12 United States Patent
Wall et al.

US011909868B2

US 11,909,868 B2
*“Feb. 20, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(63)

(1)

(52)

(58)

ORTHOGONAL ACCESS CONTROL FOR
GROUPS VIA MULIT-HOP TRANSKFORM
ENCRYPTION

Applicant: IronCore Labs, Inc., Boulder, CO (US)

Inventors: Robert L. Wall, Bozeman, MT (US);
Patrick Joseph Walsh, Boulder, CO
(US)

Assignee: IronCore Labs, Inc., Boulder, CO (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 336 days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 17/471,341

Filed: Sep. 10, 2021

Prior Publication Data

US 2022/0116207 Al Apr. 14, 2022

Related U.S. Application Data

Continuation of application No. 16/845,678, filed on
Apr. 10, 2020, now Pat. No. 11,146,391, which 1s a

(Continued)
Int. CL
HO04L 9/08 (2006.01)
GO6F 21/60 (2013.01)
(Continued)
U.S. CL
CPC HO4L 9/0836 (2013.01); GO6L 21/604

(2013.01); GO6F 21/606 (2013.01);

(Continued)

Field of Classification Search
CPC ... HO4L 9/0836; HO4L. 9/0825; HO4L 9/0833;
HO41. 9/0838; HO4L 9/0861; HO4L, 9/14;:

(Continued)

100

Private Key Public Key
104 106

Transform -~z
Key 112 1P¥

o e

-

124

!

n, Transionm

Private Key Public Key
126

(56) References Cited
U.S. PATENT DOCUMENTS
8,094,810 B2 1/2012 Hohenberger et al.
8,515,058 Bl1* 82013 Gentryoevvvvvennn, HO041. 9/008
380/28
(Continued)
FOREIGN PATENT DOCUMENTS
CN 102655508 B 3/2015
EP 2680486 A1 * 1/2014 HO041. 9/08
(Continued)

OTHER PUBLICATIONS

NPL Search History (Year: 2023).*
(Continued)

Primary Lxaminer — Samson B Lemma
Assistant Examiner — Richard W Cruz-Franqui

(74) Attorney, Agent, or Firm — Neugeboren O’Dowd PC

(57) ABSTRACT

Disclosed 1s an orthogonal access control system based on
cryptographic operations provided by multi-hop proxy re-
encryption (PRE) that strictly enforces only authorized
access to data by groups of users, scalable to large numbers
of users. Scalable delegation of decryption authority can be
shared with a plurality of members of a group whether those
members be users or devices, and members of a group can
turther create sub groups and delegate decryption authority
to those members, whether users or devices. Members are
granted access via generation of transform keys, and mem-
bership or access can be revoked merely be deleting the

transform key—mno elimination of the encrypted data,
regardless of 1ts storage location, 1s needed.

19 Claims, 34 Drawing Sheets

Key Server
102

‘ Public Keys Il Tmé‘:;grm :I
CEnerypte¢ b .
Private Key | }f:ggz ?;Ei .
Storage , oY d |

29 JRONS

. S S |
| Privale Key Public Key
108 110

—_—_— — — —

.
1t

., 3 — -
B Key 116 /| Transfﬂ;r;\

Key 118

| . - :
Transiorm -q';ﬁ‘x y ‘p*a\ Transionm P Trensform -
P ol v .af BN (ransform
Key 132 L. 7 Key 134 \"? Key 136 t{‘ Key 138
Device 1 Device 2 PDevice 3 Device 4
8 o e o . e 0%
e M ¥ \\.___,/ l\"'-,.__.r/ h: .,H_____,./"l \"'\.H__.___ ; _ /’/
Privaie Key Public Key§ | Private Key Public Key Private Key Public Key ' Private Key Public Key
145 142 144 146 148 150 ' 152 154

US 11,909,868 B2
Page 2

Related U.S. Application Data

continuation of application No. 15/965,463, filed on
Apr. 27, 2018, now Pat. No. 10,659,222.

(60) Provisional application No. 62/491,982, filed on Apr.

28, 2017.
(51) Int. CL

HO4L 9/14 (2006.01)

GO6F 21/62 (2013.01)
(52) U.S. CL

CPC ... GO6F 21/6209 (2013.01); HO4L 9/0825

(2013.01); HO4L 9/0833 (2013.01); HO4L
9/0838 (2013.01); HO4L 9/0861 (2013.01):
HO4L 9/14 (2013.01); HO4L 2209/76
(2013.01)

(58) Field of Classification Search
CPC . HO4L 2209/76; HO4L 9/3073; GO6F 21/604;
GO6F 21/606; GO6F 21/6209

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,601,263 Bl 12/2013 Shankar et al.

9,203,815 B1* 12/2015 Bogorad GO6F 21/604
9,344,276 B2 5/2016 Kawai et al.

9,800,533 B2 1/2018 Chazalet et al.

11,146,391 B2 10/2021 Wall et al.
2001/0014158 Al 8/2001 Baltzley
2005/0091381 Al 4/2005 Sunder Rajan

2008/0059787 Al* 3/2008 Hohenberger HO4L 9/3073
713/153

2008/0162939 Al* 7/2008 Lee ...oooovvvvvvivrnnnnnn, HO4L 63/083
713/171

2010/0095118 Al1* 4/2010 Meka GO6F 21/6227
713/168

2010/0306530 Al* 12/2010 Johnson GO6F 21/6218
380/282

2013/0212388 Al 8/2013 D’Souza et al.

2014/0075518 Al 3/2014 D’Souza et al.

2014/0208117 Al1* 7/2014 Hayashi HO4L 9/0869
713/171

2014/0279557 Al 9/2014 Abou-Nasr et al.

2015/0222604 Al* 8/2015 Ylonen HO4L 9/3263
713/171

2015/0222605 Al 8/2015 Ignatenko et al.

2015/0271153 Al1* 9/2015 Rohloff HO4L 63/0471
713/153

2015/0288527 Al 10/2015 Vanstone

2016/0182467 Al* 6/2016 Hang HO4L 63/0464
713/153

2016/0182473 Al 6/2016 Cignett1 et al.

2016/0234012 Al* 8/2016 Kawal HO4L 9/0861

2016/0352689 Al 12/2016 Antipa

2017/0155628 Al* 6/2017 Rohloff HO4L 63/02

2020/0259639 Al 8/2020 Wall et al.

FOREIGN PATENT DOCUMENTS

WO 2011045725 Al 4/2011
WO 2015101533 Al 7/2015
WO WO-2015101533 Al * 7/2015 ... HO4L 63/0464

OTHER PUBLICAITONS

Notice of Grounds for Rejection received for Korean Patent Appli-
cation Application No. 10-2019-7034487 dated Mar. 3, 2023, 23

pages.

Horbach, Christian, “Extended Furopean Search Report Regarding
European Application No. 18790890.0”, dated Nov. 30, 2020, p. 9,
Published in: EP.

EPO, “Communication Pursuant to Article 94(3) EPC Regarding
European Application No. 18790890.0”, dated Sep. 14, 2021, p. 4,
Published in: EP.

Kilburn & Strode LLP, “Response to Oflice Action Regarding
European Patent Application No. 18790890.0”, dated Jun. 28, 2021,
p. 21, Published in: EP.

Cruz-Franqui, Richard W., “Oflice Action Regarding U.S. Appl. No.
15/965,463”, dated Feb. 21, 2019, p. 26, Published in: US.
Cruz-Franqui, Richard W., “Oflice Action Regarding U.S. Appl. No.
15/965,463”, dated Jul. 27, 2018, p. 36, Published in: US.
Cruz-Franqui, Richard W, “Ofhice Action Regarding U.S. Appl. No.
15/965,463”, dated Sep. 30, 2019, p. 29, Published in: US.
Gruber, Stephen, “Response to Oflice Action Regarding U.S. Appl.
No. 15/965,463”, dated Apr. 22, 2019, p. 19, Published in: US.
Gruber, Stephen, “Response to Oflice Action Regarding U.S. Appl.
No. 15/965,463”, dated Jun. 21, 2019, p. 17, Published in: US.

Gruber, Stephen, “Response to Oflice Action Regarding U.S. Appl.
No. 15/965,463, dated Oct. 29, 2018, p. 25, Published in: US.

Gruber, Stephen, “Response to Oflice Action Regarding U.S. Appl.
No. 15/965,463”, dated Dec. 5, 2019, p. 13, Published in: US.
Nickitas-Etienne, Athina, “International Preliminary Report on Pat-
entability Regarding International Application No. PCT/US2018/
0299757, dated Oct. 29, 2019, p. 10, Published in: CH.

Ateniese, et al., “Improved Proxy Re-Encryption Schemes With
Applications to”, Feb. 3, 2015, p. 25, Publisher: Proceedings of the
12th Annual Network and Distributed System Security, Published
in: US.

Blaze et al., “Atomic Proxy Cryptography”, Feb. 23, 1998, pp. 1-10.
Cal, et al., “A Multi-Use CCA-Secure Proxy Re-Encryption Scheme”,
Aug. 24, 2014, p. 6, Publisher: 2014 IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing,
Published in: CN.

Hohenberger, Susan, “600.641—Special Topics in Theoretical Cryp-
tography; Lecture 17: Re-Encryption”, Apr. 2, 2007, p. 6, Publisher:
Johns Hopkins University, Published in: US.

Wall et al., “Cryptographically Enforced Orthogonal Access Control
at Scale”, SCC’18, Jun. 4, 2018, Songdo, Incheon, Korea, Jun. 4,
2018, pp. 57-65.

Wang, et al., “A Fully Secure Unidirectional and Multi-Use Proxy”,
Nov. 9, 2009, p. 3, Publisher: 16th ACM Conference on Computer
and Communications Security, Published in: US.

Young, Lee W., “PCT International Search Report and Written
Opinion Re International Application PCT/US2018/29975, Aug. 2,
2018, p. 17, Published in: WO.

* cited by examiner

US 11,909,868 B2

Feb. 20, 2024 Sheet 1 of 34

Patent

Gl ¢Sl

b B2INS(]

ASM o1ANd AaY 1Al

gci Aoy \J
wioysues § \ o)

- 08l T4
Koy offand Asy ejesld

abriolg
ASM 81BALI
pajdAioulg

abeioig Aoy
pojuswibny

SASM

tojsuels | SAa) 44GNhd

20l
Janiag Aoy

U.S.

gLl A8y

QG L 8ri
A3y oland Asy aieAlld

£ B0IA8(]

ol 44
Ay olgnd Ay aleAlid

7 99IA8(]

@mvhmx__;
WLIOJSUBL | o>

7 e
>_mxo_5§§_ﬂ§_i

2 188N

_ g} } A9 _
Q‘ wiosuel | 1L ASM

wiojsuel |

- Crl OvL m
va._ AHand %wv,_ S1BALIA

L 80IA0(0

o

peL A
WIoJSUEBS |

cel

L1 Aoy
wojsuel |

9

Aoy oljand Aoy ajeAlid

AR,

\@_Yuuojsuesy

Ocl

001

U.S. Patent Feb. 20, 2024 Sheet 2 of 34 US 11,909.868 B2

200 New user U1 interacts with

. app for the first time using
\ device D1A
' 202

device key pair for D1A
204

App randomly generates
user key pair for U1
206

App computes transform
key from U1 to D1A
208

_______ S
App encrypts U1's private |
key |

210 :
|

|

L T R A L P gy T

App sends ,
~{ransform Key to key server {and
optionally the public keys and/for

- encrypted private key}

212

_________________ S
U1/ D1A ready to use app
214

FIG. 2

U.S. Patent

300

\

Feb. 20, 2024 Sheet 3 of 34

Existing user U1 interacts with app on a

second device D1B
302

" Device keys
found on D1B7
304

| App randomly generates device key pair

for D18
306

App retrieve's U1's private key {optionally

an encrypted private key) and decrypis
308

| App computes transiorm key using Ut's

private key, D1B's public key
310

App sends transform key
to key server
312

US 11,909,868 B2

U.S. Patent Feb. 20, 2024 Sheet 4 of 34 US 11,909.868 B2

400
\ User U1 uses app on D1A to create a
new group G1
402

App randomiy generates group key
pair for G1
404

App computes transform key from
G1 to Ut
406

. .
App encrypts G1's private key using
U1's public key
408

% __ o
| App encrypts G1's private key using
| U1's public key

| 410
|

I

, App sends
transtorm key (and optionally the encrypted
private key and the public key) to key server

I, S
U1 now member and administrator of
G1 ;

414

FIG. 4

U.S. Patent Feb. 20, 2024 Sheet 5 of 34 US 11,909.868 B2

500 New user U2 interacts with app |
' \ for the first time using device |
' D2A

App randomly generates device
key pair for D2A
504

App randomiy generates user
key pair for U2
506

App computes transform key
from U2 to D2A
203

I Yo
App encrypts U2's private key |
510

dngligegy dngiivggigr ingiegiieg ingingiees weiegiingh wpingingt | osgngingt 0 osgingingt 0 omgngingt omgingingt omangingt o wangingt owaingngt angingt gt gainaingis g

ransform key {and optionally the encrypted
private key and the public key) '
'- 512

U2 / D2A ready to use app
014

FIG. 5

U.S. Patent

600

Feb. 20, 2024 Sheet 6 of 34

" D1A requests G1's private key
encrypted to U1

.~ Service transform’s G1's encrypted
| private key from U1 to D1A
, 606

I

" D1A uses its private key to decrypt
: G1's private key

; 608
|

D1A fetches U2's public key from
service
610

app computes transform key from
G1to U2
612

Y
TAPpP
sends transform key
to key server
614

U2 now mémber of G1
616

US 11,909,868 B2

U.S. Patent

U1/ D1A creates a
document using app
and saves |t

App generates
random document
encryptlon Key

App encrypts
document using
DEK
706

T

,) 4

App encrypts DEK

using U1's public
Key
(EDEK-U1)

708

R 2
App attaches
EDEK-U1to

encrypted doc
710

App saves
combined info to
document store

FIG. 7A

Feb. 20, 2024

U1/ D1A uses app |
to share document |
thh G1 '

D1A requests
document
716

Service uses transform -
key from Ui to D1Aon

EDEK-U1
(EDEK-U1-D1A)
718

Sheet 7 of 34

US 11,909,868 B2

U2 / D2A uses app
to retrieve
document

730

D2A requests
document
732

Service returns
document in
envelope
720

App decrypts
EDEK-U1T-D1A |
using D1A's private |
key, retrieving DEK f

122

l

App encrypts DEK |

using G1's public
key
(EDEK-G1)
724

App adds EDEK-G1
to document {
726

document info {o
gocument store
128

FIG. 7B

key from G2 to U2 on

EDEK-G1
(EDEK-G1-U2)

Service uses transform
key from U2 to D2A on

~ EDEK-G1-U2
(EDEK-G1-U2-D2A)
/36

App saves updated |

Service returns
document in
envelope‘

App decrypts
EDEK-G1-U2-D2A
using D2A’s private
kKey, retrieving DEK

740

App crypts
document using
DEK
/42

App provides
document to U2
744

FIG. 7C

US 11,909,868 B2

Sheet 8 of 34

Feb. 20, 2024

U.S. Patent

¢ desn

abelols
A9Y| B1eAll4

BINPON
wojsuel |

gzQ @01A8Q

abelsoig
ASy 81eALId

I|NPON
WLQisuel |

V([99iha(]

(Uiwpy) LN 49sn

sbeioig
ADM BleAUd

SINPON

abel101g
Aoy} a1eALd

wHojsuel |

g1 =0ne(

SINPON
LWIOJSURI |

V1Q 99IAS(]

—

abein)g
A pajuswibny

riiiiiiiiiil{

abelo1g
ADY| 91BAld

HIOMISN ,“..

pajdAiouy

abeiois
Ay Wwiioisued |

Aay olignd
loaeg Aoy

US 11,909,868 B2

Sheet 9 of 34

Feb. 20, 2024

U.S. Patent

E I TO- DA I B DA RN TS DA R R D I I DO T I DN I I DN D DS DR DR RN R TR R I I I R

B il Tl T e e e e e o L i Tl T e e e e R e N aF o i i WY

& & & & & & & & & & b & & b b E s s E s s Sk s s ks s S s s kS s kS s S s s kS s S S

o 9l

ra d b d bbb d b dod b h b ddd b ddbddd i h kd i d ik d i d i h i d i d ik hoa

PN T T T T T TS P R

.. Voo rrororon

.blb|b|.-|.-.|.-..|.............4..Ill..._.l_.-.l_.._.l.tl_?l_.._.l..-_l_.-.l_.-.l..__.l_....-..-..l.....t.....r.-..r.-..r.-..r.-..r.-..r.-..r.-..._.-.i.-.ii.-i.q.._..i. aaala e
L N N N T .

oSl e

o

U.S. Patent Feb. 20, 2024 Sheet 10 of 34 US 11,909.868 B2

4

Document
Encrypted to
Group

FIG. 10

Group

Public Key

US 11,909,868 B2

.4

o

Coje

&

-

2

=

s 9,

<t

m JBAIDS U

< SBARS pUB ASY ulojsues |
S B SaiBIsUac) UIUDY anoie)
£

IS8 MaN B O] 88300y
SIUBICY LIUDY dnoJo

U.S. Patent

US 11,909,868 B2

Sheet 12 of 34

Feb. 20, 2024

U.S. Patent

A9y ollgnd

Aa)} B1eAlId

¢l 9l

A9Y wiIojsurL}

1asn
0] dnouo)

Aoy onand

£l 9Old

US 11,909,868 B2

Sheet 13 of 34

Aa)| wiojsuel}

.‘

Feb. 20, 2024

anoJo)
0] paydAious
1JUBwINo0(

JUBWNI0(]
pa)dAious] pswiojsuel | 189S 0] dNno.g)

U.S. Patent

Pl 9ld

US 11,909,868 B2

Sheet 14 of 34

Aoy 8)BAlId

Feb. 20, 2024

jusawinooq paydAious
pawilojsued |

/

U.S. Patent

US 11,909,868 B2

Sheet 15 of 34

Feb. 20, 2024

U.S. Patent

IBAIBS UO
SARS pUR ASY] LLIojSURE]
B $81BIBUSD) I8SN

SOIAB(T MBN B O}
SSE00Y SIUBIS) Jas

Gl Ol4

195N

()
O

9l 9ld

Koy wlojsuBl|

US 11,909,868 B2

80IA8(]
0} oS

Koy} o1jand

Sheet 16 of 34

A3} 81BALIG

Feb. 20, 2024

Ae) oland

o

ASY BBl

801n8(]

U.S. Patent

Ll Ol

US 11,909,868 B2

Sheet 17 of 34

) A9y wiojsuel |

\,

Feb. 20, 2024

juawinoo pardAioul
pawliojsuel] A|gnoQ 9JIA9(] 0] 193]

U.S. Patent

JUSWINJ0(]
pa)dAioug pswiojsued |

8l Ol

US 11,909,868 B2

Sheet 18 of 34

AdYy] 9)BALI-4

o

Feb. 20, 2024

Juswinoo(] paidAioul
pawiiojsuel | A|gno(]

90IA9(]

/

U.S. Patent

U.S. Patent

Feb. 20, 2024 Sheet 19 of 34

it
i

[y
=
[

[

I-*.

L
.-.I 1 I‘-'*.*-*
L r
e ! L
& [
- el

E

em e wa
|‘.‘1-'+I -.-.'-'ll '*-'.'-'1-'}
e s
;.:.: . "*.-- -u" -*'-I #f* -"I

i
a

3
i
%

'
-
ax

Cits

.

wialal i N LT E TR

vt L,) Bt

» e gy] . |-". "

] » .

w “ Tr . S]

© o veaeiel . t:- N

it it .

P] L - on]

Pl - h 'y
. e) »

LSBT _:._'I.'r C o "

« Mactaitat r_n" 1 J.-'l L

JEC o i e L

. St Sl n

" . !._4"- l.

¥ - . Sl]

L .‘nl !'* lll‘il'll‘_l . *' l._'*'*-*'*'*'*'*'*-l 1

r
ey ar oy pyyypyyy

e w b b e e e e e b
EE EEEEEEEEEEN
P " o= o= o= omoEoEoEEEEEE

f

L O] -h.-h.-h.-h L]

P N}

T

F

O M S

»

L om
ax

F)
H E B BN S EEEEEEN

- ---------!

P e e e T N e ey Ty

Pt e il 'i:'a -

r -"".:'""""""""

LI N

-

-

-ir

tii*tii‘_'tiitiit

" -
IR N N N N N N

|.|.|-|-I-I-I-I-I-I-Irl-l-'-l-'-'-'-"""l'q_'
.':.'i-' r
A,
o 3

-------*.l

,,..
.
LR

o

e e

r

T w w o w w w w w o ww

-

_l'p. L el el L e e
.) »
w, . :*
Ny ¥ -’
.- ¥ ot
i) a*
- - K »
L []
"Ta,) ot

. - - - - - - -
-.".l Ey e r ry ey,

LR RN

'.:-
O S O R L T R
H E B B B B EEEEEEN

o

L :.. . . -
{. . u-.ln.-l 1-::”‘3 T |:t“‘:'ﬂ;
. _l-] ".. . l- il '}*ql:

e .] 'i‘:. ™

. v
a5 e
2 by
P Pl

A

r
[= Fl
[=1
-

-
-

1
5

Heern, A
: : R

US 11,909,868 B2

FIG. 19

US 11,909,868 B2

.4

ot

T

&

—

|

~

Qs

Qs

e

9 9.

.4

S

Q ASY WIDISUR] 435N
~ 03 dnoio 81918 01 IBAISS
M SYINIISU] URLIDY dNnoUD

128 U W0 55300y
STNOADY UILUDY GnoiD

U.S. Patent

0C Ol

US 11,909,868 B2

.4

e,

I

-

y—

gl

~

s

s

_—

9

.4

m_ AdY wiojsued

&, 331A3(] 01 135 313([3(
M 0} JOAIDS SIDNJISU| Jas
=

321N 2UQ
W04} SSRIJY SONO0AY Jasn

U.S. Patent

L Dl

siied A9)] anbiun

SN

U.S. Patent Feb. 20, 2024 Sheet 22 of 34 US 11,909.868 B2

£

Document
Encrypted to
User

FIG. 22

User

Public Key

US 11,909,868 B2

Sheet 23 of 34

Feb. 20, 2024

U.S. Patent

0} paydAious
| JuswNooQ

£¢ Ol

WB pajdAIou
| JuswINooQ

0} pajdAinusd
JUWNO0(

A8y atignd

S

va_ ayang

>

Aoy onand|

S

U.S. Patent Feb. 20, 2024 Sheet 24 of 34 US 11,909.868 B2

Document |
Encrypted to

Document | | Document | Document
Encrypted {0 | ; Encrypted 1o | Encrypted to

User 1

; Transformed
Encrypted Document:

| User 3 to Device B.

Transform Key

Doubly Transformed
' Document |

FIG. 24

U.S. Patent Feb. 20, 2024 Sheet 25 of 34 US 11,909.868 B2

User 1 Server

Public Key

t v
Server
(Generated

Server
(Generated

dser 1
Enerypls
Lising

Hasscode v

Encryplec Avgmented - %

Private Key Public Key
Server
Secure
Storage

FIG. 25

U.S. Patent

User 1

Device
A

Group 1

Private
Key

Enerypl
o User
|

Group 1

Encrypled
Private
Ke

Feb. 20, 2024

Sheet 26 of 34

Group 1

®

Public Key

T

Server
Generated

Group 1

®

Public Key

Group 1

Augmented
Public Key

US 11,909,868 B2

Server

v
Server

Generated

FIG. 26

Server
Secure
Storage

US 11,909,868 B2

Sheet 27 of 34

Feb. 20, 2024

U.S. Patent

5

L3N0 nﬁaaucw
pautiojsuei}

ZJesn |
0} poydAsnug |
uswinooq |

/T 'Ol

0} psjdAiouy

 uBWnNooQ

| v
ERLE

FEE:

Z dnoio)
0} Umwwn_%..oc -
JUBWINO0g

=

{ | dnoio
{ 0] pajdAioug
| juewnoo(

US 11,909,868 B2

Sheet 28 of 34

Feb. 20, 2024

U.S. Patent

AW
2leAlld
30IND(]

ele(] oSN
DSWLIOSURI |
Adu g

Aoy wiojsuet|
921A3(]
0] ssAojdw

eie(} 498
DaIojsues |
Algnog

8¢ Ol

Aoy
wiojsues |
saloidw3

0} Auedwon

Ble(q] 198N
pa}dAIOu]
paudiojsued |

Ao
wiojsues
Aueduion

0} 188

+9S{} O}
pajdAious
ejeq 18sn

6c Ol

- Key1 ol1and

,_ — -+

1SN —
0} pajdAiou3 uoijeuwliojuf 1asn O
JUSWINS0(] 195 N\ siayies uonedddy

US 11,909,868 B2

Sheet 29 of 34

Feb. 20, 2024

U.S. Patent

0€ 9l4

US 11,909,868 B2

Sheet 30 of 34

A9}y 81eAlld

A

Feb. 20, 2024

lasn 0}
pajdAIouU]
1JUBWwIN00(]

/

U.S. Patent

US 11,909,868 B2

Sheet 31 of 34

Feb. 20, 2024

U.S. Patent

A9y wlojsues |

Auedw o) 0} Jesn

Ll Ol

A8y oilgnd

Ad)| B1BALId

¢t Ol

US 11,909,868 B2

Sheet 32 of 34

Aay] wiiojsuel |

“

Feb. 20, 2024

1asN
0} paydAiouz
JUBWIN20(]

B1B(] 189S
pOWIOSUB] | Auedwo) 0} Jas

U.S. Patent

£t Ol

US 11,909,868 B2

Sheet 33 of 34

Aoy ASM
Aoy A2y uLojsues | wJiojsuel j wosues
9JEALld 20IA3(] asiodwiz Aueduion
S0IN(] 0} 9aiojduwi 0} Auedwon 0} JosN

SN [8

eje(.__mmj ejeq 19sn eyeq Jasn 193} O
pauojsuel] POULIOJSURS | paydAious pajdAious
Ajdii) AlgnoQ pauLIojSue] | eje(Jos

Feb. 20, 2024

U.S. Patent

U.S. Patent Feb. 20, 2024 Sheet 34 of 34 US 11,909.868 B2
3400

\

OUTPUT]
3432 |

00

3412 DISPLAY

NONVOLATILE | |

. FPGA 341

| PROCESSING
| COMPONENT]

PROCESSING |
COMPONENT N

FIG. 34

US 11,909,868 B2

1

ORTHOGONAL ACCESS CONTROL FOR
GROUPS VIA MULTIT-HOP TRANSKFORM
ENCRYPTION

CLAIM OF PRIORITY UNDER 35 U.S.C. § 119

The present application for patent 1s a Continuation of
U.S. Nonprovisional application Ser. No. 16/845,678, filed

Apr. 10, 2020; which 1s a Continuation of U.S. Nonprovi-
sional application Ser. No. 15/965,463, filed Apr. 27, 2018,
now U.S. Pat. No. 10,659,222, 1ssued May 19, 2020; which
claims priority to U.S. Provisional Application No. 62/491,
082, filed Apr. 28, 2017, both of which are incorporated
herein by reference.

FIELD OF THE DISCLOSURE

The present disclosure relates generally to cryptography.
In particular, but not by way of limitation, the present
disclosure relates to systems, methods and apparatuses for
enabling group-based cryptography.

DESCRIPTION OF RELATED ART

Data 1s the fuel that powers SaaS. In the rare instances
where the data 1s encrypted, it 1s typically just encrypted “in
transit and at rest,” which typically translates to “HTTPS
and Transparent Disk Encryption.” Sadly, these protections
lack cryptographic access controls.

Transparent disk encryption leaves data just as visible to
an attacker as to a legitimate user. HI'TPS 1sn’t much better.
It stops casual interception of data, but 1t doesn’t ensure that
the person receiving data should be allowed access. It also
fails to secure the data at the endpoints.

In short, the standard approach to encryption handles two
narrow threats: stolen hard drives and network-level snoop-
ng.

Most SaaS companies 1gnore security concerns when they
are small. As they grow, they add network perimeter tech-
nologies like firewalls and intrusion prevention appliances,
security incident event management platforms, and stafl to
monitor them. For B2B SaaS, this evolution 1s driven by
larger customers that demand more intense information
security reviews during the sales cycle.

Unfortunately, investing 1in network perimeter technolo-
gies was the solution for a bygone era. Outdated regulations
and information security standards assume a network envi-
ronment of decades past.

We’ve evolved from walking floppy disks between com-
puters to a world of cloud services, remote employees,
mobile devices, IoT, and no clear perimeter that contains the
data. The complexity of managing access 1n this environ-
ment 1s beyond the point where a human can reason about
it.

Symmetric (Secret Key) Vs. Asymmetric (Public Key)
Encryption

Modern encryption algorithms can be separated nto two
categories: symmetric key and asymmetric key. These refer
to the way keys are used to encrypt and decrypt data. In a
symmetric key cryptosystem, the same key value that Alice
uses to encrypt a message must be used by Bob to decrypt
the ciphertext and recover the original message. This key
can usually be any value, but Alice and Bob must both have
the same key 1n order to securely exchange messages. This
requires some separate key exchange mechanism that allows
both parties to have the same key.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

In an asymmetric key cryptosystem, each user generates
a pair ol public and private keys. These two values have a
mathematical relationship that i1s specific to the encryption
algorithm. Anyone can encrypt a message to Bob using his
public key, and he uses his corresponding private key to
decrypt the message. It 1s called a public key because there
1s no requirement to keep 1t secret; 1t can be published 1n a
public directory.

However, public key or asymmetric key systems do not
scale well, and 1n fact become virtually unusable when many
thousands and especially tens of thousands of users are
involved.

Envelope Encryption

Asymmetric encryption techniques are generally not well
suited to encrypt arbitrarily large plaintext messages efli-
ciently. Instead, most implementations of public key cryp-
tosystems use envelope encryption techniques. The plaintext
message 1s encrypted with a symmetric key algorithm (AES,
for example), using a randomly generated key. The random
key 1s then encrypted to the desired recipient using the
recipient’s public key. The symmetrically encrypted plain-
text 1s placed 1nside an “envelope”, which 1s then
“addressed” to the recipient wvia the asymmetrically
encrypted symmetric key.

To access the plaintext message, the receiver strips ofl the
enclosing envelope, locates the entry addressed to her, uses
her private key to decrypt the enfry, and then uses the
resulting symmetric key to decrypt the enclosed ciphertext
and recover the plaintext.

Encrypting to Multiple Recipients

This envelope allows you to share a message with mul-
tiple recipients easily, without re-encrypting the plaintext
multiple times. Instead, you just encrypt the symmetric key
multiple times, once to each recipient. The resulting enve-
lope has multiple “addressees™, but only one enclosed mes-
sage.

This technique does have some drawbacks. 1T you want to
share the message with many different recipients, the wrap-
per might become larger than the actual encrypted message.
And the ongimator must know the public key for each
recipient; it 1s not possible to share with *“all IT stail
members”, for instance. Instead, the originator must deter-
mine all the people that are members of the IT stafl and
address the envelope to each of them. If a new person 1s
added to the IT stafl, someone that 1s on the list of recipients
would need to use her private key to decrypt the symmetric
key, then encrypt that key to the new stafl member’s public
key and add the new addressee to the envelope. Likewise, 1
a person transiers from the IT stail to a different department,
someone must remove that addressee from the envelope.
This must be done for each message that was shared with the
IT staff.

Because of these constraints, the usual approach used to
encrypt to groups of recipients 1s not scalable for large or
very dynamic groups.

Establishing a Key for a Group

An alternative 1s to create a public/private asymmetric key
pair for the group. Then anyone that wants to share a
message to the group can just address the message to the
group’s public key. However, 1n order for a member of the
group to decrypt the message, she must have the group’s
private key. This requires the private key to be distributed to
cach member that 1s added to the group. If a member 1is
removed from the group and the security of the group’s
message 1s to be maintained, 1t 1s necessary to choose a new
public/private key pair for the group, distribute the private
key to all current group members, and then re-address every

US 11,909,868 B2

3

message that had been encrypted to the group. This 1s also
not scalable for dynamic groups, even i a suitably secure
key management mechanism 1s available.

Supporting Multiple Devices Per User

Users of a system are likely to interact with that system
and 1ts data using multiple devices. They might use browsers
or native apps running on laptops and personal computers,
tablets, or smart phones. The problem of addressing a
message to a user such that it can be recovered on any of
those devices 1s very similar to the problem of addressing a
message to a group. Either the user must establish a single
public/private key pair and 1nstall the private key on each of
the devices, or the sender of the message must know the
public key of each of the recipient’s devices and address the
message to each of those devices. The first alternative 1s
undesirable because of the 1ssue of key management and
distribution, and because the loss of a device requires the
creation of a new key pair and re-encryption of everything
addressed to the user. The second alternative requires extra
work each time a user adds or removes a device.

Proxy Re-Encryption

The 1dea of proxy re-encryption was first mtroduced in
1998 by Blaze, Bleumer, and Strauss, who provided a
concrete scheme based on El Gamal public key cryptogra-
phy (see M. Blaze, G. Bleumer, and M. Strauss. 1998.
Divertible protocols and atomic proxy cryptography. In
FUROCRYPT. Springer-Verlag, 127-144). This PRE
scheme had the following properties: (1) Each participant
has a public-private key pair. (2) A participant, the delegator,
can delegate decryption of messages to a delegatee. The
delegator generates a re-encryption key that can be used to
re-encrypt any messages encrypted to her public key so that
the delegatee can decrypt them using her private key. This
avoids the need for the delegator to share her private key
with the delegatee. (3) The re-encryption keys are held by
one or more semi-trusted proxies that perform the re-
encryption of messages. A re-encryption key does not allow
decryption of messages or provide access to either party’s
private key. (4) Delegation 1s revoked when a proxy deletes
the relevant re-encryption key.

For example, 1 Alice plans to be unavailable for a period
of time and wants to delegate her messages to Bob, she uses
her private key and Bob’s public key to generate a re-
encryption key, which she stores with her proxy. Each
message that 1s encrypted to Alice and delivered to the proxy
1s re-encrypted to Bob and 1s delivered to him. When Alice
1s again available and wants to revoke delegation, she just
removes the re-encryption key from the proxy.

In 2006, Ateniese et al. introduced the first unidirectional
PRE scheme (see G. Ateniese, K. Fu, M. Green, and S.
Hohenberger. 2006. Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage.
ACM Transactions on Information and System Security
(1ISSEC) 9, 1 (2006), 1-30). The authors also enumerated a
list of useful properties of PRE protocols, including the
tollowing: (1) Directionality, which describes whether del-
cgation from A to B also allows re-encryption from B to A.
Unidirectional schemes do not allow this. (2) Interactivity,
which describes whether both parties must be actively
involved 1n order to generate the re-encryption key. A
non-interactive scheme only requires the public key of the
delegatee. (3) Transitivity, which describes whether a proxy
can re-delegate decryption. That 1s, if the proxy holds a
re-encryption key from A to B and a re-encryption key from
B to C, can it generate a re-encryption key from A to C? A
non-transitive scheme does not allow this. (4) Collusion
safety, which describes whether 1t 1s possible for a delegatee

10

15

20

25

30

35

40

45

50

55

60

65

4

to collaborate with a proxy that holds a re-encryption key to
that delegatee to recover the secret key of the delegator. A
collusion-sate scheme does not allow this.

In 2007, Canett1 and Hohenberger proposed a definition of
security against chosen-ciphertext attacks (CCA-security)
on PRE schemes and introduced an algorithm that satisfied
the defimition (see R. Canetti and S. Hohenberger. 2007,
Chosen-ciphertext Secure Proxy Re-encryption. In Proceed-
ings of the 14th ACM Conference on Computer and Com-
munications Security (CCS). ACM, New York, NY, USA,
185-194. DOI:h p: //dx.do1.org/10.1145/1315245.1315269).
They also outlined several open problems 1n PRE construc-
tion, including the construction of a umidirectional PRE
scheme that was also multi-hop (also called multi-use); that
1s, a scheme that allows an encrypted message that has been
re-encrypted from Alice to Bob to subsequently be re-
encrypted from Bob to Carol, if Bob has delegated access to
Carol. (The scheme they proposed was multi-hop, but it was
bidirectional.)

In 2009, Wang and Cao proposed a scheme that addressed
this problem—a CCA-secure unidirectional, multi-hop, col-
lusion-sate, non-interactive PRE algorithm (see H. Wang
and 7. Cao. 2009. A Fully Secure Unidirectional and Multi-
use Proxy Re-encryption Scheme. ACM CCS Poster Session
(2009)). The CCA-security of their scheme was subse-
quently challenged by Zhang and Wang (see J. Zhang and X.
A. Wang. 2013. On the Security of Two Multi-use CCA.-
secure Proxy Re-encryption Schemes. Int. J. Intelligent
Information and Database Systems 7,5 (2013), 422-440). In
2014, Cai and Liu expanded on the 1ssue and introduced a
second security 1ssue with the algorithm, then provided a
modification that resolved both problems (see Y. Ca1 and X.
Liu. 2014. A Multi-use CCA-secure Proxy Re-encryption
Scheme.

IEEE 12th International Conference on Dependable,
Autonomic, and Secure Computing 7 (2014)). They also
included a proof of CCA-security for the modified scheme.

This PRE scheme, like most others that have been pro-
posed, provides five distinct cryptographic primitives: (1)
“KeyGen”—client-side generation of public/private key pair
(this 1s the standard elliptic curve key generation algorithm);
(2) “ReKeyGen”——client-side generation of a re-encryption
key between a pair of entities; (3) “Encrypt”—client-side
encryption of a message to a recipient; (4) “ReEncrypt”™—
proxy-side re-encryption of an encrypted message; (5)
“Decrypt”—client-side decryption of an encrypted or re-
encrypted message.

There has been a large volume of research on access
control 1 cloud computing environments, including the
publication on outsourcing computation without relinquish-
ing control by Chow et al. (see R. Chow, P. Golle, M.
Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina.
2009. Controlling data 1n the cloud: outsourcing computa-
tion without outsourcing control. In Proceedings of the ACM
Workshop on Cloud Computing Security. ACM, 85-90), the
work on cloud-scale fine grain access control by Yu et al.
(see S. Yu, C. Wang, K. Ren, and W. Lou. 2010. Achieving
secure, scalable, and fine-grained data access control 1n
cloud computing. In Proceedings of the ILEE International
Conference on Computer Communications), and the work
on end-to-end secure content sharing by Xiong et al. (see H.
Xiong, X. Zhang, D. Yao, and X. Wu. 2012. Towards
End-to-End Secure Content Storage and Delivery with Pub-
lic Cloud. In Proceedings of the second ACM conference on
Data and Application Security and Privacy (CODASPY

'12). 257-266). Several different cryptographic approaches
have been proposed, including identity-based and attribute-

US 11,909,868 B2

S

based approaches such as the hierarchical ABE scheme
proposed by Wang et al. (see G. Wang, Q. Liu, and J. Wu.

2010. Hierarchical attribute-based encryption for fine-
grained access control in cloud storage services. In Proceed-
ings of the ACM Conference on Computer and Communi-
cations Security. IEEE, 735-737).

Proxy re-encryption has featured prominently i a sig-
nificant amount of research. Among the many works, Xu et
al. describe a certificateless PRE scheme (see L. Xu, X. Wu,
and X. Zhang. 2012. CL-PRE: A certificateless proxy re-
encryption scheme for secure data sharing with public cloud.
In Proceedings of the Tth ACM Symposium on Information,
Computer and Communications Security. ACM, New York,
NY, USA, 87-88), and Liu et al. propose a time-limited
delegation scheme based on PRE (see Q. Liu, G. Wang, and
J. Wu. 2014. Time-based proxy re-encryption scheme for
secure data sharing 1n a cloud environment. In Information
Sciences, Vol. 258. Elsevier, 355-370). Qin et al. present a
comprehensive survey of works proposing PRE for use 1n
data sharing 1n the cloud (see Z. Qin, H. Xiong, S. Wu, and
J. Batamuliza. A Survey of Proxy Re-Encryption for Secure

Data Sharing 1n Cloud Computing. In IEEE Transactions on
Services Computing, Vol. PP., No. 99).

SUMMARY OF THE

DISCLOSURE

The following presents a simplified summary relating to
one or more aspects and/or embodiments disclosed herein.
As such, the following summary should not be considered an
extensive overview relating to all contemplated aspects
and/or embodiments, nor should the following summary be
regarded to i1dentity key or critical elements relating to all
contemplated aspects and/or embodiments or to delineate
the scope associated with any particular aspect and/or
embodiment. Accordingly, the following summary has the
sole purpose to present certain concepts relating to one or
more aspects and/or embodiments relating to the mecha-
nisms disclosed herein 1 a simplified form to precede the
detailed description presented below.

This disclosure describes systems, methods, and appara-
tus for cryptographic orthogonal encryption and decryption
of group and multi-hop proxy re-encryption (PRE), scalable
to large numbers of users. Ultimately this disclosure enables
devices to share and revoke access to encrypted data to
larger numbers of other devices and with lower latency, than
1s currently possible. This disclosure also enables devices to
revoke access to encrypted data, regardless as to where the
encrypted data 1s stored (e.g., on other servers or devices
owned and controlled by other entities) without destroying
the encrypted data. This scalable, group-based, and multi-
hop right of revocation 1s not enabled by previous PRE
schemes.

Some embodiments of the disclosure may be character-
1zed as a system for orthogonal access control to data by
groups of devices using public key cryptography to provide
provable cryptographic access controls that change which
users are able to decrypt data without modifying the
encrypted data. The system can include a first device con-
trolled by a first user having a first transform module. The
system can also include a key server having: a transform key
storage; a second device controlled by a second user having
a second transform module, a public key, and a private key;
wherein the first device includes a non-transitory, tangible
processor readable storage medium, encoded with processor
executable code to administer orthogonal access control to
data by groups of devices using public key cryptography.
The method can include: generating a public key and a

10

15

20

25

30

35

40

45

50

55

60

65

6

private key for the first user; creating a first group of users
by generating a public key and a private key for the first
group of users, by the first device, where the first user 1s an
administrator of the first group of users; encrypting data to
the first group of users by encrypting the data to the public
key of the first group of users to form a first ciphertext;
adding the second user to the first group of users by
generating a transform key from the first group of users to
the second user, by the first transform module of the first
device, using (1) the private key for the first group of users
and (2) the public key for the second user; and storing the
transform key from the first group of users to the second user
in the transform key storage of the key server. The second
device can 1include a non-transitory, tangible processor read-
able storage medium, encoded with processor executable
code to decrypt the first ciphertext. The method can include
generating a transform key from the second user to the
second device, by the second transform module of the
second device, using the private key of the second user and
the public key of the second device; transmitting a request
from the second device to the key server for access to the
first ciphertext; and granting the request by, on the key
server: transforming the first ciphertext with the transform
key from the first group of users to the second user to form
a first transformed ciphertext; and transforming the first
transformed ciphertext with the transform key from the
second user to the second device to form a first doubly-
transformed ciphertext. The method can further include
decrypting the first doubly-transformed ciphertext to reveal
the data on the second device using the private key of the
second device.

Other embodiments of the disclosure may also be char-
acterized as a method for orthogonal access control to data
by groups of devices using public key cryptography to
provide provable cryptographic access controls that change
which users are able to decrypt data without modifying the
encrypted data. The method can include generating a public
key and a private key for the first user. The method can also
include creating a first group of users by generating a public
key and a private key for the first group of users, by the first
user, the first user being an administrator of the first group
of users. The method can also 1include encrypting data to the
first group of users by encrypting the data to the public key
of the first group of users to form a first ciphertext. The
method can also include generating a public key and a
private key for a second user. The method can also include
adding the second user to the first group of users by
generating a transform key from the first group of users to
the second user, by the first user, using (1) the private key for
the first group of users and (2) the public key for the second
user. The method can also 1include storing the transform key
from the first group of users to the second user with a server,
where the server cannot decrypt the data via access to the
transform key from the first group of users to the second user
nor access the first or second user’s private keys or the first
group’s private key. The method can also include decrypting
the data by the second user by: transmitting a request from
the second user to the server for access to the first ciphertext;
granting the second user access to the first ciphertext by, on
the server, transforming the first ciphertext with the trans-
form key from the first group of users to the second user to
form a first transformed ciphertext or denying access to the
second user 11 no transform key from the first group of users
to the second user exists; and decrypting the first trans-
formed ciphertext to reveal the data to the second user using
the private key of the second user.

US 11,909,868 B2

7

Other embodiments of the disclosure may also be char-
acterized as a non-transitory, tangible computer readable
storage medium, encoded with processor readable instruc-
tions to perform a method for orthogonal access control to
data by groups of devices using public key cryptography to
provide provable cryptographic access controls that change
which users are able to decrypt data without modifying the
encrypted data. The method can include generating a public
key and a private key for the first user. The method can also
include creating a first group of users by generating a public
key and a private key for the first group of users, by the first
user, the first user being an administrator of the first group
of users. The method can also include encrypting data to the
first group of users by encrypting the data to the public key
of the first group of users to form a first ciphertext. The
method can also include generating a public key and a
private key for a second user. The method can also include
adding the second user to the first group of users by
generating a transform key from the first group of users to
the second user, by the first user, using (1) the private key for
the first group of users and (2) the public key for the second
user. The method can also 1include storing the transform key
from the first group of users to the second user with a server,
where the server cannot decrypt the data via access to the
transform key from the first group of users to the second user
nor access the first or second user’s private keys or the first
group’s private key. The method can also include decrypting
the data by the second user by: transmitting a request from
the second user to the server for access to the first ciphertext;
granting the second user access to the first ciphertext by, on
the server, transforming the first ciphertext with the trans-
form key from the first group of users to the second user to
form a first transformed ciphertext or denying access to the
second user 1f no transform key from the first group of users
to the second user exists; and decrypting the {first trans-
formed ciphertext to reveal the data to the second user using
the private key of the second user.

Other embodiments of the disclosure can be characterized
as a method for orthogonal access control to data by groups
of devices using public key cryptography to provide prov-
able cryptographic access controls that change which users
are able to decrypt data without modifying the encrypted
data. The method can include providing an administrator and
generating, by the administrator, a public key and a private
key for a first group. The method can also include generat-
ing, by a first member, a public key and a private key for the
first member. The method can further include generating, by
the administrator, a {irst transform key from the first group
to the first member, the transform key formed from the
private key for the first group and the public key for the first
member, the first member becoming a first member of the
first group once the first transtform key i1s generated. The
method can further include encrypting data to the first group
by encrypting the data to the public key of the first group to
form a first cyphertext. The method can further include
storing the first transform key on a server that does not have
access to the data. The method can further include decrypt-
ing the data by the first member of the first group by:
transmitting a request from the first member of the first
group to the server for access to the first ciphertext; granting
the first member of the first group access to the first
ciphertext by, on the server, transforming the ciphertext
using the first transform key from the first group to the first
member of the first group into a first transformed ciphertext;
and decrypting the first transformed ciphertext to reveal the
data to the first member of the first group using the private
key of the first member for the first group.

10

15

20

25

30

35

40

45

50

55

60

65

8

In the above method, the first member of the first group
can be a device and the first group can include devices

belonging to the administrator. Similarly, the first member of
the first group can be a user and the first group can include
the user and one or more other users. Additionally, the first
group can further include a second administrator, and the
method further comprising generating, by the second admin-
istrator, a second transform key for a second member, the
second transform key formed from the private key for the
first group and a public key for the second member, wherein
the second member becomes a second member of the first
group once the second transform key 1s generated. What 1s
more, the method can also include providing a third admin-
istrator; generating, by the third administrator, a public key
and a private key for a second group; generating, by a second
member, a public key and a prnivate key for the second
member; and generating, by the third administrator, a second
transiform key from the second group to the second member,
the second transform key for the second member formed
from the private key for the second group and the public key
for the second member, the second member becoming a
second member of the second group once the second trans-
form key 1s generated.

In other embodiments, the second member of the second
group can be the first group. Further, the method can include
encrypting data to the second group by encrypting the data
to the public key of the second group to form a second
ciphertext and decrypting the data by the first member of the
first group by. This can be done by transmitting a request
from the first member of the first group to the server for
access 1o the second ciphertext; granting the first member of
the first group access to the second ciphertext by, on the
server, transforming the second ciphertext using the second
transform key from the second group to the second member
of the second group into a second transformed 01phertext
then transforming the second transformed ciphertext using
the first transform key from the first group to the first
member of the first group to form a first doubly-transformed
ciphertext; and decrypting the first doubly-transformed
ciphertext to reveal the data to the first member of the first
group using the private key of the first member of the first
group.

At the same time, the first member of the first group can
be a user, and the second member of the second group can
be a device of the user, where the second group can be a user.

BRIEF DESCRIPTION OF THE

DRAWINGS

Various objects and advantages and a more complete
understanding of the present disclosure are apparent and
more readily appreciated by referring to the following
detailed description and to the appended claims when taken
in conjunction with the accompanying drawings:

FIG. 1 1illustrates one embodiment of a system for per-
forming multi-hop transform cryptography for a group of
users, each of which has one or more devices:

FIG. 2 illustrates an embodiment of a method for adding
a new user to the system;

FIG. 3 illustrates adding a new device to a registered user;

FIG. 4 1llustrates a method for creating a group of one or
more users, each user having one or more devices;

FIG. 5§ illustrates a method of registering a new user;

FIG. 6 1llustrates a method of adding additional users to
a group;

FIG. 7A illustrates a method of sharing an encrypted
document with a group and delegating decryption authority
to members of the group;

US 11,909,868 B2

9

FIG. 7B 1illustrates a method of sharing a document with
a group;

FIG. 7C illustrates a method of a user in the group
decrypting the shared document;

FIG. 8 1llustrates an embodiment of a system to provide
orthogonal access control which 1s cryptographically
enforced using groups of users and multi-hop proxy re-
encryption;

FIG. 9 1llustrates a system comprising a library that 1s
embedded 1n an application, along with a service that acts as
a proxy, and also as a key server, storing public keys for
groups and users and allowing clients to retrieve them:;

FIG. 10 illustrates an embodiment of data (e.g., a docu-
ment) being encrypted to a group of users or devices by
utilizing the group’s public key;

FIG. 11 1llustrates an administrator adding a new user to
a group of users;

FI1G. 12 illustrates an embodiment of a method of creating
a transform key from a group of users to a user 1n that group;

FIG. 13 illustrates an embodiment of a method for
encrypting data to a group of users;

FIG. 14 illustrates another embodiment of a method for
decrypting data encrypted to a group of users;

FIG. 15 1llustrates an embodiment of a user granting one
of her devices access to her data;

FIG. 16 1llustrates an embodiment of generating a trans-
form key from a user to a device;

FI1G. 17 1llustrates an embodiment of a method for trans-
forming a ciphertext into a doubly-transformed ciphertext;

FIG. 18 illustrates an embodiment of a method for
decrypting a doubly-transformed ciphertext;

FIG. 19 1llustrates a system to provide orthogonal access
control for multiple groups using multi-hop transform
encryption;

FIG. 20 illustrates an embodiment of a user being
removed from a group of users;

FIG. 21 illustrates an embodiment of a device being
removed from a group of devices admimistered by a user;

FIG. 22 illustrates how data can be encrypted to a user;

FIG. 23 illustrates a method for encrypting data to a
multiplicity of groups and users;

FIG. 24 illustrates a method for decrypting the first
ciphertext from FIG. 23;

FI1G. 25 1llustrates an embodiment of forming a public key
and a private key for a user where this operation 1s split
between a user and the key server;

FI1G. 26 1llustrates an embodiment of forming a public key
and a private key for a group where this operation 1s split
between a user and the key server;

FIG. 27 illustrates a method for decrypting the fourth
ciphertext from FIG. 23;

FIG. 28 illustrates a method for multi-hop transform
encryption of customer data relative to a company being
granted access to that data;

FIG. 29 provides an embodiment of details of FIG. 28;

FIG. 30 illustrates an embodiment of a user requesting
and decrypting her private data;

FIG. 31 illustrates an embodiment of a user granting
permission to a company to use her private data;

FIG. 32 illustrates an embodiment of a method of the
customer mvoking the right to be forgotten;

FI1G. 33 illustrates a further set of steps 1n the method of
a customer mvoking the right to be forgotten; and

FIG. 34 shows a diagrammatic representation of one
embodiment of a computer system 3400 within which a set
of mstructions can execute for causing a device to perform

10

15

20

25

30

35

40

45

50

55

60

65

10

or execute any one or more of the aspects and/or method-
ologies of the present disclosure.

DETAILED DESCRIPTION

The word “exemplary” 1s used herein to mean “serving as
an example, instance, or illustration.” Any embodiment
described herein as “exemplary” 1s not necessarily to be
construed as preferred or advantageous over other embodi-
ments.

Preliminary note: the flowcharts and block diagrams in
the following Figures illustrate the architecture, functional-
ity, and operation of possible implementations of systems,
methods and computer program products according to vari-
ous embodiments of the present invention. In this regard,
some blocks in these flowcharts or block diagrams may
represent a module, segment, or portion of code, which
comprises one or more executable mstructions for 1mple-
menting the specified logical function(s). It should also be
noted that, 1n some alternative implementations, the func-
tions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustrations, and combinations of blocks in the block dia-
grams and/or flowchart illustrations, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

For the purposes of this disclosure, “provable crypto-
graphic access controls” means that the system can guaran-
tee that access controls cannot be circumvented. In other
words, one can prove who can access a piece of data because
it 1s encrypted to a finite list of public keys, and only those
people who hold private keys corresponding to those public
keys can gain access.

For the purposes of this disclosure a transform key can be
described as a transform key from A to B or as an A-to-B
transform key. For instance, a transform key for a user to a
device 1s the same as a user-to-device transform key.

Securing data 1n transit, at rest, and within applications 1s
difficult, particularly at cloud scale. As data becomes
increasingly distributed between cloud services, mobile
devices, the Internet of Things, and portable media, man-
aging access to that data wherever 1t 1s stored or used 1is
progressively more diflicult. Cryptographic techniques are
commonly used to increase trust in cloud services and to
provide more reliable security and access control in a world
of distributed data. In particular, end-to-end encryption 1is
seeing more wide-spread adoption. However, current end-
to-end encryption tools are mostly restricted to person-to-
person communication applications like messaging and
email.

In the future, everyone will control who can access private
data. Imagine granting a doctor access to your medical
records, then revoking that access when you switch doctors.
More importantly, suppose you could track other parties
with whom vyour doctor shared data, including insurers,
billing companies, cloud software companies, outsourced
labs, research institutions, and so on. You wouldn’t need to
just trust these folks with your data: you could monitor how
they use 1t, and you could revoke their access 1f they abuse
the privilege.

Businesses, Governments, and other orgamizations need
to control their data every bit as much as we do. Trusting

US 11,909,868 B2

11

sensitive data to yet another cloud service provider 1s a huge
leap of faith. Each new service complicates an organiza-
tion’s ability to understand their risks and who has access to
theirr data. Without that understanding, they can’t meet
contractual and regulatory requirements around privacy and
security.

This 1s why large organizations demand extensive infor-
mation security reviews, with lengthy spreadsheets, before
purchasing and why, 1n many cases, they don’t even consider
a service that might otherwise make them more competitive.

In a world of customer-controlled data, organizations no
longer need to hope their partners have good-enough secu-
rity. The security travels with the data, and the usage of that
data 1s momtored. With control comes trust, and trust brings
options, flexibility, and for SaaS vendors who embrace it,
more sales.

Practical systems that manage access to data by groups of
users typically resort to a model using an access control
server that manages symmetric keys and hands them to
requesting users based on policy. While public key-based
systems have a better security model, they sufler from
scalability and complexity problems. Consider, for example,
using pretty good privacy (PGP) to secure data. A user can
securely encrypt a file to a set of other users, given their
public keys. However, there 1s a linear increase in the time
and space required to encrypt the file to each user. When
access to an encrypted file must be granted to a new user,
someone with access to the file must decrypt it, then
re-encrypt 1t to the entire list, plus the new recipient. If files
are encrypted to teams of people and a person leaves the
team, every lile shared with the team must be found,
decrypted, and re-encrypted to the list minus the departing
user. The same process 1s followed 1f a user’s keys are
compromised. This solution does not scale to large groups of
users.

This disclosure proposes a system that 1s built to embed
in applications to provide cryptographically backed access
controls for data and to separate deciding to whom data 1s
encrypted from deciding who can decrypt data—an advan-
tage herein referred to as “Orthogonal Access Control.” The
system uses public key cryptography, and 1t overcomes the
scalability difliculties using abstract entities that represent
groups ol users. These groups facilitate orthogonal decisions
regarding granting access to data, because users can choose
the groups to which to encrypt data, while group adminis-
trators can independently add users to and remove users
from a group at any time. These changes are done 1n constant
time and are idependent of the number of groups, group
members, or aflected files 1n the system. The system pro-
vides end-to-end encryption, with the final step involving
decryption using a user/device’s private key, which may be
retained on the user’s device. This allows servers (for
managing the encryption process including keys and group
memberships) to be semi-trusted, with no access to unen-
crypted data and no ability to decrypt data.

While proxy re-encryption (PRE) schemes provide prop-
erties that are well suited to building such a system, this
disclosure describes updates to traditional PRE schemes that
allow scalability and much faster proxy re-encryption to
large numbers of users. This disclosure also utilizes multi-
hop PRE (e.g., a user’s device accessing data that the user
1s authorized to access due to her membership 1n a group; a
group’s accessing data that a parent group 1s authorized to
access due to 1its membership 1n 1ts own parent group).
Orthogonal Access Control

With orthogonal access control, the decision of to whom
to encrypt 1s separated from the decision of who can decrypt.

10

15

20

25

30

35

40

45

50

55

60

65

12

This disclosure accomplishes this advantage by abstracting
classes of users and services 1into groups, encrypting to the
appropriate group, and determining at another point in time
which users belong to the group. Only the group members’
private keys can unlock the data.

For example, a company might have an SSN-Readers
group consisting of employees authorized to see social
security numbers. The group 1s owned by an administrator
who holds the group’s private key and can use that key to
add and remove members. When a document 1s encrypted to
this group, members can decrypt the data with their private
keys, but no one ¢lse can. Even the administrator can’t read
the data if the administrator 1s not a member of the group.

This disclosure performs this at scale and without shared
secrets. Groups can be any size, even millions of users, and
adding and removing members are constant time operations
regardless of how many documents or users there are (1.¢.,
this disclosure can perform encryption and decryption for
any sized group in the same amount of time).

This disclosure allows a user to choose one or more
groups to whom to grant access to encrypted data. Indepen-
dently and asynchronously, group administrators choose
which users belong to the groups. Adding a member to the
group 1s stmply accomplished in constant time, 1rrespective
of the size of the group or the amount of data the group can
access. Likewise, removing a member from a group 1s a
constant time operation that does not require modification of
any encrypted data.

Additionally, a user can be abstracted as a collection of
devices (1.e., a group comprising a plurality of devices). In
this way, a user can control which devices are able to decrypt
certain data. A user can thereby add devices or revoke access
from a particular device (e.g., when a new laptop 1s pur-
chased or when a smartphone 1s stolen).

Cryptographic Transformation

Academia has long discussed “proxy re-encryption” or
PRE, which will herein be referred to as Cryptographic
Transtormation (e.g., US20080059787). This disclosure dis-
cusses a variation of Cryptographic Transformation that 1s
unmdirectional, multi-hop, and adds multi-party computation
to protect group private keys.

In academia, the focus 1s on person-to-person delegation,
such as when an assistant 1s granted permission to read the
boss’s encrypted emails. In contrast, this disclosure opti-
mizes for use cases that revolve around access control at
scale. The heremn disclosed approach ensures that only
certain classes of users can read specific classes of data.

For example, consider the case where a Top Secret
document 1s to only be read by users with Top Secret
clearance. Suppose Alice and Bob both are members of the
TopSecret group, and the TopSecret group has a single
public key. Alice shares a document with the TopSecret
group by encrypting the document using the group’s public
key. Since asymmetric encryption 1s not well suited to
encrypting large amounts of data, a technique called “enve-
lope encryption” can be used. This technique 1nvolves using
a symmetric key encryption such as AES-256 to encrypt the
data, using a randomly generated symmetric key (called the
document encryption key (DEK)). This encrypted data is
placed 1nside an “envelope”, and the symmetric key 1s then
encrypted using asymmetric key encryption and attached to
the “envelope” as a form of address to which it should be
delivered. This 1s called an encrypted document encryption
key (EDEK).

When Bob wants to decrypt the document, he sends the
document “envelope™ to an key server (e.g., see 902 1n FIG.
9) for transformation. The key server takes the EDEK from

US 11,909,868 B2

13

the envelope and transforms 1t so that Bob will be able to
decrypt 1t with his private key. The key server does not have
access to the DEK at any point in the process. Nor does the
key server perform the transformation for users who are not
members of the TopSecret group. When Bob gets the trans-
tformed EDEK back, he decrypts 1t locally with his private
key and gets the DEK, then uses that to decrypt the docu-
ment that was inside the envelope. All of this happens 1n a
fraction of a second.

It should be noted that a variant of Elliptic Curve Cryp-
tography, which 1s a form of public key cryptography, can be
used to perform the herein noted transtormations. However,
other forms of cryptography than Elliptic Curve Cryptog-
raphy can also be used to perform such transformations.
Multi-Hop Transtorm Cryptography for Hierarchies of User
Groups and Device Groups

This disclosure addresses the problem of scaling cryptog-
raphy for groups and groups of devices. Transform cryptog-
raphy 1s an enhancement to public key cryptography. It
enables someone to whom messages or documents are being
encrypted to delegate the ability to decrypt those messages
or documents to someone else, without actually giving the
delegator’s private key to the delegatee. This mvolves a
public key infrastructure based on elliptic curve cryptogra-
phy. Every user and every device have its own public/private
key pair that 1s generated locally on the device. Backend
servers and services that need to access sensitive data also
have their own keys, which can be segmented by service,
region, or other logical category.

Transform cryptography involves the delegator (referred
to as Alice) wanting to delegate the ability to decrypt her
messages to another person (referred to as Bob). Alice uses
her private key and Bob’s public key to compute a transform
key. This transform key can be used by a key server (e.g.,
902 1n FI1G. 9) that has the transform key and a message that
1s encrypted to Alice to re-encrypt the message, such that
only Bob can decrypt the message using his public key. This
key server cannot use the transform key to actually decrypt
the message, and even Bob and the key server cannot work
together to compromise Alice’s private key. In some
embodiments, the key server, rather than Alice, computes
the transform key.

This disclosure discusses systems, methods, and appara-
tus enabling transform encryption for groups of users and
devices and multi-hop transform encryption (e.g., multiple
layers of groups of users and devices). In one embodiment,
Alice creates a public/private key to represent her (see User
Ul in FIG. 1 and block 210 1n FIG. 2), then for each of her
devices (see D1A and DIB in FIG. 1), she creates a
public/private key pair for each device (see Blocks 206 and
306). She then computes a transform key from her private
key to each device’s public key (see Blocks 212 and 312)
and stores these transform keys with the key server (see
Blocks 216 and 316).

Anyone that wants to “address” an encrypted message to
Alice (using the envelope encryption described previously)
encrypts using her public key. Anytime Alice uses one of her
devices to retrieve one of these encrypted messages, her
device sends 1ts public key to the key server, and the key
server locates the appropriate transform key and transforms
the EDEK so it 1s encrypted using her device public key
instead of her user public key and returns the transformed
EDEK to Alice. Her device can then decrypt the EDEK to
recover the DEK and then decrypt the actual message.

Any time Alice obtains a new device that she would like
to use to decrypt data, she just generates a key pair for that
device, computes the transform key from her user to the new

10

15

20

25

30

35

40

45

50

55

60

65

14

device, and sends the transform key to the key server. I she
loses or otherwise decommissions a device, she just asks the
key server to delete the transform key (1.e., access revoca-
tion).

Transform cryptography similarly provides an elegant
solution to the problem of encrypting data to groups. The
person that 1s the administrator of a group, e.g., Claire (e.g.,
User 1 or U1 1n the figures), first creates a public/private key
pair for the group, then for each of the group’s members,
Claire computes a transiform key from the group to the
member. Then anyone that wants to access a message
encrypted to the group just provides her public key to the
key server—if 1t can find a transform key between the group
and the user, 1t transforms the EDEK to that user.

If the transform encryption algorithm 1s multi-hop (also
known as multi-use), both problems can be solved together.
Say Bob has been added to the “G1” group and has config-
ured his 1Pad to access his messages. If he tries to access a
message encrypted to “G1” using his 1Pad, the 1Pad sends its
public key to the key server. The key server looks for a
transiorm key from the 1Pad to Bob, and then for a transform
key from Bob to the “G1” group. If both keys are available,
the key server first transforms the EDEK from “G1” to Bob,
then transforms the result from Bob to his 1Pad. When the
1Pad gets this EDEK and the encrypted message, it can
recover the DEK and decrypt the message.

Transform cryptography allows multiple devices per user
and cryptographically secured groups to be managed 1n a
scalable fashion. A user can easily associate her devices to
her main 1dentity and then access any messages encrypted to
her without requiring any re-encryption. Likewise, a user
can be added to or removed from groups quickly and easily.
The size of the envelope for a message encrypted to a group
does not increase 1n size, regardless of the number of
members 1 the group, and no update to the message
envelope 1s required to add or remove members. If a user 1s
removed from a group or a user decommaissions a device,
removal of the transform key from the key server defini-
tively revokes access.

A multi-hop transform cryptography algorithm can also
be used to create a system that can support a more extensive
hierarchy than groups of users that consist of groups of
devices. A user could create a group and add members to that
group that are users or other groups. Transformations could
be applied successively through multiple layers of a hierar-
chy of groups and users to transform data encrypted using a
group’s public key until the data 1s finally encrypted using
a device’s public key, at which time a requesting device
could use 1ts private key to decrypt the data.

Revocation Problem Addressed Via Key Augmentation

Known cryptographic methods have problems revoking
access to data by an administrator. Consider a group that 1s
administered by two different people. Each person must
have a copy of the group’s private encryption key in order
to add members to the group. If one of those people 1s
removed from the group and should no longer have any
access, that person might retain the group’s private key. If
that person obtained a message that was encrypted to the
group, the private key could be used to decrypt the message,
with no mvolvement of the key server required.

We have devised a novel key augmentation technique that
climinates this problem. When a user first generates the
public/private key pair (erther for the user or for a group), the
user retains the private key and sends the public key to the
key server. The key server then generates a random factor
and multiplies the public key by that factor, creating a new
augmented public key for the user or group. The key server

US 11,909,868 B2

15

retains this factor and associates 1t with the user or group.
Any time a transform key 1s generated from that user or
group to a device or user, the key server augments 1t using
the same factor.

Because the augmented public key 1s no longer math-
ematically related to the private key, the private key cannot
decrypt messages encrypted to that public key. However,
messages that are encrypted to that public key can be
re-encrypted to a user or device using the augmented trans-
form key, and they can then be decrypted properly by the
private key of the target device. This ensures that access to
encrypted messages can always be revoked by removing the
appropriate transform key, even it the original private key
for the group or user 1s compromised.

Customer Managed Keys Problem

An application of the herein disclosed transtorm cryptog-
raphy technique 1s support for customer managed keys.
Consider a system where every user, group, and device have
a public/private keypair, with all the appropnate transform
keys stored on a key server, and where data 1s always
encrypted to at least one user or group. Further, suppose the
system 1s multi-tenant, where several diflerent companies
use the same system to manage their data, but they wish to
maintain control of their data, such that other tenants, and
even the operator of the system, cannot access the data.

If each tenant creates a group and adds each of its users
to that group, and 11 any data that 1s stored for that tenant 1s
encrypted to the tenant’s group, then the tenant’s data cannot
be read by anyone other than members of the group (that 1s,
the tenant’s users). This access control 1s enforced by the
encryption of the data. The tenant can decide to allow the
operator of the system to access data by also encrypting it to
a separate group. The tenant can add users from the operator
to that group, which allows those users to also access the
tenant’s data. If at any time the tenant wants to stop the
operator’s access, the tenant simply removes those users
from the group.

As described previously, this approach allows the appli-
cation that 1s manipulating the tenant’s data to 1gnore the
group membership; 1t just encrypts the data to the tenant
group and the operator group, and users can be added or
removed as necessary without necessitating any re-encryp-
tion of data.

The GDPR Protection Problem

Another application of transform cryptography 1s to facili-
tate several of the consumer protections that are required by
the upcoming European Union GDPR (General Data Pro-
tection Regulation). These include the requirement that a
customer gives consent to use her private data, that the
customer 1s able to revoke consent, and that the customer has
the “right to be forgotten”, which 1s also known as *“c

data
erasure”. The latter protection stipulates that the subject
identified by some set of data can request that this data be
erased so that 1t can no longer be accessed or processed. This
can be accomplished 1n many data processing systems by
simply deleting the data; however, this does not handle any
copies of the data that may have been made; for example, 1n
a database backup.

To enforce these protections using transform cryptogra-
phy, as a user’s mformation 1s being collected, that data can
be encrypted to the user’s public key. This ensures that only
the user 1s able to access the data. If the user consents to
allow another group to access that user’s information, the
user can generate a transform key from the user to the group.
Once the transform key 1s generated, any members of the
group can use the transform cryptography techniques dis-
closed herein to access the data. Any backups or copies of

10

15

20

25

30

35

40

45

50

55

60

65

16

the user’s data should be the encrypted data. If the user
wishes to revoke consent for a group to access her data, she

can just remove the transform key that she has created from
her user to the group. This eflectively erases the data, since
members of the group are no longer able to recover the data.
Even though 1t 1s still present 1n backups and copies, 1t 1s
rendered inert.

In addition to supporting the requirement to provide
consent and to revoke consent, the system can support the
user’s right to access information about how and when her
personal information was used. This information can be
maintained by tracking each time that the user’s encrypted
data was transformed.

Data Locality

Some government rules (e.g., Europe) preclude certain
data from leaving a country or region’s borders. These rules
can be burdensome since data often migrates across borders
during common Internet and networking activity. To allow
common Internet and networking activity while still abiding
by these locality rules, data may be encrypted using the
herein disclosed transtorm cryptography, meaning that only
encrypted data passes over country/region boundaries. Fur-
ther, since the transform keys can be stored on one or more
key servers, and those servers may remain within a given
country or regional boundary, the cross-border data trans-
mission may meet exceptions in locality laws and rules,
since no non-encrypted data and no keys, are passing over
boundaries.

Security Breaches

Some regulations require that various undesirable actions
have to be triggered if a breach of data security occurs (e.g.,
HIPAA rules). Triggers include hacking of private data, but
also hacking of a server including both encrypted private
data and one or more keys needed to decrypt the data. Often,
hacking events are able to access both the encrypted data and
the key(s) and therefore trigger a HIPAA or other regulatory
breach.

The herein disclose transform cryptography can avoid
such triggers even where a breach occurs, by storing the
transform keys on a separate server (e.g., a key server). In
other words, where a breach occurs on a user device, only
the encrypted data will be pilfered, and possibly the users
public and private keys. However, the data cannot be
decrypted even with those public and private keys. Instead,
the transform key 1s needed, and this remains on a key server
or may not even be created until decryption 1s desired.

Embodiments of the Invention

FIG. 1 illustrates one embodiment of a system for per-
forming multi-hop transform cryptography for a group of
users, each of which has one or more devices. In particular,
group 1 (G1) has two users, user 1 (U1) and user 2 (U2), and
group 2 (G2) has two users, U2 and user 3 (U3). Each user
has at least one device, and Ul has two devices, device 1
(D1A) and device 2 (D1B). Ul executes encryption, decryp-
tion, and management of G1 via D1A and/or D1B, and U2
executes encryption and decryption via device 3 (D2A). U2
can manage G2 via D2A. U3 executes encryption and
decryption via device 4 (D3A). The key server stores all
public keys and transform keys, and 1t also computes all
encryption transformations using the stored transform keys.

This system 1s built on the primitives provided by proxy
re-encryption (PRE). Each group, user, or device in this
system can be considered a node 1n a hierarchy, where each
node 1s assigned an asymmetric key pair, consisting of a
private key and a corresponding public key that 1s math-

US 11,909,868 B2

17

ematically related to the private key. A transform key can be
formed to transform the encryption of any data encrypted to
a node 1n the hierarchy 1nto data encrypted to one of its child
nodes 1n the hierarchy. Each transform key 1s formed by
combining a public key from the child node and a private
key from the parent node. For instance, the transtform key
112 between group 1 and user 1 1s formed from a combi-
nation of the user 1 public key 122 and the group 1 private
key 104. Each transform key represents a membership
relationship (e.g., a user belonging to a group, a device
belonging to a user, or a group belonging to another group).
Once formed, the public keys and transform keys are trans-
mitted to the 1dentity service 102 and stored in memory on
a server hosting the key server 102 (e.g., a key server). Data
can be encrypted to a group or to a user, or to a combination
of groups and users. Any application that wishes to encrypt
data to a group or user requests the public key for that entity
from the key server 102. It encrypts the data using that
public key and stores the encrypted data.

Data 1s always decrypted by a device. When a device
wishes to decrypt data, 1t locates an 1nstance of the desired
data that was encrypted to one of 1ts parents in the hierarchy
(either a user or a group). Preference 1s given to the closest
parent; 1f the data 1s encrypted to the device’s user and also
to a group that includes that user, 1t will use the 1nstance of
the data encrypted to the user. The device passes the
encrypted data to the key server 102. The key server locates
the transform keys associated with the path from the device
to the node 1n the hierarchy to whom the data was encrypted,
and 1t applies those transforms in order to create an encryp-
tion ol the data that can be decrypted by the requesting
device. For instance, 1f data item DI1 1s encrypted to Ul and
device D1A requests access to DI1, the key server 102
locates transform key 132, applies 1t to DI1 encrypted to Ul,
and returns the transformed encrypted data to D1A. D1A
then uses private key 140 to decrypt the data and recover
DI1. If a second data 1item DI2 1s encrypted to group G2, and
device D2A requires access to that data item, D2A sends
encrypted DI2 to key server 102. The key server 102 locates
transform key 116 (which transforms from G1 to U2) and
transform key 136 (which transforms from U2 to D2A),
transforms encrypted DI2 using transform key 116 so that
DI2 1s encrypted to U2, then transforms that encrypted data
using transform key 136, so 1t 1s now encrypted to D3A. The
key server 102 returns this doubly-transformed encrypted
data to D3 A, which uses private key 148 to decrypt, recov-
ering DI2.

It should also be noted that while U1l has been described
as the administrator of G1, in other embodiments, U2 can be
the administrator of G1, or both Ul and U2 can be admin-
istrators of G1. In yet another embodiment, the administrator
of G1, whether Ul or U2, may not be a member of G1.

The orthogonal access control disclosed 1n FIG. 1 enables
scalability of a PRE scheme, because any application can
choose which groups or users to whom to encrypt data
without knowing which users belong to the groups or which
devices are associated with each user. Users can be added to
a group before or after data 1s encrypted to that group, and
likewise devices can be associated to a user at any time.
There 1s no necessity to locate previously encrypted data and
perform any additional steps to enable access by a new
group member or a new device. The system also enables
scalability of the right to revoke access to encrypted data. It
1s not necessary to locate all data that was encrypted to a user
and re-encrypt 1t in order to remove access to that data by
one of the user’s devices; instead, the transtorm key from the

10

15

20

25

30

35

40

45

50

55

60

65

18

user to the device 1s deleted. Likewise, a user can be
removed from a group by removing the transform key from
the group to the user.

FIGS. 2 through 7 illustrate a method of performing
multi-hop transform cryptography for a group of users and
devices. To 1nitialize a user, the method 200 launches or
invokes an encryption client on a user’s device and either
adds the user or recognizes that the user 1s already recog-
nized by the encryption client. That 1s the end of the method
200 and would constitute the formation of nodes user 1 (e.g.,
Ul) and device 1 (e.g., D1A). However, the user may then
want to access 1ts encrypted data on the device or create/
manage a group of users and devices. FIG. 3 1llustrates a
method for registering the user’s second device (e.g., D1B).
If the user wishes to create a group (e.g., G1), then the
method 400 can be invoked, where user 1 1s the lone member
of this group. If the user wishes to add other members to the
group 1, the method 500 1llustrates a method for registering
one or more devices to a second user, and the method 600
illustrates a method of adding the second user to the group
1. The second user, user 2, can act as an administrator of a
sub-group comprising its one or more devices, just as the
first user 1s an administrator for a sub-group comprising its
two devices.

The following paragraphs describe the methods 1n FIGS.
2-6 1n greater detail.

FIG. 2 illustrates an embodiment of a method for adding
a new user to the system. The method 200 can begin with
user 1 interacting with an encryption-enabled application for
the first time using device 1 (Block 202). In some embodi-
ments, encryption may be performed in the background and
as such, user 1 may interact with an e-mail application,
spreadsheet program, Slack, or other application or web
portal that can pass encrypted data to another user device.
The encryption client on the user’s device randomly gener-
ates an asymmetric key pair for the device 1 (Block 204),
and a separate asymmetric key pair for the user (Block 206).
The order of generating these key pairs 1s interchangeable.
The device key pair can be created using an elliptic curve
key generation algorithm (the KeyGen algorithm described
later 1 this disclosure). The encryption client can store the
private keys for the device and the user in secure local
storage on device 1. The encryption client can also option-
ally provide a method to encrypt the user’s private key so 1t
can be escrowed securely by the key server (Block 210).
This key escrow 1s provided to allow the user to recover their
private key in the event that device 1 1s no longer available
or the secure storage 1s no longer accessible. There are
several different methods that can be used to encrypt the
private key, including but not limited to the following:

prompt the user to enter a passphrase, use a standard key

derivation algorithm such as PBKDF2 to derive a key
from the passphrase, and use that key with a symmet-
ric-key encryption algorithm such as AES256-GCM to
encrypt the private key;

prompt the user to provide a removable storage device

such as a USB memory stick. The client application
could generate a random key that it uses with a sym-
metric-key encryption algorithm such as AES256-
GCM to encrypt the private key, then store the random
key on the removable storage device;

prompt the user to provide a security device such as a

Yubikey that could generate and securely store a ran-
dom key and provide that key to the client application.
The client application could use that key with a sym-
metric key algorithm such as AES256-GCM to encrypt
the private key.

US 11,909,868 B2

19

(Given a new user and the newly created asymmetric key
pair for the user 1 and the newly created asymmetric key pair
for the user’s device, D1A, the encryption client can com-
pute a user-to-device transform key (e.g., 132) for data to be
transformed from user 1 to device 1 (Block 208). The
user-to-device transform key can be formed from the user 1
private key (e.g., 120) and the device 1 public key (e.g.,
142). The transform key from user 1 to device 1 can be
registered or stored in the key server (Block 212) and user
1 and device 1 can be considered imtialized (Block 214)
(1.e., data can be encrypted using user 1’s public key, and
user 1 can use device 1 to access any data encrypted using
user 1°s public key). Optionally, newly-formed user 1 public
key and the device 1 public key can also be registered or
stored on the key server. The user 1 prnivate key can
optionally be removed from the device 1 memory after 1t 1s
encrypted and aifter the user-to-device transform key 1is
generated. Additionally, the encryption client may also store
an ID of the user and the encrypted private key for the user
1 1n the key server, as described previously. The encryption
client can also store the user 1 and device 1 private keys on
memory of device 1.

In an embodiment, the private key for device 1 1s not
encrypted and stored in escrow by the key server. Accord-
ingly, 1f the device private key 1s lost, then the user can
re-register the device using the method 300.

While the method 200 has been described relative to user
1 and device 1, 1t can also be used to register any number of
other devices to user 1, or any number of devices to any user.
This mitialization of users and devices can occur in parallel,
sequentially, or some combination thereof.

FI1G. 3 illustrates adding a new device to a registered user.
When an instance of the encryption client accesses the
system from a new device that does not have an asymmetric
key pair assigned to it yet (e.g., when the device 1s being
added to a user) (Decision 304), the encryption client can
invoke the process for key generation to randomly generate
a public/private key pair for the device (Block 306), then
store the private key 1n secure local storage on the device.
The device then retrieves the user’s escrowed private key
and decrypts 1t (Block 308). The details of this decryption
depend on the mechanism used to encrypt the private key for
escrow, as described previously. Once the user’s private key
has been retrieved and decrypted, the encryption client can
then invoke a transform key generation process (Block 310)
to create a transform key from user 1 to device 2 using user
1’s private key and device 2’s public key. The encryption
client can then register the user’s identity, the device’s
public key, and the transform key from user 1 to device 2 on
the key server (Block 312) and can then discard the user’s
private encryption key as 1t 1s no longer needed. At this
point, user 1 (Ul) can use device 2 (D1B) to access any data
encrypted using user 1’s public key (Block 314).

FIG. 4 1llustrates a method for creating a group of one or
more users, each user having one or more devices (Block
402). When a user, for instance Ul, initiates group creation,
the encryption client on the user’s device, for mstance D1A,
randomly generates a public/private key pair for the group
(Block 404). This may invoke the KeyGen function, which
will be described 1n detail later in this disclosure. The
encryption client then generates a transform key from G1 to
Ul (e.g., 112) using G1’s private key (e.g., 104) and Ul’s
public key (e.g., 122) (Block 406). This may invoke the
TranstormKeyGen function. The user that first creates a key
pair for the group can be considered the administrator of the
group. The encryption client may encrypt the group’s private
key using the administrator’s public key, eflectively treating,

10

15

20

25

30

35

40

45

50

55

60

65

20

the group’s private key as a message or document and
encrypting it using the administrator’s public key (Block
408). The encryption client can then register, the group’s
public key, the transform key from G1 to Ul, the encrypted
version of the group’s private key, an ID of the group, and
an ID of the user to the key server (e.g., 102) (Block 412)
for storage. The encryption client may discard the group
private key. At this point, the user can be considered a
member of the group (because there 1s a transform key from
(G1 to Ul) and also an administrator of the group (because
(G1’s private key 1s encrypted with Ul’s public key) (Block
414). The method 400 can also be used to add other users to
a group (e.g., FIG. 6) and can be used by other users to create
additional groups that may or may not overlap 1n terms of
users.

FIG. 5 illustrates a method of registering a new user.
When a new user, for instance, U2, iteracts with an app for
the first time using a first device of U2, for istance, D2A
(Block 502), the app on D2A randomly generates a public/
private key pair for D2A (Block 504). The app then ran-
domly generates a public/private key pair for U2 (Block
506). The app then computes a transiform key from U2 to
D2A (Block 508). It then optionally encrypts U2’s private
key, using one of the mechamisms described earlier (Block
510). The app sends the public keys, transform key from U2
to D2A, and encrypted private key to the key server (Block
512). U2 and D2A are now ready to use the app (Block 514).

FIG. 6 illustrates a method of adding additional users to
a group. Adding a user eflectively means granting them
access to any data shared with the group. A user can only be
added after that user has been registered (1.e., they already
have a public key registered to the key server, by application
of the method 200). When a user, such as Ul, who 1s the
administrator of a group, such as G1, wishes to add a new
registered user to a group, such as U2 being added to G1
(Block 602), the encryption client on one of the group
administrator’s devices, such as D1A, requests the group’s
private key (e.g., 104) encrypted to Ul from the key server
(Block 604). The key server uses the transform key from Ul
to D1A to transform the encrypted private key and returns
the transformed key (Block 606). D1A uses its device
private key to decrypt the transformed key and recover G1°s
private key (Block 608). D1A then fetches the new user’s
public key (e.g., 126) from the key server (Block 610), then
calculates a transform key from G1 to U2 (e.g., 114) (Block
612). The encryption client then sends the transform key
from G1 to U2 to the key server for storage (Block 614) and
the new user 1s considered a member of the group (e.g., U2
a member of G1) (Block 616). Additional users can be added
to the group 1n this same manner.

A group member may also remove herself from a group
by sending a request for her removal to the key server. If the
key server confirms that she 1s a member of the group
specified 1n the removal request, then the key server locates
the transform key from the group to her user and deletes the
transform key.

An administrator may also add one or more additional
administrators. Where a user 1s already registered, the
encryption client on the first administrator’s device can
retrieve the to-be-added administrator’s public key and the
group private key from the key server. The encryption client
can then decrypt the group’s private key and encrypt the
group private key using the public key of the to-be-added
administrator. The client associates the to-be-added admin-
istrator’s user ID and the new encrypted group private key
with the group and registers this information with the key
Server.

US 11,909,868 B2

21

An administrator can also remove another adminmistrator’s
privileges, if they are both administrators of the same group.
To do so, one administrator of the group sends the group 1D
and ID of the to-be-removed administrator to the key server.
The key server confirms that the requester 1s an administra-
tor for the specified group, and 11 so, locates the private key
for the group that 1s encrypted using the public key of the
administrator to be removed and deletes that encrypted
private key.

Given the above details of mitializing users and devices,
creating groups, and adding users to groups, the following
figures describe methods to delegate decryption authority to
group members and to also revoke delegated decryption
authority.

FIG. 7A illustrates a method of sharing an encrypted
document with a group and delegating decryption authority
to members of the group. The method 700 can be described
with reference to the exemplary network of groups, users,
and devices seen 1n FIG. 1, though this method 1s equally
applicable to other configurations of groups, users, and
devices. User 1 may desire to share a document with
members of group 1. Using device 1, user 1 can create a
document (Block 702). The encryption client on device 1
can then generate a random document encryption key (DEK)
(Block 704) and can mvoke a symmetric key encryption
primitive to encrypt the document data (Block 706). This
may involve invocation of the Encrypt Document process.
The encryption client then retrieves the public key 122 for
user 1 from the key server 102 and encrypts the DEK using
this public key 122 (Block 708), which may mvolve 1nvo-
cation of the Encrypt process. This produces an encrypted
DEK or EDEK that 1s associated with an ID of user 1. The
encryption client can then register the document ID, the user
1 ID, and the EDEK with the key server. The encryption
client then attaches the encrypted document key to the
document and stores this 1n a document store (Block 710),
which may 1involve returning the encrypted document to the
application that created the document for storage by this
application.

FIG. 7B 1illustrates a method of sharing a document with
a group. A user Ul that shares or delegates access to
encrypted data 1s one who was previously granted access to
the encrypted data, for instance via an application encrypting
the data using Ul’s public key, as shown 1n FIG. 7A.

Continuing with the example presented i FIG. 7A, user
1 can indicate a desire to share the document with members
of group 1 (either expressly or via attaching the document to
an e-mail, uploading the document to a cloud-based file
sharing service such as Google Drive, Dropbox, or Box,
etc.) (Block 714). This desire 1s typically indicated wia
interaction with an application. The device of user 1, D1A,
can then request the document (Block 716). The key server
can use the transform key from Ul to D1A (132) to
transform the DEK that was encrypted using Ul’s public
key (EDEK-U1) so 1t 1s can be decrypted by D1A (EDEK-
U1-D1A) (Block 718). The service returns the transformed
EDEK to the application (Block 720). The application can
then use device 1’s private key 140 to decrypt EDEK-U1-
D1A and recover the DEK (Block 722) and then encrypt the
DEK with group 1’s public key 106 to form EDEK-G1
(Block 724). The application can then add the new EDEK-
(51 to the document (Block 726) and store the document key
in the document store with the still-encrypted document
(Block 728).

This process can also be described as follows: User 1,
using device D1A, can request an EDEK for the document
from the key server. The key server can search for the

10

15

20

25

30

35

40

45

50

55

60

65

22

shortest access path that 1s available between the document
and the device. This can include searching a list of EDEKSs
for the document to find one that 1s encrypted with user 1°s
pubhc key. If there 1sn’t one, the key server can look for one
that 1s encrypted with the public key of a group that includes
the user. It the key server can find an EDEK, 1t can transform
(e.g., nvokes Transform on the entry) the EDEK once (1f the
EDEK was encrypted with the user’s public key), or twice
(1f the EDEK was encrypted with a group’s public key) and
return the transformed EDEK. The client can use the
device’s private key to decrypt the response and retrieve the
DEK. The client can then retrieve the public key of each
recipient from the key server and encrypt the DEK (e.g.,
invokes Encrypt) and each public key to generate a new list
of EDEKSs. The client can then send this list along with the
document ID to the key server for storage.

FIG. 7C 1illustrates a method of a user in the group
decrypting the shared document. User 2 (U2) can use an
application, such as a cloud file storage service like Google
Drive, Box, or DropBox, an e-mail client, etc. to retrieve the
encrypted document (Block 742). An instance of the encryp-
tion client on device 3 (D2A) can request the EDEK for the
document from the key server. The key server can i1dentily
a path from device 3 to user 2 to group 1 (Block 746) and
retrieve the EDEK encrypted with group 1’s public key,
EDEK-G1 and the transiorm key from G1 to U2, 114, then
use that transform key to transform the EDEK so 1t can be
decrypted by U2 (Block 734). The key server can then
retrieve the transform key from U2 to D2A, 136, and use that
transform key on the transformed EDEK to produce a
doubly-transtormed EDEK that can be decrypted by D2A
(Block 736). The key server can then return the doubly-
transiformed EDEK to the encryption client (Block 738). The

encryption client can use the private key for D2A, 148, to

decrypt EDEK-G1-U2-D2A and retrieve the DEK (Block
740). The application can then use the DEK to decrypt the
document (Block 742) and present the decrypted document
to user 2 (Block 744).

This process can also be described as follows: Decrypt
Document can be invoked from a specific device on behalf
of the current user. Similar to the sharing case, the client can
send a request for the EDEK to the key server. The key
server can search for the FDEK and i1 found, transform 1t to
the user’s device and return 1t. The client can invoke Decrypt
on the EDEK, using the device private key to retrieve the
DEK. If this 1s successiul, the client can mvoke the sym-
metric key decryption primitive, using the DEK to decrypt
the encrypted document that was provided by the embedding
application.

FIG. 8 1illustrates an embodiment of a system to provide
orthogonal access control which 1s cryptographically
enforced using groups of users and multi-hop proxy re-
encryption. The system 800 includes a first user, Ul, and a
second user, U2, each having two devices, D1A, D1B, D2A,
and D2B. The users are part of a group, G1, and Ul 1s the
administrator of the group. Both users are also administra-
tors of subgroups comprising their devices. When a user 1s
registered for the first time, a device upon which the user 1s
accessing the system randomly generates a public and
private key pair for the user, a public and private key pair for
the device, and a transform key from the user to the device
and stores the public keys and the transform key on a public
key storage of a key server. Optionally, the user’s private key
can be encrypted and stored on an optional encrypted private
key storage of the key server. The admin’s device can also
generate a public and private key for group G1 when 1t 1s

created and store the public key on the key server (and

US 11,909,868 B2

23

optionally an encrypted version of the private key on the key
server). To add a member to G1, whether that member 1s the
administrator herseltf, U1, or the second user, U2, a trans-
form key from the group to the user 1s generated and stored
in a transiorm key storage of the key server. Any device that
1s registered to a user 1s also associated with a new transform
key from the user to the device that 1s generated and stored
on the key server. The transform keys for devices can be
generated by whichever device a user 1s using to register a
new device.

Each device can include a private key storage to store a
respective private key once generated. Each device that a
user uses to administer a group of users and/or devices can
include a transform module. Thus, the transform module 1s
optional on devices not being used for administration func-
tions. It 1s important to note that for G1 administration, only
the transform module of D1A 1s needed. In order for U2 to
register her devices, D2A and D2B, one of these two devices
can have a transform module. Implementation of a transform
module on a device of the group admimstrator as well as on
a device of a group member who 1s not an administrator
(because 1t 1s needed to administer a subgroup including her
devices) 1s at least one feature not seen in prior art PRE
schemes.

FIG. 9 1llustrates a system comprising a library 902 that
1s embedded 1n an application 904, along with a service 906
that acts as a proxy 906, and also as a key server 906, storing
public keys for groups and users and allowing clients to
retrieve them. To facilitate compatibility of this system with
a variety of applications and systems, the PRE library 902
may not handle user authentication. The application 904 can
be responsible for providing a signed assertion of the user’s
identity; the system 1s configured with the public key to
validate the signature for the application 904. Likewise, the
system does not handle the storage of encrypted application
data; the application 904 is iree to store this data 1n a way
that 1s compatible with the rest of the application.

FIG. 10 illustrates an embodiment of data (e.g., a docu-
ment) being encrypted to a group of users or devices by
utilizing the group’s public key. Here, the data can be
encrypted to the group using the group’s public key to form
a ciphertext.

FIG. 11 1illustrates an administrator adding a new user to
a group of users. This can ivolve the administrator com-
puting a transform key from the group of users to the new
user and storing this transform key on a server. Typically, a
new user has already generated a new key pair for herself
since the public key 1n this pair 1s used along with the group
private key to generate the group-to-user transform key.

When encrypting, one does not need to know which users
belong to the group. A user merely encrypts to the group, and
the server can use the appropriate transtform key from the
group to a user to produce a transformed ciphertext, and the
user can then use their private key to decrypt the transformed
ciphertext. If data 1s encrypted to a group and also directly
to a member of that group, two encryptions would occur:
one to the group’s public key and one to the user’s public
key. If that user requests access to the data, the system would
determine a shortest path to access the data, which 1n this
example would mean selecting the data encrypted directly to
the user (e.g., there 1s one less hop to transform from the user
to the device than to transform from the group to the user and
then from the user to the device).

FI1G. 12 illustrates an embodiment of a method of creating
a transform key from a group of users to a user in that group
(or a group-to-user transform key). This can be performed
by the group administrator using one of the group admin-

10

15

20

25

30

35

40

45

50

55

60

65

24

istrator’s devices. The administrator has access to the
group’s private key and can therefore generate the transform
key using the group’s private key and the user’s public key.

FIGS. 13 and 14 1llustrate an embodiment of a method for
decrypting data (e.g., a document) encrypted to a group of
users (1.e., a ciphertext such as that created in FI1G. 10). FIG.
13 shows that data encrypted to a group (e.g., by encrypting
the data with the group’s public key), or a ciphertext, can be
transformed to a transformed ciphertext (or transformed
encrypted document) using the transform key (from the
group to a specific user). FIG. 14 then shows how the
transformed ciphertext (or transformed encrypted docu-
ment) can be decrypted by the user, via use of the user’s
private key.

FIG. 15 illustrates an embodiment of a user granting one
of her devices access to her data. This can also be referred
to as adding a device to a group of devices administered by
the user. It imvolves generating a transform key from the
user’s private key to the new device’s public key (.e.,
generating a transform key from the user to the device using
the user’s private key and the new device’s public key).

FIG. 16 1llustrates an embodiment of generating a trans-
form key from a user to a device. The user can perform this
method on one of her one or more devices, including the
device 1illustrated. The process can involve generating a
transform key from the user’s key to the device’s key (1.e.,
using the user’s private key and the device’s public key).

Data that has been encrypted to a group, a ciphertext, can
be accessed by a device belonging to a user of the group by
further transforming the ciphertext into a doubly-trans-
formed ciphertext as shown 1n FIG. 17. Here, data encrypted
to a group has already been transformed to a transformed
ciphertext (recall FIG. 13) and 1s then further transformed to
a doubly-transformed ciphertext using the user-to-device
transform key. FIG. 18 illustrates how the device can then
decrypt this doubly-transformed ciphertext using the private
key for the device.

FIG. 19 illustrates a system to provide orthogonal access
control for multiple groups using multi-hop transform
encryption. The system includes a first group and a second
group, each group comprising three users, where the third
user 1s a member of both groups. Each user can generate a
private and public key pair for themselves, after which a
transform key from each group to each user can be generated
by the administrator of each group. Although a “‘user”
generates these keys, 1n practice, the actual key generation
occurs on a device, such as one of one or more devices
owned/controlled by a given user. Each user can also have
one or more devices, where each users’ devices can be part
of a group of devices. So, for instance, there are five groups
of devices shown, each administered by the devices” user.
Each device can generate 1ts own public and private key pair.

In an embodiment, one or more of the private keys (for the
groups, users, and/or devices) can be encrypted and stored
on the server.

FIGS. 25 and 26 1llustrate another embodiment, wherein
operations to form public and private keys can be split
between a user and the server (also known as augmented key
formation). For instance, when generating public and private
key pairs, both the user and the server could create separate
key pairs, and then the user can provide 1ts version of the
public key to the server, which then forms an augmented
public key from 1ts version and the user’s version of the
public key. Since the user does not have access to the
server’s version of the private key, and the server does not
have access to the user’s version of the private key, neither
the user nor the server can access data encrypted to the

US 11,909,868 B2

25

augmented public key (since neither entity can access both
versions of the private key needed to form the augmented
private key, needed to decrypt any data encrypted to the
augmented public key). Similarly, the user and server can
work cooperatively to form augmented transform keys; the
user generates a transiform key using 1its private key and
sends the transform key to the server. The server uses its
version of the user’s private key to modily a component of
the transform key, forming an augmented transform key. As
such, neither the user nor the server alone can form these
augmented transform keys.

FIG. 20 illustrates an embodiment of a user being
removed from a group of users. Only an administrator of the
group can revoke a user’s membership 1n the group. This 1s
done by deleting the transform key from the group to the
user. Where the transform key 1s stored on a server, the
administrator, via one of the administrator’s devices, may
instruct the server to delete the transform key from the group
to the user being removed. More specifically, the adminis-
trator can request that the key server remove a user from a
group. The key server can confirm that the requesting user
1s an admimstrator of the group and if so, can look up the
group-to-user transform key for the group and 1f found, can
delete this group-to-user transform key.

To revoke access to a specific document, the encryption
client on a device belonging to the user tryving to revoke
document access can pass a document ID, current user 1D,
and an ID of the user or group whose access 1s being
revoked, to the key server. The key server can confirm that
the requesting user has access to the document by finding
any encrypted document encryption key (EDEK) that was
encrypted to the public key of the user or group whose
access 15 being revoked. If such an EDEK 1s found, the key
server deletes that EDEK.

To update an encrypted document, an encryption client
can verily that the current user has access to the document
by searching for a path from the document to the user. If this
exists, then the encryption client randomly chooses a new
DEK and uses 1t to symmetrically encrypt the new/modified
version of the document. The encryption client then requests
the list of EDEKSs from the key server. For each EDEK, it
retrieves the corresponding public key, and 1t encrypts (e.g.,
invoking the Encrypt process) the new DEK using the public
key. It sends the document and the replacement list of
EDEKs to the key server for storage, and 1t returns the
encrypted document to the application modifying the docu-
ment for storage.

This document update process mmvolves rotation of the
DEK every time that the document 1s updated and thereby
prevents unauthorized access that otherwise might be pos-
sible. For instance, 1 a user was granted access to a
document at some point in time, used the system to decrypt
the document, and captured the DEK from the client, she
could retain this DEK. At a future time, after her access was
revoked, 11 she could retrieve the encrypted data for an
updated version of the document, she could use the DEK
directly to decrypt 1t. By rotating the DEK each time the
document 1s updated, she 1s limited to only decrypting
versions of the document to which she was granted access.

FIG. 21 illustrates an embodiment of a device being
removed from a group of devices admimstered by a user.
Only the user can add and remove devices from the group.
Removal mvolves deleting the user-to-device transform key
for that device. Said another way, removing a device means
revoking authorization for the device to access the user’s
data. If a user decides to revoke access, she uses another
authorized device to perform the revocation request. The

10

15

20

25

30

35

40

45

50

55

60

65

26

revocation request can be sent to the key server, which
causes 1t to remove the user-to-device transtorm key thereby
ellecting removal of the device and precluding that device
from decrypting any data/documents encrypted to 1ts user. In
this way an administrator can remove one of 1its own devices
or a device belonging to another user.

FIG. 22 1illustrates how data can be encrypted to a user.
Namely, the user’s public key can be used to encrypt the data
forming a ciphertext that the user can open using his/her
private key. As shown, where data 1s encrypted directly to a
user, rather than through a group, no transform key 1s needed
or used.

FIG. 23 illustrates a method for encrypting data to a
multiplicity of groups and users. The data can be encrypted
using the public key of group 1 to form a first ciphertext (or
encrypted data), the public key of group 2 to form a second
ciphertext, the public key of user 1 to form a third ciphertext,
and the public key of user 2 to form a fourth ciphertext.

FIG. 24 1illustrates a method for decrypting the first
ciphertext from FIG. 23 (1.e., data encrypted to or shared
with a group of which the user 1s a member). In this example,
user 3 requests access to the first ciphertext, and the server
uses a transform key from group 1 to the user 3 to turn the
first ciphertext into a first transformed ciphertext. User 1s
making this request via, for example, its second of two
devices, device B. Therefore, the data not only passes to the
user but also from the user to the device B. To make this
second hop, the first transformed ciphertext 1s further trans-
formed into a doubly-transformed ciphertext using a trans-
form key for the user 3 to the device B. Device B can then
apply 1its private key to the doubly-transformed ciphertext to
decrypt and access the data (not shown).

FIG. 27 illustrates a method for decrypting the fourth
ciphertext from FIG. 23 (1.e., data encrypted to or shared
directly with a user regardless of group membership). In this
example, user 2 requests access to the fourth ciphertext, and
the server uses a transform key from user 2 to a first device
(e.g., device A) of user 2 to transiorm the fourth ciphertext
to a transformed ciphertext. Device A can then apply its
private key to the transformed ciphertext to decrypt and
access the data (not shown).

FIG. 28 illustrates a method for multi-hop transform
encryption of customer data relative to a company being
granted access to that data. When the customer’s data 1s first
captured (e.g., by the customer or by a service representa-
tive, to name two non-limiting examples), the user’s data
can be encrypted to the user’s public key. When the cus-
tomer grants the company permission to use her data, she
can create a transform key from her private key to a public
key of a group representing the company. If the company
wishes to grant other’s access to the customer’s private data,
then the company’s administrators can grant access via
creation ol group-to-user transform keys for each user that
1s granted access to the customer’s private data (i.e., added
as members to the group). These users, being members of
the company group, can authorize one or more of their
devices to access the customer’s private data by creating
user-to-device transform keys. If one of these users (e.g., an
authorized user) uses an authorized device (e.g., one of their
devices) to access the customer’s private data, then the data
1s transformed from the customer’s key to the group’s key,
then transformed to the user’s key, then transformed to the
device’s key. The result can be called a triply-transformed
ciphertext and can be sent to the user’s device, which uses
its private key to recover the customer’s private data. This 1s

US 11,909,868 B2

27

just one of many use cases where group based multi-hop
transform encryption enables features not possible i the
prior art.

FI1G. 29 illustrates further detail of the method of FIG. 28.
Here a customer’s data can be gathered by an application
running on a device, and the device can use the customer’s
public key to encrypt the customer’s data before the device
stores the customer’s data. If the customer wants to review
this data, she can request the encrypted data and use her
private key to decrypt it (see FIG. 30). If the user grants
permission to the company to use her private data, then she
creates a transform key from her user to a group that
represents the company, using her private key and the public
key of the company’s group (see FIG. 31). This transform
key can then be stored on the server. The transform key
allows users that are members of the company group to
transform the user’s encrypted data and then decrypt it.

FI1G. 32 illustrates an embodiment of the customer invok-
ing the right to be forgotten. She can instruct the server to
delete the transform key from her user to the company’s
group. Without the transform key, everyone within the
company can no longer access her data regardless of where
the data 1s stored (e.g., on application servers, 1n logs, or on
backup media). In other words, the right to be forgotten
allows a user to revoke access to private data without having
to destroy or erase the data. This right to be forgotten 1s
turther illustrated in FIG. 33.

Details of the PRE Algorithm

The herein disclosed systems and methods comprise
modified versions of the PRE algorithms described in Cai
and Liu (Y. Ca1 and X. Liu. 2014. A Multi-use CCA-secure
Proxy Re-encryption Scheme. IEEE 12th International Con-
terence on Dependable, Autonomic, and Secure Computing
7 (2014)). For instance, this disclosure uses a single proxy
that performs all transformations for multiple hops at the
same time. Also, while the Wang algorithm (H. Wang and 7.
Cao. 2009. A Fully Secure Unidirectional and Multi-use
Proxy Re-encryption Scheme. ACM CCS Poster Session
(2009)) computes an authentication code for each hop using
relatively expensive pairing, this disclosure’s encryption and
transform encryption modules sign the entire ciphertext, or
transformed ciphertext, by computing a simple hash of the
text then signing the hash with a much faster Ed25519
signature, using a separate signing key.

The following algorithms comprise the herein disclosed
modified versions of the Cai and Liu PRE scheme (note that
this disclosure uses TransformKeyGen rather than ReKey-
Gen and Transform rather than ReEncrypt)

Let params=(k, p, G,, G, e, g, g,, SHA256, H,, Sig) be
public parameters, where:

k 1s the number of bits required to store keys;

p 1S a prime;

G, and G, are abelian groups with G, written additively
and G written multiplicatively. (Throughout, we will
use bold to denote elements of G, .)

e: G,xG,—G . 15 a bilinear pairing;

g 1s an arbitrary fixed nonzero element of G,

g 1s a random element of G; which does not lie in the
cyclic subgroup generated by g,

SHA256: {0,1}*—256-bit hash and H,: G,—G, are two
one-way collision-resistant hash functlons

S1g=(G, S, V) 1s the Ed25519 strongly unforgeable sig-
nature scheme, comprising a key generation algorithm
(G, a signing algorithm S, and a verification algorithm
V.

KeyGen(params)—(pk, sk)): Generate a public/private

key pair.

5

10

15

20

25

30

35

40

45

50

55

60

65

28

secret key sk« Z .
pubhc key pk<—sk-g
Transtorm KeyGen(params, sk;, pk,

, (spk;, ssk,))—tk, .
This transform key generation process generates a trans-
form key from user 1 (the delegator) to user j (the delegatee).
The process uses the delegator’s private key (sk;), the
delegatee’s public key (pk,), and the delegator’s signing key
pair (spk,, ssk.), and 1t produces a transform key that 1s a
tuple of five values (tpk, eK, spk,, sig, tep).

transform key pair $(tpk, tsk)«—KeyGen

transtorm value K<, G

encrypted transform value eK<—K-e(pk;, g,)

signature sig<—S(tpk|leK|lspk,, ssk,)

transtorm point tep<—H.,(K)+(-sk,)-g,
transform key tkzﬁ_jk(tpk eK, spk,, sig, tep)

Note that the signature does not include tep. In the
transformation process, this value does not get copied
into the transform block, so omitting 1t from the sig-
nature allows the signature to be copied nto the trans-
form block and verified if desired. The transform key
tk, ., can be sent to the key server via a secure channel.

Encrypt (params, m, pk,, (spk;, ssk;))—=C:

Encrypt a message meG - to delegatee 1, given 1°s public
key (pk;) and the sender 1’s signing key pair (spk;, ssk;).
Produces a ciphertext C; that 1s a tuple of five values:

ephemeral key pair (epk, esk)«<—KeyGen

encrypted message em<—m-e(pk, g,)*

authentication hash ah<—SHA256(epk||m)

signature sig<—S(epk|lem||ah||spk.,ssk.)

mphertext C,<—(epk, em, ah, spk,, sig)

Transtorm (params Cﬂtkl_}z, (spk, ssk))ﬁC - Or -
Transtorm(params, C,, [tk, y—:-z (spk ssk))—C,
Transtform a ciphertext encrypted to 1(C))mto a c:lphertext
encrypted to j (C,), given a list ot one or more transtorm
keys (tk), provided 1n the order in which they must be
applied, and the key server’s signing key pair (spk,
ssk). (This operation 1s performed by the server rather
than the client.)

First, validate the signature on the encrypted message and

on each of the transform keys:

If any parse or venly step fails, return L

Parse C, into (epk, em, ah, spk_, sig_)

Verify V(epk|lem||ah|lpsk, , sig _, spk.)

Parse each tk into (tpk, eK, spk,., sig.., tep)

Verlfy V(’[pkHEKHSpk&, Sigrk: Spkrk)

Apply the first transform from the list:

random key pair (rpk, rsk)<—KeyGen

random transform value rK<—, G

random encrypted transform value reK<—rK-e(pk;, g,

transformed encrypted message em'<—em-e(epk, tep+H,
(rK))

modified ciphertext C'«<—(epk, em', ah)

transform block TB<(tpk, eK, rpk, reK)

transtormed ciphertext C<—(C/, 1B)

If there are additional transform keys in tk, process each

of them 1n turn.

Parse the last transtorm block ot C, into (tpk,,.,.
DKy o1 1K 0,)

Parse the next transform key from the list, tk, mnto (tpk,
E:K,, Spkrk: Sigrk: tep)

ISk

I%a! L] L]

)Psk

ek

Drey?

random key pair (rpk, rsk)<— Z p

random transform value rK<, G

random encrypted transform value reK<—rK-e(pk;, g,
transformed encrypted transform value

)Psk

ek EEKprev E(@kprev f€p+H2(F"K))

US 11,909,868 B2

29

transformed random encrypted transform value

reK'—reK .. -e(rpk,tep+H,(rK))
and reK

Drey

Replace eK in the last transform block

Drey

with eK' and reK'

transform block TB<—(tpk, eK, rpk, reK)

Append 1B to C,

In summary, on each transformation (after the first), the
last eK and reK values from the previous transformation are
modified, then the first two elements of the new transform
key and the new rpk and reK are appended. Note that the
encrypted message em from the original ciphertext C, 1s only
modified once, 1n the first transformation. After that, 1t 1s not
changed again.

After all transforms have been applied, the entire trans-
formed ciphertext 1s signed.

signature sig<—S(C ||spk, ssk)

C,<=(C,, spk, sig)

Decrypt(params, C,, sk,)—m:

Decrypt a signed ciphertext (C,) given the private key of

the recipient 1 (sk,).

Returns the original message that was encrypted, m. As

above, we return L if any parse or verily step fails.

First, validate the signature on the ciphertext:

Extract spk and sig, the last two elements of SC

Extract C, all of C, preceding spk

Verity V(C||spk, sig, spk)

To decrypt a first-level ciphertext, where C includes no
transform blocks:

Parse C into (epk, em, ah)

m<—em-e(epk, (-sk;)-g,)

To decrypt a transformed ciphertext, where C includes 1
transform blocks:

Parse C into (C', TB'™", ..., TB'""V TBY)

Parse C' into (epk, em', ah)

Parse TB into (tpk”, eK?, rpk”, reK¥)

For each integer k in [1, 1-1], parse TB'® into (tpk®, &'®,

k@, reK®)

KODeeKO-e(tpk®, (-sk,)g,)

K Pe—reK-e(rpk”, (-sk,)-g;)

For each iteger k from 1-2 down to O

Kk'”reK(k_l_ 1) _e(tpk(f-:+ 1) 3 —H_»;,_ (K(I-:+ 1)))

KFe—reK Do (rpk *D, — (K% DyH_(rK*+1Y))

m<—em'-e(epk, —IH,(K”)—H,(rK"))

Finally, verify SHA256(epk||m)=ah

The random elements in each transform were 1ntroduced

to the oniginal algorithms by Cal and Liu to resolve a
problem they called “proxy bypass.” Without those
values, when a user decrypts a transformed message,
she recovers the transformation value K from each of
the transform keys that were applied to the message.
This means, for example, that if Alice transformed a
message to Bob, Bob transformed the message to

Carol, and Carol transformed the message to Eve, when

Eve decrypted the message, she would have the K
values from all of the transform keys, and 1f she
subsequently intercepted a message that was trans-
formed from Alice to Bob, she could use the K from
that transform key to decrypt the message. The intro-
duction of the random elements 1n the transformation
process does not prevent this, but the K wvalues by
themselves are not suflicient to decrypt the transformed
message.

Details of the Key Augmentation Algorithm

10

15

20

25

30

35

40

45

50

55

60

65

30

This disclosure describes a method of augmenting the
public keys of groups and users to enhance the ability to
revoke the access of users associated with groups or devices
associated with users.

The following algorithms comprise the herein disclosed
key augmentation method.

After a device creates a public/private key pair for a group
or a user and sends the public key to the key server, the key
server executes the following algorithm:

AugmentPublicKey(params, pk,)—(sk;., pk,,.)

key server key pair (pk, ., sk,)<—KeyGen

augmented public key pk,,, . <—pk +pk;,

where the addition of public keys 1s simply addition of
two points on the elliptic curve. The resulting public
key 1s stored and distributed as the group’s public key,
and all data encrypted to the group 1s encrypted to this
public key. The key server retains the group private key
that 1t generated, sk, , 1n secure storage.

Neither party 1n the computation (device or key server) 1s
able to determine the other party’s secret key, even
though each knows its own secret key, the component
public keys, and the resulting augmented public key.
Since pk,,, . =sk sg+sk; g, either party can recover the
other party’s public key by subtracting 1ts own public
key from the augmented public key. But recovering the
other party’s secret key requires solving the elliptic
curve discrete logarithm problem (ECDLP).

After augmentation, any data that 1s encrypted to the
group’s public key can no longer be decrypted by the
group’s private key. Decryption requires possession of both
the private key generated on the device and the private key
generated on the key server.

To allow decryption of a message on a device without
sharing the key server’s private key, each transform key
from the group to a user 1s also augmented. The transform
key that 1s generated on the device transforms from an
unaugmented group private key to an augmented user public
key, so the key server uses the following algorithm to
augment the transform key from the group to the user, using
the same server-generated private key 1t used to augment the
group public key.

AugmentTranstormKey(params, tk;, sk,)—tk,, .

(Given an unaugmented transform key tk , generated on the
device and the server-generated private key for the group,
Skkg:

Parse tk , into (tpk, eK, spk,., sig ., tep)

Verify V(tpk|leK|spk,, sig, spky)

Augmented transform point tep'<—tep-sk, ‘g,

augmented transtorm key tk,, <—(tpk, eK, spk,, sig,,
tep’)

This augmentation of the transform key 1s performed
betfore the transform key i1s stored by the key server.
The augmentation process does not give the key server
access to any additional information about the group
private key, so it does not allow the key server to
generate new transform keys or decrypt files. But group
administrators who have access to the group private
key can only generate partial transform keys, which
cannot be used to transform data to any user without
cooperation by the key server.

This disclosure has described a single server instantiation.
However, 1n other embodiments, a separate public key
management system could be used. For instance, the sys-
tems heremn disclosed could be used inside an existing
application, but with the public keys stored 1n a separate user
store (e.g., an existing user store), like a directory server.

US 11,909,868 B2

31

As shown, a PRE scheme that 1s umidirectional, non-
interactive, non-transitive, and collusion safe 1s a solid
foundation for an end-to-end encrypted system where users
do not need to trust the server to keep data secure. A
multi-hop scheme allows the system to provide delegation
from groups to users and from users to devices.

The systems and methods described herein can be imple-
mented 1n a computer system in addition to the specific
physical devices described herein. FIG. 34 shows a diagram-
matic representation of one embodiment of a computer
system 3400 within which a set of instructions can execute
for causing a device to perform or execute any one or more
of the aspects and/or methodologies of the present disclo-
sure. The user devices mentioned throughout this disclosure
are one 1implementation of the computer system 3400. A key
server 1s another implementation of the computer system
3400. The components in FIG. 34 are examples only and do
not limit the scope of use or functionality of any hardware,
soltware, firmware, embedded logic component, or a com-
bination of two or more such components implementing
particular embodiments of this disclosure. Some or all of the
illustrated components can be part of the computer system
3400. For instance, the computer system 3400 can be a
general-purpose computer (e.g., a laptop computer) or an
embedded logic device (e.g., an FPGA), to name just two
non-limiting examples.

Computer system 3400 includes at least a processor 3401
such as a central processing unit (CPU) or an FPGA to name
two non-limiting examples. The computer system 3400 may
also comprise a memory 3403 and a storage 3408, both
communicating with each other, and with other components,
via a bus 3440. The bus 3440 may also link a display 3432,
one or more input devices 3433 (which may, for example,

include a keypad, a keyboard, a mouse, a stylus, etc.), one
or more output devices 3434, one or more storage devices
3435, and various non-transitory, tangible computer-read-
able storage media 3436 with each other and with one or
more of the processor 3401, the memory 3403, and the
storage 3408. All of these elements may interface directly or
via one or more interfaces or adaptors to the bus 3440. For
instance, the various non-transitory, tangible computer-read-
able storage media 3436 can interface with the bus 3440 via
storage medium interface 3426. Computer system 3400 may
have any suitable physical form, including but not limited to
one or more integrated circuits (ICs), printed circuit boards
(PCBs), mobile handheld devices (such as mobile tele-
phones or PDAs), laptop or notebook computers, distributed
computer systems, computing grids, or servers.
Processor(s) 3401 (or central processing unit(s) (CPU(s)))
optionally contains a cache memory unit 3402 for temporary
local storage of instructions, data, or computer addresses.
Processor(s) 3401 are configured to assist in execution of
computer-readable instructions stored on at least one non-
transitory, tangible computer-readable storage medium.
Computer system 3400 may provide functionality as a result
of the processor(s) 3401 executing software embodied 1n
one or more non-transitory, tangible computer-readable stor-
age media, such as memory 3403, storage 3408, storage
devices 3435, and/or storage medium 3436 (e.g., read only

memory (ROM)). For instance, the method 200, 300, 400,
500, and 600 in FIGS. 2-6 may be embodied in one or more
non-transitory, tangible computer-readable storage media.
The non-transitory, tangible computer-readable storage
media may store software that implements particular
embodiments, such as the methods 200, 300, 400, 500, and
600, and processor(s) 3401 may execute the software.
Memory 3403 may read the software from one or more other

10

15

20

25

30

35

40

45

50

55

60

65

32

non-transitory, tangible computer-readable storage media
(such as mass storage device(s) 3435, 3436) or from one or
more other sources through a suitable interface, such as
network interface 3420. The user devices may include
embodiments of the network interface 3420 as may the key
server. The software may cause processor(s) 3401 to carry
out one or more processes or one or more steps of one or
more processes described or illustrated herein. Carrying out
such processes or steps may include defining data structures
stored 1n memory 3403 and modifying the data structures as
directed by the software. In some embodiments, an FPGA
can store instructions for carrying out functionality as
described 1n this disclosure (e.g., the methods 200, 300, 400,
500, and 600). In other embodiments, firmware includes

instructions for carrying out functionality as described in
this disclosure (e.g., the methods 200, 300, 400, 500, and
600).

The memory 3403 may include various components (e.g.,
non-transitory, tangible computer-readable storage media)
including, but not limited to, a random-access memory
component (e.g., RAM 3404) (e.g., a static RAM “SRAM?”,
a dynamic RAM “DRAM, etc.), a read-only component
(e.g., ROM 3403), and any combinations thereof. ROM
3405 may act to communicate data and instructions unidi-
rectionally to processor(s) 3401, and RAM 3404 may act to
communicate data and instructions bidirectionally with pro-
cessor(s) 3401. ROM 3405 and RAM 3404 may include any
suitable non-transitory, tangible computer-readable storage
media described below. In some instances, ROM 3405 and
RAM 3404 include non-transitory, tangible computer-read-
able storage media for carrying out the methods 200, 300,
400, 500, and 600. In one example, a basic 1nput/output
system 3406 (BIOS), including basic routines that help to
transier information between elements within computer sys-
tem 3400, such as during start-up, may be stored in the
memory 3403.

Fixed storage 3408 1s connected bidirectionally to pro-
cessor(s) 3401, optionally through storage control unit 3407.
Fixed storage 3408 provides additional data storage capacity
and may also include any suitable non-transitory, tangible
computer-readable media described herein. Storage 3408
may be used to store operating system 3409, EXECs 3410
(executables), data 3411, API applications 3412 (application
programs), and the like. For instance, the storage 3408 could
be implemented for storage of public keys, private keys, and
transiorm keys as described relative to the key server and the
key server throughout this disclosure. Often, although not
always, storage 3408 1s an 1dentity storage medium (such as
a hard disk) that i1s slower than primary storage (e.g.,
memory 3403). Storage 3408 can also include an optical
disk drive, a solid-state memory device (e.g., tlash-based
systems), or a combination of any of the above. Information
in storage 3408 may, 1n appropriate cases, be incorporated as
virtual memory in memory 3403.

In one example, storage device(s) 3435 may be remov-
ably interfaced with computer system 3400 (e.g., via an
external port connector (not shown)) via a storage device
interface 3425. Particularly, storage device(s) 3435 and an
associated machine-readable medium may provide nonvola-
tile and/or volatile storage ol machine-readable instructions,
data structures, program modules, and/or other data for the
computer system 3400. In one example, soitware may
reside, completely or partially, within a machine-readable
medium on storage device(s) 3435. In another example,
soltware may reside, completely or partially, within proces-

sor(s) 3401.

US 11,909,868 B2

33

Bus 3440 connects a wide variety of subsystems. Herein,
reference to a bus may encompass one or more digital signal
lines serving a common function, where appropriate. Bus
3440 may be any of several types of bus structures includ-
ing, but not limited to, a memory bus, a memory controller,
a peripheral bus, a local bus, and any combinations thereof,
using any of a variety of bus architectures. As an example

and not by way of limitation, such architectures include an
Industry Standard Architecture (ISA) bus, an Enhanced ISA

(EISA) bus, a Micro Channel Architecture (MCA) bus, a
Video Electronics Standards Association local bus (VLB), a
Peripheral Component Interconnect (PCI) bus, a PCI-Ex-
press (PCI-X) bus, an Accelerated Graphics Port (AGP) bus,
HyperTransport (H1X) bus, serial advanced technology
attachment (SATA) bus, and any combinations thereof.

Computer system 3400 may also include an mnput device
3433. In one example, a user of computer system 3400 may
enter commands and/or other information nto computer
system 3400 via input device(s) 3433. Examples of an input
device(s) 3433 include, but are not limited to, an alpha-
numeric mput device (e.g., a keyboard), a pointing device
(e.g., a mouse or touchpad), a touchpad, a joystick, a
gamepad, an audio mput device (e.g., a microphone, a voice
response system, etc.), an optical scanner, a video or still
image capture device (e.g., a camera), and any combinations
thereot. Input device(s) 3433 may be interfaced to bus 3440
via any ol a variety of input interfaces 3423 (e.g., mput
interface 3423) including, but not limited to, senal, parallel,
game port, USB, FIREWIRE, THUNDERBOLI, or any
combination of the above.

In particular embodiments, when computer system 3400
1s connected to network 3430 (such as a network connecting
the key server 802 and the various user devices of FIG. 8),
computer system 3400 may communicate with other
devices, such as mobile devices and enterprise systems,
connected to network 3430. Communications to and from
computer system 3400 may be sent through network inter-
tace 3420. For example, network interface 3420 may receive
incoming communications (such as requests or responses
from other devices) 1n the form of one or more packets (such
as Internet Protocol (IP) packets) from network 3430, and
computer system 3400 may store the mcoming communi-
cations 1 memory 3403 for processing. Computer system
3400 may similarly store outgoing communications (such as
requests or responses to other devices) in the form of one or
more packets in memory 3403 and communicated to net-
work 3430 from network interface 3420. Processor(s) 3401
may access these communication packets stored in memory
3403 for processing.

Examples of the network interface 3420 include, but are
not limited to, a network interface card, a modem, and any
combination thereof. Examples of a network 3430 or net-
work segment 3430 include, but are not limited to, a wide
arca network (WAN) (e.g., the Internet, an enterprise net-
work), a local area network (LAN) (e.g., a network associ-
ated with an office, a building, a campus or other relatively
small geographic space), a telephone network, a direct
connection between two computing devices, and any com-
binations thereof. A network, such as network 3430, may
employ a wired and/or a wireless mode of communication.
In general, any network topology may be used.

Information and data can be displayed through a display
3432. Examples of a display 3432 include, but are not
limited to, a liquid crystal display (LLCD), an organic liqud
crystal display (OLED), a cathode ray tube (CRT), a plasma
display, and any combinations thereof. The display 3432 can
intertace to the processor(s) 3401, memory 3403, and fixed

10

15

20

25

30

35

40

45

50

55

60

65

34

storage 3408, as well as other devices, such as mput device
(s) 3433, via the bus 3440. The display 3432 i1s linked to the

bus 3440 via a video interface 3422, and transport of data
between the display 3432 and the bus 3440 can be controlled
via the graphics control 3421.

In addition to a display 3432, computer system 3400 may
include one or more other peripheral output devices 3434
including, but not limited to, an audio speaker, a printer, and
any combinations thereof. Such peripheral output devices
may be connected to the bus 3440 via an output interface
3424. Examples of an output interface 3424 include, but are

not limited to, a senal port, a parallel connection, a USB
port, a FIREWIRE port, a THUNDERBOLT port, and any

combinations thereof.

In addition or as an alternative, computer system 3400
may provide functionality as a result of logic hardwired or
otherwise embodied 1n a circuit, which may operate 1n place
of or together with software to execute one or more pro-
cesses Oor one or more steps of one or more processes
described or 1llustrated herein. Reference to software 1n this
disclosure may encompass logic, and reference to logic may
encompass software. Moreover, reference to a non-transi-
tory, tangible computer-readable medium may encompass a
circuit (such as an IC) storing software for execution, a
circuit embodying logic for execution, or both, where appro-
priate. The present disclosure encompasses any suitable
combination of hardware, software, or both.

Those of skill in the art will understand that information
and signals may be represented using any of a variety of
different technologies and techmiques. For example, data,
istructions, commands, information, signals, bits, symbols,
and chips that may be referenced throughout the above
description may be represented by voltages, currents, elec-
tromagnetic waves, magnetic fields or particles, optical
fields or particles, or any combination thereof.

Those of skill will further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm
steps described 1n connection with the embodiments dis-
closed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly
illustrate this interchangeability of hardware and software,
various 1llustrative components, blocks, modules, circuits,
and steps have been described above generally in terms of
theirr functionality. Whether such functionality 1s 1mple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. Skilled artisans may implement the described func-
tionality in varying ways for each particular application, but
such 1implementation decisions should not be interpreted as
causing a departure from the scope of the present invention.

The wvarious illustrative logical blocks, modules, and
circuits described 1n connection with the embodiments dis-
closed herein may be mmplemented or performed with a
general-purpose processor, a digital signal processor (DSP),
an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereof designed to
perform the functions described herein. A general-purpose
processor may be a microprocessor, but in the alternative,
the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
MICroprocessors, one or more miCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

US 11,909,868 B2

35

The steps of a method or algorithm described 1n connec-
tion with the embodiments disclosed herein (e.g., the meth-
ods 200, 300, 400, 500, and 600) may be embodied directly
in hardware, 1n a software module executed by a processor,
a software module implemented as digital logic devices, or
in a combination of these. A software module may reside 1n
RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, hard disk, a remov-
able disk, a CD-ROM, or any other form of non-transitory,
tangible computer-readable storage medium known in the
art. An exemplary non-transitory, tangible computer-read-
able storage medium 1s coupled to the processor such that
the processor can read information from, and write infor-
mation to, the non-transitory, tangible computer-readable
storage medium. In the alternative, the non-transitory, tan-
gible computer-readable storage medium may be integral to
the processor. The processor and the non-transitory, tangible
computer-readable storage medium may reside 1 an ASIC.
The ASIC may reside 1n a user terminal. In the alternative,
the processor and the non-transitory, tangible computer-
readable storage medium may reside as discrete components
in a user terminal. In some embodiments, a software module
may be implemented as digital logic components such as
those mn an FPGA once programmed with the software
module.

The previous description of the disclosed embodiments 1s
provided to enable any person skilled in the art to make or
use the present invention. Various modifications to these
embodiments will be readily apparent to those skilled in the
art, and the generic principles defined herein may be applied
to other embodiments without departing from the spirit or
scope of the mvention. Thus, the present mvention 1s not
intended to be limited to the embodiments shown herein but
1s to be accorded the widest scope consistent with the
principles and novel features disclosed herein.

What 1s claimed 1s:

1. A method comprising:

creating a first group of users by computing first transform

keys from the first group of users to each user 1n the first
group ol users;

enabling the users 1n the first group of users to access data

of a first user by computing a second transform key
from the first user to the first group of users;

creating a second group of users by computing third

transform keys from the second group of users to each
user in the second group of users;

ecnabling the users 1n the second group of users to access

the data of the first user by computing a fourth trans-
form key from the first user to the second group of
users; and then

disabling the users 1n the first group of users from

accessing the data of the first user by removing the
second transform key;

wherein the second transform key constitutes a transform

from a private key of the first user to a public key of the
first group of users.

2. The method of claim 1, wherein data of the first user 1s
encrypted using a document encryption key (DEK) to form
encrypted data of the first user, the DEK 1s asymmetrically
encrypted using a public key of the first user to form an
encrypted DEK (EDEK), and to access the encrypted data of
the first user ivolves decryption of the EDEK by a private
key of a respective one of the users 1n the first group of users
tollowed by decrypting the encrypted data using the DEK to
access the data of the first user.

3. The method of claim 2, wherein the DFEK 1s rotated
when the data 1s updated.

5

10

15

20

25

30

35

40

45

50

55

60

65

36

4. The method of claim 3, wherein rotation of the DEK
comprises symmetric encryption of the updated data using a
new randomly generated DEK.

5. The method of claim 2, wherein the enabling the users
in the first group of users comprises:

finding the EDEK for the data; and

transforming the EDEK twice when the EDEK 1is

encrypted with the public key of the first user.

6. A method of decrypting data comprising:

creating a first public/private key pair by a first user

device;

creating a second public/private key pair for a first device

authorized by the first user, then computing a first
transform key from the first user’s private key and the
first device’s public key;

creating a first augmentation factor for the first user and

updating the first public key using the first augmenta-
tion factor;

creating an augmented first public key for the first user

such that any data encrypted to the augmented first
public key cannot be decrypted using the first private
key:;

encrypting data to the augmented first public key;

requesting, via the first device, that data encrypted to the

augmented first public key be transformed;

using the first transform key and the first augmentation

factor to transform the data encrypted to the augmented
first public key so 1t 1s encrypted to the second public
key, referred to as transformed data; and

decrypting the transformed data using the second private

key:

wherein creating the first augmentation factor and updat-

ing the first public key are performed by a management
system.

7. The method of claim 6, wherein the first user device and
the first device are the same device.

8. The method of claim 6, further comprising creating a
first group of users comprising:

generating a third public/private key pair;

adding the first user to the first group by computing a

second transform key using the third private key and
the first augmented public key;

creating a second augmentation factor for the third public

key and updating the third public key using the second
augmentation factor;

creating an augmented third public key for the group such

that any data encrypted to the augmented third public

key cannot be decrypted using the third private key;
encrypting data to the augmented third public key;
requesting, via the first device, that data encrypted to the

augmented third public key be transformed;

using the second transform key and the second augmen-

tation factor to transform the data encrypted to the
augmented third public key so 1t 1s encrypted to the
augmented first public key;
using the first transform key and the first augmentation
factor to transform the data augmented to the first
public key so 1t 1s encrypted to the second public key,
referred to as doubly-transformed data; and

decrypting the doubly transformed data using the second
private key.

9. The method of claim 8, wherein creating the second
augmentation factor for the third public key and updating the
third public key are performed by a management system.

10. A method comprising:

encrypting data to a first group of users by encrypting a

plaintext data using a randomly generated document

US 11,909,868 B2

37

encryption key (DEK) to form a ciphertext, then

encrypting the DEK with a public key of the first group

of users to form an encrypted DEK (EDEK);
adding a new user to the first group of users by computing,

a first transform key from the first group of users to the

new user, and without re-encryption of data;
computing a second transiform key from the new user to

a computing device of the new user;
applying the first transform key to the EDEK to transform

the EDEK 1nto a transformed EDEK:
applying the second transform key to the transformed
EDEK to transform the transformed EDEK into a

doubly-transformed EDEK; and

decrypting the doubly-transformed EDEK via a private

key for the computing device of the new user to retrieve
the DEK: and

decrypting the ciphertext via the DEK to access the

plaintext data.

11. The method of claim 10, wherein the DEK 1s rotated
when the data 1s updated.

12. The method of claim 11, wherein rotation of the DEK
comprises symmetric encryption of the updated data using a
new randomly generated DEK.

13. A method comprising:

computing a first transform key from a first user to a first

group;,
computing second transform keys from the first group to
users of the first group, wherein a second user 1s a
member of the first group of users, and a one of the
second transform keys that 1s from the first group to the
second user makes the second user a member of the first
group,
providing the first group of users access to encrypted data
of the first user via the first transform key;

augmenting a first public key of the first user or first group
via an augmentation factor to form an augmented first
public key such that data encrypted to the augmented
first public key cannot be decrypted by the first user, by
the first group, or by a key storage system; and

10

15

20

25

30

35

38

revoking:

an access ol the second user to the encrypted data of the
first user by deleting the one of the second transform
keys that 1s from the first group to the second user; or

an access of the first group to the encrypted data of the
first user by deleting the first transform key.

14. The method of claim 13, wherein data of the first user
1s encrypted using a document encryption key (DEK) to
form the encrypted data of the first user, the DEK 1is
asymmetrically encrypted using a public key of the first user
to form an encrypted DEK (EDEK), and the access to the
encrypted data of the first user comprises decryption of the
EDEK by a private key of a respective one of the users of
the first group of users followed by decrypting the encrypted
data using the DEK to access the data of the first user.

15. The method of claim 14, wherein the DEK 1s rotated
when the data of the first user 1s updated.

16. The method of claim 15, wherein rotation of the DEK
comprises symmetric encryption of the updated data using a
new randomly generated DEK.

17. The method of claim 13, wherein the second transform
key constitutes a transform from a private key of the first
user to a public key of the first group of users.

18. The method of claim 17, wherein the enabling the
users 1n the first group of users comprises:

finding the EDEK for the data; and

transforming the EDEK twice when the EDEK 1s

encrypted with the public key of the first user; or
transforming the EDEK once, when the EDEK 1is
encrypted with the public key of the first group of users.

19. The method of claim 13, further comprising augment-
ing the first transform key using the augmentation factor to

form an augmented transform key, transforming the
encrypted data via the augmented first transform key, and
decrypting using a private key for the first user or for one of
the other users of the first group.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

