12 United States Patent

US011915014B2

(10) Patent No.: US 11,915,014 B2

Deka 45) Date of Patent: Feb. 27, 2024
(54) CONSENSUS BASED DETERMINATION OF 20_13%938369,3133 i; * 1%82:1; E/l}aﬂﬂm e HO4L 12/4641
1 1 1 ithyantha
STABLE CONFIGURATION 2019/0036702 Al* 1/2019 Kanoccoovvvvinnnn, G09C 1/00
2019/0235946 Al 8/2019 QGuo et al.

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

(56)

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventor:

Assignee:

Notice:

Appl. No.:

Filed:

Amarjvoti Deka, Bothell, WA (US)

Microsoft Technology Licensing,
Redmond, WA (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 248 days.

17/405,195

Aug.

18, 2021

Prior Publication Data

US 2023/0058542 Al Feb. 23, 2023

FOREIGN PATENT DOCUMENTS

CN 109960512 A 7/2019
WO 2016085516 Al 6/2016

OTHER PUBLICATIONS

“International Search Report and Written Opinion Issued in PCT
Patent Application No. PCT/US22/035389”, dated Sep. 27, 2022,

12 Pages.

“Algorand Node Types™, Retrieved from: https://web.archive.org/
web/20210421113830/https:/developer.algorand.org/docs/run-a-node/

setup/types/, Apr. 21, 2021, 3 Pages.

Angluin, et al., “Stabilizing Consensus 1n Mobile Networks™, In
International Conference on Distributed Computing in Sensor Sys-
tems, Jun. 18, 2006, 13 Pages.

Vizier, et al., “ComChain: A Blockchain with Byzantine Fault-
Tolerant Reconfiguration”, In Journal of Concurrency and Compu-
tation: Practice and Experience, Jun. 25, 2020, pp. 1-27.

Int. 1. * cited by examiner
GO6Il’ 9/44 (2018.01) s
gggﬁ 29 ; iﬁj (38128) Primary Examiner — Keshab R Pandey
(01) (74) Attorney, Agent, or Firm — Christopher .
U.S. CL Volkmann; Kelly, Holt & Christenson, PLLC.
CPC GO6F 9/44505 (2013.01); GO6F 21/64
(2013.01) (57) ABSTRACT
Field of Classification Search Wh a Gion ; tod in a distributed ;
CPC ..o GOGF 9/44; GOGF 1/32; GOGF 1/12 ' 1EH @ COLLSUIAHON 15 SERCHatEt 1 & CUSIHOLIEE Commpt-
See application file for complete search history ing system, a first group of nodes 1s selected for validating
' the configuration and the configuration 1s deployed on the
References Cited first group of nodes. When j[he first nodes in the group of
nodes validate the configuration, the nodes sign the configu-
U.S. PATENT DOCUMENTS ration with a signature. When a subsequent node is to
implement the configuration, the subsequent node validates
7,895,591 B2* 2/2011 Spears ... GO6F /3/ 61 the signature on the configuration to ensure that the nodes in
117/172 * : : *
the first group of nodes validated the configuration. If the
8,244,839 B2 82012 Beaty et al. . N Fdatod the sub) f enlove
8.572.679 Bl 10/2013 Wang et al. signature 1s validated, the subsequent node deploys the
0.619.544 B2 4/2017 Vermeulen et al. configuration.
10,491,513 B2* 11/2019 Attakonnn... HO4L 45/30
10,841,100 B2 11/2020 Lam et al. 20 Claims, 7 Drawing Sheets
100 "y
| CONMPUTING SYSTEM 102
I | PROCESSOR(SYSERVER(S) 122 = ' i
: . ’ . BATJ-“? STORE
; CONFICURATION — i
GENERATION COMPUTING VALIDATION NODL
BYSIEM 12b SELECTION SYSTEM 128
| HEURISTIC SELECTOR 136
/ CONFIGURATION C / __ N
* 142 | MODEL-BASED SELECIOR 134
‘ {YIHER 140
|
CONMPUTING SYSTEM NODLE(S) COMPUTING SYSTEM NODENS) OTHER COMPUTING SYSTEM
i 13¢ o 132 FUNCTIONALITY 134
i

LIENT
L o CLIENT
COMPUTING e
SYSTEM 106 L COMPUTING
c SYSTEM 108
l USER(S) LES USER(S) £16

NETWORK |04

- CLIENT ——

- C1AENT

DMPUTIN AAENT
E."f ﬂ;'rfm !]g COMPUTING
e . L RERLE H 1&,- Hrf-[_\{h‘:‘ } I 2

;

L USER(S) ads ._l UISER{S) 120

[DId

0¢T (SOIASN

OTT (S)¥dsN

STT (S)IASN

PIT (S)adsn

US 11,915,014 B2

CIT WHLSAS 80T INJLSAS

ONLLNdINOD
INAI'TD

01T WALSAS
ONILNdINOD
INAIID

ONILLIAdINOD
LNHI'TD

90T INHLSAS
DNILLNdINOD
LINAITD

[~ FOT SO MLAN
-~
&
y—
~
P
&
=
7).
€1 ALTTYNOLLONNA el oct
WALSAS ONLLOdWOD YAHLO (S)AAON WALSAS ONILAdINOD (S)TAON WALSAS ONLLOdAOD
~
—
g |
o —
R ITT AOLDTTAS AASVI-TAAON i
= Y NOLLVUNDIANOD
=

OCT YOLDATAS DILLSTANAH

SCT WHLSAS NOLLDATHS
AAON NOLLVAI'IVA

97T WALSAS
DNLLAdNOOD NOLLVEANHD
NOLLVANDIANOOD

izl
JAOLS V.ILVA

CCL (SITAAAS/SNIOSSHDON

701 WALSAS ONLLNdINOD

U.S. Patent

¢ DIH

US 11,915,014 B2

™~

Sol

-—

&\

~

&

e ——

7 9T WAHLO

-« ST WALSAS ST INALSAS

o NOILVAI'TVA FINLVYNDIS ONINDIS NOILLVINDIANOD
-

= — —

o 0ST INALSAS SPT INHLSAS

= NOILVAI'TVA NOLLVINOIANOD ONINNNY NOLLVINDOIANOD
[

75T OFT (S)TTAIAS/AS)AOSSTDOU
TAOLS VI.vVd

¢ 1 HOON WALSAS DNLLNAdINOO

U.S. Patent

¢ DId

US 11,915,014 B2

I~
-~
&
o
D
= 99T
7 S (9)MANLYNDIS
3T (LOATY 09T WHIIIOOTV —

.4

/1LdADDV) LN4LNO NOLLVAI'TVA
gl
= NOLLYAI'TY A TANLVNDIS D NOLLVENDLINGD
~
= vo1 3T
2 (S)ATN DI'TdNd N INALSAS LNdNI AT DIrignd

PST INHLSAS NOLLVAI'IVA d-LLVNDIS

U.S. Patent

U.S. Patent Feb. 27, 2024 Sheet 4 of 7 US 11,915,014 B2

START

A CONFIGURATION C IS READY FOR ARBITRARY

SELECTION 174

DEPOLOYMENT 170

NODES THAT WILL
RUN THE CODE IN C
176

A GROUP N OF NODES IS SELECTED
FOR VALIDATING THE
CONFIGURAITON C 172

HEURISTIC
SELECTOR 136

DEPLOY THE CONFIGURATION C TO
THE SELECTED GROUP N OF NODES
178

MODEL SELECTOR
138

OTHER 140
VALIDATE THE CONFIGURATION C
ON THE SELECTED NODES 180
IS
NO THE
CONFIGURATION

C VALIDATED? EACH NODE SIGNS

182 USING INDIVIUAL

YES SIGNATURE 186

USING A MULTI-
SIGNATURE SYSTEM
188

OTHER 190

SIGN THE CONFIGURATION C 18

END

FIG. 4

U.S. Patent Feb. 27, 2024 Sheet 5 of 7 US 11,915,014 B2

START

ANOTHER NODE IS READY TO DEPLOY THE

CONFIGURATION C 192

OBTAIN THE CONFIGURATION C, PUBLIC
KEYS FOR THE NODES IN THE GROUP N OF
NODES, AND THE SIGNATURE(S) ON THE
CONFIGURATION C, FOR DEPLOYMENT 194

RUN A SIGNATURE VALIDATION ALGORITHM
TO VALIDATE THE SIGNATURE ON THE
CONFIGURATION C 196

REJECT THE
CONFIGURATION
202

DEPLOY THE CONFIGURATION C TO THE
NODE 200

END

FIG. 5

0cI (S)XYdsn

US 11,915,014 B2

21T WALSAS
ONLLOdINOD
= INAITD
&
&
2
i
7 P,
X S
~ | TY0LS V.IVA |
o _===z==z
R I ____23
P
.

¢l WHLSAS ONLLOdNOOD

NOLLVIANHD
NOLLV dDIANOD

U.S. Patent

9 DId

8TT (S)4dsn

OIT INHLSAS
ONILOdINOO
LNAI'TO

OTT(S)¥ASN

901 INHLSAS
DONILNdINOD
LNHAI'TO

70T WALSAS DNLLNdINOD

c0s AdNOIO

00S \«

PIT (S)gdsn

POT WNHLSAS
DONILNdINOO
INAI'TO

SINVADOUd

ANOHJOIDIN ["DIH

198
AOIAHA
DONLLNIOJ
088

AALNdINOD 98
A LOWTY JAVOd A

€L8

NOLLVOI'lddV
HLOWHY

9F8 SHINAON
INVADOdd
AdHH.LO

Y8 VILVd
NVdDOdd

P8 SNVADOAd

NOLLVOI'lIddV

US 11,915,014 B2

TVASIA | = = o o e e e e e e e e e e e e e e e e

P78 WALSAS

ONLLVYHdO

[78 018

mmmmmm“mmmmm“mmmmd

I~ MMOBBMZ_
= VHIV ddIm
S]l TRt = 2D L e - — — ol
¥ T wen
2 es
72 VILVA NVID0Ud
AOVAIALNI mmm mw,w%
: vt || v 1] qonin || qowon | || o srinaos
~ MIOMLAN TV AOINY A T19VAOWHY WVdDOdd ddH.LO
< VANV TVOOT | | -NON
= | B CE8 SNVIDHOUd
2 0,8 098 043 Ore . NOILLVOI'1ddV
L68 =
m 7€8 WHLSAS
SYAIVHAIS _ 175 028 ONLLVYddO
~ . TRy .
= H MMMMMMWMW - HOVAALNI LIND W, ce8 (AVY)
OHAIA ONISSHDOUd
= JALINIId 1AdIN0
-5 168 C68
N AV1dSId 0£8
-

US 11,915,014 B2

1

CONSENSUS BASED DETERMINATION OF
STABLE CONFIGURATION

BACKGROUND

Computing systems are currently in wide use. Some such
computing systems are distributed computing systems 1n
which a system 1s implemented across a plurality of net-
worked computing systems.

In the distributed computing system, each networked
system 1s a collection of independent components located on
different machines that share messages with one another 1n
order to achieve common goals. The resources at different
computing system locations can be referred to as nodes. The
nodes 1n a distributed computing system can be arranged in
different rings.

The rings may have different users and a different level of
exposure to users. For mstance, the rings may include a test
ring, and a production ring. The test ring may provide
relatively little exposure to users so that test software
configurations can be deployed in the test ring and tested
prior to being deployed 1n a production ring which provides
more exposure to users.

The discussion above 1s merely provided for general
background mformation and 1s not intended to be used as an
aid 1n determining the scope of the claimed subject matter.

SUMMARY

When a configuration 1s generated in a distributed com-
puting system, a first group of nodes 1s selected for validat-
ing the configuration and the configuration 1s deployed on
the first group of nodes. When the nodes in the first group of
nodes validate the configuration, the nodes sign the configu-
ration with a signature. When a subsequent node 1s to
implement the configuration, the subsequent node validates
the signature on the configuration to ensure that the nodes in
the first group of nodes validated the configuration. If the
signature 1s validated, the subsequent node deploys the
configuration.

This Summary 1s provided to mtroduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid

in determining the scope of the claimed subject matter. The
claimed subject matter 1s not limited to implementations that
solve any or all disadvantages noted 1n the background.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a block diagram of one example of a computing
system architecture.

FIG. 2 1s a block diagram of one example of a computing,
system node.

FIG. 3 1s a block diagram of one example of a signature
validation system.

FIG. 4 15 a flow diagram showing one example of vali-
dating a configuration with a group of nodes.

FIG. 5 1s a flow diagram illustrating one example of
validating a signature on a configuration before deployment
ol a configuration node.

FIG. 6 1s a block diagram of one example of the archi-
tecture described 1n previous FIGS. deployed 1n a cloud
computing architecture.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 1s a block diagram of one example of a computing
environment.

DETAILED DESCRIPTION

As discussed above, 1n a distributed computing system,
different nodes can be used to run applications or provide
services to different sets of users. The nodes of the distrib-
uted computing system can be arranged 1n rings, such as in
a test ring, a production ring, etc. Therefore, configuration
changes can be deployed 1n different rings, or 1in different
nodes of the distributed computing system, at different
times. Misconfiguration, or configuration changes that do
not work, can lead to catastrophic failures in distributed
computing systems.

Therefore, 1n some current computing systems, the con-
figuration changes are deployed to the distributed computing
system using a gradual saturation of the distributed com-
puting system, 1n which the configuration 1s first deployed to
a lower ring (such as a test ring) and then gradually deployed
to larger and larger rings. This gradual saturation 1s done in
the hopes that only stable configuration changes will be
deployed to the entire distributed computing system. For
instance, a configuration change that 1s deployed at a lower
ring (such as in a test ring) may be considered safe to be
rolled out to a higher ring.

However, such a gradual saturation can have drawbacks.
For instance, 1t may be that the nodes 1n the lower ring do
not access the configuration change, or run the code corre-
sponding to the configuration change so that, Slmply because
the configuration change operates in the lower ring of nodes,
this does not mean that the configuration change actually
works. An example of this may be a localization change. IT
the lower ring of nodes does not use a language that calls
upon the localization change, then the configuration change
may run at the lower ring of nodes without a problem, even
though the localization change has errors. Also, 1t the
saturation 1s to proceed ring-by-ring, this results 1n relatively
slow rollout of a configuration change.

As another example of where the ring-by-ring rollout may
have problems, assume the configuration change has code to
tune node performance parameters so the code will be
utilized on machines that have relatively high CPU usage.
However, 1f the configuration change 1s implemented on a
node 1n a lower ring that does not have such CPU usage, then
the validation of the configuration change cannot be deter-
mined. by that node.

The present description thus proceeds with respect to a
system that deploys a configuration change, for validation,
on a {irst set of nodes that will actually run the configuration
changes. Once the configuration changes are validated by a
node 1n the first set of node, the nodes signs the configura-
tion. When a subsequent node 1s ready to deploy the
configuration changes, the subsequent node validates that
cach of the nodes 1n the first set of nodes has validly signed
the configuration prior to itself deploying the configuration.
This helps to assure that the configuration will be run prior
to validation. It also allows a quicker rollout of the configu-
ration.

FIG. 1 1s a block diagram of one example of a computing
system architecture 100. Architecture 100 1includes comput-
ing system 102 that may be accessed over network 104 by
a plurality of different client computing systems 106, 108,
110, and 112. Each of the client computing systems 106-112
can generate user interfaces for interaction by corresponding
users 114, 116, 118, and 120. The users interact with the user

US 11,915,014 B2

3

interfaces to control and manipulate the corresponding client
computing system and some parts of computing system 102.

Network 104 can be a wide area network, a local area
network, a near fleld communication network, a cellular
communication network, a Wi-F1 network, or other net-
works. Network 104 can also be any of a wide variety of
combinations of different types of networks.

In the example shown i FIG. 1, computing system 102
includes one or more processors or servers 122, data store
124, configuration generation system 126, validation node
selection system 128, different sets of nodes 130-132, and
other computing system functionality 134. Validation node
selection system 128 can, itself, include heuristic selector
136, model-based selector 138, and other items 140.

Before describing the operation of architecture 100 in
more detail, a description of some of the items 1n architec-
ture 100, and their operation, will first be provided. Com-
puting system nodes 130-132 illustratively implement a
distributed computing system in which the nodes 130-132
provide services to client computing systems 106-112. The
computing system nodes 130-132 may have front end sys-
tems that exposes an interface that can be accessed by the
client computing systems 106-112. The nodes may have
backend systems that operate on, manipulate, and store data
for the various client computing systems 106-112.

Developers or other users can use configuration genera-
tion computing system 126 to generate a new configuration
C labeled 142 1n the block diagram of FIG. 1. Configuration
C 142 may be an entirely new configuration, changes to an
existing configuration, or it may reflect other 1tems. Before
configuration C 142 1s deployed to any of the computing
system nodes 130-132, validation node selection system 128
selects a subset of the nodes 130-132 for implementing the
configuration C 142 so that the configuration C 142 can be
validated before being rolled out to the other nodes 130-132.
The selected subset of nodes can be referred to as a vali-
dating subset of nodes.

In one example, validation node selection system 128
arbitrarily selects the validating subset of nodes to validate
configuration C 142. In another example, validation node
selection system 128 1dentifies the validation subset of nodes
that can be used to validate configuration C 142 by deter-
mimng whether the nodes will actually run the code that 1s
changed or otherwise retlected 1n configuration C 142. For
instance, heuristic selector 136 can employ different heuris-
tics, based upon the particular configuration C 142 that 1s to
be validated, to 1identily the validating subset of nodes, of the
computing system nodes 130-132, that will actually use or
test the configuration C 142 before the configuration C 142
1s rolled out more broadly to additional nodes. Model-based
selector 138 can use a model that takes the configuration C
142 as an mput and identifies the validating subset of nodes
based on that 1nput.

The subset of computing system nodes 130-132 that 1s
selected to validate configuration C 142 then deploys con-
figuration C 142 and runs the code corresponding to con-
figuration C 142 to determine whether it operates properly.
IT so, the selected validating subset of nodes sign configu-
ration C 142 so that, when configuration C 142 1s selected
for deployment on other nodes, those other nodes can
validate the signature to ensure that configuration C 142 has
been adequately validated by the validating subset of nodes.

The validating subset of nodes that are used to validate
configuration C 142 can sign the configuration C 142 with
independent signatures, or using a multi-signature system, or
in other ways. Then, where an additional node 1s to deploy
configuration C 142, and the additional node obtains the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

public keys corresponding to the validating subset of nodes
to validate the signatures of the validating subset of nodes.
It the signatures are valid, then the additional computing
system node can deploy configuration C 142.

FIG. 2 1s a block diagram showing one example of a
computing system node 130 in more detail. Computing
system nodes 130-132 can be similar or different. For
purposes of the present discussion, 1t will be assumed that
they are similar so that only computing system node 130 1s
described in more detail.

Computing system node 130 can include one or more
processors or servers 146, data store 147, configuration
running system 148, configuration validation system 150,
configuration signing system 152, signature validation sys-
tem 154, and other items 156. Configuration running system
148 can run the code in configuration C 142, once 1t 1s
deployed to the computing system node 130. Configuration
validation system 150 determines whether the code 1n con-
figuration C 142 has run properly and, if so, generates a
validation signal indicating the code has been validated.
Configuration signing system 1352 then signs the configura-
tion with a signature. The signature can be generated using
an 1ndividual signature corresponding to computing system
node 130, or using a multi-signature system, or in another
way.

Signature validation system 154 1s used to validate a
signature on a configuration that 1s about to be deployed to
computing system node 130. For instance, if a configuration
has already been validated and signed by a diflerent vali-
dating set of nodes, then computing system node 130 can
deploy that configuration as well. However, before deploy-
ing the configuration, signature validation system 154 vali-
dates the signature on that configuration to ensure that 1t has
been validated by the validating set of nodes.

FIG. 3 1s a block diagram of one example of signature
validation system 154. In the example shown i FIG. 3,
signature validation system 154 includes public key input
system 138, signature validation algorithm 160, and other
items 162. Public key input system 138 can obtain the public
keys for all of the nodes in the set of validating nodes that
have validated a configuration. Those public keys are rep-
resented as N public keys 164. Signature validation algo-
rithm 160 uses the N public keys 164, the configuration C
142, and the signature(s) 166 on the configuration C 142 and
validates the signature(s) 166 on the configuration to ensure
that the configuration C 142 has been validated. Signature
validation algorithm 160 can generate an output 168 that
either accepts or rejects the signature(s) 166. If the signature
1s rejected, that means that 1t was not validated and therefore
the configuration C 142 will not be deployed 1n the com-
puting system node 130. However, i1if the signature is
accepted as valid, then the set of validating nodes have
indeed validated and signed configuration C 142 and the
configuration C 142 can be deployed on the computing
system node 130.

FIG. 4 1s a flow diagram 1illustrating one example of the
operation of computing system architecture 100 in selecting
a set of nodes to run, validate, and sign a configuration C
142. It 1s first assumed that a configuration C 142 has been
developed and 1s ready for deployment, as indicated by
block 170 in the flow diagram of FIG. 4. Validation node
selection system 128 then selects a set of validating nodes
for validating the configuration C 142. Selecting a set of
validating nodes 1s indicated by block 172 in the flow
diagram of FIG. 4. System 128 can select the group N of
validating nodes using arbitrary selection, as indicated by
block 174. In another example, system 128 can select the set

US 11,915,014 B2

S

ol validating nodes based on which nodes will actually run
the code 1n the configuration C 142, as indicated by block
176. System 128 can use a heuristic selector 136, a model
based selector 138, or another selector 140. The configura-
tion C 142 1s then deployed to the selected set N of
validating nodes, as indicated by 178. Each of the nodes uses
configuration running system 148 to run the configuration C
142 and then uses configuration C 142 validation system 150
to validate that the configuration C 142 ran properly. Vali-
dating the configuration C 142 on the selected set of vali-
dating nodes 1s indicated by block 180. If the configuration
C 142 1s validated by configuration validation system 150,
as indicated by block 182, then configuration signing system
152 signs the configuration C 142, as indicated by block 184.
The set of validating nodes that have run and validated the
configuration C 142 can sign the configuration C 142 1n a
number of different ways. For mstance, each node may sign
using an individual signature corresponding to that node, as
indicated by block 186. The nodes can sign using a multi-
signature system, as indicated by block 188, or the nodes can
sign the configuration 1n other ways 190.

FIG. 5 1s a flow diagram 1llustrating one example of the
operation of signature validation system 1354 1n validating a
signature on a configuration C 142 that was signed by a prior
set of validating nodes. Therefore, 1t 1s assumed that an
additional node (a node other than the set of validating
nodes) 1s ready to deploy the configuration C 142, after 1t has
been validated and signed by the set of validating nodes, as
indicated by block 192 i the flow diagram of FIG. 5.
Signature validation system 154 obtains the configuration C
142, the public keys 164 for the various nodes 1n the set of
validating nodes that have already validated the configura-
tion C 142, and the signature or signatures 166 on the
configuration C 142. Obtaining this information 1s indicated
by block 194 in the flow diagram of FIG. 5. Signature
validation system 154 then runs signature validation algo-
rithm 160 to validate the signature S on the configuration C
142. Running the signature validation algorithm 1s indicated
by block 196 1n the flow diagram of FIG. S.

If the signature S 1s valid, as indicated by block 198, then
the node 130 deploys the configuration C 142, as indicated
by block 200. However, 11 at block 198, signature validation
algorithm 160 determines that the signature S 1s not valid,
then the node 130 rejects the configuration C 142, and does
not deploy 1t, as indicated by block 202.

The present description thus proceeds with respect to a
system that uses a consensus based determination that a
configuration C 1s stable and valid. Large scale rollback of
configurations 1s not needed because the configuration will
not have met the consensus in the 1mitial set of validating
nodes so 1t will not be deployed on any additional nodes.
Similarly, the present system decouples the determination of
whether the configuration C 1s stable from roll out to
different computing system rings. Instead, once the configu-
ration C 1s deemed as stable, then any arbitrary computing,
system node can deploy the configuration so that roll out of
configuration C can be done more aggressively and more
quickly.

It will be noted that the above discussion has described a
variety of different systems, components and/or logic. It will
be appreciated that such systems, components and/or logic
can be comprised of hardware 1tems (such as processors and
associated memory, or other processing components, some
of which are described below) that perform the functions
associated with those systems, components and/or logic. In
addition, the systems, components and/or logic can be
comprised of software that 1s loaded 1nto a memory and 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

6

subsequently executed by a processor or server, or other
computing component, as described below. The systems,
components and/or logic can also be comprised of different
combinations of hardware, software, firmware, etc., some
examples of which are described below. These are only
some examples of different structures that can be used to
form the systems, components and/or logic described above.
Other structures can be used as well.

The present discussion has mentioned processors and
servers. In one example, the processors and servers include
computer processors with associated memory and timing
circuitry, not separately shown. The processors or servers are
functional parts of the systems or devices to which they
belong and are activated by, and facilitate the functionality
of the other components or items in those systems.

Also, a number of user interface (UI) displays have been
discussed. The UI displays can take a wide variety of
different forms and can have a wide variety of different user
actuatable mput mechanisms disposed thereon. For instance,
the user actuatable mput mechanisms can be text boxes,
check boxes, icons, links, drop-down menus, search boxes,
ctc. The mechamisms can also be actuated 1n a wide varniety
of different ways. For instance, the mechanisms can be
actuated using a point and click device (such as a track ball
or mouse). The mechanisms can be actuated using hardware
buttons, switches, a joystick or keyboard, thumb switches or
thumb pads, etc. The mechanisms can also be actuated using
a virtual keyboard or other virtual actuators. In addition,
where the screen on which they are displayed 1s a touch
sensitive screen, they can be actuated using touch gestures.
Also, where the device that displays them has speech
recognition components, the mechanisms can be actuated
using speech commands.

A number of data stores have also been discussed. It will
be noted the data stores can each be broken into multiple
data stores. All can be local to the systems accessing them,
all can be remote, or some can be local while others are
remote. All of these configurations are contemplated herein.

Also, the figures show a number of blocks with function-
ality ascribed to each block. It will be noted that fewer
blocks can be used so the functionality 1s performed by
tewer components. Also, more blocks can be used with the
functionality distributed among more components.

FIG. 6 1s a block diagram of architecture 100, shown 1n
FIG. 1, except that its elements are disposed in a cloud
computing architecture 500. Cloud computing provides
computation, software, data access, and storage services that
do not require end-user knowledge of the physical location
or configuration of the system that delivers the services. In
vartous examples, cloud computing delivers the services
over a wide area network, such as the internet, using
appropriate protocols. For instance, cloud computing pro-
viders deliver applications over a wide area network and
they can be accessed through a web browser or any other
computing component. Software or components of archi-
tecture 100 as well as the corresponding data, can be stored
on servers at a remote location. The computing resources 1n
a cloud computing environment can be consolidated at a
remote data center location or they can be dispersed. Cloud
computing infrastructures can deliver services through
shared data centers, even though they appear as a single
point ol access for the user. Thus, the components and
functions described herein can be provided from a service
provider at a remote location using a cloud computing
architecture. Alternatively, the components and functions
can be provided from a conventional server, or they can be
installed on client devices directly, or 1in other ways.

US 11,915,014 B2

7

The description 1s intended to include both public cloud
computing and private cloud computing. Cloud computing
(both public and private) provides substantially seamless
pooling of resources, as well as a reduced need to manage
and configure underlying hardware infrastructure.

A public cloud 1s managed by a vendor and typically
supports multiple consumers using the same 1nirastructure.
Also, a public cloud, as opposed to a private cloud, can free
up the end users from managing the hardware. A private
cloud may be managed by the organization itself and the
infrastructure 1s typically not shared with other organiza-
tions. The organization still maintains the hardware to some
extent, such as installations and repairs, eftc.

In the example shown 1n FIG. 6, some items are similar
to those shown 1in FIG. 1 and they are similarly numbered.
FIG. 6 specifically shows that computing system 102 can be
located 1n cloud 502 (which can be public, private, or a
combination where portions are public while others are
private). Therefore, user 108 uses a user devices that run
client computing systems 106-112 to access those systems
through cloud 502.

FIG. 6 also depicts another example of a cloud architec-
ture. FIG. 6 shows that 1t 1s also contemplated that some
clements of computing system 102 can be disposed in cloud
502 while others are not. By way of example, data store 124
can be disposed outside of cloud 502, and accessed through
cloud 502. In another example, configuration generation
computing system 126 (or other items) can be outside of
cloud 502. Regardless of where the components are located,
they can be accessed directly by client computing systems
106-112, through a network (either a wide area network or
a local area network), the components can be hosted at a
remote site by a service, or the components can be provided
as a service through a cloud or accessed by a connection
service that resides 1n the cloud. All of these architectures
are contemplated herein.

It will also be noted that architecture 100, or portions of
it, can be disposed on a wide variety of different devices.
Some of those devices include servers, desktop computers,
laptop computers, tablet computers, or other mobile devices,
such as palm top computers, cell phones, smart phones,
multimedia players, personal digital assistants, etc.

FIG. 7 1s one example of a computing environment in
which architecture 100, or parts of i1t, (for example) can be
deployed. With reference to FIG. 7, an example system for
implementing some embodiments includes a computing
device in the form of a computer 810 programmed to operate
as described above. Components ol computer 810 may
include, but are not limited to, a processing unit 820 (which
can comprise processors or servers from previous FIGS.), a
system memory 830, and a system bus 821 that couples
various system components imncluding the system memory to
the processing unit 820. The system bus 821 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any ol a variety of bus architectures. By way of example,
and not limitation, such architectures include Industry Stan-
dard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (FISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus also known as Mezza-
nine bus. Memory and programs described with respect to
FIG. 1 can be deployed 1n corresponding portions of FIG. 7.

Computer 810 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 810 and
includes both volatile and nonvolatile media, removable and

10

15

20

25

30

35

40

45

50

55

60

65

8

non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media 1s different from, and does not include, a modulated
data signal or carrier wave. It includes hardware storage
media mcluding both volatile and nonvolatile, removable
and non-removable media implemented in any method or
technology for storage of information such as computer
readable instructions, data structures, program modules or

other data. Computer storage media includes, but i1s not
limited to, RAM, ROM, EEPROM, flash memory or other

memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired information and which can be accessed by
computer 810. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data 1n a transport mechanism and includes
any mformation delivery media. The term “modulated data
signal” means a signal that has one or more of its charac-
teristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media includes wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, RFE, infrared and other wireless
media. Combinations of any of the above should also be
included within the scope of computer readable media.

The system memory 830 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 831 and random access memory
(RAM) 832. A basic input/output system 833 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 810, such as during
start-up, 1s typically stored in ROM 831. RAM 832 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 820. By way of example, and not limitation, FIG. 7
illustrates operating system 834, application programs 835,
other program modules 836, and program data 837.

The computer 810 may also include other removable/non-
removable volatile/nonvolatile computer storage media. By
way of example only, FIG. 7 1llustrates a hard disk drive 841
that reads from or writes to non-removable, nonvolatile
magnetic media, and an optical disk drive 855 that reads
from or writes to a removable, nonvolatile optical disk 856
such as a CD ROM or other optical media. Other removable/
non-removable, volatile/nonvolatile computer storage media
that can be used 1n the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape,
solid state RAM, solid state ROM, and the like. The hard
disk drive 841 1s typically connected to the system bus 821
through a non-removable memory interface such as intertace
840, and optical disk drive 855 are typically connected to the
system bus 821 by a removable memory interface, such as
interface 850.

Alternatively, or 1n addition, the functionality described
herein can be performed, at least 1n part, by one or more
hardware logic components. For example, and without limi-
tation, 1llustrative types of hardware logic components that
can be used include Field-programmable Gate Arrays (FP-
(GAs), Program-specific Integrated Circuits (ASICs), Pro-
gram-specific Standard Products (ASSPs), System-on-a-

chip systems (SOCs), Complex Programmable Logic
Devices (CPLDs), etc.

US 11,915,014 B2

9

The drives and their associated computer storage media
discussed above and 1llustrated 1n FIG. 7, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 810. In FIG. 7, for
example, hard disk drive 841 1s illustrated as storing oper-
ating system 844, application programs 845, other program
modules 846, and program data 847. Note that these com-
ponents can either be the same as or different from operating
system 834, application programs 835, other program mod-
ules 836, and program data 837. Operating system 844,
application programs 845, other program modules 846, and
program data 847 are given different numbers here to
illustrate that, at a minimum, they are different copies.

A user may enter commands and information into the
computer 810 through input devices such as a keyboard 862,
a microphone 863, and a pointing device 861, such as a
mouse, trackball or touch pad. Other mput devices (not
shown) may include a joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 820 through a user input
interface 860 that 1s coupled to the system bus, but may be
connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A
visual display 891 or other type of display device 1s also
connected to the system bus 821 via an interface, such as a
video iterface 890. In addition to the monitor, computers
may also include other peripheral output devices such as
speakers 897 and printer 896, which may be connected
through an output peripheral interface 895.

The computer 810 1s operated 1n a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 880. The remote
computer 880 may be a personal computer, a hand-held
device, a server, a router, a network PC, a peer device or
other common network node, and typically includes many or
all of the elements described above relative to the computer
810. The logical connections depicted 1n FIG. 7 include a
local area network (LAN) 871 and a wide area network
(WAN) 873, but may also include other networks. Such
networking environments are commonplace in offices, enter-
prise-wide computer networks, intranets and the Internet.

When used 1n a LAN networking environment, the com-
puter 810 1s connected to the LAN 871 through a network
interface or adapter 870. When used 1n a WAN networking

environment, the computer 810 typically includes a modem
872 or other means for establishing communications over
the WAN 873, such as the Internet. The modem 872, which
may be internal or external, may be connected to the system
bus 821 via the user input intertace 860, or other appropnate
mechanism. In a networked environment, program modules
depicted relative to the computer 810, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 7 illustrates remote
application programs 885 as residing on remote computer
880. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

It should also be noted that the diflerent examples
described herein can be combined 1n different ways. That 1s,
parts of one or more examples can be combined with parts
ol one or more other examples. All of this 1s contemplated
herein.

Example 1 1s a computing system, comprising:

a validation node selection system that selects a group of
computing system nodes in a distributed computing system
as a set of selected nodes:

10

15

20

25

30

35

40

45

50

55

60

65

10

a conflguration validation system that determines, on each
of the selected nodes, whether a computing system configu-
ration C 1s valid;

a configuration signing system that, 1f the configuration C
1s valid on each of the selected nodes, then signs the
configuration C; and

a signature validation system that controls deployment of
the configuration C to a subsequent node based on whether
the configuration C 1s validly signed by the set of selected
nodes.

Example 2 1s the computing system of any or all previous
examples wherein the validation node selection system 1s
configured to select the group of computing system nodes
based on a content of the configuration C.

Example 3 1s the computing system of any or all previous
examples wherein the validation node selection system 1s
configured to select a node for the group of computing
system nodes based on whether the selected node waill
attempt to run code 1n the configuration C.

Example 4 1s the computing system of any or all previous
examples wherein the validation node selection system
COmMprises:

a heuristic selector configured to select the group of
computing system nodes based on a set of heuristics.

Example 5 1s the computing system of any or all previous
examples wherein the validation node selection system
COmMprises:

a selector model configured to receive a characteristic of
the configuration C and to select the group of computing
system nodes based on the configuration C.

Example 6 1s the computing system of any or all previous
examples wherein the configuration signing system 1s con-
figured to sign the configuration C with each node 1n the
selected set of nodes.

Example 7 1s the computing system of any or all previous
examples wherein the configuration signing system com-
Prises:

a multi-signature system.

Example 8 1s the computing system of any or all previous
examples wherein the signature validation system 1s config-
ured to receive the configuration and signatures on the
configuration C, obtain a public key for each node 1n the set
of selected nodes, and run a signature validation algorithm
based on the obtained public keys, the configuration C, and
the signatures.

Example 9 1s a computer implemented method, compris-
ng:

selecting a group of computing system nodes 1n a distrib-
uted computing system as a set of selected nodes;
deploying a configuration C on each computing system
node 1n the set of selected nodes;
determiming, on each of the selected nodes, whether the
configuration C 1s valid;

iI the configuration C 1s valid on each of the selected
nodes, then signing the configuration C with each of the
selected nodes; and

controlling deployment of the configuration C to a sub-
sequent node based on whether the configuration C 1s validly
signed by the set of selected nodes.

Example 10 1s the computer implemented method of any

or all previous examples wherein selecting a group of
computing system nodes comprises:

selecting the group of computing system nodes based on
a content of the configuration C.

US 11,915,014 B2

11

Example 11 1s the computer implemented method of any
or all previous examples wherein selecting a group of
computing system nodes based on the content of the con-
figuration C, comprises:

selecting a node for the group of computing system nodes
based on whether the selected node will attempt to run code
in the configuration C.

Example 12 1s the computer implemented method of any
or all previous examples wherein selecting a group of
computing system nodes based on the content of configu-
ration C, comprises:

running a heuristic selector to select the group of com-
puting system nodes based on a set of heuristics.

Example 13 1s the computer implemented method of any
or all previous examples wherein selecting a group of
computing system nodes based on the content of the con-
figuration C, comprises:

running a selector model to recerve a characteristic of the
configuration C to select the group of computing system
nodes.

Example 14 1s the computer implemented method of any
or all previous examples wherein selecting a group of
computing system nodes comprises:

selecting the group of computing system nodes arbitrarily.

Example 15 1s the computer implemented method of any
or all previous examples wherein signing comprises:

signing the configuration C with each node 1n the selected
set of nodes.

Example 16 1s the computer implemented method of any
or all previous examples wherein signing comprises:

signing the configuration C using a multi-signature sys-
tem.

Example 17 1s the computer implemented method of any
or all previous examples wherein controlling deployment of
the configuration C comprises:

receiving the configuration and signatures on the configu-
ration C;

obtaining a public key for each node 1n the set of selected
nodes; and

running a signature validation algorithm based on the
obtained public keys, the configuration C, and the signa-
tures.

Example 18 1s a computer implemented method, com-
prising:

determining, on each node 1n a set of selected nodes 1n a
distributed computing system, whether a computing system
configuration C 1s valid;

if the configuration C 1s valid on each of the selected
nodes, then signing the configuration C with each of the
selected nodes; and

controlling deployment of the configuration C to a sub-
sequent node based on whether the configuration C 1s validly
signed by the set of selected nodes.

Example 19 1s the computer implemented method of any
or all previous examples wherein controlling deployment of
the configuration C comprises:

receiving the configuration and signatures on the configu-
ration C;

obtaining a public key for each node in the set of selected
nodes; and

running a signature validation algorithm based on the
obtained public keys, the configuration C, and the signa-
tures.

Example 20 1s the computer implemented method of any
or all previous examples wherein determining, on each node

5

15

20

25

30

35

40

45

50

55

60

65

12

in a set of selected nodes 1n a distributed computing system,
whether a computing system configuration C 1s valid, com-
Prises:

selecting a group of computing system nodes 1n a distrib-
uted computing system as a set of selected nodes; and

deploying a configuration C on each computing system
node 1n the set of selected nodes.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed 1s:

1. A computing system, comprising:

at least one processor; and

memory storing instructions executable by the at least one

processor, wherein the instructions, when executed,

cause the computing system to:

select a group of computing system nodes 1n a distrib-
uted computing system as selected nodes;

determine, on each node of the selected nodes, whether
a computing system configuration C deployed on the
node 1s valid;

based on a determination that deployment of the com-
puting system configuration C 1s valid on each node
of the selected nodes, sign the computing system
configuration C; and

deploy the computing system configuration C to a
subsequent node based on a determination that the
computing system configuration C 1s validly signed
by the set selected nodes.

2. The computing system of claim 1 wherein the instruc-
tions, when executed, cause the computing system to select
the group of computing system nodes based on a content of
the computing system configuration C.

3. The computing system of claim 2 wherein the nstruc-
tions, when executed, cause the computing system to select
a given node for the group of computing system nodes based
on whether the given node will attempt to run code 1n the
computing system configuration C.

4. The computing system of claim 2 wherein the instruc-
tions, when executed, cause the computing system to select
the group of computing system nodes based on a set of
heuristics.

5. The computing system of claim 2 wherein the instruc-
tions, when executed, cause the computing system to receive
a characteristic of the computing system configuration C and
to select the group of computing system nodes based on the
computing system configuration C.

6. The computing system of claim 1 wherein the instruc-
tions, when executed, cause the computing system to sign
the computing system configuration C with each node 1n the
selected nodes.

7. The computing system of claim 1 wherein the com-
puting system configuration C 1s signed by a multi-signature
system.

8. The computing system of claim 1 wherein the instruc-
tions, when executed, cause the computing system to receive
the computing system configuration and signatures on the
computing system configuration C, obtain a public key for
cach node 1n the selected nodes, and run a signature vali-
dation algorithm based on the obtained public keys, the
computing system configuration C, and the signatures.

US 11,915,014 B2

13

9. A computer implemented method, comprising:

selecting a group of computing system nodes 1n a distrib-

uted computing system as a-set of selected nodes;
deploving a configuration C on each computing system
node 1n the selected nodes:
determining, on each node of the selected nodes, whether
the configuration C deployed on the node 1s valid;

based on a determination that deployment of the configu-
ration C 1s valid on each node of the selected nodes,
signing the configuration C with each of the selected
nodes; and

deployving the configuration C to a subsequent node based

on a determination that the configuration C 1s validly
signed by the selected nodes.

10. The computer mmplemented method of claim 9
wherein selecting a group of computing system nodes com-
Prises:

selecting the group of computing system nodes based on

a content of the configuration C.

11. The computer implemented method of claim 10
wherein selecting a group of computing system nodes based
on the content of the configuration C, comprises:

selecting a given node for the group of computing system

nodes based on whether the given node will attempt to
run code 1n the configuration C.

12. The computer mmplemented method of claim 10
wherein selecting a group of computing system nodes based
on the content of configuration C, comprises:

running a heuristic selector to select the group of com-

puting system nodes based on a set of heuristics.

13. The computer implemented method of claim 10
wherein selecting a group of computing system nodes based
on the content of the configuration C, comprises:

running a selector model to receive a characteristic of the

configuration C to select the group of computing sys-
tem nodes.

14. The computer mmplemented method of claim 9
wherein selecting a group of computing system nodes com-
Prises:

selecting the group of computing system nodes arbitrarily.

15. The computer mmplemented method of claim 9
wherein signing comprises:

signing the configuration C with each node 1n the selected

nodes.

16. The computer implemented method of claim 9
wherein signing comprises:

5

10

15

20

25

30

35

40

45

14

signing the configuration C using a multi-signature sys-
tem.

17. The computer implemented method of claim 9
wherein controlling deployment of the configuration C com-
Prises:

recerving the configuration and signatures on the configu-
ration C;

obtaining a public key for each node 1n the selected nodes;
and

running a signature validation algorithm based on the
obtained public keys, the configuration C, and the
signatures.

18. A computer implemented method, comprising:

determining, on each node 1n a set of selected nodes 1n a
distributed computing system, whether a computing
system configuration C 1s valid;

11 the computing system configuration C 1s valid on each
of the selected nodes, then signing the computing
system configuration C with each of the selected nodes;
and

controlling deployment of the computing system configu-
ration C to a subsequent node based on whether the
computing system configuration C 1s validly signed by
the set of selected nodes, wherein controlling deploy-
ment of the computing system configuration C com-
Prises:
receiving the configuration and signatures on the com-

puting system configuration C;
obtaining a public key for each node in the set of
selected nodes; and

running a signature validation algorithm based on the
obtained public keys, the computing system configu-
ration C, and the signatures.

19. The computer implemented method of claim 18
wherein determining, on each node 1n a set of selected nodes
in a distributed computing system, whether a computing
system configuration C 1s valid, comprises:

selecting a group of computing system nodes 1n a distrib-
uted computing system as a set of selected nodes; and

deploying the computing system configuration C on each
computing system node 1n the set of selected nodes.

20. The computer implemented method of claim 18, and
further comprising:

selecting the selected nodes based on a content of the
computing system configuration C.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

