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EVOLUTIONARY DEEP LEARNING WITH
EXTENDED KALMAN FILTER FOR
MODELING AND DATA ASSIMILATION

BACKGROUND

Technical Field

The present disclosure relates generally to data analytics
and more specifically to techniques for training and assimi-
lating artificial neural network models for use in data
analytics.

Background Information

Infrastructure (e.g., transportation networks, utility net-
works, ci1vil engineering structures, etc.)) 1s the foundation
of modern society as 1t provides transportation, power
generation, sale drinking water, and much more. To be
sustainable for long-term economic development, inira-
structure should be resilient to incidents and deteriorations.
The resiliency of infrastructure may be enhanced by moni-
toring 1ts condition and addressing issues 1n a timely manner.
To this end, a variety of sensor systems have been developed
that continuously capture data describing the condition of
the infrastructure, and use such data to extract actionable
information (e.g., iformation predicting components that
should be repaired, replaced, adjusted, etc.) Such systems
may employ a variety of types of infrastructure-attached
sensors, such as strain gauges, inclinometers, linear position
sensors, water flow sensors, water quality sensors, power
consumption sensors, etc. that produce large volumes of data
describing the condition of the infrastructure. From this
large volume of data, various data analytics may be applied
to extract actionable information.

Various data analytics techniques have been developed 1n
recent decades, but such existing techniques typically lack
the robustness and data assimilation features required to
yield accurate results in these types of applications. Some
data analytics techniques utilize machine learning based on
artificial neural network (ANNs). An ANN 1s constructed
from a collection of connected units or nodes called artificial
neurons, whose operation loosely approximates the opera-
tion of neurons in a biological brain. Each connection (or
“edge’) between artificial neurons can transmit a signal. The
output of each artificial neuron on an edge 1s a non-linear
function of its mputs. Artificial neurons and edges typically
have a weight that 1s adjusted as learning proceeds. Thresh-
olds are typically used, such that an artificial neuron sends
a signal only 11 the aggregate signal recerved by 1t crosses the
threshold. Typically, artificial neurons are aggregated 1nto
groups referred to as “layers”, and different layers perform
different transformations on their inputs. Typically, artificial
neurons of one layer connect only to artificial neurons of the
immediately preceding and immediately following layers.
The layer that receives external data 1s typically referred to
as the “input” layer, while the layer that produces the
ultimate result 1s typically referred to as the “output™ layer.
In between the mput layer and the output layer are typically
zero or more “hidden” layers. ANNs may be defined by
parameters that define their configuration referred to as
“hyperparameters”. Examples of hyperparameters include
learning rate, the number of hidden layers, and the number
ol neurons 1n each layer, among other configuration details.
An ANN 1s trammed by adjusting weights (and optionally
thresholds) to improve the accuracy of results. This 1s often
done by minimizing observed errors via a cost function.
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2

Backpropagation (BP) 1s a known method to adjust weights
to compensate for errors found during training. An ANN

configured and trained for use with particular datasets may
be referred to as a “model”. Among other uses an ANN
model may be used to make predictions on new datasets.

Tramning a traditional ANN with many hidden layers
presents challenges which have 1n the past hindered their use
in predictive applications. These challenges include the
“vanishing gradient problem” and the “explaining away
phenomenon™, the details of which are well known 1n the
field. To address some of these challenges, a technique
referred to as “deep learning” (“DL”) was developed. DL
was a major breakthrough that enabled the effective training
of ANNs with many hidden layers to produce a model
referred to as a “deep belief network” (“DBN") model. In
DL, each layer learns to transform its input into a slightly
more abstract and composite representation. Importantly,
using DL the DBN can learn which features to optimally
place 1n which layer.

DL has enabled DBN models to be used in making
predictions on a variety of types of datasets, including data
captured from infrastructure-attached sensors describing the
condition of the infrastructure. However, a number of tech-
nical challenges are still present which have hindered the
widespread deployment of DBN models 1n data analytics in
the infrastructure space, and other areas of technology.
Training DBNs with existing techniques 1s very time con-
suming, given typically available hardware resources (e.g.,
processing and memory resources). Further, prediction
results from DBN models typically become less-and-less
accurate over time. The DBN 1s typically fixed once the
model 1s trained. Yet errors between the DBN model and the
actual system are propagated and compound over time.
Frequently updating the DBN model with additional training
could address this 1ssue and maintain accurate prediction.
However, as mentioned above, with existing techniques
training 1s extremely time consuming given typical hardware
resources, and thereby frequent updating 1s not practical for
many types of applications, for example, applications that
involve fast-changing data, which may be common 1n the
inirastructure space (e.g., rapidly-sampled power consump-
tion data of an electrical network).

Further, the configuration of a DBN (e.g., learming rate,
number of hidden layers, number of neurons 1n each layer,
ctc.) defined by the hyperparameters may have a great
impact on DBN model performance. To provide good pre-
dictive accuracy, eflective hyperparameters should be
adopted for the particular dataset at hand. However, there are
tew general rules for choosing optimal hyperparameters for
a given dataset. As a result, manual tnal-and-error
approaches are often employed to try to find a combination
that provides acceptable results. Such manual trial-and-error
may be time consuming, and may not always result 1n an
optimal configuration.

Accordingly, there 1s a need for improved techniques to
enable artificial neural network models to be more useful 1n
data analytics, including data analytics of infrastructure
health data, among other types of data.

SUMMARY

In example embodiments, an enhanced deep belief learn-
ing model with extended Kalman filter (EKF) 1s used for
training and updating a DBN to produce a DBN model
useiful mm making predictions on a variety of types of
datasets, including data captured from infrastructure-at-
tached sensors describing the condition of the infrastructure.
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The EKF 1s employed to estimate operation parameters of
the DBN and generate the model’s output covariance.
Among other benefits, the EKF may enable quick traiming,
and updating given typical hardware resources (e.g., pro-
cessing and memory resources), being well suited for fast-
changing data. The EKF may also be suited for computing
a confidence interval of a prediction, and thus upper and
lower bounds can be generated for each prediction and used
to determine outliers. Further, 1n example embodiments, the
configuration of the DBN model may be optimized by a
competent genetic algorithm, avoiding manual trial-and-
error approaches. The competent genetic algorithm may
clliciently determine hyperparameters that optimize predic-
tion accuracy.

In one specific embodiment, an integrated deep learning,
framework receives 1n its user interface mput specifying at
least a training dataset. The framework trains the DBN
model using the training dataset, where the training includes
fine-tuning the DBN model using an EKF to estimate
operation parameters of the DBN model. The integrated
deep learning framework applies the tramned DBN model to
a current dataset to make predictions, while simultaneously
assimilating data of the current dataset with the predictions
using the EKF to update the DBN model. An indication of
the predictions for the current dataset may be displayed in
the user interface.

In another specific embodiment, an integrated deep learn-
ing framework receives 1n 1ts user interface mput specitying
at least a traiming dataset. The integrated deep learning
framework uses a competent genetic algorithm to generate a
candidate DBN configuration and operation parameters. The
candidate DBN configuration and operation parameters are
used to train the DBN model. The competent genetic algo-
rithm treats an error determined by a cost function used in
the training as a fitness score, and repeats the operations to
produce subsequent candidate DBN configuration and
operation parameters until the fitness score meets a threshold
or another termination condition 1s met. The resulting con-
figuration and operation parameters are then used for the
DBN model. The integrated deep learning Iframework
applies the trained DBN model to a current dataset to make
predictions. An indication of the predictions for the current
dataset may be displayed in the user interface.

It should be understood that a variety of additional
features and alternative embodiments may be implemented
other than those discussed in this Summary. This Summary
1s intended simply as a brief introduction to the reader for the
turther description that follows, and does not indicate or
imply that the examples mentioned herein cover all aspects
of the disclosure, or are necessary or essential aspects of the
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The description refers to the accompanying drawings of
example embodiments, of which:

FIG. 1 1s a block diagram of an example electronic device
(e.g., a computer) that may be used with the present tech-
niques;

FIG. 2 1s a block diagram of an example restricted
Boltzman machines (RBM);

FIG. 3 1s a block diagram of an example DBN model
formed by stacking a number of RBMs (here two RBMs) to
have a visible layer and two hidden layers;
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4

FIG. 4A 1s a flow diagram of an example high level
sequence of steps that may be executed by modules of an

integrated deep learming framework to configure, train and
update a DBN model;

FIG. 4B 1s a screen shot of an example user interface of
the integrated deep learning framework;

FIG. 5 1s a flow diagram of an example sequence of steps
expanding upon the operation of an optimization module 1n
a step of FIG. 4A;

FIG. 6 1s a diagram 1llustrating an example of fine-tuning,
a pre-trained DBN using an EKF;

FIG. 7 1s a graph showing an example of retraining and
overfitting;

FIG. 8 1s a diagram 1llustrating an example of assimilating
a DBN using an EKF;

FIG. 9 1s a diagram of an example artificial neuron;

FIG. 10 1s a diagram of an example neural network
formed from connecting a number of the artificial neurons of
FIG. 9 together;

FIG. 11 1s a diagram of the input layer and the first hidden
layer of an example neural network; and

FIG. 12 1s a flow diagram summarizing an example
procedure that may be executed by the integrated deep
learning framework to calculate the Jacobian matrix of a
k-layer neural network H,.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of an example electronic device
100 (e.g., a computer) that may be used with the present
techniques. The electronic device 100 includes at least one
processor 110 coupled to a host bus 120. The processor 110
may be any of a variety of commercially available proces-
sors, such as an Intel x86 processor, or another type of
processor. A volatile memory 130, such as a Random Access
Memory (RAM) 1s also coupled to the host bus via a
memory controller 125. When in operation, the memory 130
stores software (1.e. processor-executable instructions) and
data that are provided to the processor 110. An input/output
(I/0) bus 152 1s coupled to the host bust 120 via a bus
controller 145. A variety of additional components are
coupled to the I/O bus 152. For example, a video display
subsystem 155 1s coupled to the I/O bus 152. The video
display subsystem may include a display screen 170 and
hardware to drive the display screen. At least one input
device 160, such as a keyboard, a touch sensor, a touchpad,
a mouse, etc., 15 also coupled to the I/O bus. A persistent
storage device 165, such as a hard disk drive, a solid-state
drive, or another type of persistent data store, 1s further
attached, and persistently stores processor-executable
instructions and data, that are loaded into the memory 130
when needed. Still further, a network interface 180 1s
coupled to the I/O bus 152. The network interface enables
communication over a computer network, such as the Inter-
net, between the electronic device 100 and other devices,
using any of a number of well-known networking protocols.
Such communication may enable collaborative, distributed,
or remote computing with functionality (including the tunc-
tionality discussed below) spread across multiple electronic
devices.

Working together, the components of the electronic
device 100 (and other electronic devices in the case of
collaborative, distributed, or remote computing) may
execute a number of different software applications. For
example, the memory 130 may store at least a portion of
software for an analytics application 140 used to making
predictions on datasets that, for example, include data cap-
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tured from infrastructure-attached sensors (e.g., strain
gauges, inclinometers, linear position sensors, water flow
sensors, water quality sensors, power consumption Sensors,
etc.) describing the condition of infrastructure (e.g., trans-
portation networks, utility networks, civil engineering struc-
tures, etc.). The analytics application 140 may include an
integrated deep learning framework 142 that, as discussed 1n
more detail below utilizes a number of software modules,
such as an optimization module 146, a training module 148
and an assimilation module 150, to produce a DBN model
144.

The DBN model 144 may be constructed by stacking a
number of restricted Boltzman machines (RBMs) and train-
ing them 1n a greedy layer manner. FIG. 2 1s a block diagram
of an example RBM 200. An RBM 1s a fully connected
bipartite graph, with two layers, namely a visible layer 210
and a hidden layer 220. The artificial neurons 1n the visible
and hidden layers are designed to take binary or (Gaussian
values as 1input, so that several different value types, namely
binary-binary, Gaussian-binary or Gaussian-Gaussian, may
be received.

Based on the RBM, the DBN model’s conditional prob-
ability distribution between observed vectors and hidden
layers may be given as:

(1)
P(x, h', b, ... ) = [ﬂp(hﬂh“l)]fﬂ(h”, i)

where X corresponds to the input layer and 1s equivalent to
h® and P(h'~',h’) is a joint probability distribution of visible
units of a RBM at layer 1 conditioned on the hidden units of
the RBM at layer 1-1.

FIG. 3 1s a block diagram of an example DBN model 300
formed by stacking a number of RMBs (here two RBMs) to
have a visible layer 310 and two hidden layers 320, 330. For
a predictive application, a Gaussian-binary RBM may be
implemented with an energy function given as:

(2)

" o . 2
Ev, h) = _Z (VIQJT) _

icl

ijhj—zﬂt—ihjwﬁ

jeH i j

where V 1s the set of artificial neurons 1n the visible layers,
H 1s the set of artificial neurons 1n the hidden layers, v, and
h; are states of visible and hidden units, respectively, a; is
bias weight for the visible units, bj denotes hidden units, W,
1s weights between artificial neuron I and artificial neuron j,
and &, 1s standard deviation of the Gaussian noise for visible
unit 1. Learning the noise associated with each visible unit
may be addressed by normalizing each component of the
dataset through subtracting the mean and dividing by the
variance. The learning rate may be reduced from that typical
1n binary-binary RBM training to keep the weights emanat-
ing from certain components from becoming very large.
(Gaussian visible units with rectified linear hidden units may
be used 1n a Gaussian-binary RBM. The hidden units may be
approximated by the function max(0, N(0,1)), where N(0,1)
1s a Gaussian noise with zero mean and unit variance.
The integrated deep learning framework 142 may produce
a DBN model 144 that 1s predictive for given data (e.g., data
captured from infrastructure-attached sensors describing the
condition of infrastructure) to enable data analytics. To
achieve this, the optimization module 146, training module
148 and assimilation module 150 may act in concert to
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configure, train and update the DBN model 144. FIG. 4A 1s
a flow diagram of an example high level sequence of steps
400 that may be executed by the modules 146-150 of the
integrated deep learning framework 142 to configure, train
and update a DBN model 144. At step 410, 1n response to
mput 1 a user mterface of the integrated deep learning
framework 142, production of a DBN model 144 1s com-
menced. As part of the 1nput, a user may specify certain
qualities of the DBN model and data sources, such as a
training dataset, to use 1n producing the DBN model 144.
FIG. 4B 1s a screen shot 490 of an example user interface of
the integrated deep learning framework 142.

At step 420, the optimization module 146 utilizes a
competent genetic algorithm to optimize configuration (e.g.,
learning rate, number of hidden layers, number of neurons 1n
each layer, etc.) of the DBN model 144. In one embodiment,
the competent genetic algorithm may take the form of a fast
messy Genetic Algorithm (fmGA), such as that provided by
the Darwin™ Optimization Framework available from
Bentley Systems. The competent genetic algorithm deter-
mines effective hyperparameters that provide the optimized
configuration. At step 430, parts of which may occur simul-
taneously with the optimization of step 420, the training
module 148 trains the DBN model 144 utilizing a tramning
dataset (e.g., a dataset of historical data captured from
infrastructure-attached sensors describing the past condition
of the infrastructure). The training step 430 may include two
sub-steps: a pre-training sub-step 432 and a fine-tuning
sub-step 434. In the pre-training sub-step 432, the DBN 1s
trained layer-by-layer, so that the front layers can be well
trained. In the fine-tuning sub-step 424 the DBN 1s fine-
tuned using an EKF and confidence intervals computed.
After the DBN model 1s trained, it 1s ready to be used for
prediction. At step 440, the framework 142 applies the DBN
model 144 to a current dataset (e.g., a dataset of data
currently captured from infrastructure-attached sensors
describing the current condition of the infrastructure) to
make predictions. When making predictions, those that fall
outside of a confidence interval computed by the EKF may
be considered outliers and 1gnored. As part of such opera-
tion, at sub-step 442, the assimilation module 148 assimi-
lates data of the dataset with the predictions to continuously
update the DBN model 144. Also, at sub-step 444, the
assimilation module 148 uses the EKF to update the confi-
dence interval based on the dataset. In this manner, the
updated DBN model may continue to make accurate pre-
dictions for new data while the updated confidence interval
maintains accurate outhier determination. At step 450, which
may occur simultaneously to step 440, a user interface of the
deep learning framework 142, such as the example user
interface 490 shown in FIG. 4B may display predictions for
the current dataset to a user (e.g., to enable to the user to
proactively repair, replace, adjust, etc. components of the
infrastructure). The display of predictions may take any of a
variety of forms, icluding indicia such as tables, graphs,
warning messages, graphical indicators, and the like.

Looking to the steps of FIG. 4A 1n more detail, FIG. 5 1s
a flow diagram of an example sequence of steps 500
expanding upon the operation of the optimization module
146 step 420. At step 510, the optimization module 146
receives a training dataset (e.g., a dataset of historical data
captured from infrastructure-attached sensors describing the
past condition of the infrastructure) that includes 1mput data
U and output data Y. At step 520 a competent genetic
algorithm of the optimization module 146 generates a binary
string that encodes a candidate DBN configuration and
operation parameters. The DBN configuration may be
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described using a number of hyperparameters that specity
learning rate, the number of hidden layers, number of
neurons 1n each layer, etc. At step 530, the candidate DBN
configuration and operation parameters from the binary
string are provided to the training module 148, which as part
of the pre-training discussed below, trains the DBN layer-
by-layer. At step 3540, the training module 148 returns an
error produced by a cost function. At step 350, the competent
genetic algorithm of the optimization module 146 treats the
error as a litness score and compares the fitness score to a
threshold. At step 560, if the threshold or another termina-
tion condition 1s not met, execution loops back to step 520
and a successive binary string that encodes a new candidate
DBN configuration and operation parameters 1s generated.
The process loops over and over such that successive
generations of binary strings are generated until the thresh-
old or another termination condition 1s met and a final binary
string 1s produced. Then, at step 570, the final binary string
1s decoded into a final DBN configuration and operation
parameters that are returned, for use 1n fine-tuning and other
operations.

Returming to FIG. 4A, looking to the operation of the
training step 430 1n more detail, as mentioned above, the
training step 430 includes a pre-traiming sub-step 432 and a
fine-tuning sub-step 434. Due to the vanishing gradient
problem and explaining-away phenomenon, a DBN cannot
be trained eflectively with traditional gradient-based train-
ing methods alone. Pre-training utilizes the training dataset
and an unsupervised learning algorithm that treats the DBN
layer-by-layer. The learning algorithm treats the values of
latent variables 1n one layer, when they are being inferred
from the training data, as the data for training the next layer.
Each layer learns a non-linear transformation of its inputs
(e.g., the output of the previous layer) that captures the main
variations 1n 1its input.

The pre-trained DBN 1s fine-tuned for prediction using an
EKF. FIG. 6 1s a diagram 600 illustrating and example of
fine-tuning a pre-trained DBN using an EKF. To fine-tune
for prediction, a first portion of the mput data U of the
training dataset (e.g., 80% of the input data U of the training,
dataset) 610 1s provided to the DBN model 144. The
prediction produced by the DBN 144 1s then compared by a
function 620 with a corresponding first portion of the output
data Y of the training dataset (e.g., 80% of the output data
Y of the training dataset). If the output data and the predic-
tion produced by the DBN model 144 are the same or have
a very small difference (e.g., as measured by a threshold
difference), the DBN model prediction 1s concluded to be
accurate, and operation parameters (1.e. weights and/or
biases) 640 of the DBN model 144 maintained the same.
Otherwise, the difference from the comparison function 620
1s fed back to the EKF 630 to adjust the operation parameters
640 of the DBN model 144.

A second portion of the input data Y and output data U of
the traiming dataset (e.g., 20% of the mput data Y and output
data U of the training dataset) 610 may be used for valida-
tion to ensure that a robust DBN model 144 1s obtained.
Validation 1s often used in combination with retraining to
obtain better results. Retraining 1s particularly useful when
the tramning dataset 610 1s not be large enough for the
operation parameters (1.€. weights and/or biases) of the DBN
144 to converge to the optimal values in one iteration of
fine-tuning. In retraining, the DBN model 144 is fine-tuned
with the first portion of the mput data Y and output data U
of the traiming dataset and then the trained DBN model 144
1s validated with the second portion of the mput data Y and
output data U of the training dataset. The fine-tuning and
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validating repeats, until the training module 148 detects the
DBN model 144 exhibit signs of being overfitted. One sign
of overfitting that may be monitored 1s the root-mean
squared error (RMSE) produced in validation diverging
from the RMSE of training.

FIG. 7 1s a graph 700 showing an example of retraining
and overfitting. The horizontal axis denotes the number of
retainings of the DBN model 144. In this example, the
RMSE of validation increases after the 14™ retraining, while
the RMSE of the training continued to decrease. This means
that the DBN model 144 was overfitted after the 137
retraining, and therefore the 13” retraining should be chosen
as the trained DBN model 144 to avoid this 1ssue.

After the DBN model 144 1s pre-trained and fine-tuned by
EKF, 1t 1s ready to be used for prediction on a current dataset
(e.g., a dataset of data currently captured from inirastruc-
ture-attached sensors describing the current condition of the
inirastructure). Stmultaneous to such operation, the assimi-
lation module 148 assimilates data of the current dataset
with the predictions to continuously update the operation
parameters of the DBN model and the confidence interval
with new inputs. Such update ensures the DBN model 144
keeps tracking the changes of the real system (e.g., the
infrastructure), and the accuracy of the outlier detection 1s
maintained. When an EKF 1s used, a confidence interval can
be calculated by a prediction covariance obtained from an
error covariance matrix used with the EKF. The diagonal
clements of the matrix are the covanance of the prediction.
The confidence interval defines the upper and lower bounds
between which a value 1s expected to appear.

FIG. 8 1s a diagram 800 illustrating an example of
assimilating a DBN using an EKF. During prediction, a
dataset 810 including the mput data U and the output data Y
of the real system (e.g., as captured by infrastructure-
attached sensors) 1s provided as new data to the DBN model
144. The prediction produced by the DBN model 144 1s then
compared by a function 620 with the output data Y from the
real system (e.g., from infrastructure-attached sensors) and
the results of such comparison are used to update operation
parameters (1.e. weights and/or biases), so that the DBN
model 144 can learn features in the new data 810. Due to the
clliciency of the EKF, such assimilation can occur substan-
tially 1n real-time, avoiding the need to pause prediction and
undergo a dedicated retraining operation.

To apply an EKF to train and update a DBN model 144
for a given dataset, a general formulation 1s derived for
many-layer DBNs. Suppose the neural network can be
modeled as a predictive system described by:

(=W (t-1)+e(2) (3)

Y(2)=h(W2), U)+v(2) (3)

where W(t) 1s a vector of states at time t, containing the
weilghts and biases of the DBN, U(t) and Y (t) are input and
output vectors, respectively, €(t) 1s process noise, v(t) 1s
observation noise (or measurement noise), and h(W(t),U(t))
1s generally an observation function. Because h(W(t),U(t)) 1s
a nonlinear function, the EKF 1s desired for improving the
DBN, because a conventional Kalman filter 1s designed for
linear systems.

For the model given by equations (3) and (4), the EKF 1s
formulated 1n two sets of equations, including the prediction
equations:

Wik)=W(k) (3)

Y(k)y=h(W(k),U(k)) (6)
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and the update equations

S(k+1)=H(k+ 1) PU)Hk+1)T-+R(k+1) (7)

K+ 1D=PROHKA+DTS(k+1)"! (8)

P(k+1)=P{k)-K{(k+1)H{k+1)P(k) (9)

Wk+1)=W(k)—K(k+1)(Y(k)-Y (k) (10)

Due to the nature of the EKF as an iterative algorithm the
proceeding equations are 1n a discrete form, and L 1s the
index of the 1iterations. To train or update the neural network
with an EKF, the matrixes R and H 1n equations (7)-(9) are
calculated 1n every 1teration.

The matrix R denotes the measurement covariance and
can be obtained, for example, based on the precision of the
infrastructure-attached sensors. However, if no information
1s available about the precision of the infrastructure-attached
sensors, the measurement covariance may be estimated
using a moving window method with the measured data.

The Jacobian matrix H 1s defined as the partial derivative
of the observation function h(W(t), U(t)) with respect to
W(t) at the weights W(t), as shown in:

O, U)
B AW (1)

(11)

| Wi

Because the observation function h(W(t), U(t)) of the neural
network 1s distinct for different configurations, the function
h(W(t), U(t)) does not have uniformity. The Jacobian matrix
H may be calculated by an algorithm recursively. With this
algorithm, the EKF can be integrated with the neural net-
work to train and update the neural network model.

A DBN 1s more powerful at extracting pattern data than a
conventional artificial neural network with only a few lay-
ers. However, the layers of the a DBN lead to its observation
function h(W(t), U(t)) being a highly nonlinear and complex
nested structure. A generalized algorithm may be used for
calculating the H matrix of the EKF for a DBN.

FIG. 9 15 a diagram 900 of an example artificial neuron.
The mathematical model of the neuron mm FIG. 9 can be
represented as:

y=sig(2lw x+b) (12)

where w; 1s the weight of the neuron, X, or u, 1s inputs of the
neuron, b 1s bias, z 1s weighted sum of the mputs and bias,
1.e., z=2wW X+b, I 1s a nonlinear activation function, usually
the sigmoid function sig(z)=1/(1+¢) and y 1s output.
According to the model of the neuron 1n equation (12) and
FIG. 9, the bias b can be treated as a weight of a constant
input, as:

(13)

where w_=b and x_=1. Therefore, the bias b 1s included 1n
the weight vector W(t) in equation (5) and can be trained by
the EKF as a weight.

FIG. 10 1s a diagram 1000 of an example neural network
formed from connecting a number of the artificial neurons of
FIG. 9 together. In order to calculate a derivative of the
entire neural network with multiple layers, an algorithm may
be formulated for computing the derivative layer-by-layer.
The algorithm may first focus on the top two layers, 1.e. the
iput layer and the first hidden layer of the neural network.
FIG. 11 1s a diagram 1100 of the mnput layer and the first
hidden layer of an example neural network. Focusing on

y=sig{Zwx+wpxo)
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this, n; and m,; may be defined as the number of 1nput and
output, respectively. The model of these layers can be
represented as:

L 14
vi=h(Wgn-U) = ng( Wg(r}[ . D (14)

Where W, 1s vector weights, including bias, which 1s
related to the i”” output y, e.g., Weay=Iby, wi, wo, .o, WH]]T
and U 1s the input vector, 1.e, U=[u, 1,, . .., uH]]T. By taking
the derivative of the output vector Y=[y,, V,, . . .. ym]]T with
respect to the weight vector Wz[WGmT, WG(ZJT, C e,
WG(m])]T, the Jacobian matrix H, for this neural network can
be obtained as:

O n 01 (15)
OWeay O0Wgo 0 Wg(ml)
42 d y2 - 02
Hy = %, Wg(l) 0 WG(E) 0 WG(mI) =
OVmy  0Ym 0 Yy
OWeqy OWosq O Wemy)
_ng"(zl)[l : UT] 0 0
0 ng"(ZE)[l : UT] 0
0 0 - ng"(zml][l-UT]_

where sig' 1s the derivative of the sigmoid function sig(z),
and can be calculated as:

e’ (16)

(1 +e°)*

sig'(z) =

In equation (16), Oy/OW ;=0 for 1#] because W, 18 not
the variable of the function y=h(W;,,U). Thus, H, 1s a
block diagonal matrix.

By adding another hidden layer to the output of the neural
network 1n FIG. 11, a neural network with one mput layer
and two hidden layers can be obtained. The model of the
new neural network can be derived from the model 1n
equation (14) by switching the weights W, to the weights
of the second hidden layer W, .,;, and replacing the input U
with the output of the first hidden layer. Because the output
Y of the first hidden layer 1s not the output of the entire
neural network 1n this new structure, but of the intermediate
states, 1ts notation 1s replaced by X,. Supposing that there
are m, neurons 1n the added hidden layer, the model of this
new neural network can be constructed as:

| 1 (17)
1 =hWrgn-X1)= ﬂg(Wg:G(r)[Xl D

| i (18)
X =S:§([WG(1)WG(Z) WG(ml)]T[ UD

where W, ;, 18 a vector of weights and bias in the second
hidden layer, which I related to the ith output y,. The weight
vector of the second hidden layer 1s defined by W,=

T T T
[WZ,G(I) ’ WZ,G(Z) SRR WZ,G(mZ)] :
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In this case, the matrix H, 1s the derivative of Y=[y,,
Yoy o - s ymZ]T with respect of the weight vectors W, and W,,.
By applying the chain rule to equation (17), the derivative of
y. with respect to W, 1s;

0X1
0 W

0 yi _ (19)

. T
— = 5i¢ (22 W
3 W, g (Z24) 2,G(7)

!

where W, ., 1s equal to the weight vector W, ., but
without the bias b.. It 1s true that

0 X1

— = H

0 W

because X, 1s the output of the first hidden layer. On the
other hand, the calculation of

0
o W5

1s the same as equation (15) by treating X, as the input.
Therefore, the matrix H, for the two-layer neural network 1s:

(20)

Y dY 9Y
i )

- O[W; W] Wy W

where 3Y/OW, can be computed according to equation (19)
and JY/OW, can be computed according to equation (15).

The semicolon denotes vertical concatenation of matrices
and vectors.

After H, for the two-layer neural network 1s obtained, new
layers can be added. The proceeding calculation can be
generalized to compute the H matrix of a neural network
with an arbitrary number of layers. Supposing that H,_; 1s
known for the (k—1)-layer neural network, the k-layer neural
network 1s computed by

o 0Xy, _[ X, (21)
AW W W LW . W]
éX;C . s T an
— = i JrZ W .. o W 1 Hy 1+ ——
@WJ [ﬂg( N Wi s Wiom, | Hea 8WJ

. . o Ty . .
where Z,=[7; 137,50 - - - 1 Zg )3 Ze Wi gy [1:X4]; and

0 Xy,
0 Wy

1s a block diagonal calculated by:

l@ﬁ—Dia (Sz' (z )[1 X
aW. g\Sig \Zp1 )| L, A

(22)

e ng"(zhmk)[l -X{E_l}]).

FIG. 12 15 a flow diagram 1200 summarizing an example
procedure that may be executed by the integrated deep
learning framework 142 to calculate the Jacobian matrix of
a k-layer neural network H,. At step 1205, the ANN 1s
executed one time. At step 1210, states X, X,, . . . X are
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saved. At step 1215, X, 1s set to the mnput vector U. At step
1220, X, 1s set to the output Y. At step 1225, a loop 1is
performed while the condition ke{1, ... K} 1s met. The loop
contains sub-steps, including sub-step 1230 of calculating
the matrix weighted sum of the inputs and bias Z, by
Zie =W el iK1, sub-step 1235 of calculating sig'(Z,)
by equation (16) above, and sub-step 1240 of constructing

0 Xy,
O Wy

by equation (22) above, and conditional sub-step 1245. As
part of conditional sub-step 1245 a determination 1s made
whether k 1s equal to 1. If so, at further sub-step 1250 then
H, 1s set equal to

0 X1
oW,

If not, at further sub-step 1255 then H, 1s calculated by
equation (21).

By adding all the layers of the neural network, the entire
neural network can be constructed. That 1s, the matrix H of
the entire neural network can be achieved by setting H equal
to H,, where K 1s the total number of hidden layers 1n the
neural network.

[t should be understood that various adaptations and
modifications may be readily made to what 1s described
above, to suit various implementations and environments.
While 1t 1s discussed above that many aspects of the tech-
niques may be implemented by specific software processes
executing on specific hardware, 1t should be understood that
some or all of the techniques may also be implemented by
different software on different hardware. In addition to
general-purpose computing devices/electronic devices, the
hardware may include specially configured logic circuits
and/or other types of hardware components. Above all, 1t
should be understood that the above descriptions are meant
to be taken only by way of example.

What 1s claimed 1s:

1. A method for tramning and updating a deep belief
network (DBN) model for performing data analytics, com-
prising:

receiving, in a user interface of an integrated deep learn-

ing framework executing on one or more electronic
devices, mput specifying at least a training dataset;
training the DBN model using the traiming dataset, the
training to mclude fine-tuning the DBN model using a
recursively calculated Jacobian matrix that mntegrates
an extended Kalman filter (EKF) to estimate operation
parameters of the DBN model, the recursive calcula-
tions to mnclude saving intermediate states, calculating
a derivative of a sigmoid function of a matrix weighted
sum of mputs and bias using the intermediate states,
constructing a block diagonal matrix using the deriva-
tive of the sigmoid function and determining the Jaco-
bian matrix based using the block diagonal matrix;
applying, by the integrated deep learning framework, the
DBN model to a current dataset to make predictions;
assimilating data of the current dataset with the predic-
tions using the EKF to update the DBN model; and
displaying, 1n the user interface, an indication of the
predictions for the current dataset.
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2. The method of claim 1, wherein the fine-tuning further
COmMprises:
providing a first portion of mput data of the training
dataset to the DBN model to produce predictions;

comparing the predictions to a first portion of output data
of the tramning dataset with a comparison function to
produce a difference;

feeding the difference to the EKF; and

using the EKF to adjust the operation parameters of the

DBN model.

3. The method of claim 2, wherein the fine-tuning further
COmMprises:

validating the DBN model using a second portion of input

data of the training dataset.

4. The method of claim 3, further comprising

retraining the DBN model 1n successive rounds of training

and validating until the DBN model exhibit a sign of
being overfitted.

5. The method of claim 4, wherein the sign of being
overfitted comprises a root-mean squared error (RMSE)
produced 1n validation diverging from a RMSE of training.

6. The method of claim 1, wherein the fine-tuning further
comprises computing a confidence interval that defines an
upper and lower bound between which a prediction 1s
expected to appear, and the applying further comprises
ignoring any predictions that fall outside the confidence
interval.

7. The method of claam 6 wherein the computing the
confidence 1nterval further comprises:

determining prediction covariance from an error covari-

ance matrix used by the EKF.

8. The method of claim 6, wherein the assimilating further
COmMprises:

updating the confidence interval using the current dataset.

9. The method of claim 1, turther comprising;:

optimizing configuration of the DBN model by using a

genetic algorithm.

10. The method of claim 9, wherein the optimizing further
COmMprises:

generating, by the genetic algorithm, a candidate DBN

configuration and operation parameters;

using the candidate DBN configuration and operation

parameters and the training dataset to train the DBN
model,

treating, by the genetic algorithm, an error determined by

a cost function used 1n the traiming as a fitness score;
repeating the generating, the using and the treating to
produce subsequent candidate DBN configurations and
operation parameters until the fitness score meets a
threshold or another termination condition 1s met; and
using a final candidate DBN configuration and operation
parameters for the DBN model.
11. The method of claim 10, wherein the genetic algo-
rithm comprises a fast messy Genetic Algorithm (ImGA).
12. The method of claim 1, wherein the training dataset
includes historical data captured from infrastructure-at-
tached sensors describing the past condition of infrastructure
and the current dataset includes data captured from infra-
structure-attached sensors describing the current condition
of the infrastructure.
13. A method for training a deep belief network (DBN)
model for performing data analytics, comprising:
receiving, 1n a user interface of an itegrated deep learn-
ing framework executing on one or more electronic
devices, mput specitying at least a training dataset;

generating, by a genetic algorithm, a candidate DBN
configuration and operation parameters;
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using the candidate DBN configuration and operation
parameters and the training dataset to train the DBN
model, the training to include recursively calculating a
Jacobian matrix that integrates an extended Kalman
filter (EKF) to estimate operation parameters of the

DBN model:;

treating, by the genetic algorithm, an error determined by
a cost function used 1n the training as a fitness score;

repeating the generating, the using and the treating to
produce subsequent candidate DBN configurations and
operation parameters until the fitness score meets a
threshold or another termination condition 1s met;

using a final candidate DBN configuration and operation
parameters for the DBN model;

applying, by the mtegrated deep learning framework, the

DBN model to a current dataset to make predictions;
and

displaying, 1in the user interface, an indication of the

predictions for the current dataset.

14. The method of claim 13, wherein the genetic algo-
rithm comprises a fast messy Genetic Algorithm (ImGA).

15. The method of claim 13, further comprising

assimilating data of the current dataset with the predic-

tions using the EKF to update the DBN model.

16. A non-transitory electronic device readable medium
having instructions stored thereon that when executed by a
processor of an electronic device are operable to:

train a deep beliel network (DBN) model, the training to

include fine-tuning the DBN model using a recursively
calculated Jacobian matrix that integrates an extended
Kalman filter (EKF) to estimate operation parameters
of the DBN model, the recursive calculation to include
saving intermediate states, calculating a dernivative of a
sigmoid function of a matrix weighted sum of inputs
and bias using the intermediate states, constructing a
block diagonal matrix using the derivative of the sig-
moid function and determining the Jacobian matrix
based using the block diagonal matrix;

apply the DBN model to a current dataset to make

predictions;

assimilate data of the current dataset with the predictions

using the EKF to update the DBN model; and
display an indication of the predictions for the current
dataset.

17. The non-transitory electronic-device readable medium
of claim 16, wherein the instructions to train further com-
prise 1nstructions operable to:

provide a first portion of iput data of the training dataset

to the DBN model to produce predictions;

compare the predictions to a first portion of output data of

the tramning dataset with a comparison function to
produce a diflerence;

feed the difference to the EKF; and

use the EKF to adjust the operation parameters of the

DBN model.

18. The non-transitory electronic-device readable medium
of claim 16, wherein the instructions when executed are
further operable to:

optimize configuration of the DBN model using a genetic

algorithm.

19. The non-transitory electronic-device readable medium
of claim 18, wherein the instructions to optimize further
comprise instructions operable to:

generate a candidate DBN configuration and operation

parameters;
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use the candidate DBN configuration and operation
parameters and the training dataset to train the DBN
model;

treat an error determined by a cost function used in the

training as a fitness score;

repeat operations to produce subsequent candidate DBN

configurations and operation parameters until the {it-
ness score meets a threshold or another termination
condition 1s met; and

use a final candidate DBN configuration and operation

parameters for the DBN model.

20. The non-transitory electronic-device readable medium
of claim 16, wherein the training dataset includes historical
data captured from infrastructure-attached sensors describ-
ing the past condition of infrastructure and the current
dataset includes data captured from inirastructure-attached
sensors describing the current condition of the infrastruc-

fure.
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