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BLOCKCHAIN SHARDING WITH
ADJUSTABLE QUORUMS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application 1s a National Stage of International
Application No. PCT/US2020/050473, filed on Sep. 11,

2020, which claims the benefit of U.S. Provisional Appli-
cation No. 62/898,905, filed Sep. 11, 2019, which are herein
incorporated by reference in their entirety for all purposes.

BACKGROUND

Sharding 1s an approach for scaling blockchain protocols
with the network size: the network 1s partitioned (e.g., via
random sampling) into small groups of validator nodes,
known as shards, which process interactions in parallel by
achieving Byzantine consensus on behalf of the entire
population of nodes 1n the network. Shards can sign inter-
actions (e.g., transactions) at a significantly-faster rate than
the entire network due to their smaller size and the fact that
consensus protocols incur at least a quadratic (in the number
of participants) message complexity.

Nevertheless, shards cannot be made arbitrarily small due
to the likelihood of forming corrupt shards, where malicious
nodes take over a suflicient majority of the network shard,
compromising the security of the entire sharding protocol. In
tact, the probability of such an event increases exponentially
with the inverse of the network shard size, resulting n large
shards that consist of several hundreds of nodes 1n practice.

Embodiments of the invention address these and other
problems individually and collectively.

BRIEF SUMMARY

One embodiment of the disclosure 1s related to a method
comprising: broadcasting, by a node computer, a propose
message comprising a new block for a blockchain to a
plurality of node computers 1n a network shard; receiving,
by the node computer, at least one vote message from the
plurality of node computers, the at least one vote message
indicating verification of the new block; after a predeter-
mined amount of time, receiving, by the node computer, a
plurality of pre-commit messages comprising at least the
new block and a block certificate created based on the at
least one vote message; and 1 the number of received
pre-commit messages of the plurality of pre-commit mes-

sages 1s greater than a quorum value associated with the
network shard, committing, by the node computer, the new
block to the blockchain.
Another embodiment of the disclosure 1s related to a node
computer programmed to perform the above-noted method.
Further details regarding embodiments of the ivention
can be found 1n the Detailed Description and the Figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a comparison of shard corruption of
embodiments to previous work.

FIG. 2 shows a blockchain system according to embodi-
ments.

FIG. 3A shows a node computer according to embodi-
ments.

FI1G. 3B shows a client device according to embodiments.
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FIG. 4 shows a plot of probability of failure to sample a
network shard from a network of size N=2000 with F=33%
in RapidChain.

FIG. 5 shows a plot of probabilities to obtain different
types of shards from a network of size N=2000 with F=33%
according to embodiments.

FIG. 6 1llustrates reorganization of an interaction-to-shard
table as node computers join and/or leave.

FIG. 7 shows a flowchart illustrating a block commitment
method according to embodiments.

FIG. 8 shows a flowchart of a cross shard verification
method according to embodiments.

FIG. 9 shows an additional comparison of shard corrup-
tion of embodiments to previous work.

FIG. 10 shows a plot how shard size aflects time-to-
failure 1n partial synchrony according to embodiments.

FIG. 11 shows a plot quorum size according to embodi-
ments.

FIG. 12 shows an illustration of four network shards
according to embodiments.

DETAILED DESCRIPTION

Prior to discussing embodiments of the invention, some
terms can be described 1n further detail.

A “blockchain” can be a growing list of records linked by
cryptography. A blockchain can include a series of blocks.
Each block in the blockchain may include an electronic
record of one or more historical transactions, as well as
metadata. In some embodiments, blocks in the blockchain
can be linked by including a reference to the previous block
(e.g., a hash output of a previous block). Content 1n each
new block in the blockchain may be algorithmically deter-
mined based on new transactions and previous blocks 1n the
blockchain. The information in a blockchain can be 1immu-
table. A blockchain can be sharded into blockchain shards
that are stored at committees. For example, a committee can
store a shard of a blockchain, while a different commuittee
can store a different shard of the blockchain.

A “verification network™ can include a set of computer
nodes programmed to provide verification for an interaction.
A verification network may be a distnbuted computing
system that uses several computer nodes that are intercon-
nected via communication links. A verification network may
be implemented using any appropriate network, including an
intranet, the Internet, a cellular network, a local area network
or any other such network or combination thereof. In some
cases, nodes may be independently operated by third party
or administrative entities. Such entities can add or remove
computer nodes from the verification network on a continu-
ous basis. In some embodiments, a node 1n a verification
network may be a full node.

A “node” may be a point at which lines or pathways
intersect or branch or can be a central or connecting point.
In some cases, a node can be a “computer node,” which can
be any computer or group ol computers that can operate
independently and within a network containing the node. In
some embodiments, a node that can fully verify each block
and 1nteraction in the blockchain can be characterized as a
“full node.” In some cases, a full node can store a full
blockchain (1.e., each block and each interaction). In some
cases, a client device may be a node computer in a verifi-
cation network.

A “network shard” can include a sub-group of nodes (e.g.,
node computers) of a network. A network shard can include
any suitable number of node computers of the network, and
there may be any suitable number of network shards in the
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network. In some cases, node computers in a network shard
can be validator nodes 1n a blockchain network. Node
computers 1n a network shard can maintain a blockchain or
a portion of a blockchain. In some embodiments, the block-
chain maintained by the network shard can be a blockchain
shard. A “blockchain shard” can be a portion of a block-
chain. The portion may include a number of blocks of a
blockchain, but not the entire blockchain. In some embodi-
ments, each network shard in a verification network may
include the same number of node computers.

A “reference network shard” can include a network shard
that can act as a reference for node computers 1n the
network. A reference network shard can include a number of
node computers that can periodically reconfigure the net-
work shards 1in the network. Node computers of a reference
shard can maintain and update a node-to-shard table and an
interaction-to-shard table. Node computers of the reference
shard can broadcast updates to the node-to-shard table and
the interaction-to-shard table to the network shards of the
network. A reference shard can include an honest-majority
of node computers.

A “block” can include a data element that holds records of
one or more mteractions, and can be a sub-component of a
blockchain. A block can include a block header and a block
body. A block can include a batch of valid interactions that
are hashed and encoded into a Merkle tree. Each block can
include a cryptographic hash of the prior block (or blocks)
in the blockchain.

A “block header” can be a header including information
regarding a block. A block header can be used to 1dentify a
particular block an a blockchain. A block header can com-
prise any suitable information, such as a previous hash, a
Merkle root, a timestamp, and a nonce. In some embodi-
ments, a block header can also include a difliculty value.

An “interaction” may include a reciprocal action or influ-
ence. An interaction can include a communication, contact,
or exchange between parties, devices, and/or entities.
Example interactions include a transaction between two
parties and a data exchange between two devices. In some
embodiments, an interaction can include a user requesting
access to secure data, a secure webpage, a secure location,
and the like. In other embodiments, an interaction can
include a payment transaction in which two devices can
interact to facilitate a payment.

“Interaction data” may be data associated with an inter-
action. For example, an interaction may be a transier of a
digital asset from one party to another party. The interaction
data for example, may include a transaction amount and
unspent transaction outputs (UTXOs). In some embodi-
ments, interaction data can indicate difterent entities that are
party to an interaction as well as value or information being,
exchanged. Interaction data can include a value, information
associated with a sender (e.g., a token or account informa-
tion, an alias, a device identifier, a contact address, etc.),
information associated with a receiwver (e.g., a token or
account information, an alias, a device 1dentifier, a contact
address, etc.), one-time values (e.g., a random value, a
nonce, a timestamp, a counter, etc.), and/or any other suit-
able information. An example of interaction data can be
transaction data.

A “digital asset” may refer to digital content associated
with a value. In some cases, the digital asset may also
indicate a transier of the value. For example, a digital asset
may include data that indicates a transfer of a currency value
(e.g., flat currency or crypto currency). In other embodi-
ments, the digital asset may correspond to other non-cur-
rency values, such as access privileges data (e.g., a number
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of authorized usages or a time allotment for accessing
information) and ownership data (e.g., digital nght data). A
digital asset may also include information about one or more
digital asset attributes. For example, a digital asset may
include information useful for transferring value from one
entity or account to another. A digital asset may also include
remittance information (e.g., information identifying a send-
ing enfity). In some embodiments, a digital asset may
include one or more of a digital asset identifier, a value (e.g.,
an amount, an original currency type, a destination currency
type, etc.), transier fee information, a currency exchange
rate, an 1mvoice number, a purchase order number, a time-
stamp, a sending entity identifier (e.g., a sender enterprise
ID), a sending entity account number, a sending entity name,
sending entity contact information (e.g., an address, phone
number, email address, etc.), sending 1nstitution information
(e.g., a financial nstitution name, enterprise 1D, and BIN),
a recipient entity identifier (e.g., a recipient enterprise 1D),
a recipient entity account number, a recipient entity name,
recipient entity contact information (e.g., an address, phone
number, email address, etc.), and/or recipient institution
information (e.g., a financial institution name, enterprise 1D,
and BIN). When a digital asset 1s recerved, the recipient may
have suflicient information to proceed with a settlement
transaction for the indicated value.

The term ““verification™ and 1ts derivatives can include a
process that utilizes mformation to determine whether an
underlying subject 1s valid under a given set ol circum-
stances. Verification may include any comparison of infor-
mation to ensure some data or information 1s correct, valid,
accurate, legitimate, and/or in good standing.

A “quorum value” can include a thereshold number of
votes. Each network shard in a verification network can have
a quorum value that indicates a number of votes needed to
perform particular functions. For example, a leader node of
a network shard can propose a new block for the blockchain.
Each node computer of the network shard can vote on
whether or not the new block should be included into the
blockchain based on one or more criteria. If at least a
quorum value number of node computers vote to include the
new block in the blockchain, then the new block can be
included in the blockchain.

An “accumulator value” can include a binding commiut-
ment on a set. An accumulator can be a one way membership
function. An accumulator can accumulate one or more
values (e.g., amounts, outputs, etc.) mto an accumulator
value. An accumulator can answer a query as to whether a
potential candidate value 1s a member of the set (e.g., of
accumulated values) without revealing the individual mem-
bers of the set.

A “Merkle tree” can be a data structure that can encode
interaction data. A Merkle tree can be a balanced binary tree
where the leat nodes of the tree hold some value, and each
non-leal node can store a hash of a concatenation of the
values of at least two children nodes. When a new leat 1s
added to a Merkle tree, the entire tree can be recomputed.
For example, each node 1n the Merkle tree can be deter-
mined to be the hash of at least two children nodes.

A “Merkle proof” can be a proof that an interaction 1s
included 1n a Merkle tree. A Merkle proot can include a path
from a Merkle root of a Merkle tree to a node associated with
an 1nteraction 1dentifier as well as sibling nodes of each node
in the path. The path can include each node connecting the
Merkle root node to the node associated with the interaction
identifier.

A “view number” can include a value that i1dentifies a
particular node computer. A view number can be an value
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that uniquely 1dentifies a leader node computer of a particu-
lar network shard. For example, each node computer of a
network shard can include a view number 1n any broadcast
message, then check received messages to verity that the
view number 1s the same 1n each message. Doing so, can
verily that each node computer in the network shard agrees
that a particular node computer associated with the view
number 1s the leader node computer for a current epoch.

A “block certificate” can include a data item that can act
as evidence or proof of a block. A block certificate can be a
threshold signature. The threshold signature can be gener-
ated based on mdividual signature shares from shares of a
private key (e.g., shared through a network shard). For
example, when a node computer sends a vote message to
vote for a block to be included into a blockchain, the node
computer signs the vote message’s hash digest with the node
computer’s share of a secret key of the node computer’s
network shard. A quorum number of signatures on the vote
message constitute a block certificate on the block.

A “propose message” can include a message that proposes
an action or plan. A propose message can include a proposal
to iclude a new block 1n a blockchain. A propose message
can be broadcast by a node computer of a network shard to
other node computers of the network shard. A propose
message can include a new block that 1s to be proposed to

the network shard. A propose message can also include a
view number and a block certificate of the previous block in
the blockchain.

A “vote message” can include a message that votes for an
action or plan. A vote message can be provided 1n response
to a propose message. A vote message can include an
indication that the message 1s a vote message and/or a vote
(e.g., yes, no, 0, 1, etc.). A vote message can include a view
number and a new block that 1s proposed to be added to a
blockchain (e.g., as proposed in a propose message).

A “pre-commit message” can include a message that
indicates precommitment to an action or plan. A pre-commiuit
message can be provided in response to vote messages 1f
there 1s no equivocation in a network shard. A pre-commit
message can include a view number. A pre-commit message
can also iclude a new block that 1s to that 1s proposed to be
added to a blockchain (e.g., as proposed 1n a propose
message) and 1s voted to be added to the blockchain (e.g., as
voted 1n a vote message). A pre-commit message can also
include a block certificate for the new block.

A “commit interaction request message” can include a
message requesting commitment of an interaction. A commit
interaction request message can include interaction data and
one or more proof-of-inclusions. A commit interaction
request message can be sent from a client device to a node
computer 1n a network shard to request that an interaction
(e.g., a transaction) be included 1n a blockchain maintained
by the network shard.

A “proof-of-inclusion™ can include evidence that some-
thing 1s included 1n something else. A proof-of-inclusion can
include evidence that an amount such as an unspent trans-
action output (UTXO) 1s or was included 1n a block of a
blockchain. For example, a client device can request a
proof-of-inclusion of an amount x from a {first network
shard, such that a transaction can be committed to 1n a
second network shard. The proof-of-inclusion can attest that
the output (e.g., UTXO of the first network shard) referenced
by an 1mput (e.g., an amount that will be spend at the second
network shard) is stored in the blockchain maintained the
first network shard and, 1n some cases, that the output has
been removed for the transaction. A proof-of-inclusion can

10

15

20

25

30

35

40

45

50

55

60

65

6

include a Merkle tree, a block header, and a commitment
proof that a block associated with the block header 1s
included 1n a blockchain.

A “shutdown message” can include a message that
requests closure. A shutdown message can request closure of
a network shard. A plurality of honest node computers of a
network shard may generate and transmit shutdown mes-
sages to a reference network shard to request that the
network shard be closed for a current epoch. A shutdown
message can include a request to close a network shard and
a network shard identifier. In some embodiments, a shut-
down message can include a reason for the requested
shutdown (e.g., vote activity, pre-commit 1nactivity, view-
change 1nactivity, a view-change bound, etc.). In some
embodiments, a shutdown message can be created if an
inactivity timer reaches zero (e.g., indicates that the state of
a network shard i1s mactive).

An “imnactivity timer” can include a mechanism for detect-
ing a state of being inactive. An mactivity timer can be set
locally by each node computer in a network shard. An
iactivity timer can be set to a predetermined amount of
time. For example, an inactivity timer can be set to a value
of two times an upper bound on the message delivery time
(e.g., 2A). Anode computer can set the mnactivity timer to the
predetermined amount of time after performing an action to
which the node computer expects a response. The mactivity
timer can count down to zero as time progresses with no
actions taking place.

A “propose table update message” can include a message
that proposes an updated table. A propose table update
message can include a node-to-shard table. A propose table
update message can be broadcast by one or more node
computers in a reference network shard to a node computers
in a plurality of network shards 1n a network.

A “node-to-shard table” can include a table that associates
computer nodes with network shards. A node-to-shard table
can be a reference table that associates each computer node
in a network with a network shard in the network. A
node-to-shard table can indicate which computer nodes are
assigned to which network shards for a current epoch. In
some embodiments, a node-to-shard table can include a null
network shard as one of the network shards in the table. The
null network shard can be a network shard that groups
together computer nodes that will not be 1n network shards
that process interactions during the current epoch. A node-
to-shard table can be maintained by a reference network
shard in the network. A node-to-shard table can include node
computer identifiers for the node computers and shard
identifiers for the network shards. In some embodiments, the
node-to-shard table can include an IP address or other
communication mformation of each node computer.

An “mteraction-to-shard table” can include a table that
associates interactions with network shards. An interaction-
to-shard table can be a reference table that associates each
new 1nteraction (e.g., new interactions provided to the
network) to a network shard 1n the network. An interaction-
to-shard table can be maintained by a reference network
shard 1n the network. A reference network shard can asso-
cliate new 1nteractions with network shards based on a
determined hash of the new interaction.

A “commitment process” can include a series of steps
taken to commit to a value. A commitment process can
include node computers of a network shard determining
whether or not to commit to a particular action (e.g.,
including a new block in a blockchain, updating a node-to-
shard table, etc.) and committing to the action. A commit-
ment process can occur aiter a node computer (e.g., a leader
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node) proposes an action to a plurality of node computers in
a network shard. A commitment process can include pro-
viding vote messages and pre-commit messages regarding
the proposed action. A commitment process can result in a
commitment to the action based on at least the pre-commut
messages. In some embodiments, a quorum value number of
pre-commit messages may be needed to commiut to an action.

A “user” may include an individual. In some embodi-
ments, a user may be associated with one or more personal
accounts and/or client devices.

A “client device” may be a computing device capable of
transmitting and/or receiving data to and from a node
computer. Examples of client devices may include a mobile
phone, a smart phone, a personal digital assistant (PDA), a
laptop computer, a desktop computer, a server computer, a
vehicle such as an automobile, a light client device, a tablet
PC, etc. Additionally, user devices may be any type of
wearable technology device, such as a watch, earpiece,
glasses, etc. The user device may include one or more
processors capable of processing user input. The user device
may also include one or more input sensors for receiving
user mput. The user device may comprise any electronic
device that may be operated by a user, which may also
provide remote commumnication capabilities to a network.
Examples of remote communication capabilities include
using a mobile phone (wireless) network, wireless data
network (e.g., 3G, 4G, or similar networks), Wi-F1, Wi-Max,
or any other communication medium that may provide
access to a network such as the Internet or a private network.

A “processor’” may 1nclude a device that processes some-
thing. In some embodiments, a processor can include any
suitable data computation device or devices. A processor
may comprise one or more microprocessors working
together to accomplish a desired function. The processor
may include a CPU comprising at least one high-speed data
processor adequate to execute program components for
executing user and/or system-generated requests. The CPU
may be a microprocessor such as AMD’s Athlon, Duron
and/or Opteron; IBM and/or Motorola’s PowerPC; IBM’s
and Sony’s Cell processor; Intel’s Celeron, Itanium, Pen-
tium, Xeon, and/or XScale; and/or the like processor(s).

A “server computer” may include a powerful computer or
cluster of computers. For example, the server computer can
be a large mainframe, a minicomputer cluster, or a group of
servers functioning as a unit. In one example, the server
computer may be a database server coupled to a Web server.
The server computer may comprise one or more computa-
tional apparatuses and may use any of a variety of comput-
ing structures, arrangements, and compilations for servicing
the requests from one or more client computers.

A “memory” may be any suitable device or devices that
can store electronic data. A suitable memory may comprise
a non-transitory computer readable medium that stores
instructions that can be executed by a processor to 1imple-
ment a desired method. Examples of memories may com-
prise one or more memory chips, disk drives, etc. Such
memories may operate using any suitable electrical, optical,
and/or magnetic mode of operation.

Embodiments can include a scalable blockchain sharding
protocol that achieves significantly higher throughputs than
existing solutions by creating considerably smaller network
shards. To ensure that malicious nodes cannot compromise
the protocol’s imtegrity (e.g., double-spend money), the
consensus protocol’s quorum size can be adjusted when
committing new blocks of transactions. Depending upon the
number of corrupt nodes allowed 1n each network shard, the
quorum size can be selected 1n such a way that (1) malicious
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nodes can never form a quorum 1n any shard, and (2) honest
nodes can always form a quorum 1in at least some of the
network shards. Further, embodiments of the invention can
include a cross-shard transaction verification protocol that
reduces inter-shard communication and removes the storage
overhead of maintaining blocks of transactions.

I. Context

Various embodiments can utilize and relate to Byzantine
fault tolerant state-machine replication (BFT SMR), block-
chain sharding, accumulators, and stateless blockchains,
cach of which are described 1n the following section.

A. Byzantine Fault Tolerant State-Machine
Replication

In Byzantine fault tolerant state-machine replication, a
group of nodes can attempt to agree on a sequence of values
without the help of a third party, even when some of the
nodes are possibly controlled by a Byzantine adversary who
can make faulty nodes that arbitrarily deviate from the
protocol. The correctness of a state-machine replication
protocol can be evaluated based on two properties: safety
and liveness. Safety can guarantee that all honest nodes
process the same sequence of interactions (e.g., transac-
tions). Liveness can ensure that all correct interactions are
eventually processed (e.g., the interaction does not remain
pending indefinitely). The solvability of state-machine rep-
lication may depend on a maximum number of faulty nodes
allowed depending on the network synchrony assumptions.
For example, under a synchronous network assumption, an
honest majority of nodes may be needed [6]. Under a
partially-synchronous network, the fraction of corrupt nodes
can be bounded from above by 14, for example. Further, no
deterministic asynchronous protocol can solve the state-
machine replication [9]. To avoid this impossibility and/or to
achieve practicality, various embodiments can provide
probabilistic safety or liveness guarantees. In the latter case,
embodiments can provide eventual liveness (or eventual
consistency) since nodes can decide on a value with prob-
ability one, but with no time bound.

B. Blockchain Sharding

Sharded blockchain protocols can increase interaction
processing power with the number of participants joining the
network by allowing multiple committees of nodes to pro-
cess incoming transactions 1n parallel. Thus, the total num-
ber of interactions processed 1n each consensus round by the
entire protocol 1s multiplied by the number of committees.

Luu et al. [3] propose FElastico, a sharded consensus
protocol for public blockchains. In every consensus epoch,
cach participant solves a proof-of-work (PoW) puzzle based
on an epoch randomness obtained from the last state of the
blockchain. The PoW’s least-significant bits are used to
determine the committees that coordinate with each other to
process transactions. Kokoris-Kogias et al. [4] propose
Omniledger, a sharded distributed ledger protocol that
attempts to fix some of the 1ssues of Elastico. Assuming a
slowly-adaptive adversary that can corrupt up to a V4 frac-
tion of the nodes at the beginning of each epoch, the protocol
runs a global reconfiguration protocol at every epoch (about
once a day) to allow new participants to join the protocol.
Omniledger generates 1dentities and assigns participants to
committees using a slow identity blockchain protocol that
assumes synchronous channels. A fresh randomness 1s gen-
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erated 1n each epoch using a bias-resistant random genera-
tion protocol that relies on a verifiable random function
(VRF) [10] for unpredictable leader election 1n a way similar
to the lottery algorithm of Algorand [11].

Zamam et al. [5] propose RapidChain, a sharded block-
chain protocol 1n the /4 corruption setting that can achieve
complete sharding of the communication, computation, and
storage overhead ol processing transactions without assum-
ing any trusted setup. RapidChain employs an intra-com-
mittee consensus algorithm that can achieve high throughput
via block pipelining, a gossiping protocol for large blocks,
and a reconfiguration mechanism based on cuckoo rule [12].

C. Accumulators

An accumulator can be a binding commitment on a set. In
some embodiments, an accumulator can be a tool that
provides a succinct representation of a set that can be

queried for membership and possibly for non-membership.
Accumulators can be used with blockchains due to the
“stateless” blockchain model [13], [14], [15]. In the stateless
blockchain model, validators maintain an accumulator over
the UTXO or account sets rather than explicitly maintaining,
the account sets. It 1s up to the clients to maintain the explicit
set by listening to the network and providing membership
prools on their transactions to spend their UTXOs or bal-
ances. Various embodiments can utilize an RSA accumulator
scheme described 1n [15]. Briefly, an accumulator according
to various embodiments can perform the following func-
tionalities:

1. Add(A, x). Given an accumulator A and an element x,
add x to A.

2. Delete(A, x). Given an accumulator A and an element
X, delete x from A 1f X exists in A.

3. GenMemWitness(S, x). Given a set S and an element
XES, generate a membership witness w for X.

4. GenNonMemWitness(S, y). Given a set S and an
element y&S, generate a non-membership witness u for
y.

5. VerMem(A, x, w). Given an accumulator A which
includes elements of a set S, an element X and a
membership witness W, returns 1
w=GenMemWitness(S, x) and O otherwise.

6. VerNonMem(A, vy, u). Given an accumulator A which
includes elements of a set S, an element y and a
non-membership  witness u, returns 1
u=GenNonMemWitness(S, y) and 0 otherwise.

RSA accumulators are based on the one-way RSA func-
tion o—g“ mod N for a suitably chosen N. The set
fa,, ..., a,} is compactly represented by the accumulator
A=g - “». The witness w for an element a, 1s built like A,
but skips the a, exponent, and checking the witness 1s done
by checking that w* equals A. Adding elements {b,,...,b _}
to the accumulator 1s done by raising A by the “update”
{b,,...,b_1, and likewise for the witness w.

RSA accumulators are constant in size (a single group
clement) and their witness updates are separated from other
set elements. In contrast, Merkle trees are linear 1n size (e.g.,
by number of leaves), and an update to one element modifies
internal tree nodes, invalidating Merkle proofs for other
clements. Also, while updates to RSA accumulators can be
batched, Merkle tree updates take logarithmic time for each
clement.

D. Stateless Blockchains

The term stateless blockchain can include a blockchain
design where (validator) nodes can process transactions
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without requiring the nodes to store and maintain the explicit
blockchain state. This reduces the storage requirements for
nodes as well as to make it easier for new nodes to join the
network.

In stateful blockchains, a node has to store the explicit
blockchain state which can be constructed from processing
blocks 1n their respective orders. Whenever a new node joins
the network, the new node has to synchronize its state with
the rest of the network by fetching the latest state from
existing nodes. The state could potentially be very large,
making this synchronization process time consuming. Fur-
ther, as the state gets larger, some nodes might leave the
network as they cannot keep up with the storage require-
ments.

With stateless blockchains, nodes only have to maintain
an accumulator over the blockchain state rather than explic-
itly maintaining the state itself. Given the size of the
accumulator 1s very small (e.g., only a single group element
with RSA accumulators [15]), this eflectively alleviates the
storage problem of nodes. Further, 1t 1s suilicient for a new
node to get only the latest accumulator before it can par-
ticipate in the network.

A trade-ofl 1n this model 1s increased transaction size.
Each transaction can carry a membership proof for each of
its inputs which attests that the input 1s contained within the
accumulator (e.g., 1t 1s unspent). To generate such proofs,
clients have to know the explicit blockchain state. To do so,
they can either listen to the network for block broadcasts and
maintain a copy by themselves, or rely on a semi-trusted
entity that maintains a full copy of the state on behalf of the
client and 1s always available.

For example, consider a UTXO-based blockchain with a
UTXO set U at some point 1n time. At this time, validators
only have the accumulator computed over U. Clients, on the
other hand, know U explicitly and submit transactions with
membership proofs on their inputs generated with respect to
U. Suppose that a validator node P 1s selected by the network
to propose the next block. P selects a block of transactions
from 1ts memory, verifies their membership proofs with
respect to U, and updates the accumulator accordingly. It

then broadcasts the explicit block as well as the latest
accumulator state. Other validators who receive this block

verily the accumulator state by processing transactions
contained 1 the block, update their accumulators, and
simply discard the block contents.

II. Introduction

One of the major barriers to the mass adoption of cryp-
tocurrencies and blockchain protocols 1s their scalability
limitations, primarily reflected by the rate at which they can
process 1teractions. This 1s mainly imposed by the need for
replicating data among many geographically-scattered
nodes to increase resiliency to both faults and centralized
mampulations.

Several scalability approaches have been proposed which
generally fall into two categories: on-chain and off-chain
scalability. The on-chain approach aims to improve scalabil-
ity, typically by improving the underlying consensus mecha-
nism, adding extra trust assumptions, and/or delegating the
processing task to only a small subsets of (validator) nodes
(e.g., committees or shards). The off-chain approach mini-
mizes the use of the blockchain itself by allowing parties to
transact via direct, point-to-point communication, and inter-
act with the blockchain only occasionally to settle disputes
or withdraw funds.
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Both scaling approaches have seen progress; however,
on-chain scaling 1s lagging behind by at least 1-2 orders of
magnitude. On the other hand, ofl-chain mechanisms
achieve better scalability only by imposing certain limita-
tions such as collateral deposits and/or targeting high-fre-
quency, low-value transactions, as in micropayments [1].
For applications that require instant settlement of high-
liability, high-value interactions, such as real-time payments
[2], on-chain scaling 1s more applicable and can achieve
higher interaction throughputs. Furthermore, on-chain scal-
ing 1s still necessary for widespread adoption of off-chain
channels as opening and closing these channels still involve
on-chain interactions whose rate depends on how frequent
users need to dispute transactions, “cash-out” their money,
or increase the capacity of their channels.

Slower progress 1n on-chain scaling 1s primarily due to the
quadratic overhead of replication of the transaction ledger
across the nodes. There has been recently significant prog-
ress 1n blockchain sharding mechanisms [3], [4], [5]. In
these protocols, members of each network shard run a
Byzantine fault tolerant (BFT) state-machine replication
(SMR) protocol to build their local blockchain. As new
nodes join the system, new shards are created and hence, the
throughput of the system increases linearly with the size of
the system.

Existing sharding protocols sample their shards 1n a way
such that all shards satisiy the two properties of SMR: safety
and liveness. Safety ensures that all honest nodes within a
network shard maintain the same state, while liveness guar-
antees that a network shard processes (valid) transactions
that are assigned to 1t. To achieve both liveness and safety in
a network shard, the fraction of corrupt nodes in the network
shard has to be less than a constant that depends on the
underlying network assumptions: 1t 1s known that achieving
both liveness and safety within a network shard is not
possible 1I the fraction of corrupt nodes exceeds 2 in
synchronous networks and '3 in partially synchronous net-
works [6].

Embodiments described herein consider the safety and
liveness properties of SMR separately to show that, even 1f
relatively small shards are sampled, safety can be ensured
tor all network shards and liveness can be ensured for some
network shards. In such a setting, the protocol 1s safe
(formalized 1n Theorem 4), as all shards are safe, and live
(formalized 1n Theorem 5), as some shards process transac-
tions. Embodiments achieve such a setting by adjusting a
quorum size parameter of SMR, which can be a minimum
number of honest nodes required to ensure both safety and
liveness properties.

Embodiments can a set quorum size parameter q to a
value such that the probability of having q or more corrupt
nodes 1n a network shard 1s sufliciently low, and the prob-
ability of having q or more honest nodes 1s suthciently high.
Due to that, with high probability, embodiments end up with
network shards where some of them have q or more honest
nodes and all of them have strictly less than g corrupt nodes.
Network shards that have q or more honest nodes are
referred to as super-honest shards, whereas network shards
that have strictly less than q honest and g corrupt nodes are
referred to as safe shards. By using an intra-shard SMR

protocol that guarantees both liveness and safety for super-
honest network shards, and only safety for sale network
shards, embodiments ensure the safety and the liveness of
the protocol.
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A,

Embodiments

A sharded blockchain protocol that can scale beyond the
previous state-of-the-art in terms of transaction throughput
and confirmation latency 1s described herein.

1. Adjustable Quorums

The notion of adjustable quorums by adjusting a quorum
size q 1s 1ntroduced by embodiments in the context of
sharded blockchain systems which utilize SMR within each
network shard. Previous results sample their network shards
such that all network shards satisfy both the liveness and the
satety properties of SMR. The adjustable quorum technique
allows the system to relax SMR properties by allowing some
shards to satisiy only the safety properties. In return, adjust-
able quorums can shrinks the network shard sizes signifi-
cantly. In some embodiments, the quorum value can be a
predetermined value. For example, the value can be deter-
mined prior to broadcasting a new block for inclusion into

the blockchain.

2. Sharded Blockchains with Adjustable Quorums

A sharded permissionless blockchain protocol that uses
the adjustable quorums relaxation to improve its perfor-
mance 1s developed. Embodiments improve the state-ot-the-
art both 1n the synchronous and the partially synchronous
setting 1n terms of throughput and latency.

3. Lock-Free, Client-Driven, Cross-Shard
Verification

A new cross-shard transaction verification protocol 1is
described 1 a UTXO model that minimizes cross-shard
communication via a client-driven vernfication protocol.
Embodiments can remove the storage overhead of maintain-
ing locks on transactions by avoiding strict atomicity. Still,
embodiments can maintain consistency with an embedded
rollback mechanism in case of atomicity failures. Finally,
unlike previous sharding protocols as 1n [4] and [ 5], embodi-
ments can be resilient to replay attacks [7] against the
cross-shard protocol.

4. Stateless Blockchains in Sharded Setting

Various embodiments adapt a stateless blockchain model
into the sharded setting. Embodiments can utilize the state-
less blockchain to solve some unmique problems that exists
with respect to network shard processes. Embodiments can
also provide for making the reconfiguration phase of sharded
blockchains more etlicient by significantly reducing the size
ol blockchain state.

B. Overview of Methods and Systems

In this section, an overview of embodiments 1s presented.
Particularly, one embodiment can include adjustable quo-
rums which allows a system to sample much smaller shards
than existing blockchain sharding protocols (see Table 1). As
demonstrated herein, this can be achieved without sacrific-
ing the integrity of the system.

Consider N nodes connected via a peer-to-peer network
(e.g., stmilar to that of Bitcoin [8]), where each node 1s
connected to only a constant number of nodes. The nodes
can communicate with each other by gossiping a message to
either the entire network or within a subset (e.g., a network
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shard) of nodes. Embodiments proceed 1n fixed time periods,
referred to as epochs. A first epoch can start by executing a
one-time bootstrapping protocol that can allow all nodes to
agree on a sequence of random bits (e.g., an epoch random-
ness). The epoch randomness can then be used by each node
to learn (1) a random assignment of all nodes to network
shards, and (2) the sequence of leaders who later drive the
intra-shard SMR. Once the network shards are formed, the
members of each network shard can run a synchronous BFT
SMR protocol to construct a sequence of blocks of transac-
tions (e.g., the blockchain). Further, 1n some embodiments,
network shards can be periodically reconfigured by shutlling,
nodes across them to prevent an adaptive adversary from
controlling a network shard.

As discussed herein, an SMR protocol can have the two
properties of 1) safety and 2) liveness. In a non-sharded
setting, 1t can be trivial to satisty either only the safety or
only the liveness property. For example, nodes can easily
satisty safety by doing nothing. Given that all nodes start on
the same state, they cannot possibly end up in different states
alter doing nothing. To satisiy liveness, nodes can simply
process each transaction locally, without caring about the
states of other nodes. However, 1in this case, there 1s no
consistent replication across the nodes. Relaxing either of
these properties does not provide a usetful protocol 1n a
non-sharded setting.

On the contrary, embodiments show that relaxing liveness
for some, but not all, network shards 1n a sharded setting can
provide for multiple benefits. For example, suppose each
network shard satisfies safety, but some do not satisiy
liveness. Embodiments can guarantee the safety of the
protocol as each network shard satisfies safety (as formal-
ized 1 Theorem 4) and the protocol exhibits liveness as
some network shards satisty liveness (as formalized 1n
Theorem 3). Although relaxing liveness on some shards may
introduce additional challenges, such as handling the trans-
actions that are routed to sate shards, embodiments can
turther solve these problems efliciently.

According to some embodiments, a benefit of relaxing
liveness on some shards i1s to obtain smaller shards com-
pared to previous works, while maintaining a similar failure
probability. Due to smaller shards, embodiments provide
higher throughput and lower confirmation latency. In FIG. 1,
a plot 1llustrates a comparison of embodiments to Rapid-
Chain under an example setting to demonstrate how relaxing
liveness according to embodiments can shrink the network
shard size, and consequently, improves the total number of
network shards in the network. In FIG. 1, RapidChain and
various embodiments are compared with a network of size
N=2000 with F=33% resiliency. In this setting, each network
shard of RapidChain ensures both safety and liveness up to
50% shard corruption, whereas each shard according to
embodiments ensures liveness up to 30% corruption, and
satety up to 70% corruption. Further, RapidChain creates 10
network shards of 200 nodes, where the failure probability
ol a network shard (e.g., the probability that a network shard
does not satisfy safety) is 1.9-1077 for RapidChain. In
contrast, embodiments can create 40 shards of 50 nodes in
the same setting. Yet, the system according to embodiments
ensures a network shard failure probability of 8.6:107°.
Further, the probability of having a super-honest network
shard 1s 0.37. This means that the expected number of
super-honest network shards, which are both live and safe,
1s 14.8.

Furthermore, to relax the liveness property, embodiments
can adjust the quorum size parameter q of intra-shard SMR
by taking the network size N and the network resiliency F
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(e.g., maximum Iraction of corrupt nodes assumed 1n the
network) into account. For example, embodiments can set q

to a value such that, in a network shard, the probability of
having q or more corrupt nodes 1s suiliciently low, and the
probability of having g or more honest nodes 1s sufliciently
high. The network shards that have g or more honest nodes
can be super-honest nodes, and the nodes that have strictly
less than both q honest and q corrupt nodes are safe nodes.
Embodiments can adjust q such that the system of node
computers 1s 1n a setting that has only super-honest and safe
shards with high probability. By utilizing an SMR protocol
that guarantees both liveness and safety for super-honest
shards, and only safety for safe shards, embodiments ensure
safety and liveness of the network.

Additionally, embodiments can handle safe shards. As
described herein, a sate shard may only ensure safety. In a
sate shard, honest nodes always maintain the same state, but
the network shard 1s not guaranteed to process interactions
(e.g., 1n case corrupt nodes in 1t stay silent).

Embodiments can address this problem by utilizing the
honest nodes within such network shards and a reference
network shard. The reference network shard can be a dis-
tinguished, honest-majority shard that 1s tasked with peri-
odically reconfiguring network shards (e.g., whereas other
shards are tasked with processing interactions) as well as
maintamning and updating various look-up tables. For
example, the reference network shard can maintain two
look-up tables: 1) a node-to-shard table that shows which
node 1s assigned to which shard and 2) a interaction-to-shard
table that specifies how interactions are assigned to network
shards.

For example, let S be a safe network shard where the
corrupt nodes in the network shard are assumed to stay
silent. After a sufliciently long time, honest nodes 1n the
network shard are going to detect the lack of liveness in S.
The nodes can observe that they cannot process 1nteractions,
and they cannot replace a network shard leader node that
fails to produce valid block proposals. After that time, they
can generate and provide a complain message to the refer-
ence network shard. Upon recerving a suflicient number of
complaints from S, the reference network shard can update
the maintained look-up tables. For example, the reference
network shard can reassign every node of S to a special
symbol 1 i1n the node-to-shard table (or other suitable
identifier 1n the table), and reassigns interactions which were
previously assigned to S to one of the active network shards
in the 1nteraction-to-shard table. Consequently, interactions
are not going to be routed to S anymore, and (honest) nodes
of S stop participating in intra-shard SMR. This effectively
closes S for the ongoing epoch.

However, a technical challenge arises in the following
case: assume corrupt nodes within S participate honestly
until sometime before becoming silent. This case differs
from the previous example, because the state of S (e.g., the
UTXO set) 1s not empty. Suppose St takes over transactions
of S due to reassignment. To process transactions on behalf
of S, St has to know the latest state of S. In other words, the
system needs to transier the state across network shards
whenever a network shard with non-empty UTXO set 1s
closed. To do this efliciently, embodiments can utilize a
stateless blockchain model which uses cryptographic accu-
mulators to succinctly maintain the blockchain state.

IT11. Model and Problem Definition

This section describes a network model and threat model
which may be described present in embodiments.
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A. Network Model

Embodiments consider a peer-to-peer network with N
nodes that establish i1dentities (e.g., public/private keys)
through a Sybil-resistant i1dentity generation mechanism
such as that of [16], which may require every node to solve
a computationally-hard puzzle on their locally-generated
identities (e.g., public keys) venified by all other nodes.
Without loss of generality and similar to hybrid blockchain
protocols [17], [18], [3], [4], embodiments can assume all
participants in the consensus protocol have equivalent com-
putational resources.

Further, embodiments can assume all messages sent in the
network are authenticated with the sender’s private key. The
messages can be propagated through a synchronous gossip
protocol [19] that guarantees that there 1s known upper
bound A on the message delivery (e.g., when an honest node
r, sends a message m to another honest node r,, at time {t, r,
receives m by t+A). However, the order of messages are not
necessarily preserved (e.g., given r, first sends m, and then
m,, r, might receive m, before m). This may be similar to

synchronous models adopted by permissionless protocols
[3], 1201, [4], [21].

B. Threat Model

Embodiments can consider a probabilistic polynomial-
time Byzantine adversary who controls up to 14 of the nodes
at any time. The corrupt nodes may not only collude with
cach other, but can also deviate from the protocol 1n an
arbitrary manner (e.g., by sending invalid or inconsistent
messages, by remaining silent, etc.). Similar to various
sharded protocols [17], [22], [18], [4], [21], the adversary
can be an epoch adaptive adversary (e.g., slowly adaptive
adversary). The adversary can select the set of corrupt nodes
at the beginning of the protocol and/or between each epoch
but cannot change this set within an epoch (e.g., the adver-
sary cannot choose which node to corrupt after nodes are
shuflled between shards). Nodes may disconnect from the
network during an epoch or between two epochs for any
reason (e.g., due to internal failure or network failure).
However, at any moment, at least an 24 of the computational
resources belong to honest participants that are online (e.g.,
respond within the network time bound). Additionally, vari-
ous embodiments do not rely on any public-key infrastruc-
ture or any secure broadcast channel, but can assume the
existence of a random oracle needed for collision-resistant
hash function.

C. Problem Definition and Properties

A set of transactions can be assumed to be sent to the
network of node computers by a set of clients (e.g., thin
clients on client devices, etc.) that may be external to block
verification process and may not belong to a network shard.
Nodes 1n the network can batch interactions into blocks and
commit them by an intra-shard SMR protocol. A network
shard commuits to a block 1f every honest node within the
network shard commits to the block. A network shard
commits to an interaction 1f the network shard commits a
block containing the transaction. Various embodiments can
have the following properties:

Intra-shard Safety. IT S 1s a safe or a super-honest shard,
and 1 an honest node 1n S commits a block B, at height-k,
then every honest node mm S eventually commit B, at

height-k.
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Intra-shard Liveness. When a user submits a valid trans-
action T to a super-honest shard S, T 1s eventually commutted
by S.

Provable Commits. Every committed block B, of a net-
work shard S carries a commit-proot COM, ¢ which attests
that B, 1s committed by S.

Inter-shard Safety. Once a network shard commits a
transaction T, no shard can commit to a transaction 1" such
that T and T' conflict.

Inter-shard Liveness. When a user submits a valid trans-
action T to a network shard S, either S commits T or S 1s
closed and another shard S' commits T.

Scalability
IV. Systems

FIG. 2 shows a system 200 according to embodiments.
The system 200 can comprise a plurality of nodes (e.g., node
computers). For example, the plurality of nodes can include
the node 202. The nodes of the plurality of nodes may be
grouped mto computing groups. In some embodiments, a
group of nodes can be a network shard. For example, the
node 202 as well as four other nodes may be 1n the network
shard 204. Each shard may have a quorum of nodes. For
example, the network shard 204 can have a quorum 206. The
quorum 206 can include three of the 5 nodes 1n the network
shard 204. The quorum 206 may not always be the particular
three nodes as indicated 1n FIG. 2. Rather, the quorum 206
may be a number of nodes which may be needed to create
new blocks for a blockchain (e.g., the blockchain 208)
maintained by the network shard 204. The nodes of the
network shard 204 can maintain the blockchain 208. Each
block of the blockchain 208 can include a plurality of
interactions 210 which may be hashed together (e.g., 1n a
Merkle tree to form a Merkle root). In some embodiments,
cach shard may maintain a diflerent blockchain. Addition-
ally, in some embodiments, each blockchain of each group
of nodes (e.g., the network shard 204) may also referred to
as a network shard.

In some embodiments, a plurality of node computers 1n a
network shard are a first plurality of node computers 1n a first
network shard maintaining a blockchain which 1s a first
blockchain, and associated with a first quorum value. A
second plurality of node computers 1 a second network
shard maintaining a second blockchain 1s associated with a
second quorum value may also be present in the system.
Each node 1n each network shard may be capable of com-
municating with every other node in the system directly or
indirectly.

For simplicity of illustration, a certain number and set of
components are shown 1n FIG. 2. It 1s understood, however,
that embodiments of the invention may include more than
one of each component. In addition, some embodiments of
the invention may include fewer than or greater than all of
the components shown 1n FIG. 2.

Messages between the devices 1n FIG. 2 can be transmit-
ted using a secure communications protocols such as, but not
limited to, File Transter Protocol (FTP); HyperText Transfer
Protocol (HTTP); Secure Hypertext Transfer Protocol
(HT'TPS), SSL, ISO (e.g., ISO 8583) and/or the like. The
communications network may include any one and/or the
combination of the following: a direct interconnection; the
Internet; a Local Area Network (LAN); a Metropolitan Area
Network (MAN); an Operating Missions as Nodes on the
Internet (OMNI); a secured custom connection; a Wide Area
Network (WAN); a wireless network (e.g., employing pro-
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tocols such as, but not limited to a Wireless Application
Protocol (WAP), I-mode, and/or the like); and/or the like.

The communications network can use any suitable commu-
nications protocol to generate one or more secure commu-
nication channels. A communications channel may, in some 2
instances, comprise a secure communication channel, which
may be established 1n any known manner, such as through
the use of mutual authentication and a session key, and
establishment of a Secure Socket Layer (SSL) session.
FIG. 3A shows a block diagram of a node computer 300
according to embodiments. The exemplary node computer
300 may comprise a processor 304. The processor 304 may
be coupled to a memory 302, a network interface 306, and
a computer readable medium 308. The computer readable
medium 308 can comprise any suitable number of modules.
The memory 302 can be used to store data and code. The
memory 302 may be coupled to the processor 304 internally
or externally (e.g., cloud based data storage), and may

comprise any combination of volatile and/or non-volatile »g
memory, such as RAM, DRAM, ROM, flash, or any other

suitable memory device.

The computer readable medium 308 may comprise code,
executable by the processor 304, for performing a method
comprising: broadcasting, by a node computer, a propose 25
message comprising a new block for a blockcham to a
plurality of node computers 1n a network shard; receiving,
by the node computer, at least one vote message from the
plurality of node computers, the at least one vote message
indicating verification of the new block; after a predeter- 30
mined amount of time, receiving, by the node computer, a
plurality of pre-commit messages comprising at least the
new block and a block certificate created based on the at
least one vote message; and 1 the number of received
pre-commit messages of the plurality of pre-commit mes- 35
sages 1s greater than a quorum value associated with the
network shard, committing, by the node computer, the new
block to the blockchain.

The network interface 306 may include an interface that
can allow the node computer 300 to communicate with 40
external computers. The network interface 306 may enable
the node computer 300 to communicate data to and from
another device (e.g., other node computers of a plurality of
nodes, etc.). Some examples of the network interface 306
may 1nclude a modem, a physical network interface (such as 45
an Ethernet card or other Network Interface Card (NIC)), a
virtual network interface, a communications port, a Personal
Computer Memory Card International Association (PCM-
CIA) slot and card, or the like. The wireless protocols
enabled by the network interface 306 may include Wi-F1™., 50
Data transierred via the network interface 306 may be 1n the
form of signals which may be electrical, electromagnetic,
optical, or any other signal capable of being received by the
external communications interface (collectively referred to
as “electronic signals” or “electronic messages™). These 55
clectronic messages that may comprise data or instructions
may be provided between the network interface 306 and
other devices via a communications path or channel. As
noted above, any suitable communication path or channel
may be used such as, for instance, a wire or cable, fiber 60
optics, a telephone line, a cellular link, a radio frequency

(RF) link, a WAN or LAN network, the Internet, or any other
suitable medium.

FIG. 3B shows a block diagram of a client device 350
according to embodiments. The exemplary client device 350 65
may comprise a processor 354. The processor 354 may be
coupled to a memory 352, a network interface 356, and a

10

15

18

computer readable medium 358. The computer readable
medium 358 can comprise any suitable number of modules.

The memory 352 can be used to store data and code. The
memory 352 may be coupled to the processor 354 internally
or externally (e.g., cloud based data storage), and may
comprise any combination of volatile and/or non-volatile
memory, such as RAM, DRAM, ROM, flash, or any other
suitable memory device.

The computer readable medium 358 may comprise code,
executable by the processor 354, for performing a method
comprising: providing, by a client device, a first proof
request comprising a request for a first proof-of-inclusion
from a first shard maintaining a first blockchain; receiving,
by the client device, the first prootf-of-inclusion from a first
node computer of the first network shard; providing, by the
client device, a second proof request comprising a request
for a second proof-of-inclusion from a second shard main-
taining a second blockchain; receiving, by the client device,
the second proot-of-inclusion from a second node computer
of the second network shard; generating, by the client
device, a commit interaction request message comprising
interaction data and the first proof-of-inclusion and the
second proof-of-inclusion; and providing, by the client
device, the commit interaction request message to a third
shard maintaining a third blockchain, wherein a third node
computer of the third shard verifies the first prooi-oi-
inclusion and the second proof-of-inclusion and 1f the first
proof-of-inclusion and the second proof-of-inclusion are
valid, includes at least the interaction data in a new block of
the third blockchain.

The network interface 356 can be similar to the network
interface 306 and the description thereof need not be
repeated here.

V. Methods

An SMR protocol may have several properties including
safety, liveness, termination, and external provability. Safety
can 1nclude 11 a block 1s commuitted by any honest node at a
position, every honest node eventually commuts that block at
the same position. Liveness can include each client request
1s eventually committed by all honest nodes. External prov-
ability can be present 11 some correct node decides v with
prool m, and all correct nodes can verily that v 1s the decision
using It.

In some embodiments, a method may include broadcast-
ing, by a node computer, a propose message comprising a
new block for a blockchain to a plurality of node computers
in a network shard. The node computer can receive at least
one vote message from the plurality of node computers, the
at least one vote message indicating verification of the new
block. The node computer can, after a predetermined
amount of time, receive a plurality of pre-commit messages
comprising at least the new block and a block certificate
created based on the at least one vote message. 11 the number
of received pre-commit messages ol the plurality of pre-
commit messages 1s greater than a quorum value associated

with the network shard, the node computer can commit the
new block to the blockchain.

A. Adjusting the Quorum Size

Adjustment of the quorum size parameter will be dis-
cussed, particularly, in regards to how the quorum size
parameter of the intra-shard SMR protocol helps embodi-
ments reduce the sizes of network shards while still main-

taining a failure probability.
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The network size (e.g., number of node computers in the
network) 1s denoted by N, the network resiliency 1s denoted
by F, the number of maximum possible corrupt nodes 1s
denoted by T=[N-F], and the network shard size 1s denoted
by n. S can denote a network shard. Then, a number of
honest nodes in the network shard S 1s a random variable H
and a number of corrupt nodes in the network shard S 1s a
random variable C., where n=HA4C.. The quorum size
parameter of the intra-shard SMR 1s denoted by . The
quorum size g can be greater than half of the number of
nodes 1n the network shard n (e.g., g>n/2). Based on the
above definitions, three different types of network shards can
be created: 1) a network shard S 1s said to be super-honest
if H2q, 2) a network shard S 1s said to be super-corrupt 1f
C<2q, and 3) a network shard S 1s said to be safe 1f it 1s
neither super-honest nor super-corrupt (e.g., H.<q and
C.<q).

Assuming nodes are uniformly distributed to the network
shards, the probability of an arbitrary shard S being super-
honest via hypergeometric distribution 1s:

N (:—f)(f_T)
()

The probability of S being super-corrupt 1s:

(o)

(1)

Pr[§ 1s super — honest]| = Pr|Hs = g

(2)

Pr|S is super — corrupt| = Pr|Cy = g] =

The probability of S being a safe shard 1is:

Pr[S 1s safe]=(Pr[S i1s super—corrupt]+Pr[S is super—
honest])

(3)

(Given that 1n various embodiments, the intra-shard SMR
does not ensure safety for a super-corrupt shard, to ensure
the safety of the protocol, the probability of sampling a
super-corrupt shard should be suificiently small. As such,
under a given network size N and resiliency E, values for the
network shard size n and quorum size q can be determined
that provide a sufficiently small probability of sampling a
super-corrupt shard, and that further provide a sufficiently
large probability of sampling a super-honest shard. Suifi-
ciently large and sufficiently small probabilities can be of
any suitable size and can be application specific (e.g., one
can define them as being negligible/non-negligible with
respect to a security parameter). In the analysis herein, a goal
1s to demonstrate that various embodiments improve upon
the state of the art, including RapidChain [5]. For example,
for a given network size N and resiliency F, 1t can be
demonstrated that embodiments may have at least an
expected time-to-failure comparable to that of Rapid-
Chain’s, and meanwhile, show that embodiments have more
super-honest network shards than the number of network
shards 1n RapidChain (e.g., because all shards satisfy live-
ness in RapidChain).

Next, the time-to-failure and the performance of embodi-
ments with RapidChain under a network size of N=2000 and
resiliency of F=33% will be discussed. The analysis 1s then
extended to the setting with a network size of N=4000 and
a resiliency of F=33%. These are the settings that were
analyzed by the authors of RapidChain. The results are
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summarized in Table 1, below. Table 1 illustrates the com-
parison of embodiments with RapidChain in terms of
expected time-to-failure and expected number of active
shards. An epoch duration of 24 hours 1s assumed for both
protocols when calculating the expected time-to-failure.

TABLE 1

Companson of embodiments with RapidChain

Expected
Network Shard Expected Number
Network Resil-  Shard Resil- Time-to- of Active
Protocol Size 1eNcy Size  1ency  Failure Shards
RapidChain 2,000 33% 200 50% 1,412 O
[5] years
RapidChain 4,000 33% 250 50% 4,580 15
[5] years
Embodiments 2,000 33% 50 70% 800 years 13.3
Embodiments 4,000 33% 80 63 % 11,165 31.6
years

As noted 1n Table 1, in Embodiments, a network size of
4,000 nodes and can have an expected time-to-failure of
11,165 years, and 31.6 active shards. The time-to-failure 1s
advantageously higher than the RapidChain protocol with

the same number of nodes. Further, the number of active
shards 1s also higher in embodiments, than i1n the Rapid-
Chain protocol, thus advantageously resulting 1n faster inter-
action processing. Still further, the shard resiliency value can
be higher than in RapidChain, thus making embodiments
more robust than the RapidChain protocol.

As a simple 1illustration, FIG. 12 shows four network
shards, A, B, C. and D, each of which contain 10 nodes, and
have 0, 2, 6, and 8 corrupt nodes, respectively. Shards A and
B would be both safe and live under both the Rapidchain
protocol and embodiments. Shard D would not be safe or
live under either the RapidChain or embodiments of the
invention. Shard C could cause the RapidChain protocol to
fail (e.g., that fake or false interactions are recorded to a
blockchain in any shard in the system). Shard C, however,
would not cause embodiments to fail. As noted in the
description below, and as 1illustrated in FIG. 1 and if the
quorum value for the system 1s set to 70%, Shard C would
be considered “safe,” because a fake interaction would never
be recorded to the blockchain on that shard. However, it
would not be considered “live” since it would not be able to
output any transactions onto 1ts blockchain or broadcast that
result to the other network shards. As explained below,
embodiments of the invention can use a message protocol
that can address the 1ssue of a network shard that stays silent
for too long. For example, as explained below, a reference
network shard can receive a shutdown from the honest nodes
in the silent network shard. Once this message 1s received,
the silent network shard can be shut down and the nodes
therein can be re-arranged or re-distributed to other network
shards.

In some embodiments, safety may be violated when there
exists at least one super-corrupt shard. Whereas, the safety
of RapidChain 1s violated when there exists at least one
non-honest-majority shard. Thus, the failure probability of
embodiments 1s the probability of obtaining at least one
super-corrupt shard, and the failure probability of Rapid-
Chain 1s the probability of obtaining at least one non-honest-
majority shard. Since shards are sampled without replace-
ment, Equations 1 and 2, above, give exact values only for
the very first sampled shard. As 1s commonly done, embodi-
ments report an upper-bound on the failure probability by
using union-bound.
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FIG. 4 1llustrates a probability of sampling a non-honest-
majority shard from a network with N=2000 and F=33%.
The probability of obtaining a non-honest-majority shard is
about 1.94-1077 for n=200. FIG. 5 illustrates a probability of
sampling different types of shards from a network with
N=2000 and F=33%. After evaluating diflerent values, vari-
ous embodiments can utilize a network shard size of n=50 as
an optimal shard size. However, any suitable shard size can
be utilized and may be adjusted based on the number of node
computers in the network, for example. The probability of
obtaining a super-corrupt shard is about 8.57-10® and the
probability of obtaining a super-honest shard 1s about 0.37

when quorum size 1s q=35.

The authors of RapidChain report a network shard size of
n=200 1n the setting 1illustrated in FIG. 4. In FIG. 4, the
probability of sampling a non-honest-majority shard 1s 1ni-
tially 1.94:10" when n=200. The failure probability for
RapidChain 1n this setting can be upper-bound as 2000/
200-1.94:107'=1.94-10"°. Assuming an epoch duration of 24
hours, this gives a time-to-failure of roughly 1,412 years.
Similarly, the probability of obtaining a super-corrupt shard

is initially 8.57-107° with n=50 and q=35 for embodiments
as 1llustrated 1n FI1G. 5. Thus, we can upper bound the failure
probability for embodiments in this setting as 2000/
50-8.57-107°=3.42-107°. This gives a time-to-failure of
roughly 800 years with an epoch duration of 24 hour.

The performance of embodiments and RapidChain 1n the
above noted systems can be evaluated by examining the
active number shards that are guaranteed to process trans-
actions (e.g., shards that ensure liveness). Embodiments and
Rapidchain can both include a network reference shard that
includes, for example, 200 node computers. Excluding the
reference network shard, RapidChain has 1800/200=9 active
shards. For embodiments, the number of expected active
shards 1s 1800/50-0.37=13.3 by the linecarity of expectation.

Further, RapidChain cannot make up for this difference by
reducing RapidChain’s time-to-failure. Even reducing the
network shard size in RapidChain from 200 to 190 gives
RapidChain a time-to-failure of about 600 years, lower than
embodiments. Various embodiments provide for the advan-
tage of scaling better and has both higher time-to-failure and
more active shards for particular system parameters than
previous works.

B. Intra-Shard Key Generation

After nodes are assigned to shards, each shard can inter-
nally run a distributed key generation (DK G) algorithm such
as of [23]. A goal 1s to utilize a threshold signature scheme
(e.g., threshold BLS [24]) to minimize communication com-
plexity. Shards that successtully complete this step can be
authenticated by the reference network shard, and only the
authenticated shards may be allowed to process interactions
in the upcoming epoch.

Specifically, after running a DKG protocol, a network
shard S generates a key-pair sk-pk. such that, pk. 1s a
network shard-wise shared public key, where a hash digest
of H(pk.) can be the network shard’s identity and the sk. 1s
the corresponding secret key which 1s verifiably g-out-of-n
shared among the nodes of S. After this step, each node r of
S generates a signature share o (H(pk.)) on the node’s
shard’s 1dentity using the node’s share of the secret key.
Then, every node sends their share of the signature to the
reference network shard. After accumulating enough of
these shares, the reference network shard constructs the
threshold signature and verifies 1t with pk..
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If the verification passes, the reference network shard
adds S to the interaction-to-shard table by assigning S to 1ts
share of interactions (e.g., transactions). This table 1s com-
mitted and broadcast to the network by the reference net-
work shard. Completion of this phase indicates the start of
the epoch. For example, upon receiving this table, every
shard starts to process transactions to which they are
assigned.

It 1s possible for corrupt nodes 1n a safe shard S' to stall
the DKG protocol (e.g., by staying silent). However, 1n this
case, S' 1s excluded from the interaction-to-shard table, and
every node of 1t 1s assigned to 1 1n the node-to-shard
assignment table. This indicates that, transactions are not
routed to S', and (honest) nodes within S' do not participate
in intra-shard SMR 1n the upcoming epoch. This effectively
closes S' until the next reconfiguration phase.

C. Assigning Interactions to Shards

When assigning new 1nteractions to shards, there are two
factors to consider: 1) the system must ensure that every
interaction 1s uniquely assigned to a network shard to
maintain consistency, and 2) the system should take load-
balancing into account while doing so.

The reference network shard 1s tasked with maintaining
and updating the interaction-to-shard table. Node computers
receive this table from the reference network shard at the
beginning of each epoch and do look-ups on 1t to determine
whether an interaction 1s assigned to the network shard that
the node 1s located within or assigned to a difierent shard.
The interaction-to-shard table can be implemented as a
complete binary search tree. The network shard identifiers
can be at the leafs of the binary search tree, while the path
from the root to a leaf specifies the prefix of the hashes of
interactions that the network shard 1s assigned. For example,
if the path from the root to a network shard S 1s 00, S
processes 1nteractions whose first 2 bits are 00. As new
network shards are created or the existing ones are closed,
the reference network shard can organize the tree accord-
ingly and can broadcast the updated table to the network.

FIG. 6 illustrates reorganization of an interaction-to-shard
table as node computers join and/or leave. In epoch e, the
first network 602 includes 4 shards: S,°, S,%, S,°, and S;°.
New nodes jo1in the network between epoch e and e+1, and
consequently, the network 1s split between 5 shards 1n epoch
e¢+1. The tree 1s reorganmized accordingly into the second
network 604. Finally, some nodes leave the network and the
network 1s sharded between 3 shards in epoch e+2. The tree
1s reorganized again into the third network 606.

D. Intra-Shard SMR

An 1intra-shard SMR protocol will be discussed next. A
goal of the intra-shard SMR according to various embodi-
ments 1s to satisfy safety for safe shards and satisty both
safety and liveness for super-honest shards. Prior to discuss-
ing the protocol, the block structure will be 1llustrated.

A block B, at height k is a tuple consisting of a header B,”
and a body B.” given by,

By:=(B;".B;")
The body of the block contains a set of interactions that

can be organized as a Merkle tree. The header of the block
can be a tuple,

B;ch =(k,e,4 WXG:HMEZH (B.1).H(pks)),

where k 1s the height of the block, e 1s the epoch in which
the block is created, A““*“ is an accumulator over the latest
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UTXO state, HY? is the root of the Merkle tree of transac-
tions, H(B,_,) 1s the digest of the previous block’s header,
and H(pk.) 1s the identity of the network shard that created
the block. Due to the stateless blockchain model, after
committing a block, nodes can discard the body of the block.
The nodes may only maintain the latest block header along
with 1ts a commit-certificate of the block. As explained
below, a commit certificate on the block header can attest
that the corresponding block 1s commuitted to the blockchain.

Embodiments can proceed 1n two phases: 1) a steady-state
phase and 2) a view-change phase. The steady-state phase
can proceed 1n 1iterations, where 1n each iteration a current
leader node computer of the network shard proposes blocks
to the rest of the network shard. If the leader node computer
behaves maliciously during steady-state, by either proposing,
equivocating blocks or by not proposing any block at all, the
other nodes in the network shard can execute a view-change
protocol to replace the corrupt leader, and then fall back to
the steady-state. The explicit description of steady-state and

view-change can be seen in below 1n Pseudocode 1 and
Pseudocode 2.

Pseudocode 1: The steady state phase of imtra-shard SMR

Let v be the current view number and let node L be
the leader of the current view.

1. Propose. The leader L. broadcasts

<prﬂpﬂse,< B, >L, BC(B, - 1), v >L.
2. Vote. Upon recerving the first valid

height-k leck< B, ) ; from L or through a

vote by some other node, set precommit-
timer; to 2A and broadcast a vote

in form < Vﬂte,< Bk)L, v,

3. Precommit. When commuit-timer; reaches
0, if no equivocation for height-k
1s detected and 1f B, has a block

certificate BC(B,.), broadcast

‘:prec-*;:-mmit,( B, >L, BC (B,), v ).
(

< B, )L, BC(B;:),V) messages such
that they all contain a valid block

certificate BC(B,) for B,, if B; 1s not
already committed, commit B, and all
of 1ts ancestors. Further, broadcast q
received precommit messages which
constitute a commit-certificate CC(B;,)

for B;.

4, Commuit. Upon receiving g * precomimit,

Pseudocode 2: The view-change phase of intra-shard SMR

Let L and L' be the leader of view v and v + 1, respectively.
1. Blame. If less than p blocks are received
from L 1n (2p + 1)A time 1n view v,

JI‘GH,dC&St< blame, v ). If more than one
block 1s proposed by L at any height,

Jrc:-adcast< blame, v? and the two equivocated blocks.

2. Quit old view. Upon gathering q< blame, v
messages, broadcast them and

quit view v by aborting running precommit-
timers and stop voting in view v.

3. Status. Wait for 2A time and enter view v + 1.
Upon entering view v + 1, send
a highest block with a valid block certificate
to L' and transition back to steady
state.

Formally, the properties ensured by the intra-shard SMR,
according to embodiments, are 1llustrated in the following
three theorems.
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Theorem 1 (Intra-shard Safety). If S 1s a sale or a
super-honest shard, and 11 an honest node in S commits a
block B, at height-k, then every honest node in S eventually
commit B, at height-k.

Theorem 2 (Intra-shard Liveness). When a user submits a
valid transaction T to a super-honest shard S, T 1s eventually
committed by S.

Theorem 3 (Provable Commits). Every committed block
Bk of a network shard S carries a commit-proof COMB;C,S
which attests that B, 1s committed by S.

FIG. 7 shows a flowchart illustrating a block commitment
method according to embodiments. The method 1llustrated
in FIG. 7 may be performed by a node 1n a network shard.
In some embodiments the node may be a leader node of the
network shard.

Prior to step 702, the node computer can receive a commit
interaction request message from a client device. The com-
mit 1nteraction request message can comprise interaction
data and one or more proof-of-inclusions created by one or
more network shards. The node computer can verily the one
or more proof-of-inclusions as described in further detail 1n
FIG. 7. If the prootf-of-inclusions are valid, then the node
computer can include the interaction data into a new block
for the blockchain maintained by the network shard.

The node computer can generate the new block that can
include the interaction data. The new block can comprise a
block header and a block body. The block header can be a
tuple comprising at least an accumulator value that accu-
mulates available amounts (e.g., UTXOs). The block header
can further include a block height, an epoch number, a root
of a Merkle tree (e.g., a Merkle root), and a digest of a
previous block header of a previous block in the blockchain.
When generating the new block, in some embodiments, the
node computer can determine the accumulator value using
an accumulator over one or more latest amounts of the
blockchain.

At step 702, the leader node (e.g., leader node computer)
in the network shard can broadcast a propose message
comprising the new block for a blockchain to a plurality of
node computers in the network shard. The propose message
can comprise the new block, a view number, and a previous
block certificate. The view number can be a value associated
with the current leader node. For example, 1f a first node 1s
a leader node, then the view number may be 1.

The previous block certificate can include a data 1tem that
can act as evidence that the previous block was commutted
to the blockchain. In some embodiments, the previous block
certificate can be a threshold signature that was generated
based on 1individual signature shares from shares of a private
key (e.g., shared through a network shard). For example,
when the node computers of the shard sent a vote message
to vote for the previous block to be included mto the
blockchain, the node computers signed the vote message’s
hash digest with the node computer’s share of a secret key
of the node computer’s network shard. A quorum number of
signatures on the vote message constitute a block certificate
on the block.

Each node computer in the network shard can receive the
propose message from the leader node computer. Each node
computer 1n the network shard validates that the new block
in the propose message 1s a correctly formed block (e.g.,
includes a correct hash value of the previous block, etc.).
Furthermore, in some embodiments, each node computer
can verily the previous block certificate prior to broadcast-
ing the at least one vote message. For example, the previous
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block certificate can be formed by at least g commit mes-
sages broadcast by the node computers for the previous
block.

If a node computer determines that the new block 1s valid,
then the node computer can broadcast a vote message. The
vote message can comprise the new block and the view
number. When the node computer broadcasts the vote mes-
sage, the node computer can set a timer (e.g., a precommit-
time) to a predetermined time (e.g., 2A).

Whenever a node computer r sends a message m, the node
computer signs its hash digest with the node computer’s
share of a secret key, denoted by (m),. We say q signature
shares on the message m constitute a quorum-certificate for
the message m. Specifically, a quorum-certificate 1s the
threshold signature generated out of the individual shares.
Depending on the contents of the message m, these certifi-
cates can be named differently: q vote messages on a block
Bk can be referred to as a block certificate and 1s denoted by
BC(B,). q pre-commit messages on a block Bk can be
referred to as commit certificate, denoted by CC(B,).
Finally, g blame messages on a view v can be referred to as
view-change certificate and 1s denoted by VC(v).

At step 704, the leader node computer can receive at least
one vote message from the plurality of node computers. The
at least one vote message can indicate verification of the new
block. For example, the other node computers can determine
whether or not to verily the new block based on any suitable
processing (e.g., verilying a prool of work).

At step 706, after a predetermined amount of time (e.g.,
the pre-commuit-timer expires), the leader node computer can
receive a plurality of pre-commit messages comprising at
least the new block and a block certificate created based on
the at least one vote message. The predetermined amount of
time can allow each node to receive other nodes” votes or
other messages, to determine 11 they want to pre-commit and
send a pre-commit message. A quorum value q number of
vote messages on the block can form a block certificate.

For example, when the timer (e.g., pre-commit-timer) at
cach node reaches zero, respectively each node computer 1n
the network shard can determine if each received vote
message (e.g., from receiving the vote broadcast of other
node computers) includes the same view number and new
block as the previously sent vote message. By doing, so the
node computer can verily that there 1s no equivocation for
the new block. Further, each node computer can verily if the
new block has a block certificate created from a threshold
number of votes. For example, a block certificate can be
created from q number of votes on the block (e.g., utilizing
signed hash digests signed with the node computer’s share
of a secret key). The node computer can then broadcast a
pre-commit message including the new block, the block
certificate, and the view number. Any number of node
computers of the network shard can broadcast a pre-commut
message.

At step 708, the leader node computer can determine 1t a
number of received pre-commit messages of the plurality of
pre-commit messages 1s greater than a quorum value q
associated with the network shard. For example, the leader
node computer can receive the pre-commit message broad-
cast by any suitable number of node computers of the
network shard. Each pre-commit message can include the
new block, the block certificate and the view number. The
leader node computer can verity that at least the quorum
value number of pre-commit messages include the same new
block, the same block certificate, and the same view number.

At step 710, 11 a number of received pre-commit messages
of the plurality of pre-commit messages 1s greater than a
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quorum value associated with the network shard, the leader
node computer can commit the new block to the blockchain.

In some embodiments, after committing the new block to the
blockchain, the leader node computer can broadcast the
plurality of pre-commit messages in a single broadcast
message. The plurality of pre-commit messages can consti-
tute a commit-certificate for the new block.

In some embodiments, after committing the new block to
the blockchain, the node computer can remove the block
body from a memory of the node computer. The block
header can include the accumulator value that accumulates
UTXOs. Theretore, the node computer can utilize the block
header 1n future transactions and may not need to determine
values from the block body. However, 1t 1s understood that
other node computers 1n the network, that are not validator
nodes may store the complete blockchain with all block
headers and block bodies.

In some embodiments, the plurality of node computers in
the network shard can be a first plurality of node computers
in a first network shard maintaining the blockchain which
can be a first blockchain. Further, the quorum value can be
a first quorum value. A second plurality of node computers
can be 1n a second network shard that may maintain a second
blockchain which can be associated with a second quorum
value. The quorum value and the number of node computers
1s a network shard can be of any suitable values consistent
with the concepts described herein. In some embodiments,
the plurality of node computers 1n the network shard can
include, for example, 20 to 200 node computers, and the
quorum value 1s 1 a range of 25 to 40. In some cases, the
network shard sizes of 20-200 can provide suflicient inter-
action processing power while allowing the network as a
whole to have many network shards to improve interaction
throughput of the system. The quorum value range between
25-40 can provide a suflicient amount of safety to the
network shards of the system. The above noted network
shard size range and the quorum value range were found to
be optimal ranges using an empirical experiment. Shard
s1zes within the 20 to 200 node computer range provide an
optimum security and scalability.

In other embodiments, the node computer can, prior to
broadcasting the propose message, receive a commit inter-
action request message ifrom a client device (e.g., a laptop
computer, a desktop computer, a smart phone, etc.). The
commit interaction request message can comprise interac-
tion data (e.g., UTXO data, etc.) and one or more prooi-oi-
inclusions created by one or more shards. In some embodi-
ments, at least one proof-of-inclusion of the one or more
proof-of-inclusions may be created by the second network
shard.

The node computer can then verily the one or more
proof-of-inclusions in any suitable manner as described
herein. It the one or more proof-of-inclusions are valid, then
the node computer can include at least the imteraction data in
the new block as described in further detail in FIG. 8.

E. Safte Shard Detector

As discussed herein, sate shards lack liveliness. This
means that interactions that are assigned to sale network
shards are not guaranteed to be processed (e.g., 1 case
corrupt nodes within them stay silent). To ensure such
interactions are eventually processed, embodiments use the
honest nodes 1n a safe network shard to detect the lack of
liveness. Embodiments achieve this by augmenting each
node with a safe shard detector, and by having them com-
municate with the reference network shard.
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During an epoch, each node computer can momitor the
state of the network shard of the node computer by running
a sale shard detector whose specifications are provided 1n
Pseudocode 3. The safe shard detector keeps track of events
that could only happen in a safe shard. Once a node
computer detects such an event, the node computer sends a
shutdown message for the network shard of the node com-
puter to the reference network shard.

Once the reference network shard receives n—q+1 shut-
down message (e.g., a shutdown threshold) from a network
shard S,, the reference network shard updates the node-to-
shard and interaction-to-shard tables: every node of S, 1s
assigned to a symbol (e.g., “1”) 1n node-to-shard table
referred to as a null network shard (e.g., a network shard that
has no presence in the network and does not process
transactions) in a node-to-shard table for a present epoch.
Further, the reference network shard assigns the interactions
that were previously assigned to S, to one of the runmng
shards S,. The updated tables are broadcast to the network,
and upon receiving the updated tables, the honest nodes of
S. stop participating 1n intra-shard SMR for the current
epoch. Further, nodes of S, request and receirve the latest
state of S, from the honest nodes 1n it. Atter receiving the
latest state of S,, S, start to process transactions on behalt of
S. for the current epoch. Details of this process i1s further
claborated 1n Pseudocode 4.

For example, in some embodiments, the node computer
can generate a shutdown message based on an inactivity
timer associated with the first network shard. The mnactivity
timer can be a timer that 1s set locally by each node computer
in a shard. The node computer can set the inactivity timer to
a predetermined amount of time. For example, the mnactivity
timer can be set to a value of two times an upper bound on
the message delivery time (e.g., 2A). The node computer can
set the 1nactivity timer to the predetermined amount of time
alter performing an action to which the node computer
expects a response. For example, the actions can include
broadcasting a vote message, broadcasting a pre-commit
message, etc.

For example, it the network shard that the node computer
1s operating within 1s a safe shard, as described herein, the
network shard may not make any progress in creating new
blocks for the blockchain. In this case, the node computer
may generate a shutdown message which may include
details regarding the lack of progress of the network shard
(e.g., rates, times, etc.). The node computer can then trans-
mit the shutdown message to the second plurality of node
computers 1n the second network shard. In some embodi-
ments, the second network shard can be a reference network
shard. The reference network shard can determine to shut-
down the first network shard and distributes the first plural-
ity of node computers to a plurality of additional shards.

For example, one or more node computers 1n the reference
network shard can receive one or more shutdown messages
from a plurality of node computers. If a number of received
shutdown messages of the one or more shutdown messages
1s greater than a shutdown threshold (e.g., n+g+1) associated
with the network shard, then the reference network shard can
assign each node computer of the plurality of node comput-
ers to a null network shard in a node-to-shard table for a
present epoch. For example, A leader node computer in the
reference network shard can further broadcast a propose
table update message comprising the node-to-shard table to
the plurality of node computers 1n the reference network
shard. The leader node computer 1n the reference network
shard can perform a commitment process, along with the
other node computers of the reference network shard, to
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commit the reference network shard to the node-to-shard
table. If the reference network shard commits to the node-
to-shard table, then the node computers of the reference
network shard can broadcast the node-to-shard table to the
network. After receiving the node-to-shard table, the plural-
ity of node computers of the shutdown network shard stop
processing new blocks for the maintained blockchain. The
reference network shard can then reassign new transactions
from the shutdown network shard to an alternative network
shard.
The safe-shard detector ensures the following properties:
Lemma 1. Safe shard detector keeps track of events that
could only happen in a safe shard. Consequently, an
honest node 1 a super-honest shard never sends a
shutdown message, and thus, a super-honest shard 1s
never closed.
Lemma 2. A safe shard either eventually processes trans-
actions, or 1s eventually closed.

Pseudocode 3: Specifications of the safe shard detector.

Let r be an arbitrary honest node 1n a network
shard § whose current leader 1s L 1n view v.
Vote inactivity. After voting for a block By,
set mactivity-timer,, to 2A. Send a
(close, S),. message to the reference network
shard 1f none of the following
happened when inactivity-timer,, 1s 0.
An equivocation proof for L 1s recerved.
A view-change certificate V C(v) 1s recerved.
A block-certificate BC(B;) 1s received.
Precommuit mactivity. After broadcasting
a precommit message for a block
B, set inactivity-timer,. to 2A. Send a
(close, S), message to the reference
network shard if none of the following
happened when inactivity-timer,,. 1s 0.
An equivocation proof for L 1s recerved.
A commuit-certificate CC(B,) 1s received.
Blame mactivity. After broadcasting an
equivocation proof, set mactivity-
timer,; to 2A. If a view-change certificate
VC(v) 18 not received when
inactivity-timer;; 1s O, then send a
(close, S), message to the reference
network shard.
View-change mactivity. After quitting
the view v, set inactivity-timer,,. to
6A. Send a (close, S), message to the
reference network shard if none of
the following happened when mactivity-timer__ 1s O.
A valid block proposal 1s received.
A view-change certificate V C(v + 1) 1s received.
View-change bound. After dommgn - q + 1
view-changes, send a (close, S),
message to the reference network shard.

Pseudocode 4: Steps of closing a network shard during an epoch.
This process can mvolve the reference network shard updating
its node-to-shard and interaction-to-shard tables, and a state
transfer from the closed shard to one of the active shards.

Let Ly be the current leader of the reference network shard
Sz. Upon receiving n — q + 1 shutdown messages from the
nodes of a network shard S., L, initiates the following
protocol to close S, for the ongoing epoch and to enforce S,
transfers its state to one of the active shards S;.

Updating the tables. Ly updates node-to-shard table by
assigning every member of S, to 1, and updates
transaction-to- shard table by reorganizing the
underlying tree structure after removing S,. Suppose S,
1s assigned to transactions which were previously
assigned to S, due to this reorganization.



US 11,902,456 B2

29

-continued

Pseudocode 4: Steps of closing a network shard during an epoch.
This process can involve the reference network shard updating
its node-to-shard and interaction-to-shard tables, and a state
transfer from the closed shard to one of the active shards.

Commuitting to the new tables. Ly proposes updated tables
along with shutdown request to the reference shard.
Nodes of the reference shard runs an SMR protocol
to commut the proposal. Note that, since reference
shard 1s an honest-majority shard, they do not run
the protocol described herein, but rather an SMR
protocol that works under honest-majority.

Broadcasting the new tables. Once proposal 1s commuitted,
L, broadcasts the propose table update message to the
rest of the network which carries the new tables.

Closing the shard and state-transfer. Upon recerving the
proposal and verifying its correctness, nodes of S,
stop to participate in the intra-shard SMR, and nodes
of 5; request the latest state from nodes of S;. Nodes
of S, reply to this request by sending their latest block
headers. After receiving the state of S;, S; starts to
process transactions which were previously assigned to
S. by running an independent SMR instance along

with his running SMR instance(s).

F. Interaction Verification

Next, how interactions (e.g., transactions) are verified will
be described. Each iteraction can have a format and may be
performed on a single-shard or cross-network shard. The
discussion above relates to the ability of the network to
decide on how transactions are written to blockchains on
network shards and how network shards are managed. The
discussion below relates to proving that a client can perform
a transaction prior to one or more network shards including
the transaction in a block.

1. Interaction Format

Various embodiments can utilize the UTXO model where
an interaction contains a set of mputs and a set of outputs.
For example, consider a transaction T with a single mnput I
and a single output O, denoted as:

T_-:(LO)

The output can be an address-value pair, O:=(pk, v),
indicating that v amount of currency should be sent to
address pk. The mput 1s a tuple denoted by,

[:=(0" sig, ME. M (0',5))

where O'.=(ctr, pk', v') refers to an UTXO (e.g., an
available amount), contained 1n the accumulator of some
network shard S with ctr as 1ts addition-order 1n the accu-
mulator, and sig 1s a signature, valid under pk'. Further,

MEM M0’ s) is a membership-proot on O' with respect to
A P9 the latest UTXO accumulator state of S.

2. Single-Shard Verification

As described herein, a hash of a transaction can uniquely
determine which network shard it i1s assigned to. As an
example of a single network shard transaction verification,
consider the transaction T from the previous paragraph. If
the transaction T 1s assigned to the network shard S (e.g.,
determined based on the hash of the transaction T') where O
resides, then verification of transaction T can include: 1)
verilying that the transaction T 1s assigned to the network
shard S by doing a look-up on interactions-to-shard table, 2)
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veritying v'=v and validness of the signature sig under pk',

and 3) veritying MEM Mo sy with respect to the accumu-
lator A.““*“. If the transaction T is verified, the network
shard S can process the transaction T by including 1t 1n the
next block, and consequently removing O' from the accu-
mulator Ar.“**“ and adding O (with an appropriate counter)
to the accumulator A “/*¢.

3. Cross-Shard Verification

Cross-shard verification may be needed when two mnputs
and outputs of a transaction are located 1n different shards.

Let the transaction T:=«1I,, I,>, O, and assume that
UTXOs O, and O, (e.g., the outputs), referenced by I, and
I, (e.g., the inputs), are contained in shards S, and S.,,
respectively. Further, the transaction T can be assigned to
shard S,. Verification of the transaction T can requires a
client device to execute a cross-shard verification protocol.

To create a valid cross-shard transaction, the client device
can first request a proof-of-inclusion (Pol) from the nputs
shards. A Pol attests that the output referenced by an input
1s removed from the UTXO of the network shard maintain-
ing 1t. Specifically, the client device sends the transaction T
(e.g., interaction data) to S, and S,. The network shards S,
and S,: 1) first verity I, and 1,, 2) include (1, 1) and (T, 2)
in their next block, and 3) remove O, and O, from Ag “**¢
and ASEUTXO,, respectively. IT S, 1s the network shard which
removed the output referenced by 1., the respective prooi-
of-inclusion (Pol) 1s denoted as,

Po ) =(M-T(<Ti}r33 B .coMimsy) )

where MT ;5 1s the Merkle-proot on (T, 1) with respect
to block B that contains (1, 1), where 1 refers to which input
of the transaction T 1s processed. Together with the header
of block B”, and the commitment proof on block CO

M sy (e.g., a block commitment proof), one can verify (T,
1) 1s committed by S, and consequently, O, 1s removed from
shard’s state. A block commitment proof can include infor-
mation that proves that the associated block was included 1n
the blockchain. The block commitment proof can be a proof
showing that the block B 1s 1n the ledger of network shard
S.. Each block in the blockchain can include a solved hash
from a parent (e.g., previous) block in the blockchain. The
block commitment proof, in some embodiments, can include
at least the solved hash from the parent block. Each new
block includes the parent block’s hash and thus ensures a
chronological block order.

Depending on whether I, and I, are valid (e.g., they refer
to valid UTXOs 1n their respective shards), there are three
possible cases of how the transaction T can be processed,
cach of which are described below.

Both I, and I, are valid. S, and S, process the transaction

T, so client obtains both PO I<1’1,51} and PO ¢ ,.S-) . The client
device then creates the commit transaction,

7., =(TPO 1(f1:51> PO I<fz-52> ),

and sends 1t to S;. Upon receiving T__ ., S; can first
verifies O, -v,+0,-v,=0,-v;, and then verifies the Pols. Veri-

fication of a PO {1359 can include the following steps: 1)
deducing S, from the block header B”, 2) verifying CO

M sy with identity of S, and 3) verifying the Merkle roof
on (T, 1) with respect to B”. Given both I,, and 1, are valid,
both Pols are valid too. Thus, S; includes T in the next

block, and adds O, 1n ASIUTXO.

COm?
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Only one of I, and I, 1s valid. Without loss of generality,
assume I, 1s valid and I, 1s not valid. In this case, the client

device only receives PO Li,,s1) . This violates atomicity as
only O, 1s removed. However, embodiments allow the client
device to refund the amount of O, by sending, to S;, a refund
transaction to ensure consistency:

1,.~(LPO [ {1.51)),

to S;. Upon recetving T, . S; verifies the only Pol,
includes T,_,in the next block, and adds O'; in A “**“ such
that O',Vv';=0,v,.

Both I, and I, are invalid. In this case, the client device
does not recerve any Pol, and hence, the client device cannot
create any valid cross-shard transaction.

FIG. 8 shows a flowchart of a cross shard verification
method according to embodiments. The method illustrated
in FIG. 8 will be described in the context of a transaction
being processed and verified 1 a cross shard manner. In
particular, a user can utilize a client device to request a
transaction be included in a block of a blockchain. The
inputs for the transaction may come from two diflerent
outputs included 1n blockchains of two different shards. The
user may attempt to perform the transaction with a third
shard using the two inputs maintained by a first shard and a
second shard.

Prior to step 810, the client device 800 can obtain inter-
action data for an interaction. For example, the client device
800 can receive nteraction data from a resource provider
computer or other suitable device. The interaction data can
include any suitable data related to the interaction that the
client device 800 1s attempting. For example, the interaction
data can include an amount, a resource provider computer
identifier, a date, 1tem 1dentifiers, etc.

At step 810, the client device 800 can provide a first proof
request comprising a request for a first prootf-of-inclusion
from a first network shard 801 that maintains a first block-
chain. The first proof-of-inclusion can be a proof that the
client device 800 1s associated with an unspent (or otherwise
available) amount (e.g., a first amount). For example, the
client device 800 may be associated with a first amount that
1s included into a block of the first blockchain. The first
prool request can also comprise first interaction data asso-
ciated with the first amount. The first amount can be a
unspent transaction amount that 1s still available to the user
(e.g., a UTXO). The first interaction data can be interaction
data from a previous transaction (e.g., a {irst transaction).
The first proof-of-inclusion can include a Merkle-proot on
the first transaction that 1s included in a block of the first
blockchain, the header of the block, and a commitment proof
on the block.

At step 812, any suitable node computer of the first
network shard 801 that receives the request from the first
proof-of-inclusion from the client device 800 can determine
whether or not the request can be fulfilled. For example, the
node computer of the first network shard 801 can verily that
the first amount 1s included 1n the blockchain by evaluating
a current amount set (e.g., a UTXO set). In some embodi-
ments, the amounts can be accumulated into an accumulator,
as described herein. The node computer can evaluate
whether or not the first amount 1s included into the accu-
mulator.

In some embodiments, prior to providing the first prooi-
of-inclusion to the client device 800, the node computer of
the first network shard 801 can remove the first amount from
the accumulator. As such, the prootf-of-inclusion can attest
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that the output referenced by an 1nput 1s removed from the
UTXO of the network shard maintaining the first amount.

At step 814, the node computer of the first network shard
801 provides the first proof-of-inclusion to the client device
800.

At steps 816-820, the client device 800 can request a
second proof-of-inclusion from a second network shard 802.
For example, the client device 800 can provide a second
prool request comprising a request for a second prooi-oi-
inclusion from a second network shard maintaining a second
blockchain. The second proof-of-inclusion can be a proof
that a second amount 1s available 1n the second blockchain
maintained by the second network shard 802. The steps
816-820 arc similar to the steps 810-814, and the descrip-
tions thereof not be repeated here. Furthermore, steps 816-
820 may occur belore, during, or after steps 810-814. In
some embodiments, the client device 800 can request one or
more prooi-of-inclusions from one or more shards.

At step 822, after receiving the first proof-of-inclusion
from a first node computer of the first network shard 801 and
the second proof-of-inclusion from a second node computer
of the second network shard 802, the client device 800 can
generate a commit 1nteraction request message comprising
the interaction data, the first proof-of-inclusion, and the
second proof-of-inclusion.

At step 824, the client device 800 can provide the commiut
interaction request message to a third network shard 803
maintaining a third blockchain.

At step 826, a node computer of the third network shard
803 can verily the first proof-of-inclusion and the second
proof-of-inclusion. For example, the node computer can
verily the first proof-of-inclusion by first determining from
which shard the first proof-of-inclusion originates. The node
computer can determine the originator shard based on the
block header included in the first proof-of-inclusion. For
example, the block header can include a network shard
number or first shard public key that can be utilized to
determine that the first proof-of-inclusion originated from
the first network shard.

After determining the originator shard of the first prooi-
of-inclusion, the node computer of the third network shard
803 can verily the commitment prooil that the block 1is
included 1n the first blockchain.

After veritying the block commitment proof, the node
computer of the third network shard 803 can verity that the
transaction associated with the first amount 1s included 1n the
Merkle root of the block header included 1n the first prooi-
of-inclusion.

If the node computer of the third network shard 803
determines that first proof-of-inclusion originated from the
first network shard, 1s associated with the first transaction
that 1s included 1n a block, and that the block 1s included 1n
the first blockchain, then the node computer can determine
that the first proof-of-inclusion is valid. The node computer
of the third network shard 803 can also validate the second
proof-of-inclusion 1n a similar manner. The node computer
of the third shard 803 can validate any suitable number of
proof-of-inclusions.

At step 828, after validating the first proof-of-inclusion
and the second proof-of-inclusion, the node computer of the
third shard 803 can determine whether or not the user has
enough funds as indicated by the first amount and the second
amount, respectively associated with the first proof-of-in-
clusion and the second proof-of-inclusion. For example, the
first amount and the second amount may be greater than or
equal to the current transaction amount (e.g., a third
amount). In some embodiments, the node computer of the
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third network shard 803 can perform step 828 before step
826 based on the alleged amounts that the client device 800
claims to have.

At step 830, after determining that the user of the client
device 800 can perform the transaction, the node computer
of the third network shard 803 can include the third trans-
action into a next block to propose to the plurality of node
computers of the third network shard 803. The plurality of
node computers can commit to the block as described herein
and include the block with the third transaction nto the third
blockchain of the third network shard 803.

In some embodiments, at step 832, a node computer of the
third network shard 803 can provide a confirmation response
to the client device 800 that indicates that the third trans-
action 1s included 1nto the third blockchain. For example, the
client device can receive an interaction response message
from node computer of the third network shard 103. The
interaction response message can indicate that the interac-
tion data 1n included 1n the third blockchain.

4. Replay Attacks

Various embodiments provide for the technical advantage
of immunity to replay attacks. As shown by Sonnino et al.
[7]., cross-shard protocols of Omnil.edger [4] and Rapid-
Chain [5] are susceptible to replay attacks. The cross-shard
protocol described herein can be resilient to replay attacks as
described below.

Consider the transaction T:=X1,, I,?, O} and suppose
both I, and I, are valid so that the client device eventually
creates the valid commit transaction T___. Upon receiving
T ., the network shard S; includes it in a block and creates
;. An adversary could attempt to send T, to the network
shard S; multiple times so that the output O, 1s created in the
network shard S; more than once as the verification passes
each time.

To prevent this, shards can keep track of Pols they
processed. However, simply keeping a log of Pols can
require nodes to maintain an ever-growing list. To remedy
this problem, embodiments can utilize an additional accu-
mulator. That 1s, a network shard S maintains an accumu-
lator A.;"“" on the set of processed Pols, and whenever a
client device executes a cross-shard transaction with outputs
to be created 1n S, the client device must provide valid
non-membership proofs on Pols to this accumulator.

For example, the updated commit transaction T

given by,

1S

COFFLERL

T NMEMror., s, NMEM Mrorg, ),

COFY

I

cormm="
CORF

where NMEMeor, s, 1S a non-membership proof on
POl:.sy with respect to accumulator A.”%’. Further, by
extending the block headers to maintain Pol accumulators,
embodiments do not need modily the state transfer protocol
to transier the state processed Pols.

5. Resetting Mempool Problem

Another technical problem with stateless blockchains 1s a
resetting mempool problem. Consider a user that submits a

valid transaction tx to the network when the height of the
blockchain 1s k (e.g., Bk 1s at the tip of blockchain). If the

network extends the blockchain with Bk+1 which excludes
tx, tXx becomes an invalid transaction with respect to the new
state of the blockchain. Overall, whenever a new block 1s
added to the blockchain, all the transactions in mempool
become 1nvalid because their membership proofs were cre-
ated with respect to the old state. This can significantly
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reduce the throughput of the system. To prevent this, accord-
ing to various embodiments, miners can cache the last c
accumulators along with the processed transactions in the
last ¢ blocks where ¢ could be an arbitrarily defined constant
number. Then, a miner can consider a transaction valid if 1t
1s valid with respect to any of the cached accumulators and
1s not 1ncluded 1n the cached processed transactions.

(. Shard Reconfiguration

To defend against adaptive adversaries who can corrupt
new nodes over time, embodiments can shuffle nodes across
shards. If f the configuration of the network shards stay the
same, an adversary can focus on corrupting nodes 1n a single
shard and eventually might take over it. A single super-
corrupt shard 1s sufficient to violate the integrity of the whole
protocol. To solve this problem, at the end of each epoch,
nodes can generate a distributed randomness and are
assigned to new shards based on the computed random
value. Once a node 1s assigned to a new shard, the node gets
the latest state of the node’s new shard from the nodes who
were 1n the network shard 1n the previous epoch.

VI. Configurable Quorums 1n Partial Synchrony

How to extend adjustable quorum 1dea to partial syn-
chrony setting 1s described. In this setting, synchrony may
not be relied upon to detect equivocation but rather, have to
ensure non-equivocation by only using quorum certificates.

In the partially synchronous setting, safety and liveness of
the BFT consensus protocols are ensured by setting the
quorum size g to a value such that: (1) (safety) any two set
of size g intersects in at least one honest node and (i1)
(liveliness) there exists at least g honest nodes. First property
helps an honest node to be convinced of non-equivocation
without needing to use the message delay bound A. Second
property allows honest nodes to make progress independent
of corrupt nodes.

Now consider a group of m nodes such that f of them are
corrupt. It can be seen that the minimal g value that ensures
the safety property 1s

m+ f+1
2

q:

Also, 1f the number of honest nodes 1s greater than or equal
to q (e.g., m—1>q) liveness 1s also ensured. So, 1f embodi-
ments sample shards of size m such that there exists a known
upper bound f on the number of corrupt nodes for each
shard, embodiments can ensure safety for each by setting g
as above. Further, shards who have q or more honest nodes
are able to make progress.

However, the problem 1n partial synchrony setting arises
when embodiments consider cross-shard transactions or in
general, external provability of commits. Suppose there 1s an
external observer who queries a network shard. To proceed
correctly, he has to get reply from at least one honest node.
In the synchronous setting, he knows how much he has to
wait, 1.e., A 1s known, until he gets the replies of honest
nodes. In the partial synchrony setting however, he has to
wait until he gets {41 messages until he can proceed. Now
if number of honest nodes 1s less than {41, corrupt nodes can
stall the progress simply by remaining silent. To avoid this,
embodiments may ensure each shard has at least {41 honest
nodes 1.e., each shard can consist of honest-majority.
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With honest-majority requirement, the minimal quorum
size may be

2F+1+ f+1
- 2

g —15fF+1.

Wrapping up, 1n partial synchrony setting, embodiments
may ensure that all shards are honest-majority except with
negligible probability. In such a setting, only those who have
more than 75% honest are able to make progress. As before,
those shards who can make progress may be referred to as
super-honest and the rest as safe. FIG. 9 illustrates how
various embodiments compares to Omnil.edger in a network
of size N=1800 with F=25% corruption.

The network shard size unlike the quorum size as in
synchronous setting can be optimized. Authors of [4] report
shard size m=600 1n a network of size N=1800 with V4
resiliency. This gives them a time-to-failure of 230 years and
3 shards that can process transactions in parallel. FIG. 10
illustrates an adjustable quorum according to embodiments
in the same setting. FIG. 10 1llustrates how shard size affects
time-to-failure 1n partial synchrony. As can be seen, with a

network shard size of 80, results 1n about 12 super honest
shards all of which can make progress. The increase in the
degree of parallelism 1s 4 times of Omnil.edger.

FIG. 11 shows a plot quorum size according to embodi-
ments. FIG. 11 illustrates the time until the first super-
corrupt committee 1102, the expected safe committees 1104,
and the expected super-honest committees 1106 as a func-
fion of quorum size. As the quorum size increases 1n this
example system, the time until the first super-corrupt com-
mittee (e.g., the time to failure) increases, the expected safe
committees increases, and the expected super-honest com-
mittees decrease.

VIIL. Security Analysis
A. Proof of Intra-Shard Consensus

Proofs of safety and liveness may be provided for a
network shard-wise consensus protocol 1n this section. The
proofs can be similar to the proofs of Sync HotStuff [25]
with a few modifications, and their terminology of direct/
indirect commuits 1s adopted here. In what follows, 1n some
embodiments, a block B, 1s committed directly 1f an honest
node commits 1t by obtaining a commit-certificate on it.
Otherwise, a say a block B, 1s committed indirectly 1f 1t 1s
a result of directly committing a block extending B,.

If an honest node broadcasts a pre-commit message on a
block B, in a view, then, (1) every honest node votes for B,
in that view, and, (11) every honest node receives C(B,)
before entering the next view.

Proof. Suppose an honest node p broadcasts a pre-commit
message for B, at time t in view v. This implies p have
received and voted for B, at t—2A. Further, his pre-commit
message 1s received by every honest node by t—A.

S0, at t—A, every honest node may have voted for B,
unless (1) they have voted for another block B', or (1) they
have received and broadcast q blame messages before t—A.
However, if either of these had happened, p would not have
broadcast pre-commit as he would receive them by t.

Thus, at time t—A, all honest nodes are 1in view v and vote
for B,. Moreover, they do not enter a new view until t+A and
by then, they receive the pre-commit message of p which
also contains C(B,).
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If an honest node broadcasts a pre-commit message on a
block B,, then there does not exist C(B,.) where B',#B,.

Proof. Suppose an honest node p broadcasts a pre-commuit
message on B, in view v. It 1s shown a conflicting certificate
does not exist prior to, in, or after view v. Firstly, 1f
conflicting certificate exists prior to view v, then at least one
of the votes comes from an honest node. This vote would
have reached p before view v and would have prevented p
from broadcasting pre-commit. Secondly, by Lemma 0.1, all
honest nodes vote for B, in view v. Thus, a conflicting
height-k certificate cannot be formed 1n view v. Lastly, again
by Lemma 0.1, every honest node receives C(B,) before
entering view v+1, and,s there was no conflicting height-k
certificate up unfil then. From then on, the highest certified
block of every honest node 1s at least B, and no honest node
will vote for a height-k block any more. Thus, no C(B')
where B,#B, can come into existence 1n views greater than
v. (Safety). Honest nodes always commit the same block B,
for each height k.

Proof. Suppose for contradiction that two distinct blocks
B, and B,, are committed at height k. Suppose B, 1s com-
mitted as a result of B, being directly commuitted 1n view v
and B,, 1s committed as a result of B, being directly
committed 1n view v'. This implies B, extends B, and B,
extends B,, Without loss of generality, assume 1<I' By

LLemma 0.1, there exists no other certified block at height 1.
If 1=1', then B,,=B,, if I<I', then B, extends B,. In either case,

B,=B,.

(Liveness). (1) A view change will not happen if the
current leader 1s honest; (11) A Byzantine leader can propose
p blocks 1n (2p+1)A time to avoid a view change; and (111)
If k 1s the highest height at which some honest node has
committed a block in view v, then leaders in subsequent
views can propose blocks at heights higher than k.

Proof. For (1), note that an honest leader L 1s able to
propose p blocks in (2p+1)A time. Immediately after enter-
ing 1ts view, L. needs A time to gather status; after that, it can
propose a block every 2A time: one A for its proposed block
to reach all nodes and another A for other nodes votes to
arrive. Thus, an honest leader has sufficient time and does
not equivocate, so it will not be blamed by any other honest
node. On the other hand, 1f a Byzantine leader delays beyond
the above allotted time, 1t will be blamed by all honest
nodes. For part (111), observe that all honest receive C(B,)
due to Lemma 0.1. Hence, 1n status of subsequent views,
they all report a certified block at height at least k. If the
leader does not propose a block with a height higher than k
within 3A, 1t will be blamed by all honest nodes.

B. Proof of Safe Shard Detector

Proof. Let p be an honest node 1n a super-honest shard S..
Consider the vote 1nactivity case described 1n section IV.C.
After p votes for a block B, 1t may be known that all honest
nodes vote for B, within A unless they receive either an
equivocating block for L. or g blame messages on v before
receiving B,. If the latter case happens, p receives the
equivocating blocks or the blame certificate on v within 2A.
In the former case which all honest nodes vote for B,, p
receives at least g votes on B, within 2A. So, if none of these
had happened, it can be the case that S; 1s a safe shard.

Similarly, for pre-commit 1nactivity case, after p broad-
casts a pre-commit for a block B, at time t, either all honest
nodes broadcast a pre-commit for B, until t+A, or the corrupt
leader will send an equivocating block to some of the nodes
to prevent them from broadcasting pre-commit which can be
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received by them until t+A. So, by t+42A, p recetrves either an
equivocating block for L or at least q pre-commit messages
on B,.

For blame inactivity, suppose p receives and broadcasts an
equivocation proof at time t. Every honest node receives the

equivocation proolf by t+A and they broadcast a blame
message once they do. So at least q blames can be recerved
by p until t+2A.

For view-change 1nactivity, suppose p enters a new view
at t. Then every honest node enters the new view by t+A the
latest. If leader does not propose to any of them, within 3A,
at least g blame messages will be accumulated by p by t+3A
the latest. Otherwise, p receives leader’s proposal from
another node’s re-proposal by t+5A the latest.

Finally, the last point 1s due to the fact that the number of
corrupt nodes 1n a super-honest shard 1s at most m—q. So,
there can be at most m—q view-changes within an epoch in
a super-honest shard. So, a node who does more than m-q
view changes can be 1n a safe-shard.

Proof. Due to Lemma 1, 1t can be seen that, corrupt nodes
in a safe shard eirther has to produce valid blocks or do
view-changes to avoid honest nodes from sending shutdown
requests. Since the number of view-changes that can be done
1s bounded, a safe shard either builds a chain or shutdown.

Embodiments of the mvention have a number of advan-
tages. For example, a plurality of shards, where a network
shard includes a plurality of nodes, can create blocks for a
blockchain maintained at each shard. Interaction processing
throughput can be high due to many shards being present in
embodiments. In some cases, more shards may be created
for a system since smaller shards can be created according
to embodiments, than in prior works. All of this can be done
while also having a high time to failure, as described above.

Although the steps 1n the flowcharts and process flows
described above are illustrated or described 1n a specific
order, 1t 1s understood that embodiments of the invention
may include methods that have the steps in different orders.
In addition, steps may be omitted or added and may still be
within embodiments of the invention.

Any of the software components or functions described 1n
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C, C++, C#, Objective-C,
Swilt, or scripting language such as Perl or Python using, for
example, conventional or object-oriented techniques. The
soltware code may be stored as a series of instructions or
commands on a computer readable medium for storage
and/or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a tloppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital
versatile disk), flash memory, and the like. The computer
readable medium may be any combination of such storage or
transmission devices.

Such programs may also be encoded and transmitted
using carrier signals adapted for transmission via wired,
optical, and/or wireless networks conforming to a variety of
protocols, including the Internet. As such, a computer read-
able medium according to an embodiment of the present
invention may be created using a data signal encoded with
such programs. Computer readable media encoded with the
program code may be packaged with a compatible device or
provided separately from other devices (e.g., via Internet
download). Any such computer readable medium may reside
on or within a single computer product (e.g. a hard drive, a
CD, or an entire computer system), and may be present on
or within different computer products within a system or
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network. A computer system may include a monaitor, printer,
or other suitable display for providing any of the results

mentioned herein to a user.

The above description 1s 1llustrative and 1s not restrictive.
Many variations of the mvention will become apparent to
those skilled 1n the art upon review of the disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description, but instead should
be determined with reference to the pending claims along
with their full scope or equivalents.

One or more features from any embodiment may be
combined with one or more features of any other embodi-
ment without departing from the scope of the invention.

As used herein, the use of “a,” “an.” or “the” 1s intended
to mean “at least one,” unless speciﬁcally indicated to the
contrary.
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What 1s claimed 1s:

1. A method comprising:

broadcasting, by a node computer, a propose message

comprising a new block of transactions for a block-
chain and a previous block certificate for a previous
block to a plurality of node computers 1n a network
shard, the previous block certificate including data
indicating that the previous block was committed to the
blockchain which comprises a threshold signature that
was generated based on a quorum of signed vote
messages for the previous block from nodes in the
network shard, the plurality of node computers in the
network shard being a sub-group of node computers in
a computer network comprising a plurality of network
shards including the network shard;

recerving, by the node computer, at least one vote mes-

sage from the plurality of node computers after the
plurality of node computers verily the previous block
certificate, the at least one vote message indicating
verification of the new block of transactions;

alter a predetermined amount of time, receiving, by the

node computer, a plurality of pre-commit messages
comprising at least the new block of transactions and a
new block certificate created based on the at least one
vote message; and

if a number of received pre-commit messages of the

plurality of pre-commit messages 1s greater than a
quorum value associated with the network shard, com-
mitting, by the node computer, the new block of
transactions to the blockchain.

2. The method of claim 1, wherein the propose message
comprises a view number.

3. The method of claim 1, wherein the plurality of node
computers in the network shard are a first plurality of node
computers 1 a first network shard maintaiming the block-
chain which 1s a first blockchain, wherein the quorum value
1s a first quorum value, and wherein a second plurality of
node computers 1 a second network shard maintaining a
second blockchain i1s associated with a second quorum
value.

4. The method of claim 3 further comprising;:

generating, by the node computer, a shutdown message

based on an inactivity timer associated with the first
network shard; and

transmitting, by the node computer, the shutdown mes-

sage to the second plurality of node computers 1n the
second network shard, wherein the second network
shard 1s a network reference shard, wherein the refer-
ence network shard determines to shutdown the first
network shard and distributes the first plurality of node
computers to a plurality of additional shards.

5. The method of claim 3, wherein prior to broadcasting,
the propose message, the method further comprises:

receiving, by the node computer, a commit interaction

request message from a client device, the commiut
interaction request message comprising interaction data
and one or more proof-of-inclusions created by one or
more shards, wherein at least one proof-of-inclusion of
the one or more proof-of-inclusions is created by the
second network shard;

veritying, by the node computer, the one or more prooi-

of-inclusions; and

11 the one or more proof-of-inclusions are valid, including,

by the node computer, at least the interaction data in the
new block.
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6. The method of claim 1, wherein the new block com-
prises a block header and a block body, wherein the block
header 1s a tuple comprising at least an accumulator value.

7. The method of claim 6, wherein aifter committing the
new block to the blockchain the method further comprises:

removing, by the node computer, the block body from a

memory of the node computer.

8. The method of claim 1, wherein the plurality of node
computers 1n the network shard includes 20 to 200 node
computers, and wherein the quorum value 1s 1n a range of 25
to 40.

9. The method of claim 1 further comprising:

after receiving, the plurality of pre-commit messages,

veritying, by the node computer, the plurality of pre-
commit messages.

10. The method of claim 1, wherein the transactions are
payment transactions.

11. A node computer comprising;

a hardware processor, and

a non-transitory computer readable medium coupled to

the hardware processor, the non-transitory computer

readable medium comprising code, executable by the

hardware processor, to implement a method compris-

ng:

broadcasting a propose message comprising a new
block of transactions for a blockchain and a previous
block certificate for a previous block to a plurality of
node computers in a network shard, the previous
block certificate including data indicating that the
previous block was committed to the blockchain
which comprises a threshold signature that was gen-
crated based on a quorum of signed vote messages
for the previous block from node computers 1n the
network shard, the plurality of node computers 1n the
network shard being a sub-group of node computers
in a computer network comprising a plurality of
network shards including the network shard;

receiving at least one vote message from the plurality
of node computers after the plurality of node com-
puters verily the previous block certificate, the at
least one vote message indicating verification of the
new block of transactions;

alter a predetermined amount of time, receiving a
plurality of pre-commit messages comprising at least
the new block of transactions and a new block
certificate created based on the at least one vote
message; and

i a number of received pre-commit messages of the
plurality of pre-commit messages 1s greater than a
quorum value associated with the network shard,
committing the new block of transactions to the
blockchain.

12. The node computer of claim 11, wherein the propose
message comprises a view number, wherein each pre-com-
mit message of the plurality of pre-commit messages com-
prises the view number, and wherein the method further
COmMprises:

after receiving, the plurality of pre-commit messages,

verilying the plurality of pre-commit messages using at
least the view number in each pre-commit message.

13. The node computer of claim 11, wherein prior to
broadcasting the propose message, the method further com-
Prises:

receiving a commit interaction request message from a

client device, the commit interaction request message
comprising interaction data and one or more prooi-oi-
inclusions:
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verifying, by the node computer, the one or more prooi-
of-inclusions; and

11 the one or more proof-of-inclusions are valid, including,
by the node computer, at least the interaction data in the
new block.

14. The node computer of claim 11, wherein the network
shard 1s a network reference shard and the node computer 1s
a first node computer and 1s a current leader of the reference
network shard maintaining a first blockchain, wheremn a
second plurality of node computers 1 a second network
shard maintain a second blockchain, and wherein the
method further comprises:

recerving one or more shutdown messages from the
second plurality of node computers;

11 a number of received shutdown messages of the one or
more shutdown messages 1s greater than a shutdown
threshold associated with the second network shard,
assigning each node computer of the second plurality of
node computers to a null network shard i1n a node-to-
shard table for a present epoch; and

reassigning new transactions from the second network
shard to a third shard.

15. The node computer of claim 14, wherein a network
comprises a plurality of shards including the reference
network shard and the second network shard, and wherein
the method further comprises:

broadcasting a propose table update message comprising
the node-to-shard table to the plurality of node com-
puters 1n the reference network shard;

performing a commitment process to commit the refer-
ence network shard to the node-to-shard table; and

if the reference network shard commits to the node-to-
shard table, broadcasting the node-to-shard table to the
network, wherein after receiving the node-to-shard
table, the second plurality of node computers stop
processing new blocks for the second blockchain.

16. The node computer of claim 11, wherein the method

further comprises:

prior to broadcasting the propose message, generating the
new block, wherein the new block comprises a block

header and a block body.

17. The node computer of claim 16, wherein the block
header 1s a tuple comprising at least an accumulator value,
a block height, an epoch number, a root of a Merkle tree, and
a digest of a previous block header of the previous block 1n
the blockchain, wherein generating the new block com-
Prises:

determining the accumulator value using an accumulator

over one or more latest amounts of the blockchain.

18. The node computer of claim 17, wherein after com-
mitting the new block to the blockchain the method further
COmMprises:

removing the block body from a memory of the node

computer.

19. The node computer of claim 11, wherein the plurality
of node computers 1n the network shard are a first plurality
of node computers 1n a first network shard maintaining the
blockchain which 1s a first blockchain, wherein the quorum
value 1s a first quorum value, and wherein a second plurality
of node computers 1n a second network shard maintaining a
second blockchain i1s associated with a second quorum
value, wherein the first network shard and the second
network shard include a same number of node computers,
and wherein the first quorum value 1s equal to the second
quorum value.



US 11,902,456 B2
43

20. The node computer of claim 11, wherein the quorum
value 1s a predetermined value.
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