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SYSTEMS AND METHODS FOR
UNSUPERVISED CYBERBULLYING
DETECTION VIA TIME-INFORMED

GAUSSIAN MIXTURE MODEL

CROSS REFERENCE TO RELATED
APPLICATIONS

This 1s a U.S. non-provisional patent application and
claiams the benefit of U.S. provisional application No.

63/123,291 filed on Dec. 9, 2020, which 1s herein 1incorpo-
rated by reference 1n 1ts entirety.

GOVERNMENT SUPPORT

The invention was made with government support under
1614576 and 1719722 awarded by the National Science

Foundation. The government has certain rights 1n the inven-
tion.

FIELD

The present disclosure generally relates to online content
monitoring; and more particularly to a system and associated
methods for detecting cyberbullying on social media sites.

BACKGROUND

Cyberbullying, defined as “aggressively intentional acts
carried out by a group or an individual using electronic
forms of contact, repeatedly or over time against victims
who cannot easily defend themselves™, has been rising at an
alarming rate. Previous research has found that nearly 43%
of teens 1 the Umted States have been victims of cyber-
bullying. In light of this, efforts aimed at automatically
detecting cyberbullying—which seeks to predict whether or
not human interactions within a social media session con-
stitute cyberbullying—have a profound societal impact.
However, detecting cyberbullying on social platforms 1is
particularly challenging given that a social media session
often consists of multi-modal information, for instance, an
initial post, a sequence of comments, 1images/videos, and
other social content such as the number of likes and shares.

Existing work on cyberbullying detection 1s mainly based
on supervised methods, which often require a large anno-
tated dataset for training. Although these approaches have
shown promising results, they sufler from two major limi-
tations: (1) Obtaining a large number of high-quality anno-
tations for cyberbullying i1s time-consuming, labor-inten-
sive, and error-prone because 1t requires circumspect
examinations of multiple information sources such as
images, videos, and numerous comments; (2) Current guide-
lines for labeling a session as cyberbullying may not be
cllective 1n the future due to the dynamic nature of language
usage and social networks. Hence, alternative mechanisms
for unsupervised cyberbullying detection are studied, which
draws inferences from input social media data but without
labeled responses

Despite potential benefits, unsupervised cyberbullying
detection also encounters several challenges: (1) Because
cyberbullying typically consists of repetitive acts, the tem-
poral dynamics of users’ commenting behaviors adds
nuanced understandings to the text-based methods that con-
sider each comment as a distinct event over time. Such
temporal characterization have been shown to be useful in
distinguishing cyberbullying from non-bullying instances.
Therefore, a key challenge 1s how to simultaneously model
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2

temporal dynamics and cyberbullying detection such that the
two tasks mutually improve each other. (2) Social media
sessions inherently present a hierarchical structure where
words form a comment and comments form a session.
Previous studies have revealed that modeling the hierarchi-
cal structure 1s usetul for learning high-quality representa-
tions. Additionally, because meanings of words and com-
ments are largely context-dependent, the sequential structure
of words and comments need to be properly modeled for
identifving relevant ones; (3) A straightforward approach for
unsupervised cyberbullying detection 1s to use the ofl-the-
shell clustering algorithms (e.g., k-means). The eflective-
ness of this approach largely relies on the quality of input
data, however, social media data 1s notorious for its noise,
sparsity, and high-dimensionality. Applying dimensionality
reduction to the mnput data still presents the drawback of
decoupled training, 1.e., representation learning and cluster-
ing are carried out separately

It 1s with these observations 1n mind, among others, that
various aspects of the present disclosure were conceived and
developed.

BRIEF DESCRIPTION OF THE DRAWINGS

The application file contains at least one photograph
executed 1n color. Copies of this patent application publi-
cation with color photographs will be provided by the Oflice
upon request and payment of the necessary fee.

FIG. 1 1s a simplified block diagram showing a framework
for 1dentification of bullying on social media sites;

FIGS. 2A-2H are graphical representations showing
t-SNE visualizations of the low dimensional representations
using the Instagram dataset, red dots denoting instances of
a bullying class and the blue points denoting instances of a
non-bullying class;

FIGS. 3A-3D are graphical representations showing a
parameter study w.r.t the AUROC and F1 scores;

FIGS. 4A and 4B are graphical representations showing
effects of T on AUROC and F1 scores;

FIGS. 5A and 3B are example social media sessions
respectively predicted by the framework of FIG. 1 to be
classified as bullying and non-bullying; and

FIG. 6 1s a simplified diagram showing an exemplary
computing system for implementation of the framework of
FIG. 1.

Corresponding reference characters indicate correspond-
ing elements among the view of the drawings. The headings
used 1n the figures do not limit the scope of the claims.

DETAILED DESCRIPTION

Introduction (Technical Problems)

Social media 1s a vital means for information-sharing due
to 1ts easy access, low cost, and fast dissemination charac-
teristics. However, increases in social media usage have
corresponded with a rise 1n the prevalence of cyberbullying.
Most existing cyberbullying detection methods are super-
vised and, thus, have two key drawbacks: (1) The data
labeling process 1s often time-consuming and labor-inten-
s1ve; (2) Current labeling guidelines may not be generalized
to future 1nstances because of diflerent language usage and
evolving social networks.

Technical Solution

To address these limitations, an mmventive (computer-
implemented) system 1s disclosed that introduces a prin-
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cipled approach for unsupervised cyberbullying detection.
The system includes two main components: (1) A represen-
tation learning network that encodes the social media ses-
sion by exploiting multi-modal features, e.g., text, network,
and time; and (2) a multi-task learning network that simul-
taneously fits the comment 1nter-arrival times and estimates
the bullying likelithood based on a Gaussian Mixture Model.
The system jointly optimizes the parameters of both com-
ponents to overcome the shortcomings of decoupled train-
ing. One core contribution 1s an unsupervised cyberbullying
detection model that not only experimentally outperforms
the state-of-the-art unsupervised models, but also achieves
competitive performance compared to supervised models.
In other words, various embodiments of a principled
unsupervised learning framework for cyberbullying detec-

tion: Unsupervised Cyberbullying Detection via Time-In-
formed Gaussian Mixture Model (UCD)) are disclosed

herein. In one aspect, a central feature of UCD 1s that 1t
incorporates the comment inter-arrival times of a social
media session, which enables the classification of cyber-
bullying instances using the full commenting history. UCD
includes two main components: a representation learning
network, which learns the compact multi-modal representa-
tions of a session; and a multi-task learning network, which
predicts whether or not a session contains bullying behaviors
while modeling the temporal dynamics of all comments. In
particular, the representation learning network models social
media sessions using a Hierarchical Attention Network
(HAN) for textual features and a Graph Auto-Encoder
(GAE) for user and network features. The multitask learning
network then takes the multi-modal representations (e.g.,
text, user, and social network) as mput to estimate the
bullying likelihood using a time-informed Gaussian Mixture
Model (GMM). The two UCD components are jointly
optimized to mutually boost their learming effectiveness. The
problem of unsupervised cyberbullying detection in social
media platforms 1s addressed using this framework which
automatically 1dentifies bullying instances without labeled
data. Experiments are conducted on two real-world social
datasets from Instagram and Vine. Results show that UCD
not only outperforms the state-of-the-art unsupervised mod-
cls, but also achieves competitive performance against
supervised models. Referring to the drawings, embodiments
of framework for cyberbullying detection are 1llustrated and
generally indicated as 100 i FIGS. 1-6.

Referring to FIG. 1, a computer-implemented framework
and/or system 100 1s shown including at least two compo-
nents: (1) a representation learning network 102 that lever-
ages a HAN 130 and a GAE 110 to obtain multi-modal
representations, and (2) a multi-task learning network 104
that jointly optimizes a GMM-based energy estimation task
140 to detect cyberbullying instances and a temporal pre-
diction task 150 to further refine the session representations
with the comment inter-arrival times. The representation
learning network 102 constructs multi-modal representa-
tions of social media sessions 142 and the multi-task learn-
ing network 104 simultaneously estimates the energy/like-
lihood of input samples and predicts time ntervals between
comments. Observe that the representation learming network
combines user (session owner) representation (UR) 1n the
Graph Auto-Encoder 110 and social representation (SR) 1n
the Hierarchical Attention Network 130 to form the session
representation. The constructed session representation 1s the
input of the sample bullying energy estimation task 140.
Meanwhile, the comment representations (CR) in HAN 130
are fed 1nto the time 1nterval prediction task 150. The overall

10

15

20

25

30

35

40

45

50

55

60

65

4

loss, determined at block 150, comes from three sources:
graph reconstruction error, energy estimation loss, and time
interval prediction error.

Social media sessions usually consist of multi-modal
information, such as text (e.g., comments) and social content
(e.g., Irniendship networks, number of likes and shares). The
representation learning network aims to transform these
sparse and high-dimensional features into a low-dimen-
sional session representation. HAN for Text.

The majority of prior literature on cyberbullying detection
considered the comments in a social media session as
independent events and directly extracted textual features
from a chunk of combined comments. Notwithstanding 1ts
simplicity, this method largely overlooks the hierarchical
structure of a social media session and the long-term depen-
dencies among the sequentially posted comments. Previous
studies showed that 1) modeling document structure can
significantly improve the quality of document representa-
tions; and 1) capturing long-term dependencies 1s particu-
larly usetul for sequential data modeling. In addition, dii-
ferent words and comments 1n a post are not equally relevant
for cyberbullying detection, 1.e., some words/comments are
more important than others. For example, “You’re a £**king
loser!” and “Yeah, I’'m a loser.” both include the word loser,
the former 1s, however, more likely to represent an instance
of bullying. Therefore, attention mechanisms are also inte-
grated to distinguish important words and comments. Fol-
lowing, a hierarchical attention network 1s employed to
generate the textual representation for a social media ses-
sion. The HAN approach of block 130 (FIG. 1) 1s a particu-
larly good fit in cyberbullying detection as 1t models the two
main levels of social media sessions (sequences of words
and comments) and at each level, the model captures the
long-term dependencies and integrates mechamsms to dii-
ferentiate the importance of specific words and comments
based on their context.

The hierarchical structure of the textual content can be
described as follows: a social media session consists of a
sequence of comments and each comment includes a
sequence of words. Given a session with C comments where
each comment i has L, words {w, It=1, 2, . . ., L},
bi-directional Gated Recurrent Units (GRUs) are used to
model both the word sequence in a comment and the
comment sequence 1n a session:

s . =GRU(W,w,) VI€[1,L,],i€[1,C]

H

.= ORU (W w,)VEL,1], i€]1,C] (1)

where each word w,, 1s first mapped to a latent space with
parameter W_. The resulting annotation for word w,, 1s a
concatenation of the forward and backward hidden states,

—>

s.=[s,., §,]. To differentiate the word importance, the
attention mechanism 1s adopted to automatically detect
words that are more relevant and then aggregate the repre-
sentation of weighted words to form a comment vector

(2)

exp(/ th,)

. C; = Z St
>, exp(hfu,,) -

&y =

where hit 1s the output of a fully connected layer of s,, and
u  denotes a word-level context vector. o, denotes a nor-
malized weight describing the importance of word w,..
Similarly, the final textual representation v of a social media
session can be computed using the encoded comment vec-
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tors (1.e., replacing w,, of Eq. 1 with c,). Further, a dense
layer 1s included to project the social content, 1.e., number of
likes and shares, into a latent space. The resulting vector p
1s concatenated with v to form the multi-modal representa-
tion of a social media session o=[v,p].

GAE for Attributed Social Networks

Self-selection bias (grouping with similar others) and peer
influence are closely connected with bullying behaviors 1n
oflline environments. Research in human communication
reveals a similar observation that online social network
positioning 1s a comparably strong predictor for cyberbul-
lying detection. Hence, 1t 1s important to consider the social
network structure and peer influence from similar users for
improving the performance of cyberbullying detection.

The representation learning network learns user represen-
tation by exploiting information from social networks where
nodes denote social media users with corresponding profile
information being the node attributes, and edges denote the
tollower/followee relationships. Here, GAE 1s employed
(block 110, FIG. 1) to embed users’ attributes as low-
dimensional vectors such that users with structural proxim-
ity 1n the social network are close. As one of the most
powerlul node embedding approaches, GAE has been
applied to several challenging learning tasks such as link
prediction and node clustering. GAE can eflectively 1ncor-
porate node features and learn more interpretable user
representations. The key of GAE 1s the encoding-decoding,
scheme, 1.e., GAE encodes nodes into low-dimensional
vectors which are then decoded to reconstruct the original
network structure. Suppose one 1s given a social network
G =(V ,&) with U=| V' | users. The adjacency matrix of this
graph is AE R “*". The User-Feature matrix is XER "
with D being the feature dimension. GAE then uses a graph
convolutional network (GCN) encoder and an 1nner product
decoder to learn a latent matrix 7Z by minimizing the
following reconstruction error:

g="Yall4-4||%,

with 4=0(ZZ%),Z=GCN(X,4) (3)

where o(-) 1s the logistic sigmoid function. The {final
representation of a session 1s the concatenation of user
(owner) representation and the representation output from
HAN, 1.e., ss=[z, o], where z 1s a row vector of Z. This
multi-modal representation 1s then fed into the multi-task
learning network.

3.2 Multi-Task Learning Network

Given the multi-modal representation of input sessions,
the multi-task learning network 104 simultancously (1)
estimates the sample bullying-energy/likelihood (block
140); and (2) models the mter-arrival times of a sequence of
comments 1n a social media session (block 150). These two
tasks can mutually enhance each other’s performance 1n the
training stage. To this end, the multi-task learning network
104 enables the framework to jointly learn session repre-
sentations and discover cyberbullying instances.

Bullying-Energy Estimation

The first task of the multi-task learning network 1s to
estimate the sample energy (likelihood) and classify samples
with high energy (low likelihood) as bullying instances. A
primary benefit of energy-based models 1s the flexibility to
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specily the energy expression. GMM-based density estima-
tor 140 1s constructed to infer the underlying probability
density function. GMM, a widely used unsupervised learn-
ing method, seeks to fit a multi-modal distribution with
multiple unimodal Gaussian distributions which are the
most commonly used distributions for modeling real-world
ummodal data. Previous work has shown that GMM 1s more
cllective than simple models for data with complex struc-
tures. Given the complexity and multi-modal nature of
social media data, GMM 1s leveraged to perform density
estimation tasks over multi-modal representations.

Let the number of mixture components be K and the latent
representation of a social media session 142 be ss, the
mixture membership predictions must first be generated for
ss. Parameters of GMM are then estimated using the pre-
dicted membership to obtain the energy estimation of ss.
Specifically, ss 1s first fed into a multi-layer network (MLN)
parameterized by 0_. The output 1s denoted as p,,; A~

Paan~MLN(ss,0,,) (4)

The probability of ss belonging to each component can be
estimated as follows:

m=softmas(pss7 )

(3)

where m 1s a K-dimensional vector. Given a batch of N
social media session representations {ss,, $S,, . . . , SSx |-
together with the corresponding predicted memberships, the
parameters in GMM can further be estimated as follows:

(6)

(7)

. . N T
My (SS; — [, )(8s; — i)

- i=1
5, = —
i1 Mg

where ¢,, 1, and 2, the mixture probability, mean, and
covariance of component k&{1, 2, . . . , K} in GMM,
respectively. m, denotes the probability of ss, in the k-th
component of GMM. To build the probability density func-
tion, the energy-based model 1s leveraged which relies on a
specific parameterization of the energy (negative log likeli-
hood). The energy level of a session 1s defined as

(8)

s 1 i A~ —1 i A
R A EXP(—E(SS:' —,uk)TZk (55; —.uk)]
E(ss;; 6,) = —log E u
k=1

\/ 273
\ /

where || 1s the determinant of a matrix. The model then
classifies a session as cyberbullying 11 1ts energy 1s above a
predefined threshold ©t&(0,1) 1n the testing phase. In prac-
tice, T 1s typically set to a comparatively large value, 1.¢., a
cyberbullying session 1s 1n general associated with high
energy (hence low likelihood). This 1s because bullying
samples are less frequently observed 1n real-world datasets,
as suggested by the statistics in Table 1 as well as 1n previous
literature.

Temporal Dynamics Fitting

Cyberbullying 1s commonly defined as a repeated act of
aggression that develops over time. However, most of the
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existing computational models consider each comment 1n a
social media session as an isolated event. Therefore, they
largely overlook the temporal dynamics of users” comment-
ing behavior. Here, the time interval prediction model 150
seeks to predict the inter-arrival times between comments
for obtaining additional feedback from the temporal dynam-
ics. This feature enables the model to exploit the common-
alities and differences across bullying-energy estimation and
temporal-dynamics prediction for improving the final cyber-
bullying detection performance.

The output ¢, of the comment encoder 1s first obtained for
comment 1 1n session n from the HAN module 130 and then
conduct a time 1nterval prediction task as follows:

<1 (9)
0= ) 51 e 6) - AP,

=1

i

where I represents a regression model, 0¢ denotes the
associated parameters, and At=t—t—-1 1s the time interval
between comment 1—1 and 1. t; was set to be 0. Let d denote
the dimensions of the latent representation of social media
sessions, 0, the parameters of HAN and 0, the parameters of
GAE, the final objective function of UCD (block 160 of FIG.

1) can be constructed as:

N C 1 /11 N (10)
_ - . AR L .
= > 5 e 0 = Anll + N;E(sszﬁw

i=1
K d
2 A ' A |
5 + Az P(X); with P(X) = E E -
2

k=1 j=1 ¥

n=1

A2 .
EHA ~A

P(X) accounts for the singularity issue in GMM, A,, A,
and A, are the hyperparameters that control the balance
among time interval prediction error, energy estimation loss,
graph reconstruction error and regularization for GMM.
Specifically, the objective function consists of four compo-
nents (ordered as presented 1n Eq. 10).

The first component 1s the loss function that describes the
prediction error of time interval prediction.

The second component E(ss;; 0 ) models the likelithood
(sample energy) that session 11s observed. Here, minimizing
the energy level of an mput session will maximize the
likelthood of observing the session.

The third component is the reconstruction error of GAE in
the representation learning network. A lower error indicates
that the learned user representations better preserve the
structure of the original attributed social network.

Due to the singularity 1ssue in GMM, small values on the
diagonal entries of the covariance matrices 2 are penalized.

The model jointly optimizes the representation learning
network 102 and the multi-task learning network 104 to
learn eflective representations for cyberbullying detection.
The model 1s trained by minimizing Eq. 10 using the Adam
optimization algorithm, where the error backpropagates
through the representation learning network, the bullying-
energy estimation task, and the time-interval prediction task

EVALUATION

In this section, both quantitative and qualitative analyses
are presented to evaluate the UCD framework. Specifically,
the following research questions are answered:
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Effectiveness: a. How eflective 1s UCD compared to
existing unsupervised learning approaches and supervised
classification models? b. How does each module, 1.e., HAN,
GAE, and temporal modeling, affects the cyberbullying
detection performance of UCD

Datasets

The experiments use two public datasets crawled from
Instagram and Vine (now 1in archuve status). The basic
statistics of these datasets are presented in Table 1.

TABLE 1

Basic statistics for Instagram and Vine datasets.

Datasets #Sessions #Bully #Non-bully #Comments
Instagram 2,218 678 1,540 155,260
Vine 970 304 666 78,250

Instagram: Instagram 1s a popular social media platform.
It 1s also the platform on which the highest prevalence of
cyberbullying has been reported. Using a snowball sampling
method, the authors 1n 1dentified 41K Instagram users, 61%
of whom had public profiles. For each public user, the
collected data includes the media objects the user had
posted, the comments of session, the list of user followers/
followees, and the list of users who have commented/liked
the media objects. Data labeling (whether the session con-
stituted cyberbullying or not) was conducted on Crowd-
Flower—a crowdsourcing website—using a procedure
whereby each session was labeled by five different contribu-
tors. A session 1s labeled as cyberbullying 1f three or more
contributors had labeled this session as cyberbullying. Over-
all, the Instagram dataset includes 2,218 labeled social
media sessions.

Vine: The Vine dataset 1s used for analyzing cyberbully-
ing in the context of a video-based online platform. It was
crawled using a snowball sampling method i which a
random user u 1s first selected as a seed and then the crawling
continues with the users that u follows. Each session
includes videos, captions, and associated comments (note
that social network information was not available for this
dataset). All sessions 1n the dataset have at least 15 com-
ments. Similar to the labeling process used for the Instagram
data, a total of 970 Vine sessions were labeled (as cyber-
bullying vs. non-bullying) using CrowdFlower.

The following information gathered from a media session
1s used:

Attributed social network: A social network where each
node represents a user and has attributes such as the number
of total followers and followees. The edges denote the
following and followed-by relationships.

Text: The bag-of-words representation of the captions and
comments. Each column indicates a term from the corpus
and the entry 1s the corresponding frequency count.

Time: The posting timestamps of a media object and 1ts
associated comments. The time difference between any two
consecutive comments 1s extracted.

Social content: The number of likes and shares of a post
receives.

Experimental Setup

To answer the first research question, UCD 1s compared
with multiple unsupervised learning models:
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k-means. k-means 1s one of the most common clustering
algornithms. It iteratively assigns each data point to one of k
groups with the smallest distance.

HAE. HAE 1s an LSTM model that hierarchically builds
embeddings for social media sessions from comments and
words. k-means was also used to cluster the learned repre-
sentations.

DCN. DCN 1s a deep learning-based clustering algorithm
that regulates auto-encoder performance by using k-means.

DAGMM. DAGMM jomtly optimizes a deep auto-en-
coder that learns low-dimensional representations and a
GMM that estimates the density function of the latent
representations.

XBully. XBully learns multi-modal representations of
social media sessions and then feeds them into a subsequent
classification model. The classification model was replaced
with k-means.

GHSOM. As of now, Growing Hierarchical Self-Orga-
nizing Map (GHSOM) 1s one of the only existing models for
unsupervised cyberbullying detection. It extracts sentiment,
syntactic, and semantic features from text and social net-
work data. The features are then fed into the GHSOM tool3
for clustering.

To provide a comprehensive analysis of UCD, the fol-
lowing supervised methods are also included:

Naive Bayes (NB). NB 1s a probabilistic classifier based
on Bayes’ theorem with strong independence assumptions
between the features. It 1s one of the most popular (baseline)
methods for text classification.

Random Forest (RF). RF consists of several individual
decision trees that operate as an ensemble. Each individual
tree generates a class prediction and the class with the most
votes becomes the model’s prediction.

Logistic Regression (LR). LR 1s a statistical model that
uses a logistic function to model a binary dependent vari-
able. It 1s a common baseline algorithm for binary classifi-
cation.

For baselines using k-means, the number of clusters 1s set
to 2, and label the cluster with fewer elements as bullying
and the other one as non-bullying. This assumption 1is
supported by the statistics 1n Table 1 and also generally
evident 1n other real-world cyberbullying datasets. Note that
the method (UCD) does not require this assumption as it
optimizes Eq. 10 for clustering bullying and non-bullying
instances. The following vanants of UCD are implemented
to examine the impact of each UCD component.

UCDXtext. UCD without HAN. This variant 1s not
reported for Vine given that 1ts social network information
1s not available.

UCDXtime. UCD without time interval prediction.

UCDXgraph. UCD without GAE.

Following previous literature, four common evaluation
metrics—Precision, Recall, F1, and AUROC (Area Under
the Receiver Operating Characteristic Curve). Note that this
study 1s are more interested in detecting cyberbullying
instances, therefore, Precision, Recall and F1 1s reported
corresponding to the bullying (positive) class. While the
overall performance can be effectively measured by F1 and
AUROC scores, multiple application scenarios of cyber-
bullying detection could particularly benefit from the 1den-
tification of as many positive cases as possible, 1.e., high
Recall.

Parameter Setting. Based on Eq. 10, the UCD framework
has five hyperparameters: (1) A,, for balancing the sample
bullying-energy loss; (2) 1>, for controlling the weight of the
reconstruction error of GAE; (3) A,, for controlling the
weight of diagonal entries in the covariance matrices; (4) K.,°
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the number of mixtures 1n the GMM; and (5) T©&(0, 1) a
pre-defined energy threshold. The parameters were set based

on sensitivity analysis, which 1s detailed herein. Specifically,

hi=1e -4 A=1¢ -9 and K=5 for both datasets. The energy
threshold 1s set to 65% for Instagram and 70% for Vine.
Therefore, Instagram and Vine test sessions with the highest
35% and 30% energy values will be classified as bullying
cases and the rest as non-bullying cases, respectively. For
Instagram, A,=0.01. For the baseline methods, similar sen-
sitivity analysis were conducted on the key parameters
reported 1n their original papers. For both datasets, 80% of
the data was used for training and the rest for testing. Each
experiment 1s run 10 times, mean and standard deviations
are reported.

TABLE 2

Performance evaluation with Instagram data.

Metrics Precision Recall Fl AUROC
Unsupervised Learning Models
k-means 0.79 £ 0.02 029 £0.04 043 £0.05 0.63 +£0.02
XBully 0.32 £0.02 047 £0.03 038 £0.02 0.51 +£0.02
HAE 0.53 £ 0.02 027 £0.03 035 +£0.03 053 +£0.01
DCN 0.87 £0.02 023 £0.02 036 +0.02 0.61 +£0.01
DAGMM 0.56 £ 0.18 056 £0.18 056 £0.18 0.56 = 0.03
GHSOM 0.35 +£0.12 038 +£0.06 036 +0.08 054 +£0.11
UCDXtext 0.33 £ 0.01 034 +£0.01 033 +£0.01 053 +0.02
UCDXtime 0.47 £0.02 048 £0.01 048 £0.01 0.63 £ 0.01
UCDXgraph 0.56 £ 0.02 057 +£0.01 057 £0.02 0.19 £0.01
UucCD 0.59 £+ 0.02 0.66 £+0.02 0.63 £0.02 0.73 +£0.01
Supervised Learning Models
NB 0.40 £ 0.03 0.69 +0.03 051 £0.03 0.62 +0.02
RF 0.78 £ 0.03 053 +£0.03 0.63 £0.03 0.73 £0.01
LR 0.79 £ 0.03 055 +£0.03 0.64 £0.03 0.74 +£0.03
TABLE 3
Performance evaluation with Vine data.
Metrics Precision Recall Fl AUROC
Unsupervised Learning Models
k-means 0.03 £ 0.08 0.00 £0.00 0.00 £0.01 0.50 = 0.00
XBully 0.48 £ 0.08 0.27 £0.03 034 £0.04 057 =£0.02
HAE 0.18 £ 0.04 034 +£0.08 0.23 £0.04 0.57 £ 0.03
DCN 0.29 £ 0.20 032 +0.39 022 £0.19 0.50 £ 0.03
DAGMM 0.36 + 0.09 031 £0.08 033 £0.08 0.54 = 0.00
GHSOM 0.32 £ 0.09 038 £0.10 034 £0.08 0.50 = 0.07
UCDXtime 0.33 £0.02 039 +£0.03 036002 0.56+0.01
UCDXgraph 043 £0.02 040 £0.03 041 £0.02 0.58 £ 0.01
Supervised Learning Models

NB 0.49 £+ 0.05 0.72+£0.05 058 £0.04 0.70 £ 0.04
RF 0.67 £ 0.05 042 £0.05 051 £0.04 0.66 = 0.02
LR 0.62 £ 0.05 057 +£0.05 059 £0.04 0.71 £ 0.03

(Quantitative Results

For the Instagram dataset, UCD and its variants with all

baselines. Due to the lack of social network information 1n
the Vine dataset, UCD and UCDXtext cannot be evaluated
with Vine. The best results for unsupervised and supervised
models are highlighted 1n Table 2 and 3 with bold text. The

results presented for RF are different from previously
reported results. It 1s believed that the case because the
original work: 1) considered additional features such as the

percentage ol negative comments, emotions exhibited in
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videos, and latent semantic features (10 topics based on the
comments using LDA), and 2) performed oversampling

(SMOTE) to balance the Vine dataset. The original Vine

dataset 1s used to better retlect real-world scenarios.

It 1s observed that (1) UCD achieves the best performance
in Recall, F1, AUROC, and competitive Precision compared
to the unsupervised baselines for both datasets. For the
Instagram dataset, UCD shows 15.9%, 19.7%, and 35.2% of
improvement on AUROC compared to the results using raw
teatures (1.e., k-means), representation learning (i.e., DCN),
and the unsupervised cyberbullying detection model

GHSOM, respectively. AUROC considers all possible

thresholds for classification and 1s a more appropriate metric
when datasets are imbalanced; (2) Imbalanced datasets
allect the trade-ofl between Recall and Precision. While
achieving superior Precision, baseline models DCN and
k-means show poor Recall. It 1s inferred that these models
fail to 1dentity most of the cyberbullying instances, which 1s
undesired 1n many cyberbullying applications; and (3) UCD
achieves competitive Recall, F1 and AUC scores compared
to supervised methods using the Instagram dataset. For

mstance, LR improves F1 by 1.6% over UCD whereas NB
1s outperformed by UCD regarding these three metrics. The
Precision of UCD 1s comparatively low implying that its
energy threshold favors 1identitying cyberbullying instances,
therefore, UCD miss-classifies more non-bullying instances
than baseline methods. In the Vine dataset, the supervised
methods show larger advantages over UCDXgraph, retlect-
ing the importance of integrating social network information
and using larger datasets in order to maximize the perfor-
mance of UCD. Of particular interest 1s that UCD also
achieves more balanced Precision and Recall values com-
pared to supervised models.

The following observations are made when comparing
UCD with 1ts own vanants: (1) UCD achieves better per-
formance 1n all metrics, especially against UCDXtext and
UCDXtime, leading us to conclude that each submodule
(HAN, GAE, and temporal analysis) has a positive influence
on UCD’s performance; (2) The performance of UCDXtext
drops significantly compared to other variants, highlighting
the importance of textual features in cyberbullying detec-
tion; (3) UCDXgraph outperforms UCDXtime, indicating,
that temporal analysis can provide more relevant informa-
tion for cyberbullying detection than social network prop-
erties and thus highlighting the importance of modeling
temporal patterns; and (4) the framework performs better on
Instagram data than on Vine data. This 1s 1 part due to the
smaller sample size and lack of social network imnformation
in the Vine dataset.

In summary, UCD outperforms unsupervised baselines in
terms of 1dentifying cyberbullying instances and the overall
performance. Compared to supervised models, 1t shows
competitive performance when the sample size 1s compara-
tively large and the social network information 1s available.
None of the evaluated methods achieves high performance
in detecting both bullying and non-bullying instances.
Future work 1s encouraged to investigate such methods.

Qualitative Analysis

Qualities of the learned multi-modal representations are
turther 1nvestigated using t-SNE visualizations in FIGS.
2A-2H. Taking Instagram as an example, the following
observations were made:

As shown 1n FIG. 2H, UCD better separates the bullying
and non-bullying samples in the latent space. The results of
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most of the other models, particularly XBully, HAE, DCN,
and UCDXtext, yield more overlapped clusters.

From the results of DAGMM and UCD, 1t 1s observed that
models with GMM can learn discriminative representations,
which 1s evident by the greater separation between bullying
and non-bullying clusters). The overall performance of UCD
1s better than DAGMM, indicating that UCD benefits from
the joint optimization of cyberbullying detection and time
interval prediction.

Both UCD and DAGMM outperform DCN. With a pre-
trained auto-encoder, DCN can get easily stuck 1n a local
optimum for achieving lower reconstruction error and could
be suboptimal for the subsequent density estimation tasks. A
joint optimization of representation learning, bullying-en-
ergy estimation, and time interval prediction can help avoid
these local optimal cases and achieve better learning per-
formance.

In contrast to other baseline methods, such as XBully and
DCN, HAE 1n FIG. 2B generates large regions that are
primarily populated by either bullying or non-bullying
samples. This confirms that modeling the hierarchical struc-
ture of a session has an important impact 1n cyberbullying
detection.

UCDXtime produces two main bullying clusters (two red
clusters), UCDXgraph generates similar results to UCD, and
UCDX-text fails to learn discriminative representations,
evidenced by the overlap between the bullying and non-
bullying clusters.

Parameter Analysis

The UCD model has five core parameters (A, A,, Ay, K,
T) for balancing the weights of bullying-energy estimation
loss, reconstruction error, regularization of the covariance
matrices, the number of mixtures in GMM, and the energy
threshold, respectively. Here, the training data 1s further
divided into tramming (80%) and validation (20%) sets. To
investigate the effects of the first four parameters, experi-
ments are ran on the Instagram dataset varying one param-
cter at a time and evaluate how it aflects the overall
performance. The sensitivity analysis 1s shown w.rt.
AUROC and F1 scores 1n FIGS. 3A-3D. It 1s observed that
large A, that overemphasizes the energy estimation loss can
lead to poor performance regarding both F1 and AUROC
scores. The trend of varying K is similar to that of A", i.e.,
the performance drops when the number of components in
GMM becomes too large. The best performance 1s obtained
when A' is set to le—4 and K is set to 5. In contrast, the
performance of varying A” displays an ascending trend in a
certain range as shown in FIG. 3B. The UCD model with a
slightly large A* controlling the importance of GAE is more
likely to obtain better results. Unsurprisingly, when the
covariance matrices 1n GMM are given too much penaliza-
tion, i.e., a large A°, the F1 and AUROC scores decrease
significantly, as shown i FIG. 3C. The last parameter T
represents the threshold for identitying bullying instances.
Given that UCD largely relies on T for cyberbullying detec-
tion, both Instagram and Vine datasets are used to examine
its influence. The results are presented 1 FIGS. 4A and 4B.
It shows that UCD 1s more robust to T for Vine, whereas its
performance slightly decreases for Instagram as Tt increases.
In practice, A° should be set to a small value, and a proper
value for parameter T should be experimentally 1dentified. In
general, UCD 1s robust to most of the model parameters, and
consequently can be tuned for various real-world applica-
tions.
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Case Study

In this subsection, two Instagram sessions (FIGS. 5A and
5B) are presented, one detected as bullying and one detected
as non-bullying by UCD. Each are visualized with the
hierarchical attention information to validate UCID’s capa-
bility of selecting informative comments and words 1n a
session. The results can be seen 1n FIGS. SA and 5B. Every
line 1n each sub-figure 1s a comment. Shades of blue denote
comment weights and shades of red denote word weights.
Because both sessions have many comments, only a portion
ol the content 1s shown here. FIG. SA shows that UCD can
select the words that are more strongly associated with
bullying, such as f*ckin, b*tch, disgusted and hell. In FIG.
5B, it 1s observed that UCD can also deal with complex
cross-comment context. For example, although the session
might appear to be a bullying session when looking only at
the second comment from the bottom, UCD assigns the
session to the non-bullying cluster because 1t also considers
the context of that comment.

Discussion

In this section, the reasons behind the performance of
UCD, 1ts research impact, and practical considerations are
claborated on. UCD benefits from the following design
mechanisms.

Multi-modal features. UCD actively leverages multi-
modal data including text, user information, social network
information, and social content. UCD also benefits from
deep learning mechamsms specifically designed for each
modality, e.g., HAN models the sequence of comments and
the hierarchy of a session. Previous work reported the
benefits of using multi-modal data to contribute comple-
mentary application domain insights and enable better learn-
ing performance.

Complementary temporal analysis. In addition to multi-
modal representation learning, UCD simultaneously esti-
mates the energy level associated with bullying instances
and predicts the time-interval between comments to refine
the session representations. Temporal modeling adds nuance
to the representation learning network that otherwise would
not consider comment evolution

Joint optimization. A key property that differentiates UCD
from other approaches 1s that 1t jointly optimizes the param-
eters for representation learming, temporal modeling, and
bullying-energy estimation. This approach prevents the
drawbacks of decoupled training

As one of the first attempts to detect cyberbullying in an
unsupervised manner, UCD explores the use of deep learn-
ing algorithms and shows they can achieve relatively high
performance levels. The development of UCD has relevant
research and practical impact. UCD addresses key limita-
tions of supervised models: (1) cyber-bullying labeled data
could be either unavailable or insuflicient for training a good
supervised classifier, (2) data labeling 1s often time-consum-
ing and labor-intensive, and (3) the guidelines used for
assigning cyberbullying labels in a current session cannot
always be generalized to future sessions due to the dynamic
nature of language and social networks.

Computer-Implemented System

FI1G. 6 1llustrates an example of a suitable computing and
networking environment (computer system 200) which may
be used to implement various aspects of the present disclo-
sure. Example embodiments described herein may be imple-
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mented at least 1 part in electronic circuitry; in computer
hardware executing firmware and/or software instructions;
and/or 1n combinations thereof. Example embodiments also
may be immplemented using a computer program product
(e.g., a computer program tangibly or non-transitorily
embodied 1n a machine-readable medium and including
instructions for execution by, or to control the operation of,
a data processing apparatus, such as, for example, one or
more programmable processors or computers). A computer
program may be written 1 any form of programming
language, including compiled or interpreted languages, and
may be deployed 1 any form, including as a stand-alone
program or as a subroutine or other umit suitable for use in
a computing environment. Also, a computer program can be
deplovyed to be executed on one computer, or to be executed
on multiple computers at one site or distributed across
multiple sites and interconnected by a communication net-
work.

Certain embodiments are described herein as including
one or more modules. Such modules are hardware-imple-
mented, and thus include at least one tangible unit capable
of performing certain operations and may be configured or
arranged 1n a certain manner. For example, a hardware-
implemented module may comprise dedicated circuitry that
1s permanently configured (e.g., as a special-purpose pro-
cessor, such as a field-programmable gate array (FPGA) or
an application-specific integrated circuit (ASIC)) to perform
certain operations. A hardware-implemented module may
also comprise programmable circuitry (e.g., as encompassed
within a general-purpose processor or other programmable
processor) that 1s temporarily configured by software or
firmware to perform certain operations. In some example
embodiments, one or more computer systems (e.g., a stand-
alone system, a client and/or server computer system, or a
peer-to-peer computer system) or one or more Processors
may be configured by solftware (e.g., an application or
application portion) as a hardware-implemented module that
operates to perform certain operations as described herein.

Accordingly, the term “hardware-implemented module™
encompasses a tangible entity, be that an enftity that is
physically constructed, permanently configured (e.g., hard-
wired), or temporarily configured (e.g., programmed) to
operate 1n a certain manner and/or to perform certain opera-
tions described herein. Considering embodiments in which
hardware-implemented modules are temporarily configured
(e.g., programmed), each of the hardware-implemented
modules need not be configured or instantiated at any one
instance 1n time. For example, where the hardware-imple-
mented modules comprise a general-purpose processor con-
figured using software, the general-purpose processor may
be configured as respective diflerent hardware-implemented
modules at different times. Software, in the form of the
system application 190 or otherwise, may include a hard-
ware-implemented module and may accordingly configure a
processor 202, for example, to constitute a particular hard-
ware-implemented module at one instance of time and to
constitute a different hardware-implemented module at a
different instance of time.

Hardware-implemented modules may provide informa-
tion to, and/or receive information from, other hardware-
implemented modules. Accordingly, the described hard-
ware-implemented modules may be regarded as being
communicatively coupled. Where multiple of such hard-
ware-implemented modules exist contemporaneously, com-
munications may be achieved through signal transmission
(e.g., over appropriate circuits and buses) that connect the
hardware-implemented modules. In embodiments 1n which
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multiple hardware-implemented modules are configured or
instantiated at different times, communications between
such hardware-implemented modules may be achieved, for
example, through the storage and retrieval of information 1n
memory structures to which the multiple hardware-imple-
mented modules have access. For example, one hardware-
implemented module may perform an operation, and may
store the output of that operation in a memory device to
which 1t 1s communicatively coupled. A further hardware-
implemented module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware-implemented modules may also initiate commu-
nications with input or output devices.

As 1llustrated, the computing and networking environ-
ment 200 may be a general purpose computing device 200,
although 1t 1s contemplated that the networking environment
200 may include other computing systems, such as personal
computers, server computers, hand-held or laptop devices,
tablet devices, multiprocessor systems, miCroprocessor-
based systems, set top boxes, programmable consumer elec-
tronic devices, network PCs, minicomputers, mainirame
computers, digital signal processors, state machines, logic
circuitries, distributed computing environments that include
any of the above computing systems or devices, and the like.

Components of the general purpose computing device 200
may include various hardware components, such as a pro-
cessing unit 202, a main memory 204 (e.g., a memory or a
system memory), and a system bus 201 that couples various
system components of the general purpose computing
device 200 to the processing unit 202. The system bus 201
may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a

local bus using any of a varniety of bus architectures. For
example, such architectures may include Industry Standard

Architecture (ISA) bus, Micro Channel Architecture (MCA)
bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus also known as Mezzanine bus.

The general purpose computing device 200 may further
include a variety of computer-readable media 207 that
includes removable/non-removable media and volatile/non-
volatile media, but excludes transitory propagated signals.
Computer-readable media 207 may also include computer
storage media and commumnication media. Computer storage
media includes removable/non-removable media and vola-
tile/nonvolatile media implemented 1n any method or tech-
nology for storage of mformation, such as computer-read-
able structions, data structures, program modules or other
data, such as RAM, ROM, EPSOM, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium that may be used to
store the desired information/data and which may be
accessed by the general purpose computing device 200.
Communication media includes computer-readable instruc-
tions, data structures, program modules, or other data in a
modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such
a manner as to encode information in the signal. For
example, communication media may include wired media
such as a wired network or direct-wired connection and
wireless media such as acoustic, RF, infrared, and/or other
wireless media, or some combination thereof. Computer-
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readable media may be embodied as a computer program
product, such as software stored on computer storage media.

The main memory 204 includes computer storage media
in the form of volatile/nonvolatile memory such as read only
memory (ROM) and random access memory (RAM). A
basic input/output system (BIOS), containing the basic
routines that help to transfer information between elements
within the general purpose computing device 200 (e.g.,
during start-up) 1s typically stored in ROM. RAM typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 202. For example, in one embodiment, data storage
206 holds an operating system, application programs, and
other program modules and program data.

Data storage 206 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. For
example, data storage 206 may be: a hard disk drive that
reads from or writes to non-removable, nonvolatile magnetic
media; a magnetic disk drive that reads from or writes to a
removable, nonvolatile magnetic disk; and/or an optical disk
drive that reads from or writes to a removable, nonvolatile
optical disk such as a CD-ROM or other optical media.
Other removable/non-removable, volatile/nonvolatile com-
puter storage media may include magnetic tape cassettes,
flash memory cards, digital versatile disks, digital video
tape, solid state RAM, solid state ROM, and the like. The
drives and their associated computer storage media provide
storage of computer-readable instructions, data structures,
program modules and other data for the general purpose
computing device 200.

A user may enter commands and information through a
user 1interface 240 or other input devices 243 such as a tablet,
clectronic digitizer, a microphone, keyboard, and/or point-
ing device, commonly referred to as mouse, trackball, or
touch pad. Other mput devices 245 may include a joystick,
game pad, satellite dish, scanner, or the like. Additionally,
volice 1puts, gesture mputs (e.g., via hands or fingers), or
other natural user interfaces may also be used with the
appropriate mput devices, such as a microphone, camera,
tablet, touch pad, glove, or other sensor. These and other
input devices 245 are often connected to the processing unit
202 through a user interface 240 that 1s coupled to the
system bus 201, but may be connected by other interface and
bus structures, such as a parallel port, game port or a
umversal serial bus (USB). A monitor 260 or other type of
display device 1s also connected to the system bus 201 via
user interface 240, such as a video intertface. The monitor
260 may also be integrated with a touch-screen panel or the
like.

The general purpose computing device 200 may operate
in a networked or cloud-computing environment using logi-
cal connections of a network Interface 203 to one or more
remote devices, such as a remote computer. The remote
computer may be a personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the general purpose computing device 200.
The logical connection may include one or more local area
networks (LAN) and one or more wide area networks
(WAN), but may also include other networks. Such network-
ing environments are commonplace 1 offices, enterprise-
wide computer networks, intranets and the Internet.

When used 1n a networked or cloud-computing environ-
ment, the general purpose computing device 200 may be
connected to a public and/or private network through the
network interface 203. In such embodiments, a modem or
other means for establishing communications over the net-
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work 1s connected to the system bus 201 via the network
interface 203 or other appropriate mechanism. A wireless
networking component including an interface and antenna
may be coupled through a suitable device such as an access
point or peer computer to a network. In a networked
environment, program modules depicted relative to the
general purpose computing device 200, or portions thereof,
may be stored 1n the remote memory storage device.

It should be understood from the foregoing that, while
particular embodiments have been 1llustrated and described,
various modifications can be made thereto without departing,
from the spirit and scope of the invention as will be apparent
to those skilled 1n the art. Such changes and modifications
are within the scope and teachings of this invention as
defined 1n the claims appended hereto.

It should be understood from the foregoing that, while
particular embodiments have been 1llustrated and described,
various modifications can be made thereto without departing,
from the spirit and scope of the invention as will be apparent
to those skilled 1in the art. Such changes and modifications
are within the scope and teachings of this nvention as
defined 1n the claims appended hereto.

What 1s claimed 1s:

1. A framework for identification of cyber-bullying on

social media sites, comprising;

a model trained according to a representation learming
framework configured to:
construct one or more multi-modal representations of

one or more social media sessions; and

a learning network configured to:
estimate a likelihood of bullying associated with each

of the one or more social media sessions using the

one or more multi-modal representations; and
predicting a time interval between one or more com-

ments of the one or more social media sessions;

wherein a graph reconstruction error determined by the

representation learning framework, an energy estima-
tion loss determined by the learning network, and a
time interval prediction error determined by the learn-
ing network are used to determine a total loss associ-
ated with bullying identification; and

wherein the total loss associated with bullying identifica-
tion 1s used to optimize the representation learming
framework and the learning network,

wherein the model 1s configured for unsupervised cyber-
bullying detection and incorporates inter-arrival times
ol a social media session to leverage temporal dynam-
ics associated with repeated acts of aggression over
time.

2. The framework of claim 1, wherein the representation

learning network comprises:

a graph auto-encoder configured to embed user attributes
associated with each of the one or more social media
sessions as low-dimensional vectors representative of a
social network structure of each of the one or more
social media sessions.

3. The framework of claim 2, wherein the graph-auto

encoder 1s implemented using one or more neural networks.

4. The framework of claim 1, wherein the representation

learning network comprises:

a hierarchical attention network configured to generate a
textual representation of each of the one or more social
media sessions by modeling a sequence of words and a
sequence of comments for each of the one or more
social media sessions.

10

15

20

25

30

35

40

45

50

55

60

18

5. The framework of claim 4, wherein the hierarchical
attention network captures long-term contextual dependen-
cies between the sequence of words and the sequence of
comments for each of the one or more social media sessions.

6. The framework of claim 1, wherein the learning frame-
work comprises:

a Gaussian mixture model-based density estimator con-
figured to infer a probability density function associ-
ated with likelihood estimation of bullying 1n the one or
more social media sessions.

7. The framework of claim 6, wherein the Gaussian
mixture model-based density estimator uses one or more
user attributes and one or more textual attributes determined
by the representation learning network to estimate the like-
lithood estimation of bullying 1n the one or more social media
SESS101S.

8. A processor adapted for cyberbullying detection, the
processor configured to:

implement a model configured via a representation learn-
ing network that constructs multi-modal representa-
tions of social media sessions; and

implement a multi-task learning network that simultane-
ously with the representation learning network esti-
mates a likelihood of mput samples and predicts time
intervals between comments associated with the social
media sessions,

wherein 1mplementation of the representation learning
network and the multi-task learning network outputs,

wherein the model 1s configured for unsupervised cyber-
bullying detection and incorporates inter-arrival times
of a social media session to leverage temporal dynam-
ics associated with repeated acts of aggression over
time.

9. The processor of claim 8, being turther configured to:

combine, by the representation learning network a user
representation 1n a graph auto-encoder and social rep-
resentation 1n a hierarchical attention network to form
a sessions representation.

10. A tangible, non-transitory, computer-readable media
having instructions encoded thereon, such that a processor
implementing the instructions, 1s operable to:

implement a system for unsupervised cyberbullying
detection via time-informed Gaussian Mixture Model
(UCD) that predicts bullying instances without labeled
data, the system incorporating comment inter-arrival
times of a social media session which accommodates
classification of cyberbullying instances using a full
commenting history,

wherein the system includes a representation learning
network that learns a compact multi-modal represen-
tation of the social media session and a multi-task
learning network that predicts whether or not the social
media session contains bullying behaviors while mod-
cling temporal dynamics of all social media comments,
and

wherein the representation learning network models
social media sessions using a hierarchical attention
network (HAN) for textual features of a plurality of
features and a graph auto-encoder for user and network
features of the plurality of features, and the multi-
modal task learning network takes the plurality of
features as mput to estimate a likelihood of bullying
using a time-informed Gaussian Mixture Model

(GMM).
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