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OBJECT TRAJECTORY FORECASTING

BACKGROUND

Deep neural networks can be trained to perform a variety
of computing tasks. For example, neural networks can be
trained to extract data from images. Data extracted from
images by deep neural networks can be used by computing
devices to operate systems including vehicles, robots, secu-
rity, product manufacturing and product tracking. Images
can be acquired by sensors included in a system and pro-
cessed using deep neural networks to determine data regard-
ing objects 1n an environment around a system. Operation of
a system can include upon acquiring accurate and timely
data regarding objects 1n a system’s environment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example object detection
system.

FI1G. 2 1s a diagram of an example 1image of a trafhic scene.

FIG. 3 1s a diagram of an autonomous vehicle control
system.

FIG. 4 1s a diagram of an example deep neural network.

FIG. 5 1s a diagram of an example varnational autoen-
coder.

FIG. 6 1s a diagram of an example recurrent neural
network.

FIG. 7 1s a diagram of an example map of a traflic scene.

FIG. 8 1s a diagram of example results of object trajectory
forecasting.

FIG. 9 1s another diagram of example results of object
trajectory forecasting.

FIG. 10 1s a flowchart diagram of an example process to
operate a vehicle using a deep neural network.

1

DETAILED DESCRIPTION

A deep neural network (DNN) can be trained and then
used to determine objects 1n 1mage data acquired by sensors
in systems including vehicle guidance, robot operation,
security, manufacturing, and product tracking. Vehicle guid-
ance can include operation of vehicles in autonomous or
semi-autonomous modes in environments that include a
plurality of objects. Robot guidance can include guiding a
robot end eflector, for example a gripper, to pick up a part
and orient the part for assembly 1n an environment that
includes a plurality of parts. Security systems include fea-
tures where a computer acquires video data from a camera
observing a secure area to provide access to authorized users
and detect unauthorized entry 1n an environment that
includes a plurality of users. In a manufacturing system, a
DNN can determine the location and orientation of one or
more parts in an environment that includes a plurality of
parts. In a product tracking system, a deep neural network
can determine a location and orientation of one or more
packages 1 an environment that includes a plurality of
packages.

Vehicle guidance will be described herein as a non-
limiting example of using a DNN to detect objects, for
example vehicles and pedestrians, in a traflic scene and
determine trajectories and uncertainties corresponding to the
trajectories. A traflic scene 1s an environment around a tratlic
inirastructure system or a vehicle that can include a portion
of a roadway and objects including vehicles and pedestrians,
etc. For example, a computing device 1n a traflic infrastruc-
ture can be programmed to acquire one or more 1images from
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2

one or more sensors included in the trathc infrastructure
system and detect objects 1n the 1images using a DNN. The
images can be acquired from a still or video camera and can
include range data acquired from a range sensor including a
lidar sensor. The 1images can also be acquired from sensors
included 1 a vehicle. A DNN can be trained to label and
locate objects and determine trajectories and uncertainties 1n
the 1image data or range data. A computing device icluded
in the trathc infrastructure system can use the trajectories
and uncertainties of the detected objects to determine a
vehicle path upon which to operate a vehicle 1n an autono-
mous or semi-autonomous mode. A vehicle can operate
based on a vehicle path by determining commands to direct
the vehicle’s powertrain, braking, and steering components
to operate the vehicle to travel along the path.

A traflic scene can include a plurality of objects such as
vehicles and pedestrians that move and interact. Objects
such as these that are capable of movement 1n a traflic scene
will also be referred to herein as agents. Determining a
vehicle path upon which to operate a vehicle can be
improved by predicting a plurality of future locations, 1.e.,
trajectories, of agents 1n a traflic scene based on an envi-
ronment around the vehicle. A trajectory 1s a vector that
describes a direction and a speed at which an agent 1is
moving. A variational autoencoder (VAE) 1s a type of DNN
that can iput location histories for a plurality of agents
based on observed locations and output predicted trajecto-
ries for the plurality of agents along with uncertainties
corresponding the predicted trajectories. Location histories
can be determined by putting a plurality of i1mages
acquired at a plurality of time steps to a convolutional neural
network (CNN), which 1s a type of DNN that can determine
agent locations 1n each mput image. The uncertainties are
probability distributions corresponding to the predicted tra-
jectories that estimate probabilities that an observed trajec-
tory of an agent will differ from the predicted trajectory.
Techniques discussed herein improve determining predicted
trajectories of agents by determining uncertainties corre-
sponding to observed locations of agents and mnputting both
the locations and uncertainties to a VAE to determine
predicted agent trajectories and uncertainties.

A method 1s disclosed herein, including determining a
plurality of agent locations at a plurality of time steps by
inputting a plurality of images to a perception algorithm that
inputs the plurality of 1mages and outputs agent labels and
the agent locations. A plurality of first uncertainties corre-
sponding to the agent locations at the plurality of time steps
can be determined by inputting the plurality of agent loca-
tions to a filter algorithm that inputs the agent locations and
outputs the plurality of first uncertainties corresponding to
the plurality of agent locations. A plurality of predicted agent
trajectories and potential trajectories corresponding to the
predicted agent trajectories can be determined by nputting,
the plurality of agent locations at the plurality of time steps
and the plurality of first uncertainties corresponding to the
agent locations at the plurality of time steps to a vanational
autoencoder and the plurality of predicted agent trajectories
and the potential trajectories corresponding to the predicted
agent trajectories can be output.

A vehicle can be operated based on the plurality of
predicted agent trajectories and the potential trajectories
corresponding to the predicted agent trajectories. The
vehicle can be operated by controlling one or more of
vehicle powertrain, vehicle brakes, and vehicle steering. The
perception algorithm can be a deep neural network. The
deep neural network can be a convolutional neural network
that includes convolutional layers and fully connected lay-
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ers. The agent locations can be x coordinates and y coordi-
nates 1n a plane. The X coordinates and the y coordinates in
the plane can be determined based on a high definition map.
The filter algorithm can be a Kalman filter. The first uncer-
tainties can correspond to the agent locations at the plurality
of time steps correspond to Gaussian distributions. The
variational autoencoder can include encoders, latent vari-
ables, and decoders. The variational autoencoder can include
a plurality of long short-term memory (LSTM) neural net-
works and one or more convolutional neural networks. The
latent variables can include concatenated outputs from the
plurality of LSTM neural networks and the one or more
convolutional neural networks. The variational autoencoder
can include one or more recurrent neural networks that input
agent locations and uncertainties and output predicted agent
trajectories and the potential trajectories corresponding to
the predicted agent trajectories. Traiming the variational
autoencoder can include determining ground truth corre-
sponding to the predicted agent trajectories and the potential
trajectories corresponding to the predicted agent trajectories.

Further disclosed 1s a computer readable medium, storing
program instructions for executing some or all of the above
method steps. Further disclosed 1s a computer programmed
for executing some or all of the above method steps,
including a computer apparatus, programmed to determine a
plurality of agent locations at a plurality of time steps by
inputting a plurality of 1images to a perception algorithm that
inputs the plurality of 1images and outputs agent labels and
the agent locations. A plurality of first uncertainties corre-
sponding to the agent locations at the plurality of time steps
can be determined by inputting the plurality of agent loca-
tions to a {ilter algorithm that inputs the agent locations and
outputs the plurality of first uncertainties corresponding to
the plurality of agent locations. A plurality of predicted agent
trajectories and potential trajectories corresponding to the
predicted agent trajectories can be determined by 1nputting,
the plurality of agent locations at the plurality of time steps
and the plurality of first uncertainties corresponding to the
agent locations at the plurality of time steps to a variational
autoencoder and the plurality of predicted agent trajectories
and the potential trajectories corresponding to the predicted
agent trajectories can be output.

The computer can be further programmed to operate a
vehicle based on the plurality of predicted agent trajectories
and the potential trajectories corresponding to the predicted
agent trajectories. The vehicle can be operated by control-
ling one or more of vehicle powertrain, vehicle brakes, and
vehicle steering. The perception algorithm can be a deep
neural network. The deep neural network can be a convo-
lutional neural network that includes convolutional layers
and fully connected layers. The agent locations can be x
coordinates and y coordinates 1n a plane. The x coordinates
and the v coordinates 1n the plane can be determined based
on a high defimtion map. The filter algorithm can be a
Kalman filter. The {irst uncertainties can correspond to the
agent locations at the plurality of time steps correspond to
Gaussian distributions. The vanational autoencoder can
include encoders, latent variables, and decoders. The varia-
tional autoencoder can include a plurality of long short-term
memory (LSTM) neural networks and one or more convo-
lutional neural networks. The latent variables can include
concatenated outputs from the plurality of LSTM neural
networks and the one or more convolutional neural net-
works. The vanational autoencoder can include one or more
recurrent neural networks that mput agent locations and
uncertainties and output predicted agent trajectories and the
potential trajectories corresponding to the predicted agent
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4

trajectories. Training the variational autoencoder can include
determining ground truth corresponding to the predicted
agent trajectories and the potential trajectories correspond-
ing to the predicted agent trajectories.

FIG. 1 1s a diagram of an object detection system 100 that
can include a trathic infrastructure system 1035 that includes
a server computer 120 and sensors 122. Object detection
system 1ncludes a vehicle 110, operable 1n autonomous
(“autonomous™ by 1tself 1 this disclosure means “fully
autonomous’), semi-autonomous, and occupant piloted
(also referred to as non-autonomous) mode. One or more
vehicle 110 computing devices 115 can receive data regard-
ing the operation of the vehicle 110 from sensors 116. The
computing device 115 may operate the vehicle 110 1n an
autonomous mode, a semi-autonomous mode, or a non-
autonomous mode.

The computing device 115 includes a processor and a
memory such as are known. Further, the memory includes
one or more forms of computer-readable media, and stores
istructions executable by the processor for performing
vartous operations, including as disclosed herein. For
example, the computing device 115 may include program-
ming to operate one or more of vehicle brakes, propulsion
(e.g., control of acceleration 1n the vehicle 110 by control-
ling one or more of an internal combustion engine, electric
motor, hybrid engine, etc.), steering, climate control, interior
and/or exterior lights, etc., as well as to determine whether
and when the computing device 1135, as opposed to a human
operator, 1s to control such operations.

The computing device 115 may include or be communi-
catively coupled to, e.g., via a vehicle communications bus
as described further below, more than one computing
devices, e.g., controllers or the like included 1n the vehicle
110 for monitoring and/or controlling various vehicle com-
ponents, e.g., a powertrain controller 112, a brake controller
113, a steering controller 114, etc. The computing device 115
1s generally arranged for communications on a vehicle
communication network, e.g., including a bus in the vehicle
110 such as a controller area network (CAN) or the like; the
vehicle 110 network can additionally or alternatively include
wired or wireless communication mechanisms such as are
known, e.g., Ethernet or other communication protocols.

Via the vehicle network, the computing device 115 may
transmit messages to various devices 1n the vehicle and/or
receive messages from the various devices, e.g., controllers,
actuators, sensors, etc., mncluding sensors 116. Alternatively,
or additionally, 1n cases where the computing device 115
actually comprises multiple devices, the vehicle communi-
cation network may be used for communications between
devices represented as the computing device 115 1n this
disclosure. Further, as mentioned below, various controllers
or sensing elements such as sensors 116 may provide data to
the computing device 115 via the vehicle communication
network.

In addition, the computing device 115 may be configured
for communicating through a vehicle-to-infrastructure
(V-to-I) interface 111 with a remote server computer 120,
¢.g., a cloud server, via a network 130, which, as described
below, includes hardware, firmware, and software that per-
mits computing device 115 to communicate with a remote
server computer 120 via a network 130 such as wireless
Internet (WI-FI®) or cellular networks. V-to-I interface 111
may accordingly include processors, memory, transceivers,
etc., configured to utilize various wired and/or wireless
networking technologies, e.g., cellular, BLUETOOTH® and
wired and/or wireless packet networks. Computing device
115 may be configured for communicating with other
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vehicles 110 through V-to-I interface 111 using vehicle-to-
vehicle (V-to-V) networks, e.g., according to Dedicated
Short Range Communications (DSRC) and/or the like, e.g.,
formed on an ad hoc basis among nearby vehicles 110 or
formed through infrastructure-based networks. The comput-
ing device 115 also includes nonvolatile memory such as 1s
known. Computing device 115 can log data by storing the
data 1n nonvolatile memory for later retrieval and transmattal
via the vehicle communication network and a vehicle to

inirastructure (V-to-I) interface 111 to a server computer 120
or user mobile device 160.

As already mentioned, generally included 1n instructions
stored 1n the memory and executable by the processor of the
computing device 115 1s programming for operating one or
more vehicle 110 components, e.g., braking, steering, pro-
pulsion, etc., without intervention of a human operator.
Using data recerved in the computing device 115, e.g., the
sensor data from the sensors 116, the server computer 120,
etc., the computing device 115 may make various determi-
nations and/or control various vehicle 110 components and/
or operations without a driver to operate the vehicle 110. For
example, the computing device 115 may include program-
ming to regulate vehicle 110 operational behaviors (1.e.,
physical manifestations of vehicle 110 operation) such as
speed, acceleration, deceleration, steering, etc., as well as
tactical behaviors (1.e., control of operational behaviors
typically in a manner intended to achieve sate and eflicient
traversal of a route) such as a distance between vehicles
and/or amount of time between vehicles, lane-change, mini-
mum gap between vehicles, left-turn-across-path minimum,
time-to-arrival at a particular location and intersection (with-
out signal) minimum time-to-arrival to cross the intersec-
tion.

Controllers, as that term 1s used herein, include computing,
devices that typically are programmed to monitor and/or
control a specific vehicle subsystem. Examples include a
powertrain controller 112, a brake controller 113, and a
steering controller 114. A controller may be an electronic
control unit (ECU) such as 1s known, possibly including
additional programming as described herein. The controllers
may communicatively be connected to and receive instruc-
tions from the computing device 115 to actuate the subsys-
tem according to the instructions. For example, the brake
controller 113 may recerve istructions from the computing
device 115 to operate the brakes of the vehicle 110.

The one or more controllers 112, 113, 114 for the vehicle
110 may include known electronic control umts (ECUs) or
the like including, as non-limiting examples, one or more
powertrain controllers 112, one or more brake controllers
113, and one or more steering controllers 114. Each of the
controllers 112, 113, 114 may include respective processors
and memories and one or more actuators. The controllers
112, 113, 114 may be programmed and connected to a
vehicle 110 communications bus, such as a controller area
network (CAN) bus or local interconnect network (LIN)
bus, to receive nstructions from the computing device 115
and control actuators based on the instructions.

Sensors 116 may include a variety of devices known to
provide data via the vehicle commumications bus. For
example, a radar fixed to a front bumper (not shown) of the
vehicle 110 may provide a distance from the vehicle 110 to
a next vehicle i front of the vehicle 110, or a global
positioning system (GPS) sensor disposed 1n the vehicle 110
may provide geographical coordinates of the vehicle 110.
The distance(s) provided by the radar and/or other sensors
116 and/or the geographical coordinates provided by the
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6

GPS sensor may be used by the computing device 115 to
operate the vehicle 110 autonomously or semi-autono-
mously, for example.

The vehicle 110 1s generally a land-based vehicle 110
capable of autonomous and/or semi-autonomous operation
and having three or more wheels, ¢.g., a passenger car, light
truck, etc. The vehicle 110 includes one or more sensors 116,
the V-to-I interface 111, the computing device 115 and one
or more controllers 112, 113, 114. The sensors 116 may
collect data related to the vehicle 110 and the environment
in which the vehicle 110 1s operating. By way of example,
and not limitation, sensors 116 may include, e.g., altimeters,
cameras, LIDAR, radar, ultrasonic sensors, infrared sensors,
pressure sensors, accelerometers, gyroscopes, temperature
sensors, pressure sensors, hall sensors, optical sensors, volt-
age sensors, current sensors, mechanical sensors such as
switches, etc. The sensors 116 may be used to sense the
environment in which the vehicle 110 1s operating, e.g.,
sensors 116 can detect phenomena such as weather condi-
tions (precipitation, external ambient temperature, etc.), the
grade of a road, the location of a road (e.g., using road edges,
lane markings, etc.), or locations of target objects such as
neighboring vehicles 110. The sensors 116 may further be
used to collect data including dynamic vehicle 110 data
related to operations of the vehicle 110 such as velocity, yaw
rate, steering angle, engine speed, brake pressure, o1l pres-
sure, the power level applied to controllers 112, 113, 114 1n
the vehicle 110, connectivity between components, and
accurate and timely performance of components of the
vehicle 110.

Vehicles can be equipped to operate in both autonomous
and occupant piloted mode. By a semi- or fully-autonomous
mode, we mean a mode of operation wherein a vehicle can
be piloted partly or entirely by a computing device as part of
a system having sensors and controllers. The vehicle can be
occupied or unoccupied, but in either case the vehicle can be
partly or completely piloted without assistance of an occu-
pant. For purposes of this disclosure, an autonomous mode
1s defined as one 1n which each of vehicle propulsion (e.g.,
via a powertrain including an internal combustion engine
and/or electric motor), braking, and steering are controlled
by one or more vehicle computers; 1n a semi-autonomous
mode the vehicle computer(s) control(s) one or more of
vehicle propulsion, braking, and steering. In a non-autono-
mous mode, none of these are controlled by a computer.

FIG. 2 1s a diagram of an image of a traflic scene 200. The
image of the traflic scene 200 can be acquired by a sensor
122 included 1n a traflic infrastructure system 103 or a sensor
116 1included 1n a vehicle 110. The image of the traflic scene
200 includes pedestrians 202, 204, 206, 208 and a vehicle
110 on a roadway 236. Techniques described herein can
determine predicted trajectories 212, 214, 216, 218 {for
pedestrians 202, 204, 206, 208, respectively. Techniques
described herein can also predict trajectories 228, 230 for
vehicle 110. Trajectories 228, 230 can be predicted by a VAE
as described herein, or trajectories 228, 230 can be deter-
mined by receiving from a computing device 115 1n a
vehicle, one or more planned trajectories included i a
vehicle path upon which vehicle 110 intends to travel.
Pedestrians 202, 204, 206, 208 can also have more than one
predicted trajectory. Corresponding to each trajectory 212,
214, 216, 218, 228, 230 are potential trajectories 220, 222,
224, 226, 232, 234 (dotted lines). Potential trajectories 220,
222, 224, 226, 232, 234 are Gaussian probability distribu-
tions, where the predicted trajectories 212, 214, 216, 218,
228, 230 correspond to the most probable trajectories within
the respective potential trajectories 220, 222, 224, 226, 232,
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234. Computing device 115 can input predicted trajectories
212, 214, 216, 218, 228, 230 and potential trajectories 220,

222, 224, 226, 232, 234 to determine a vehicle path upon

which to operate vehicle 110.

FIG. 3 1s a diagram of an autonomous vehicle control
system 300. Autonomous vehicle control system 300 include
input 1mages (IN) 302, perception (PREC) 304, trajectory
forecasting (TF) 308, planning and control (PC) 312, and
output control signals 314. Autonomous vehicle control
system 300 can be included 1n a vehicle 110, where input
images 302 are acquired by sensors 116, perception 304,
trajectory forecasting 308, and planning and control 312 are
software programs executing on computing device 115.
Autonomous vehicle control system 300 can also be
included 1n a traffic infrastructure system 105, where input
images are acquired by sensors 122 and all or portions of
perception 304, trajectory forecasting 308 and planning and
control 312 are executed on server computer 120. For
example, perception 304 and trajectory forecasting 308 can
be executed on traffic infrastructure system 105 and plan-
ning and control 312 can be executed on computing device
115 included 1n a vehicle 110. Perception 304 outputs agent
locations and uncertainties 306 to trajectory forecasting 308,
which 1n turn outputs predicted trajectories and potential
trajectories 310 to planning and control 312 which outputs
control signals 314 to controllers 112, 113, 114 to control
vehicle powertrain, vehicle steering, and vehicle brakes.

Perception 304 inputs a plurality of images 302 and
outputs labeled agent locations and uncertainties. Agent
locations are typically determined with respect to a global
coordinate system, e.g., a Cartesian or polar coordinate
system with a defined point of origin, by combining loca-
tions output by perception 304 as locations determined as
pixel locations 1n an 1mage with data regarding the location
and orientation of the sensor 116 that acquired the image
with respect to the vehicle and data regarding the location
and orientation of the vehicle. Data regarding the location
and orientation of a sensor 116 with respect to the vehicle
can be determined at the time of manufacture by acquiring
an 1mage of fiducial pattern placed at a measured location
with respect to a vehicle 110, for example. The location and
orientation of a vehicle can be determined by GPS and
accelerometer-based 1nertial measurement units (IMUs)
included 1n a vehicle 110, for example.

Perception 304 can include a machine learning software
program that inputs an 1mage 302 and outputs labeled agent
locations. An example of a machine learning software pro-
gram that can input an 1image 302 and output labeled agent
locations 1s a deep neural network (DNN) discussed 1n
relation to FIG. 4, below. For example, a DNN can input an
image such as an 1image of a traffic scene 200 and determine
labels and locations for pedestrians 202, 204, 206, 208 as
“Pedestrianl (xq, y;)”, “Pedestrian2 (x,, y,)’, “Pedestrian3
(X5, V3), “Pedestriand (x,, y,)”, respectively, where (x,, y,)
1s the location of agent 1 1n real world coordinates. By
labeling each agent with a unique label, the agents can be
tracked over a plurality of images 302 to determine agent
histories.

After labeled agent locations are determined for a plural-
ity of i1mages 302, the agent locations can be grouped
according to labels to determine agent histories and 1nput to
filtering software to determine uncertainties corresponding
to the labeled agent locations. An example of filtering
software that can determine uncertainties based on a plural-
ity of input location measurements 1s a Kalman filter. A
Kalman filter can be implemented as a software program on
server computer 120 or computing device 115. A Kalman
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filter inputs a time series of measurements such as locations
that can include statistical noise or errors and output esti-
mated locations that improve the accuracy of the noisy input
locations by determining a joint probability distribution of
the input locations. The covariance of the estimated location
can be output along with the estimated locations as the
uncertainty corresponding to the estimated location. Kalman
filters operate by comparing a predicted location based on a
physical motion model to the observed location and updat-
ing an estimated location based on the comparison and the
joint probability distribution.

Agent locations and uncertainties 306 are 1input to trajec-
tory forecasting 308. Trajectory forecasting 308 includes a
variational autoencoder (VAE), a deep neural network
described 1n relation to FIG. 5, below. Trajectory forecasting
systems that predict agent locations based on observations
are subject to epistemic uncertainty, or uncertainty caused by
variations or error in the observations. Typically, trajectory

forecasting systems treat their input information as being
certain. Thus, any uncertainty information produced by
upstream object detectors or trackers 1s not propagated
through trajectory forecasting methods to downstream plan-
ning and control modules. Instead, the only uncertainty
incorporated in planning and control 1s the epistemic uncer-
tainty of the trajectory forecasting module. Techniques dis-
cussed herein improve trajectory forecasting by propagating
state uncertainty from perception through trajectory fore-
casting, producing predictions with epistemic uncertainty
from both perception and trajectory forecasting.

Trajectory forecasting 308, inputs a time-varying set of
input data that 1s expressed as a series of states x; for each
agent 1 at a time t:

xai—nﬂ

IE-?‘I-FI

xy "

I—n

(1)

i—n i—r+1
- 11 H e 1 -

Trajectory forecasting 308 inputs the time-varying input
data from (1) and outputs a series of future states y;, one for
each agent at a future time t;:

i+

(2)

Y1 N b4
DI AR s
e v

The probability distribution Pg(zlx) of latent variables
z Included in the VAE included i1n trajectory forecasting
308, conditional on the input X, 1s intractable and so 1s
approximated by g5(zIX), which 1s constrained to a Gaussian
distribution P4(z) over the latent variables 7 . The probability
distribution q,(zIx) can be determined using a Kullback-

Liebler (KL) divergence term 1n the loss function used to
train the VAE:

KIL(go(2lx)|[P4(2)) (3)

Added to this 1s a reconstruction error term based on
reconstructing y from x using a log-loss function:

log[P,(ylz,x)] (4)
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Which can be calculated by repeatedly sampling from the
latent space ; and taking the expectation of the samples:

(5)

In addition to the KL.-divergence and the expectation over
the log-loss function, a mutnal information term 1s added
that represents the mput data x in the latent space ; that
includes the mutwal information I (X, z) between the X
and z terms under the distribution g,(zIx). In addition to
these terms, because the input includes an uncertainty in the
location of the agents X along with the input location of the
agents X, the ground truth includes a location uncertainty X
along with the location y. Because the input includes an
uncertainty concatenated with the location x, the loss func-
tion 1s modified by including a Bhattacharyya distance
measure defined as:

¥ qlp(z Ix}lﬂg [Pw@ lZ: J.’,')]

D . (p.¢)=INp(0g(x)dx (6)

The Bhattacharyya distance, Dy, , 1s used to bring closer
the probability distribution of the output of the network to
the ground truth position of an agent over time. The Bhat-
tacharyya distance includes the uncertainty of the input
location X along with the location x, while the ground truth
also includes the uncertainty of the location X along with the
location y. The final loss function, modified to include the
Bhattacharya distance between the output probability distri-
bution of the agent and a Gaussian distribution of the ground
truth location N(y, X) with standard deviation X 1s given by:

[[Eqw(zﬁ)lﬂg[P{ﬂf(y | Z, -I)
Mmedax
.0

— Dgp(Py(y|z, x, L), N(y, E))) (7)
_ﬁKL(‘?w(Z

XPg(2)) + aly(x, 2)

Which 1s maximized over the parameters of the neural
networks corresponding to the encoder, decoder, and latent
space portion of the VAE, namely ¢, 0, y, respectively. [3
and o are weighting parameters for the KL.-divergence and
mutual information terms. The loss function (7) 1s used to
compare trajectories and potential trajectories output from a
VAE as described 1n relation to FIG. 5, below with ground
truth trajectories and potential trajectories determined by
observing agents 1n real world traffic scenes. Ground truth
refers to data values determined independently from a DNN,
in this example a VAE. The ground truth 1s compared to
output values to determine a loss function that 1s optimized
to determine weights that program the layers of the VAE,
1.e., to produce outputs that most closely correspond to the
ground truth.

FIG. 4 1s a diagram of a deep neural network (DNN) 400.
A DNN 400 can be a software program executing on a
computing device 115 or a server computer 120 1included 1n
an object detection system 100. In this example DNN 400 1s
1llustrated as a convolutional neural network (CNN). Tech-
niques described herein can also apply to DNNs that are not
implemented as CNNs. A DNN 400 implemented as a CNN
typically inputs an input 1image (IN) 402 as input data. The
mput 1mage 402 can include one or more objects, also
referred to as agents herein. The mput image 402 1s pro-
cessed by convolutional layers 404 to form latent variables
406 (1.e., variables passed between neurons in the DNN
400). Convolutional layers 404 include a plurality of layers
that each convolve an mput 1image 402 with convolution
kernels that transform the mput 1image 402 and process the
transformed mnput image 402 using algorithms such as max
pooling to reduce the resolution of the transformed input
image 402 as it 1s processed by the convolutional layers 404.
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The latent vanables 406 output by the convolutional layers
404 are passed to fully connected layers 408. Fully con-
nected layers 408 include processing nodes. Fully connected
layers 408 process latent variables 406 using linear and
non-linear functions to determine an output prediction
(OUT) 410. In examples discussed herein the output pre-
diction 410 includes an agent label and an agent location.
DNN 400 can be a software program executing on a server
computer 120 i1n a traffic infrastructure system 105. The
server computer 120 can input RGB 1mages acquired by
sensors 122 including RGB-D cameras included 1n traffic
infrastructure system 105.

DNN 400 can be trained using a training dataset that
includes 1images and corresponding ground truth. Training
datasets for a DNN 400 can include thousands or millions of
images and corresponding annotations or ground truth. Each
image of the training dataset can be processed a plurality of
fimes by the DNN 400. A prediction 410 output from the
DNN 400 in response to an mnput image 402 1s compared to
the ground truth corresponding to the mput image 402 to
determine a loss function. The loss function 1s a mathemati-
cal Tunction that determines how closely the prediction 410
output from DNN 400 matches the ground truth correspond-
ing to the input image 402. In this example, the ground truth
can 1nclude agent labels and locations determined by means
other than a DNN 400. For example, agent labels and
locations can be determined by user inspection of the input
images 402. The value determined by the loss function 1s
input to the convolutional layers 404 and fully connected
layers 408 of DNN 400 where it 1s backpropagated to
determine weights for the layers that correspond to a mini-
mum loss function. Backpropagation 1s a technique for
training a DNN 400 where a loss function 1s input to the
convolutional layers 404 and fully connected layers 408
furthest from the input and communicated from back-to-
front and determining weights for each layer 404, 408 by
selecting weights that minimize the loss function. DNN 400
can be trained to determine a label, such as “vehicle” or
“pedestrian”, etc. and a location 1n global coordinates deter-
mined with respect to a sensor 122 included in a traffic
infrastructure system 105 or a sensor 116 included 1n a
vehicle 110.

A DNN 400 can be included 1n perception 304 to input
image data and output labels and locations of agents at a
plurality of time steps. The agents can be grouped according
to labels to generate groups of agent locations where each
group corresponds to a single object. The groups of agent
locations can be 1mput to a Kalman filter included 1n per-
ception 304 to determine uncertainties corresponding to the
locations and output the locations and uncertainties 306 to
trajectory forecasting 308. Locations and uncertainties 306
of agents can include relationships between agents and
histories of agent locations and uncertainties, 1.e., a plurality
of locations and uncertainties corresponding to a single
agent over a plurality of time steps.

FIG. 5 1s a diagram of a variational autoencoder (VAE)
500 that can be included 1n trajectory forecasting 308. VAE
500 includes encoders, latent variables, and decoders and
mputs locations and uncertainties (IN) 306 and outputs
predicted trajectories and potential trajectories (OUT) 310
corresponding to 1nput object locations and uncertainties
306. VAE 500 includes an encoder (ENC) 504 that inputs
locations and uncertainties 306 corresponding to objects and
generates latent variables 506. Encoder 504 can include a
plurality of recurrent deep neural networks configured as
long short-term memory (LSTM) networks. Recurrent deep
neural networks are discussed i1n relation to FIG. 6, below.
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Encoder 504 can include an LSTM network for each object
or class of objects to be tracked by VAE 500. Encoder can
also include an LSTM network for relationships between
agents or types of agents. Agents can be referred to as
“nodes” and relationships, e.g., distances, between agents
are referred to as “edges” when describing a traflic scene
200. The edges determined based on a plurality of agent
types can be grouped according to the type of relationship.
For example, relationships between pedestrians and vehicles
can be processed by an LSTM network included in encoder
504 to determine how distances between pedestrians and
vehicles change over time. In addition to agent locations and
uncertainties, agent histories, and agent-agent relationships,
an HD map can be input to a CNN 1included i encoder 504
to locate objects with respect to a roadway 236 1n a traflic
scene 200. HD maps are discussed 1n relation to FIG. 7,
below.

Agent locations and uncertainties, agent histories, agent-
agent relationships, and HD map can be mput to encoder
504. LSTM networks and CNNs included in encoder 504
input the agent locations and uncertainties, agent histories,
agent-agent relationships, and HD map and output latent
variables 506. Latent variables 506 correspond to com-
pressed versions of mput data 402, where the encoder 506
has reduced the input locations and uncertainties 306 to
latent variables 506 that correspond to essential features of
the 1input locations and uncertainties 306. VAE 500 concat-
enates output from the LSTM networks and CNNs included
in encoder 504 to form the latent variables 506.

Latent variables 506 are mput to decoder 508. Decoder
508 15 a neural network that inputs latent variables 506 and
determines trajectories and potential trajectories (out) 310
corresponding to agent’s locations and uncertainties 306
mput to VAE 500. The output trajectories and potential
trajectories 310 can be output as locations on an HD map as
discussed 1n relation to FIG. 7, below. The potential trajec-
tories can be output as Gaussian distributions for each
location. The Gaussian distributions can be determined for
cach agent by assuming a Gaussian mixture model (GMM),
where a continuous 2D function in X and vy directions on a
plane corresponding to a roadway or an HD map 1s assumed
to include a plurality of Gaussian functions added together.
Assuming a Gaussian mixture model can permit determina-
tion of the mean and variance for each of the Gaussian
distributions that were assumed to be added together to form
the Gaussian mixture without requiring any previous nfor-
mation regarding the means and variances.

VAE 500 1s tramned to output trajectories and potential
trajectories 310 using loss function (7) described 1n relation
to FIG. 3, above. The loss function (7) 1s determined based
on comparing trajectories and potential trajectories 310
output from VAE 3500 with ground truth trajectories and
potential trajectories. The ground truth trajectories and
potential trajectories can be determined based on observa-
tions of agents 1n real-world tratlic scenes 200 and simulated
trailic scenes, for example. Simulated traflic scenes can be
generated by photorealistic 1image rendering soitware pro-
grams such as Unreal Engine, produced by Epic Games,
Cary, N.C. 27518. Photorealistic rendering software can take
as 1mput a file that icludes descriptions of agent locations
and appearances and output an 1image or series of images that
include the agents at the described locations. VAE 500 can
be executed a plurality of times to generate a plurality of loss
function values that are backpropagated through the layers
of encoder 504 and decoder 508. Backpropagation applies
the loss function values to the layers starting with the layers
closest to the output and applies the loss function to the
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layers of the encoder 504 and decoder 508 from back to
front. Weights that determine the processing performed at
cach layer of the encoder 504 and decoder 508 are adjusted
to minimize that loss function value and thereby program
VAE 500 to obtain a result the minimizes the difference
between the output trajectories and potential trajectories 310
and the ground truth trajectories and potential trajectories.

Techniques described herein improve the determination
ol trajectories and potential trajectories 310 output by VAE
500 by mputting uncertainties corresponding to input agent
locations. Techniques described herein further improve
determination of trajectories and potential trajectories 310 of
agents by determining a loss function (7) based on a Bhat-
tacharyya distance calculation which permits determination
of a loss function based on comparing output probability
distribution corresponding to output potential trajectories
with 1mput uncertainties included in the ground truth.
Improved performance of VAE 500 1s illustrated 1n FIGS. 8
and 9, below.

The trajectories and potential trajectories 310 output by
VAE 500 can be output to planming and control 312 to
operate a vehicle 110 based on the trajectories and potential
trajectories 310. Planning and control 312 can be software
executing on one or more of a computing device 115
included 1n a vehicle 110 or a server computer 120 included
in a traflic infrastructure system 105. Planning and control
312 can determine a vehicle path upon which to operate a
vehicle 110 by determining a vehicle path based on a
polynomial function. The polynomial function can be deter-
mined by avoiding predicted agent trajectories including
potential trajectories. The polynomial function 1s also deter-
mined based on upper and lower limits for lateral and
longitudinal accelerations. The vehicle 110 can be operated
on the vehicle path by sending commands to controllers 112,
113, 114 to control vehicle powertrain, steering, and brakes.

FIG. 6 1s a diagram of a recurrent neural network (RNN)
600. RNNs 600 include long short-term memory (LSTM)
neural networks. An RNN 600 inputs data (IN) 602, which
can be agent locations and uncertainties, agent location
histories, or agent-agent (edge) relationship data. RNNs can
process time series data, where a plurality of data observa-
tions are acquired at a plurality of time step, for example.
Input data 602 1s input to layers (LAY ) 604 of RNN 600 for
processing. Layers 604 can include a plurality of convolu-
tional and fully connected layers for processing the input
data 602. Data from processing layers 604 1s output (OUT)
606 and sent to memory 610. Memory 610 can store a
plurality of output data corresponding to a plurality of time
steps. Each time new imput data 602 1s mput to layers 604,
output data from the previous time step 1s also input to layers
604. In this fashion, processing at a current time step can be
a Tunction of a plurality of previous time steps 1n addition to
the current time step. RNNs 600 are trained in similar
fashion to VAEs as discussed above, including determining
a loss function (7) based on RNN output 606 and ground
truth. In this example ground truth corresponding to each
time step should be available to permit determination of the
loss tunction (7) for each time step.

FIG. 7 1s a diagram of a high definition (HD) map 700. An
HD map 700 can be determined based on map data down-
loaded via the Internet from sources such as GOOGLE™
maps. Typically, map data such as GOOGLE maps do not
include locations of objects such as roadways 736 with
suflicient resolution to permit operation of a vehicle 110
based on the map data. Resolution of map data sutlicient to
permit operation of a vehicle 110 based on the map 1s less
than about 10 centimeters (cm). A 10 cm resolution permits
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localization of roadway 736 edges and lane markings sui-
ficient to permit operation of a vehicle 110. The resolution
of the downloaded map data can be increased prior to
downloading by server computer 120 or computing device
115. Resolution of downloaded map data can also be
increased by server computer 120 or computing device 1135
based on sensor data acquired by sensors 122 or 116. For
example, sensors included in traflic infrastructure system
105 or vehicle 110 can determine the location of roadway
736 edges and lane markings and add them to downloaded
map data to increase the resolution of the map data.

HD map 700 includes a roadway 736 and agents 702, 704,
706, 708. VAE 500 can determine trajectory and potential
trajectories 310 data for agents 702, 704, 706, 708 as
discussed above 1n relation to FIG. 5 and include 1t in HD
map 700 as trajectories 712, 714, 716, 718 and potential
trajectories 720, 722, 724, 726 (dotted lines), respectively. In
examples where vehicle 110 1s included 1n the traflic scene
included 1n the HD map 700, desired trajectories 728, 730
(dashed lines) for the vehicle 110 and potential trajectories
732, 734 (dotted lines) can be determined by computing
device 115 based on vehicle paths desired to be traveled by
the vehicle 110. The desired trajectories 728, 730 can be
modified by computing device 115 or server computer 120
depending upon trajectories and potential trajectories 310
determined for agents 702, 704, 706, 708.

FIG. 8 1s a diagram of example results 800 from an object
trajectory forecasting system based on a VAE 500 that does
not include input location uncertainties. Example results 800
include three objects or agents 802, 808 and 814. Location
histories 804, 810, 816 are included for agents 802, 808,
814, respectively. Observed trajectories 806, 812, 818 arc
included for agents 802, 808, 814. Predicted trajectories and
potential trajectories 820, 822 (dotted lines) are included for
agents 808 and 814. In example results 800, predicted
trajectories and potential trajectories 820, 822 are deter-
mined without input location uncertainties and without
determining a loss function based on a Bhattacharyya dis-
tance function. The results 800 exhibit a weak relationship
between the predicted trajectories and potential trajectories
820, 822 for agents 808, 814 and observed trajectories 812,
818. A weak relationship between predicted trajectories and
potential trajectories 820, 822 for agents 808, 814 and
observed trajectories 812, 818 means that the predicted
trajectories and potential trajectories 820, 822 do not overlap
or only partially overlap the observed trajectories 812, 818
in results 800.

FI1G. 9 1s a diagram of example results 900 from an object
trajectory forecasting system based on a VAE 500 that
includes location uncertainties as described herein. Example
results 900 include the same agents 802, 808 and 814,
location histories 804, 810, 816 and observed trajectories
806, 812, 818 as illustrated 1n example results 800 1included
in FIG. 8. Results 900 include predicted trajectories and
potential trajectories 920, 922 (dotted lines) determined
based on 1ncluding locations and uncertainties for agent for
agents 808 and 814 and determining loss functions (7) based
on a Bhattacharyya distance function. Techniques described
herein can mput agent locations and uncertainties and pre-
dicted trajectories and potential trajectories 920, 922 are
more accurate and have a better relationship to observed
trajectories 812, 818 than predicted trajectories and potential
trajectories 820, 822 from results 800 from FIG. 8.

FIG. 10 1s a diagram of a flowchart, described 1n relation
to FIGS. 1-9, of a process for object trajectory forecasting.
Process 1000 can be implemented by a processor of a
computing device 115 or server computer 120, taking as

10

15

20

25

30

35

40

45

50

55

60

65

14

input information from sensors, and executing commands,
and outputting agent trajectories and potential trajectories
310. Process 1000 includes multiple blocks that can be
executed 1n the illustrated order. Process 1000 could alter-
natively or additionally include fewer blocks or can include
the blocks executed 1n different orders.

Process 1000 begins at block 1002, where images
acquired by sensors 116, 122 included 1n a trafhic infrastruc-
ture system 105 or a vehicle 110 are input to a DNN 400 as
described in relation to FIG. 3 to determine agent locations.
The images can correspond to a time series of 1mages, where
the time step at which each 1image 1s acquired 1s recorded.

At block 1004 process 1000 inputs the agent locations and
time step data to a filter, which can be a Kalman filter as
described 1n relation to FIG. 3 to determine uncertainties
corresponding to the agent locations.

At block 1006 process 1000 mnputs the locations and
uncertainties, agent location histories, and agent-agent rela-
tionships to trajectory forecasting 308 to determined pre-
dicted trajectories and potential trajectories 310 for the
agents as discussed in relation to FIGS. 3, 4, 5 and 6, above.

At block 1008 process 1000 mnputs predicted trajectories
and potential trajectories 310 for the agents to planning and
control 312. Planming and control 312 can determine a
vehicle path upon which to operate a vehicle 110 based on
the predicted trajectories and potential trajectories 310 as
discussed above 1n relation to FIG. 5.

At block 1010 process 1000 outputs the vehicle path to a
computing device 115 1n a vehicle 110. The vehicle path can
be determined by computing device 115 in vehicle 110 or
server computer 120 1n traflic infrastructure system 105 and
either communicated to computing device 115 via an inter-
nal bus or downloaded to vehicle 110 via network 130.

At block 1012 a computing device 115 in a vehicle 110
receives the vehicle path. The computing device 115 can
perform one or more of displaying the vehicle path upon a
human-machine interface device such as a display, compar-
ing the vehicle path with a vehicle path determined by the
computing device 115, and operating the vehicle 110 based
on the vehicle path. Operating the vehicle 110 based on the
vehicle path can include determining commands to transmit
to controllers 112, 113, 114 to control vehicle powertrain,
steering, and brakes to operate vehicle 110 along the deter-
mined vehicle path. For example, computing device 115 can
determine that predicted trajectories and potential trajecto-
ries 716, 718, 726, 724 for pedestrians 706, 708 will overlap
predicted trajectories and potential trajectories 728, 730,
732, 734 for vehicle 110 and vehicle 110 should stop.
Autonomous vehicle control system 300 can continue to
track pedestrians 702, 704, 706, 708 to determine when
predicted trajectories and potential trajectories 712, 714,
716, 718, 720, 722, 724, 726 will no longer overlap vehicle
110 trajectories and potential trajectories 728, 730, 732, 734
and vehicle 110 can continue to operate. Following block
1010 process 1000 ends.

Computing devices such as those discussed herein gen-
erally each includes commands executable by one or more
computing devices such as those identified above, and for
carrying out blocks or steps of processes described above.
For example, process blocks discussed above may be
embodied as computer-executable commands.

Computer-executable commands may be compiled or
interpreted from computer programs created using a variety
of programming languages and/or technologies, including,
without limitation, and either alone or in combination,
Java™, C, C++, Python, Julia, SCALA, Visual Basic, Java

Script, Perl, HIML, etc. In general, a processor (e.g., a
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mICroprocessor) receives commands, €.g., from a memory, a
computer-readable medium, etc., and executes these com-
mands, thereby performing one or more processes, including
one or more of the processes described herein. Such com-
mands and other data may be stored in files and transmitted
using a variety ol computer-readable media. A file mn a
computing device 1s generally a collection of data stored on
a computer readable medium, such as a storage medium, a
random access memory, etc.

A computer-readable medium (also referred to as a pro-
cessor-readable medium) includes any non-transitory (e.g.,
tangible) medium that participates in providing data (e.g.,
instructions) that may be read by a computer (e.g., by a
processor of a computer). Such a medium may take many
forms, including, but not limited to, non-volatile media and
volatile media. Instructions may be transmitted by one or
more transmission media, including fiber optics, wires,
wireless communication, including the internals that com-
prise a system bus coupled to a processor of a computer.
Common forms ol computer-readable media include, for
example, RAM, a PROM, an EPROM, a FLASH-EEPROM,
any other memory chip or cartridge, or any other medium
from which a computer can read.

All terms used 1n the claims are mntended to be given their
plain and ordinary meanings as understood by those skilled
in the art unless an explicit indication to the contrary in made
herein. In particular, use of the singular articles such as “a,”
“the,” “said,” etc. should be read to recite one or more of the
indicated elements unless a claim recites an explicit limita-
tion to the contrary.

The term “‘exemplary” 1s used herein in the sense of
signifying an example, ¢.g., a reference to an “exemplary
widget” should be read as simply referring to an example of
a widget.

The adverb “approximately” moditying a value or result
means that a shape, structure, measurement, value, determi-
nation, calculation, etc. may deviate from an exactly
described geometry, distance, measurement, value, determi-
nation, calculation, etc., because of imperfections 1n mate-
rials, machining, manufacturing, sensor measurements,
computations, processing time, communications time, etc.

In the drawings, the same reference numbers indicate the
same elements. Further, some or all of these elements could
be changed. With regard to the media, processes, systems,
methods, etc. described herein, 1t should be understood that,
although the steps or blocks of such processes, etc. have
been described as occurring according to a certain ordered
sequence, such processes could be practiced with the
described steps performed 1n an order other than the order
described herein. It further should be understood that certain
steps could be performed simultaneously, that other steps
could be added, or that certain steps described herein could
be omitted. In other words, the descriptions of processes
herein are provided for the purpose of illustrating certain
embodiments, and should 1n no way be construed so as to
limit the claimed 1nvention.

The 1nvention claimed 1s:
1. A computer, comprising:
a processor; and
a memory, the memory 1ncluding nstructions executable
by the processor to:
determine a plurality of agent locations at a plurality of
time steps by inputting a plurality of images to a
perception algorithm that iputs the plurality of
images and outputs agent labels and the agent loca-
tions;
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determine a plurality of first uncertainties correspond-
ing to the agent locations at the plurality of time steps
by mputting the plurality of agent locations to a filter
algorithm that inputs the agent locations and outputs
the plurality of first uncertainties corresponding to
the plurality of agent locations;
determine a plurality of predicted agent trajectories and
potential trajectories corresponding to the predicted
agent trajectories by mputting the plurality of agent
locations at the plurality of time steps and the
plurality of first uncertainties corresponding to the
agent locations at the plurality of time steps to a
variational autoencoder; and
output the plurality of predicted agent trajectories and
the potential trajectories corresponding to the pre-
dicted agent trajectories.

2. The computer of claim 1, the instructions including
further 1nstructions to operate a vehicle based on the plu-
rality of predicted agent trajectories and the potential tra-
jectories corresponding to the predicted agent trajectories.

3. The computer of claim 2, the instructions including
turther instructions to operate the vehicle by controlling one
or more of vehicle powertrain, vehicle brakes, and vehicle
steering.

4. The computer of claiam 1, wherein the perception
algorithm 1s a deep neural network.

5. The computer of claim 4, wherein the deep neural
network 1s a convolutional neural network that includes
convolutional layers and fully connected layers.

6. The computer of claim 1, wherein the agent locations
are X coordinates and y coordinates 1n a plane.

7. The computer of claim 6, wherein the x coordinates and
the vy coordinates in the plane are determined based on a high
definition map.

8. The computer of claim 1, wherein the filter algorithm
1s a Kalman filter.

9. The computer of claim 1, wherein the first uncertainties
corresponding to the agent locations at the plurality of time
steps correspond to Gaussian distributions.

10. The computer of claim 1, wherein the variational
autoencoder includes encoders, latent variables, and decod-
ers.

11. The computer of claim 10, wherein the variational
autoencoder includes a plurality of long short-term memory
(LSTM) neural networks and one or more convolutional
neural networks.

12. The computer of claim 11, wherein the latent variables

include concatenated outputs from the plurality of LSTM
neural networks and the one or more convolutional neural
networks.

13. The computer of claim 10, wherein the variational
autoencoder includes one or more recurrent neural networks
that mput agent locations and uncertainties and output
predicted agent trajectories and the potential trajectories
corresponding to the predicted agent trajectories.

14. The computer of claim 1, wherein training the varia-
tional autoencoder includes determining ground truth cor-
responding to the predicted agent trajectories and the poten-
tial trajectories corresponding to the predicted agent
trajectories.

15. The computer of claim 1, wherein traiming the varia-
tional autoencoder 1s based on a loss function based on a
Bhattacharyya distance measure.

16. The computer of claim 1, wherein the plurality of
images are acquired by one or more of sensors mcluded 1n
a vehicle and sensors included 1n a traflic infrastructure
system.
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17. A method, comprising:
determining a plurality of agent locations at a plurality of
time steps by inputting a plurality of images to a
perception algorithm that inputs the plurality of images
and outputs agent labels and the agent locations; 5
determining a plurality of first uncertainties correspond-
ing to the agent locations at the plurality of time steps
by mputting the plurality of agent locations to a filter
algorithm that inputs the agent locations and outputs
the plurality of first uncertainties corresponding to the 10
plurality of agent locations;
determining a plurality of predicted agent trajectories and
potential trajectories corresponding to the predicted
agent trajectories by inputting the plurality of agent
locations at the plurality of time steps and the plurality 15
of first uncertainties corresponding to the agent loca-
tions at the plurality of time steps to a varnational
autoencoder; and
outputting the plurality of predicted agent trajectories and
the potential trajectories corresponding to the predicted 20
agent trajectories.
18. The method of claim 17, further comprising operating
a vehicle based on the plurality of predicted agent trajecto-
ries and the potential trajectories corresponding to the pre-
dicted agent trajectories. 25
19. The method of claim 18, further comprising operating
the vehicle by controlling one or more of vehicle powertrain,
vehicle brakes, and vehicle steering.
20. The method of claim 17, wherein the perception
algorithm 1s a deep neural network. 30
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