a collected view of the object that 1s collected when
the object 1s in motion, the one or more computing systems
comprising:

one or more non-transitory computer-readable storage

mediums for storing computer-executable instructions
for controlling the one or more computing systems to,
until a termination condition 1s satisfied:

generate an initial three-dimensional (3D) representation

of the object based on object parameters, a 3D repre-
sentation having voxels representing portions of the
object;

generate a 4D motion field based on motion parameters,

the 4D motion field indicating location over time of
voxels of the mitial 3D representation; and
generate a 4D representation of the object based on the
initial 3D representation and the 4D motion fields, the
4D representation being a sequence of 3D representa-
tions that each represents a different time, the 4D
representation comprising the 3D representations;

generate a synthesized view of the object based on the 4D
representation; and

adjust the object parameters and the motion parameters

based on differences between the collected view and
the synthesized view;

one or more processors for executing the computer-

executable instructions stored in the one or more com-
puter-readable storage mediums.

15. The one or more computing systems of claim 14
wherein a linear attenuation coetlicient 1s associated with
cach voxel.
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16. The one or more computing systems of claim 15
wherein the mstructions that generate the 4D representation
generate linear attenuation coetlicients for voxels.

17. One or more non-transitory computer-readable stor-
age mediums storing instructions comprising:

a three-dimensional (3D) representation generator that
generates an initial 3D representation of a scene based
on scene parameters, a 3D representation having voxels
with values;

a four-dimensional (4D) motion generator that generates
a 4D motion field based on motion parameters, the 4D
motion field indicating motion of voxels of the scene;

a 4D representation generator that generates a 4D repre-
sentation of the scene based on the mitial 3D repre-
sentation and the 4D motion field, the 4D representa-
tion including a sequence of 3D representations having
voxels with voxel values;

10
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a synthesized view generator that generates a synthesized
view of the scene based on the 4D representation;

a loss function that calculates a diflerence between a
collected view of the scene and the synthesized view of
the scene; and

an optimizer that adjusts the scene parameters and the
motion parameters based on the difference.

18. The one or more non-transitory computer-readable
storage mediums of claim 17 wherein the instructions fur-
ther comprise instructions that determine whether a termi-
nation criterion 1s satisfied based on the difference.

19. The one or more non-transitory computer-readable
storage mediums of claim 17 wherein the collected view and
synthesized view are sinograms.

20. The one or more non-transitory computer-readable
storage mediums of claim 17 wherein the 3D representation
generator mncludes a multi-level perceptron.
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