12 United States Patent

Ahmed-Rengers et al.

US011921689B2

(10) Patent No.: US 11,921,689 B2
45) Date of Patent: Mar. 5, 2024

(54) DATA STRUCTURE STORAGE
OPTIMISATION

(71) Applicant: RKVST Limited, Beverley (GB)

(72) Inventors: Mansoor Ahmed-Rengers, Cambridge
(GB); Jonathan Geater, Cambridge
(GB)

(73) Assignee: RKVST Limited, Beverley (GB)

*3) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.
(21) Appl. No.: 18/123,919
(22) Filed: Mar. 20, 2023

(65) Prior Publication Data
US 2023/0229649 Al Jul. 20, 2023

Related U.S. Application Data

(62) Daivision of application No. 17/087,055, filed on Nov.
2, 2020, now Pat. No. 11,636,080.

(30) Foreign Application Priority Data
Nov. 8, 2019 (GB) .o, 1916295.7
(51) Imnt. CL
GO6I’ 16/22 (2019.01)
GO6l’ 16/23 (2019.01)
HO4L 9/32 (2006.01)

(52) U.S. CL
CPC ... GOG6F 16/2272 (2019.01); GO6F 16/2365
(2019.01); HO4L 9/3242 (2013.01); HO4L

9/3247 (2013.01)
1040
112 “H*

106

(38) Field of Classification Search
CPC GO6F 16/2272; GO6F 16/2365; GO6F
16/215; GO6F 21/64; HO4L 9/3242; HO4L
0/3247; HO4L 9/50; HO4L 9/3239; HO4L

9/3236
See application file for complete search history.
(56) References Cited
PUBLICATIONS

Rizun, Subchains: A Technique to Scale Bitcoin and Improve the

User Experience (Year: 2016).*

Zamyatin, Flux: Revisiting Near Blocks for Proof-of-Work Blockchains,
pp. 1-16 (Year: 2018).*

Palm, Selective Blockchain Transaction Pruning and State Deriv-
ability (Year: 2018).*

* cited by examiner

Primary Examiner — Albert M Phallips, III

(74) Attorney, Agent, or Firm — Polsinelli PC; Derek D.
Donahoe

(57) ABSTRACT

A method of maintaining a data structure comprising: cre-
ating a data block; transmitting a message to validator
devices requesting permission to add said data block to the
data structure; determining that consensus 1s reached, and 1n
response: forming a first sub-chain i1n the data-structure by
adding the data block to the data structure, the first sub-chain
starting with a genesis block and ending with said data
block, wherein the data block comprises a block number
indicating the number of blocks in the data structure from
the genesis block, and creating a further data block; trans-
mitting a further message to the validator devices requesting
permission to add said further data block to the data struc-
ture; determining that consensus 1s reached, and 1n response,
forming a second sub-chain by adding the further data block
to the data structure after said data block, the second
sub-chain starting with said further data block.

13 Claims, 9 Drawing Sheets

104 1i4

108

U.S. Patent Mar. 5, 2024 Sheet 1 of 9 US 11,921,689 B2

~ (7 -

114

104

108
106
FIG. 1

\
8

102

112
A

00C¢

¢ Old

US 11,921,689 B2

M

d

3|NPO|N uoneal)

MI0|g SIS2Ul8aY

°o|NPON
uoneal) 1sanba
SIS9U389Y

J

c0(¢

10¢

3INPOA
70¢ 7 uonesyuap ureyy

=

-~

S

gl

Nl

> 3[NPOIA UOIIR3ID

W

= c0¢ 20|g UoIlIsued |

N 907

=

g

7ol

—

=

>

2UISU3
SNSU3SU0)D)

U.S. Patent

e12(Y20|g

140)}

4/

44

US 11,921,689 B2

Sheet 3 of 9

Mar. 5, 2024

U.S. Patent

(T+Ug)HSVH

Ul

el

(1

11

0L

OLE

(Ug)HSYH

(Ug)HSVYH

¢ Old

(T-ug)HSVH

a0t

(Z9)HSVYH

UL

el

(1

1

0L

(T9)HSVH

90¢

(T9)HSVH

N

4013

(D)HSYH

N

[40]3

U.S. Patent Mar. 5, 2024 Sheet 4 of 9 US 11,921,689 B2

400

Detect new sub-chain needed S402

Generate regenesis request S404

Sign the regenesis request S406

Broadcast signature and regenesis request S408

Add received sighatures to the signed regenesis request S412
Create transition block 5414

5416

ransition block addec
by consensus?

No
Regenesis failure

S422

Yes
Create regenesis block S418
Submit regenesis block for consensus S420

FIG. 4

US 11,921,689 B2

Sheet 5 of 9

Mar. 5, 2024

U.S. Patent

¢ Ol

S9110}LeUSIS UonEeaId 320|9
pasioyine SI9U3IS 15onba. ‘ON SIS9UD) ‘ON Y20|g
10 Jo A3y 211qnd sisuagaua sIS9Ua8aYy 30UIS ureyd-qns
$94N1eUSIS Jo dwelsawi] ‘ON 20|g
1S 015 80S 909 70S 205

00S

US 11,921,689 B2

L Ol

N
Cop
< 90L
O $31N31eUSIS SNSU3SUO)D)
~
Q9
=P
=
75
M 159Nnb3aYy SISSUlEaY 00S
—
|
7ol
o
-
c0L

(T-ug) HSVYH

U.S. Patent

00L

9 OId

$3JN1BUSIS SNSU3SUO)D)

uieyd-qns JO 1Ie1S

18 20| JO YseH

159nbay sisauagday

(T-ug) HSVYH

009

909

309

00S

09

US 11,921,689 B2

Sheet 7 of 9

Mar. 5, 2024

U.S. Patent

9C3 G78

\
(8 —
AN 66607 8667
6667 8667 _
S e
20
TR — ¢ A90]|d —
uolisued|
N
\l\ 666 6T 866°6T
018 666°6 8666
S T T T
J
uonlisuea |

. \l\ H
6666 866 6

908

8 Old

——
i
l_ll.l_
ll
—
———
pum

l‘
—m
—
Al
e
apame A
e

¢ ’90l|d
SISOUS339Y

~—~~- V(8

i -

II.I...I.I_
i
i
pm—
i

220|(SI15oUob) 93UIS "ON)20|Y
ON 2]20|g uleya-gns

1 20]d
JEEIVEYEN

7 ~— VL8

am
i
e

p—
llll
e

ll.l_‘_

2J30|(S1SsaUar) 92UIS "ON X20|Y
. ON 220|g uleya-gns

A20|d
SIS9UIL)

—~—~ V08

230]g SISaUatb) 92UIS "ON 330|d

008

US 11,921,689 B2

ON

Sheet 8 of 9

V6 Ol

S A

0165

é(dl)>o0|d
UOllisSUied]| e Ug v_uo_n_ S

%

Mar. 5, 2024

706S

065

U.S. Patent

(u)g >00|q 1xaU pesy

SIA

;ug ul ysey

gunjull = (1-U
DUl = (T-ug)HSVYH oN

uieyd Jo pua 1e (u)g)o0|q peay

3065

[EIRVISIRERITIVEY

9065

H 006

US 11,921,689 B2

Sheet 9 of 9

Mar. 5, 2024

U.S. Patent

ureys-qgns 1xau 01 dijg

SIA

¢ PalLIBA 8Q

01 suleyd2-gns Jaylin4
ON

C(6S
SOA
ureyaqgns

JO 14E1S 1B)20|q JO g1
Ul ysey = (sg)HSY

ON
8T6S

(s@) yseH S1e[naled

uleyoqgns 4o 14eis 1e (sg) 400|q peay

uleyoqns Jo 1e1s 1eX20|q Jo gl ul ysey peay

965

P3IJLIAA UIRYD

PC6S

JEINVCTERITINEY

0Z65

916S

P16S

C16S

006

US 11,921,689 B2

1

DATA STRUCTURE STORAGLE
OPTIMISATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a divisional of and claims
priority to co-pending U.S. patent application Ser. No.
17/087,055 filed Nov. 2, 2020, taitled “Data Structure Storage

Optimisation”, which 1s related to and claims benefit of
priority from United Kingdom Patent Application No.
19162935.7 filed Nov. 8, 2019, titled “Data Structure Storage

Optimisation”, both of which are hereby incorporated by
reference in their entirety.

BACKGROUND

Blockchains, and more generally distributed ledger tech-
nologies, are emerging as a fundamental building block of
new digital communications platforms. The ability to
securely store, trade, and compute data in a shared respon-
sibility system with no single central point of authority 1s a
very powerlul architecture.

One of the most important and powertul features of a
blockchain and other distributed ledger technologies is its
immutability. That 1s, a blockchain provides a permanent,
indelible, and unalterable history of data.

In a standard blockchain or cryptographic ledger the
immutability and integrity of the chain 1s maintained
through a chain of hashes: the cryptographic hash of each
block stored 1n 1ts successor so as to link them together and
make 1t impossible to modify, add, or remove anything from
a block 1n the chain.

SUMMARY

Blockchains impose certain infrastructure requirements
that make their adoption into enterprise systems difficult.
One of these requirements 1s that of an endless supply of
storage. Blockchains, by their very nature, are append-only:
information can only be added to them. Furthermore, to
verily the integrity of a blockchain, one needs to have access
to the entire blockchain—1irom the first block to the current
one (at the end of the chain). This means that 11 one of the
participants goes offline and later wants to join the network
again, 1t must contact some other member and download
every block since the system was started. This 1s unaccept-
able for systems that are expected to run for many years.

This 1s just one of the situations where blockchains are
hampered by their ever-increasing need for storage. Other
situations where this 1s a problem include:

In case where network participants run out of physical
storage space, they must either stop accepting new
blocks, purchase more storage or delete old blocks and
rely on other network participants to provide them with
the old blocks on demand.

Whenever a new participant joins a network, i1t needs to
download the entire blockchain and verity 1t block-by-
block. IT a network has been runming for years, this
operation would take a prohibitive amount of time.

Known techmiques exist that aim to mitigate the storage
problem by reducing the storage space required for the
blocks. This 1s usually done by either squashing empty
blocks together (only retaining their hashes) or by using
some form of compression to reduce the storage space
requirement for all blocks 1n general.

10

15

20

25

30

35

40

45

50

55

60

65

2

The mventors have recognised that whilst these solutions
help to a certaimn extent, they only delay the inevitable.
Eventually the same storage 1ssues arise; in fact, because of
the additional work of decompression, the time requirement
for new nodes jomning the network may be higher than
uncompressed blocks.

Embodiments of the present disclosure allow network
participants to prune away old data while preserving the
tollowing desirable properties:

-

['he current chain remains verifiable;

i

T'he points of time at which the pruning was authorised
are clearly 1dentifiable by all participants;

The participants that authorised the pruning of the chain
are clearly identified by way of, for example, digital
signatures associated with the participants; and

The participants 1n pruning the chain are in the same
security context as the participants in the consensus
mechanism.

According to one aspect of the present disclosure there 1s
provided a method of maintaining a data structure compris-
ing a plurality of linked data blocks, the method 1mple-
mented on a computing device, and comprising: creating a
data block to be added to the data structure; transmitting a
message to a plurality of validator computing devices over
a communication network, said message requesting permis-
s1on to add said data block to the data structure; determining,
that consensus 1s reached by the plurality of validator
computing devices that said data block can be added to the
data structure, and 1n response to said determining: forming
a {irst sub-chain in the data-structure by adding the data
block to the data structure, the first sub-chain starting with
a genesis block and ending with said data block, wherein the
data block comprises a block number indicating the number
of blocks 1n the data structure from the genesis block, and
creating a further data block; the method further comprising
transmitting a further message to the plurality of validator
computing devices over a communication network, said
further message requesting permission to add said further
data block to the data structure; determining that consensus
1s reached by the plurality of validator computing devices
that said further data block can be added to the data
structure, and 1n response to said determining, forming a
second sub-chain by adding the further data block to the data
structure after said data block, the second sub-chain starting
with said further data block, wherein the further block
comprises (1) a first block number indicating the number of
blocks 1n the data structure from the genesis block; and (11)
a second block number indicating the number of blocks 1n
the second sub-chain from the further data block.

Creating the block to be added to the data structure may
comprise: generating a request, the request comprising a
block number associated with an end data block at an end of
the data structure: generating an integrity measure associ-
ated with the computing device; transmitting the request and
the integrity measure to one or more authorised signatory
computing devices over the communication network;
receiving, via the communication network, at least one
integrity measure associated with one or more authorised
signatory computing devices; wherein said block comprises
the request, the integrity measure associated with the com-
puting device, the at least one 1ntegrity measure associated
with the one or more authorised signatory computing
devices, and a cryptographic hash of the end data block.

The further data block once added to the data structure
may comprise the request, the integrity measure associated
with the computing device, the at least one integrity measure

US 11,921,689 B2

3

associated with the one or more authorised signatory com-
puting devices, and a cryptographic hash of the data block.

The request may additionally comprises a timestamp
indicating a time when the request was generated,

Creating the data block to be added to the data structure 5
may be triggered in response to detecting that the data
structure satisfies predetermined criteria.

Creating the data block to be added to the data structure
may be triggered 1n response to detecting that a length of the
data structure has reached a predetermined threshold number 10
of blocks.

Creating the data block to be added to the data structure
may be triggered in response to detecting that a total storage
size of the blocks of the data structure has reached a
predetermined threshold size. 15

Creating the data block to be added to the data structure
may be triggered 1n response to receiving a message from a
remote computing device.

The further data block may comprise the signed request
and a cryptographic hash of said data block. 20
The tegrity measure associated with the computing
device may comprise a digital signature, a Message Authen-

tication Code or a cryptographic hash.

Each of the at least one 1ntegrity measure associated with
the one or more authorised signatory computing devices 25
may comprise a digital signature, a Message Authentication
Code or a cryptographic hash.

The data structure comprising the plurality of linked data
blocks may be stored in memory of the computing device,
and the method may further comprise removing from 30
memory one or more data blocks located in the data structure
between the genesis block and said data block.

The data block may comprise a cryptographic hash of the
genesis block.

The data structure is structured in accordance with a 35
distributed ledger technology. The distributed ledger tech-
nology may be blockchain.

According to another aspect of the present disclosure
there 1s provided a computing device for maintaining a data
structure comprising a plurality of linked data blocks, 40
wherein the data structure 1s stored 1n memory accessible to
the computing device, and the computing device comprising,

a processor configured to: create a data block to be added to
the data structure; transmit a message to a plurality of
validator computing devices over a communication network, 45
said message requesting permission to add said data block to
the data structure; determine that consensus 1s reached by
the plurality of validator computing devices that said data
block can be added to the data structure, and 1n response to
said determination: form a first sub-chain in the data- 50
structure by adding the data block to the data structure, the
first sub-chain starting with a genesis block and ending with
said data block, wherein the data block comprises a block
number indicating the number of blocks in the data structure
from the genesis block, and create a further data block. The 55
processor 1s further configured to transmit a further message
to the plurality of validator computing devices over a
communication network, said further message requesting
permission to add said further data block to the data struc-
ture; and determine that consensus 1s reached by the plural- 60
ity of validator computing devices that said further data
block can be added to the data structure, and 1n response to
said determination, form a second sub-chain by adding the
further data block to the data structure after said data block,
the second sub-chain starting with said further data block, 65
wherein the further block comprises (1) a first block number
indicating the number of blocks 1n the data structure from

4

the genesis block; and (11) a second block number 1indicating
the number of blocks in the second sub-chain from the
further data block.

According to another aspect of the present disclosure
there 1s provided a method of verifying a data structure
comprising at least one plurality of linked data blocks, the
method performed on a computing device, and comprising;:
reading a data block of the data structure; determining 11 the
data block 1s a sub-chain end block at an end of a sub-chain
in the data structure, the sub-chain comprising a first data
block at a start of the sub-chain and at least one intervening
data block between the first data block and the sub-chain end
block:; wherein 1f said data block 1s a sub-chain end block,
the method comprises: extracting a cryptographic hash of
the first data block at the start of the sub-chain from the end
data block; computing a cryptographic hash of the first data
block at the start of the sub-chain; determining 1f the
extracted cryptographic hash of the first data block matches
the computed cryptographic hash of the first data block, and
successiully verifying the integrity of the data blocks of the
sub-chain based on the extracted cryptographic hash of the
first data block matching the computed cryptographic hash
of the first data block.

I said data block 1s not a sub-chain end block, the method
may comprise: determining if a cryptographic hash of a
preceding data block matches a cryptographic hash stored in
the data block, and successiully verifying the integrity of the
preceding data block based on the cryptographic hash of the
preceding data block matching a cryptographic hash stored
in the data block.

Determining 1f the data block 1s a sub-chain end block
may be based on the format of the data block.

The data structure may be structured in accordance with
a distributed ledger technology. The distributed ledger tech-
nology may be blockchain.

According to another aspect of the present disclosure
there 1s provided a computing device for verifying a data
structure comprising a plurality of linked data blocks,
wherein the data structure 1s stored 1n memory accessible to
the computing device, and the computing device comprising
a processor configured to: read a data block of the data
structure; determine if the data block 1s a sub-chain end
block at an end of a sub-chain in the data structure, the
sub-chain comprising a first data block at a start of the
sub-chain and at least one intervening data block between
the first data block and the sub-chain end block; wherein 1f
said data block 1s a sub-chain end block, the processor 1s
further configured to: extract a cryptographic hash of the
first data block at the start of the sub-chain from the end data
block; compute a cryptographic hash of the first data block
at the start of the sub-chain; and determine 1t the extracted
cryptographic hash of the first data block matches the
computed cryptographic hash of the first data block, an
successiully veritying the integrity of the data blocks of the
sub-chain based on the extracted cryptographic hash of the
first data block matching the computed cryptographic hash
of the first data block.

According to another aspect of the present disclosure
there 1s provided a computer-readable storage medium com-
prising instructions which, when executed by a processor of
a computing device cause the computing device to perform
the method steps described herein.

The 1nstructions may be provided on a carrier such as a
disk, CD- or DVD-ROM, programmed memory such as
read-only memory (Firmware), or on a data carrier such as
an optical or electrical signal carrier. Code (and/or data) to
implement embodiments of the present disclosure may com-

US 11,921,689 B2

S

prise source, object or executable code in a conventional
programming language (interpreted or compiled) such as C,
or assembly code, code for setting up or controlling an ASIC
(Application Specific Integrated Circuit) or FPGA (Field
Programmable Gate Array), or code for a hardware descrip-
tion language.

These and other aspects will be apparent from the
embodiments described 1n the following. The scope of the
present disclosure 1s not intended to be limited by this
summary nor to implementations that necessarily solve any
or all of the disadvantages noted.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present disclosure and to
show how embodiments may be put into eflect, reference 1s
made to the accompanying drawings in which:

FIG. 1 1s schematic block diagram of a communication
system:

FIG. 2 1s a schematic block diagram of a computing
device 1n the communication system;

FIG. 3 1llustrates the known composition of a blockchain;

FIG. 4 1s a tflow chart of a process performed by a
computing device 1n the communication system to create a
transition block and a regenesis block;

FIG. 5 1llustrates a regenesis request;

FI1G. 6 illustrates a transition block once added to the data
structure;

FI1G. 7 illustrates a regenesis block once added to the data
structure;

FIG. 8 1illustrates the regenesis process; and

FIGS. 9a-b 1s a flow chart of a process for verifying the
integrity of a data structure comprising a transition block
and a regenesis block.

DETAILED DESCRIPTION

Embodiments will now be described by way of example
only. In particular, whilst embodiments are described with
reference to data stored in a blockchain, embodiments
extend to data that 1s stored in accordance with other
distributed ledger technologies.

FIG. 1 1llustrates a communication system 100 compris-
ing a plurality of computing devices (also referred to herein
as nodes) coupled to a network 108 (e.g. the Internet). For
simplicity three computing devices are shown, comprising a
first computing device 102 associated with user A 112, a
second computing device 104 associated with user B 114
and a third computing device 106 associated with user C
116. Each of the computing devices 102, 104, 106 are
configured to communicate data to each other over the
network 108 so as to store data on a blockchain which 1s
maintamned in memory associated with each computing
device, and are therefore referred to herein as participant
nodes. It will be appreciated that many more participant
nodes than that shown in FIG. 1 that involved 1n storing data
on the blockchain, and the communication system 100 may
comprise other computing devices coupled to the network
108 that are not participant nodes.

Each computing device 1s associated with a respective
user. In one example, user B 114 may be an industrial
machine manufacturer who manufactures a particular indus-
trial machine, user A 112 may be a factory owner who has
purchased the industrial machine, and user C 116 may be a
worker of the factory who 1s required to performs checks on
the industrial machine. In this example, each user uses their
associated computing device to store data on a blockchain

10

15

20

25

30

35

40

45

50

55

60

65

6

which 1s maintained 1n memory associated with each com-
puting device. For example, user B 114 may upon manu-
facture of the industrial machine, store data on the block-
chain such as model number, manufacture date, country of
manufacture etc. and after software updates have been
pushed to the industrial machine user B 114 may store data
on the blockchain such as software upgrade version number,
software upgrade etc. User A 112 upon purchasing the
industrial machine may store data on the blockchain such as
purchase date, supplier details, and after having the indus-
trial machine serviced may store data on the blockchain such
as name of servicer, date of service, results of service etc.
User C 116 may upon performing checks on the industrial
machine may store data on the blockchain such as a param-
cter of the industrial machine (e.g. operating temperature,
speed, voltage etc.), date of check, name of person perform-
ing the check etc.

The network 108 may be any suitable network which has
the ability to provide a communication channel between the
computing devices. Each computing device may be, for
example, a mobile phone, a personal computer (“PC”), a
tablet, laptop, or other embedded device able to connect to
the network 108. Each computing device 1s arranged to
receive information from, and output information to, the
user of the computing device.

FIG. 2 illustrates a detailed view of a computing device
(e.g. a computing device 104) 1n the communication system
100. The computing device 104 comprises a central pro-
cessing unit (“CPU”’) 200, to which 1s connected a memory
206 and a network interface 212 for communication with the
network 108. As shown 1n FIG. 2, the CPU 200 comprises
a regenesis request creation module 201, a transition block
creation module 202, a regenesis block creation module 203,
and a chain verification module 204. As described 1n more
detail below, the regenesis request creation module 201 1s
operable to create regenesis requests, the transition block
creation module 202 1s operable to create transition blocks,
the regenesis block creation module 203 1s operable to create
regenesis blocks, and the chain verification module 204 1s
operable to verily a blockchain comprising a transition block
and a regenesis block.

A blockchain comprises blocks of data. The memory 206
1s configured to store block data 208 comprising blocks of a
blockhain. It will be appreciated that whilst FIG. 2 illustrates
the computing device 104 storing the block data 208 locally,
some or all of the block data 208 may be stored 1n one or
more external storage devices (e.g. 1 cloud storage or 1n a
remote storage device coupled to the computing device
104).

Whilst embodiments are described with reference to a
blockchain, this 1s just one example of a distributed ledger
technology 1n which embodiments of the present disclosure
can be used 1n. In particular, the term “block™ 1s used herein
to refer generally to a sequence of bits or bytes storing data,
which may be added to a data structure which 1s structured
in accordance with a distributed ledger technology. It will be
appreciated the format of the block and how it links to other
blocks 1n the data structure will vary in dependence on the
particular distributed ledger technology.

The memory also stores a consensus engine 210. The
consensus engine 210 comprises instructions which when
executed by the CPU 202 implement a consensus mecha-
nism. The particular implementation details of the consensus
mechanism may vary greatly, but in a general sense, the
consensus mechanism defines how the consensus engine 210
knows how it will be convinced that a block 1s valid and
should be added to the chain. In particular, the consensus

US 11,921,689 B2

7

mechanism defines how the consensus engine 210 knows to
accept a block that originated from another computing
device on the network, and how the consensus engine 210
can verily that a block created by the computing device 104
was accepted by the network (1.e. accepted by consensus
nodes 1n the network).

A consensus node (also referred to herein as a validator
computing device) 1s a computing device coupled to the
network 108 which plays a role in determining whether a
new block 1s to be accepted onto the blockchain. A consen-
sus node may also be a participant node, however this 1s not
essential and thus a consensus node may not also be a
participant node. In implementations, the consensus nodes
may correspond to zero or more the participant nodes. In one
implementation, the consensus nodes may correspond to the
participant nodes (1.e. all of the participant nodes are also
involved in the consensus of whether to accept a new block
onto the blockchain that 1s stored by each of the participant
nodes).

In embodiments of the present disclosure, any known
consensus mechanism may be used by the consensus engine
210. Details of the particular consensus mechamism that 1s
used by the consensus engine 210 falls outside the scope of
the present disclosure, however the consensus mechanism
typically falls into one of the below types:

a. all the authonized validator computing devices are

somehow known to the consensus engine 210, and
when the consensus engine 210 1s checking, 1t can see
who and how many of the validator computing devices
have approved the new block. When enough of the
validator computing devices have approved the new
block (e.g., a predetermined number of validator com-
puting devices have approved the new block or a
predetermined percentage of the total validator com-
puting devices have approved the new block) the
consensus engine 210 accepts the new block.

b. the consensus engine 210 does not know all the
authorized validator computing devices but instead
stores suflicient data and code to re-create (from first
principles) some mathematical or cryptographic puzzle
that proves that they all know the same secret, or are
working together, or similar.

Although not shown 1n FIG. 2, the computing device 104
may comprise an input device such as a keypad, a touch-
sensitive display, and/or a microphone. The computing
device 104 may also comprise an output device such as a
display (which may be touch-sensitive) and/or speakers.

The computing devices 102 and 106 of the other partici-
pants of the blockchain also store their own copy of the
blocks of the blockchain 1n memory associated with the
device.

FIG. 3 illustrates the known linear data structure of a

blockchain. At the beginning of the blockchain there 1s a

genesis block 302. As shown in FIG. 3, each block com-
prises at least one portion of data (labelled as TO-Tn),
commonly referred to as transactions. Each block that fol-
lows the genesis block 302 comprises the cryptographic
hash of the preceding block. For example, as shown 1n FIG.
3, block 1 (B1) 304 comprises the cryptographw hash,
PASH(G) of the preceding block (the genesis block 302).
Similarly, block 2 (B2) 306 comprises the cryptographic
hash, HASH (B1), of the preceding block (block 304).
Expressed another way, the cryptographic hash of each
block 1s stored 1n its successor.

As 1illustrated in FIG. 3, in a standard blockchain or
cryptographic ledger the immutability and integrity of the

chain 1s maintained through a chain of hashes: the crypto-

10

15

20

25

30

35

40

45

50

55

60

65

8

graphic hash of each block stored 1n 1ts successor so as to
link them together and make 1t impossible to modity, add, or
remove anything in the chain. This 1s so because the ‘nodes’
(participants) in reaching consensus and validating the chain
recalculate the hash of each block and discard/revoke any
that don’t match. Thus, 1n a standard blockchain, verification
of data involves traversing the entire chain from the current
block to the first block (the genesis block) and verifying that
the hashes match at every step of the way. This need to
traverse back to the genesis block introduces the need to
store an unbounded amount of data for an indeterminate
amount of time. This 1s not feasible for real world inira-
structures with long run-times.

Embodiments of the present disclosure maintain integrity
of the chain as a whole whilst enabling the creation of
segmented ‘sub-chains’, each of which can be independently
trusted. We refer herein to “regenesis” which refers to the
process whereby a successor sub-chain 1s created based on
the existing blockchain upon adding a new block to the
existing blockchain when certain predetermined criteria are
met. This 1s described in more detail below. The term
“sub-chain™ 1s used herein to refer to a plurality of linked
data blocks within a data structure.

Reference 1s now made to FIG. 4, which shows a flow
chart of a process 400 performed by a consensus node, e.g.
the computing device 104, to create a transition block and a
regenesis block as part of the regenesis process.

At step S402, the computing device 104 detects that a new
sub-chain 1s needed.

The computing device 104 may detect that a new sub-
chain 1s needed based on determining that the blockchain
that 1s stored in memory associated with the computing
device 104 meets predetermined criteria and thus a new
successor sub-chain 1s needed. For example, at step S402,
the computing device 104 may detect that the length of the
blockchain has reached a predetermined threshold number
of blocks. In another example, the computing device 104
may detect that the total storage size of the blocks of the
blockchain has reached a predetermined threshold size.

In another example, the computing device 104 may detect
that a new sub-chain 1s needed based on receiving a message
from a remote computing device (e.g. an authorised entity).

In response to the detection at step S402, the computing,
device creates a transition block to be added to the block-
chain. Steps S404-5414 illustrate one example of how this
transition block 1s created.

At step S404 the regenesis request creation module 201
on the computing device 104 generates a regenesis request.
The regenesis request comprises a sub-chain block number
502 and a block number 504 since the genesis block.

Prior to any regenesis occurring, the blockchain i1s con-
sidered a first sub-chain starting with the genesis block. The
sub-chain block number 502 indicates the number of blocks
in the sub-chain from the first block in the sub-chain (noting
that prior to any regenesis occurring, the first block i the
sub-chain 1s the genesis block). The block number 504
indicates the number of blocks 1n the blockchain from the
genesis block. Thus, prior to any regenesis occurring, the
sub-chain block number 502 and the block number 504 since
the genesis block will have the same value.

At step S406, the computing device 104 adds an integrity
measure to the regenesis request. As 1s known to persons
skilled 1n the art an ‘integrity measure’ 1s a piece of metadata
that accompanies a piece of data to provide proof or confi-
dence that the data has high integrity: that is to say that 1t 1s
complete (has not had portions removed or truncated); 1t 1s
unmodified (no part of the data has been changed since 1t

US 11,921,689 B2

9

was created); and that it 1s authentic (it really came from the
person/place/device 1t claims to have come from). Option-
ally there may also be a time or validity element to deter-
mine whether a trusted source has been compromised or
revoked (1.e., 1t was trusted, and the data might have been
good when i1t was created, but 1t’s not anymore). In short,
this integrity measure metadata convinces the receiver of
data that they are seeing exactly what the sender really sent.

The integrity measure may take various forms. In one
example the integrity measure 1s a digital signature. In this
example, at step S406 the computing device 104 signs the
generated regenesis request to generate a digital signature.
For example, the digital signature may be created by the
computing device 104 by encrypting a cryptographic hash of
the regenesis request using a cryptographic key (e.g. a
private key) associated with the computing device 104.

In this example, the computing device 1s considered as an
“authorised signatory node” because it 1s a computing
device has been granted the privilege to authorize regenesis.
The creation of the integrity measure at step S406 may be
performed by the regenesis request creation module 201
(outside of the automatically running software of the con-
sensus engine 210). Alternatively, the creation of the integ-
rity measure at step S406 may be performed by the consen-
sus engine 210.

At step S408, the computing device 104 transmits the
regenesis request and the digital signature to all authorised
signatory nodes that are coupled to the network 108. As
noted above, an authorised signatory node 1s a computing
device that has been granted the privilege to authorize
regenesis. There may be a one-to-one correlation between
authorised signatory nodes and consensus nodes however
this 1s merely an example. For example, the authorised
signatory nodes are not necessarily the same set as the
consensus nodes. In implementations, the authorised signa-
tory nodes may correspond to zero or more of the consensus
nodes. The correspondence between consensus nodes and
authorised signatory nodes 1s purely a design decision.

Considering an example 1n communication system 100
shown 1n FIG. 1, whereby the participant nodes (e.g. com-
puting device 102, computing device 104 and computing
device 106) are authorised signatory nodes, the computing
device 104 transmits the signed regenesis request to com-
puting device 102 and computing device 106 over the
network 108. The computing device 104 transmits the
signed regenesis request via the network interface 212.

Upon receipt of the regenesis request and the digital
signature of the sending authorised signatory (computing
device 104), each of the other authorised signatory nodes
(e.g. computing device 102 and computing device 106)
generates an integrity measure. In embodiments where one
or more of the other authorised signatory nodes are also
consensus nodes then the creation of the integrity measure
by these other authorised signatory nodes may be performed
by a consensus engine 210 executed on these devices or in
separate software outside of the automatically running soft-
ware ol the consensus engine 210.

Continuing with the example above, whereby we refer to
using a digital signature as an integrity measure, each of the
other authorised signatory nodes (e.g. computing device 102
and computing device 106) signs the regenesis request to
generate a digital signature (an integrity measure). For
example, computing device 102 may generate a digital
signature by encrypting a cryptographic hash of the regen-
es1s request using a cryptographic key (e.g. a private key)
associated with the computing device 102. Similarly, com-
puting device 106 may generate a digital signature by

10

15

20

25

30

35

40

45

50

55

60

65

10

encrypting a cryptographic hash of the regenesis request
using a cryptographic key (e.g. a private key) associated
with the computing device 106.

Once each of the authorised signatory nodes has gener-
ated their respective digital signature, the authorised signa-
tory node transmits theiwr digital signature to computing
device 104. Thus at step S410, the computing device 104
receives a digital signature of each of the authorised signa-
tory nodes coupled to the network 108. Expressed another
way, 11 there 1s n authorised signatory nodes coupled to the
network 108, the computing device receives n-1 digital
signatures at step S410. In the example above, whereby the
participant nodes (e.g. computing device 102 and computing
device 106) are authorised signatory nodes, the computing
device 104 receives digital signatures from computing
device 102 and computing device 106.

At step S412, the signature of the computing device 104
and the signatures received at step 410 are then appended to
the regenesis request to create a signed regenesis request.
The signatures receirved at step 410 may be ordered in a
deterministic manner (e.g. lexicographically) prior to being
appended to the signed regenesis request. The creation of the
regenesis request 1s complete after step S412 has been
performed.

FIG. 5 illustrates a signed regenesis request 300 following
the completion of step S412.

As shown 1n FIG. 35, the signed regenesis request 500
comprises a block number within the sub-chain 502 and a
block number since the genesis block 504. The signed
regenesis request 500 also comprises an integrity measure
512.

The integrity measure may take the form of digital
signatures 512 of authorised signatory nodes. In some
embodiments, the signed regenesis request 300 comprises
integrity measures in the form of digital signatures 512 of all
of the authorised signatory nodes on the network 108.
Requiring that all of the authorised signatory nodes sign the
contents of the regenesis request 1s implemented 1n order to
prevent so-called partitioning attacks where some of the
authorised signatory nodes are unaware of a fork in the
blockchain. In cases where such partitioning attacks are
unlikely, i1t 1s possible to relax the signing requirements
accordingly. Thus 1n some embodiments, the signed regen-
es1s request 300 may comprise the integrity measures (e.g.
digital signatures) 512 of a predetermined required number
ol authorised signatory nodes.

Whilst we refer above to the signed regenesis request 500
comprises individual digital signatures of authorised signa-
tory nodes. In other embodiments the integrity measure 512
may take the form of a multi-party signature, associated with
all or a required number of the authorised signatory nodes.
As 1s known 1n the art, a multi-party signature 1s a digital
signature which allows a group of users to sign data,
whereby the joint signature 1s more compact than a collec-
tion of distinct signatures from each of the users. The
multi-party signature may be in the form of a group signa-
ture or a ring signature.

Furthermore, whilst process 400 has been described
above with reference to integrity measures being digital
signatures, this 1s merely an example.

In an alternative embodiment, at step S406 instead of the
computing device 104 generating a digital signature, the
computing device 104 may generate an integrity measure n
the form of a Message Authentication Code (*MAC”) by
providing the regenesis request and a symmetric key as
iputs into a MAC algorithm which computes the MAC
using known methods. In this example, upon receipt of the

US 11,921,689 B2

11

regenesis request and the MAC code generated by the
computing device 104, each of the authorised signatory
nodes generate a MAC code using the symmetric key and
supply this to the computing device 104 at step S410.

In another alternative embodiment, at step S406 instead of
the computing device 104 generating a digital signature, the
computing device 104 may generate an integrity measure 1n
the form of a cryptographic hash by inputting the regenesis
request 1nto a one-way hash function. In this example, upon
receipt of the regenesis request appended with a crypto-
graphic hash generated by the computing device 104, each
of the authorised signatory nodes generate a cryptographic
hash using the same one-way hash function and supply this
to the computing device 104 at step S410.

In another alternative embodiment, at step S406 instead of
the computing device 104 generating a digital signature, the
computing device 104 may generate an integrity measure 1n
the form of a reference to a server (e.g. a server hosting an
online directory or a measurement server). This reference
cnables a device attempting to verity the integrity of the
transition block to query the server in order to carry out the
verification process. Values can be stored 1n a known online
directory then relying parties can contact that directory to
either pull good values (for checking later) or ask the online
directory whether the data in the modification block 1is
trusted/legitimate questions. In this case the process of
checking the mtegrity of the transition block involves asking
and checking the answers (which may carry individual
measures of their own). A measurement server 1s a third
party server that knows the “measurements™ of data which
replying parties can check before they trust 1t. The measure-
ment server acts as a central authority which can measure
(for mstance checksum, or hash, or manifest) the approved
data and put that measurement on a trusted server. This may
provide a more flexible solution than use of a digital

signature 1n some cases, since 1t allows for more practical
extension or individual customization of the code/data
across a broad population of users. Similarly at step S412,
the integrity measure received from one or more of the
authorised signatory nodes may be in the form of a reference
to a server.

As shown 1 FIG. 5§ the signed regenesis request 500
generated by the regenesis request creation module 201 may
also comprise a regenesis number 506 which indicates how
may regenesis-es have taken place since the original genesis
block. The regenesis number 506 may be included 1n the
regenesis request generated at step S404. It will be appre-
ciated that for the first time the computing device 104
performs the process 400 (i.e. prior to any regenesis occur-
ring) the regenesis number 506 will be zero. The regenesis
request creation module 201 may maintain the regenesis
number by way of a monotonic counter which 1s initialized
to zero and 1s incremented each time a regenesis block 1s
added to the blockchain.

As shown 1 FIG. 5§ the signed regenesis request 500
generated by the regenesis request creation module 201 may
also comprise a timestamp indicating the time at which the
regenesis request was generated. The timestamp may be
included in the regenesis request generated at step S404.

As shown in FIG. 5 the regenesis request generated by the
regenesis request creation module 201 may also comprise a
public key of each of the authorised signatory nodes (e.g. the
public keys of computing devices 102, 104, 106).

Once the signed regenesis request has been created 1t
needs to be packaged into a format that can be easily parsed
by a verification script. To do this, at step S414 the transition

5

10

15

20

25

30

35

40

45

50

55

60

65

12

block creation module 202 packages the signed regenesis
request 1nto a transition block.

The transition block comprises the cryptographic hash of
the block at the start of 1ts sub-chain. It will be appreciated
that for the first sub-chain in the blockchain the block at the
start of 1ts sub-chain 1s a genesis block, and for any other
sub-chain 1n the blockchain the block at the start of the
sub-chain 1s a regenesis block.

The consensus engine 210 on computing device 104
submits the transition block to the network 108 for consen-
sus. That 1s, the computing device 104 transmits a request to
the consensus nodes on the network 108 which requests
permission to add the transition block to the blockchain.

If consensus has been reached (determined by the com-
puting device 104 at step S416), the transition block 1s
committed to the blockchain (added as a block at the end of
the blockchain) by each of the participant nodes. That 1s,
upon the consensus engine 210 detecting that consensus has
been reached the computing device 104 (and also computing

device 102 and computing device 106) commits the transi-
tion block to the blockchain.

FIG. 6 illustrates a transition block 600 that has been
committed to the blockchain. As shown in FIG. 6, the
transition block 600 comprises: (1) the cryptographic hash
602 of the previous block, (11) the signed regenesis request
500, (111) a cryptographic hash 608 of the block at the start
ol 1ts sub-chain and (1v) consensus signatures 606 added to
the transition block which provide proof that consensus has
been reached by the consensus nodes that the transition
block should be added to the blockchain.

Referring back to FIG. 4, once the transition block has
been committed to the blockchain the process then proceeds
to step S418, where the regenesis block creation module 203
creates a regenesis block.

The consensus engine 210 on computing device 104
submits the regenesis block to the network 108 for consen-
sus. That 1s, the computing device 104 transmits a request to
the consensus nodes on the network 108 which requests
permission to add the regenesis block to the blockchain.

If consensus has been reached, the regenesis block 1s
committed to the blockchain (added as a block at the end of
the blockchain) by each of the participant nodes. That 1s,
upon the consensus engine 210 detecting that consensus has
been reached the computing device 104 (and also computing
device 102 and computing device 106) commits the regen-
esis block to the blockchain.

FIG. 7 illustrates a regenesis block 700 that has been
committed to the blockchain. As shown in FIG. 7, the
regenesis block 600 comprises: (1) the cryptographic hash
702 of the previous block 1.e. the cryptographic hash of the
transition block, (11) the signed regenesis request 300, and
(111) consensus signatures 706 added to the regenesis block
which provide proof that consensus has been reached by the
consensus nodes that the regenesis block should be added to
the blockchain.

Once the regenesis block has been accepted into the
network, the blockchain can continue its operation as nor-
mal. The next block appended to the blockchain 1s a regular
block that includes the cryptographic hash of the regenesis
block. The regenesis block and each new block added to the
blockchain after the regenesis block includes two block
numbers: a first block number indicating the number of
blocks from the original genesis block, and a second block
number (a sub-chain block number) indicating the number
of blocks from the regenesis block.

Referring back to step S416, if consensus 1s not reached
(1.e. permission 1s not granted to modily the selected data

US 11,921,689 B2

13

block 1n accordance with the modified block data), then the
process proceeds to step S422 where the transition block 1s
not committed to the blockchain by each of the participant
nodes and the computing device 1s configured to perform
one of three operations:

Fails and stops: unspecified manual intervention required
in order for the computing device 104 to recommence
adding blocks to the blockchain;

Fails and reverts: no regenesis but the computing device
104 continues as normal from the previous block to add
new blocks to the original chain;

Repeats the process 400 a number of times before even-
tually performing operation 1 or 2.

FIG. 8 illustrates the regenesis process 1n more detail with
reference to an example blockchain 800 comprising multiple
sub-chains.

As shown 1n FIG. 8 the genesis block 804 1s the first block
ol the blockchain 800 and the first block of a first sub-chain
802. All of the blocks in the blockchain comprise a block
number which indicates the number of blocks in the block-
chain from the genesis block.

At a point 1n time, the computing device 104 detects that
the blockchain that 1s stored 1n memory associated with the
computing device 104 meets predetermined criteria e.g. the
length of the blockchain has reached a predetermined thresh-
old number of blocks, and thus a new successor sub-chain 1s
needed. FIG. 8 illustrates an example whereby the prede-
termined threshold number of blocks 1s 9,999 blocks. In
response to this detection, a first transition block 806 1s
added to the blockchain thus completing a first sub-chain
802 comprising the genesis block 804, a plurality of data
blocks, and ending with the first transition block 806.

The first transition block 806 comprises a signed regen-
es1s request 500 comprising a sub-chain block number 502
having a value of 9,998 and a block number 504 since the
genesis block also having a value of 9,998.

As shown 1n FIG. 8, all transition blocks are immediately
followed by a regenesis block. Furthermore, all sub-chains
that follow the first sub-chain 802 have a regenesis block as
the first block 1n the sub-chain.

FIG. 8 illustrates a first regenesis block 814 that follows
the transition block 806. The regenesis block 814 1s the first
block 1n a second sub-chain 812.

The first regenesis block 814 comprises the regenesis
request described above which includes a sub-chain block
number 502 having a value of 9,998 and a block number 504
since the genesis block also having a value of 9,998.

The regenesis block 814 also has a first block number
which indicates the number of blocks 1n the blockchain from
the genesis block 804 (e.g. 10,000 1n this example). Thus,
the first block number of the regenesis block 814 sequen-

1ally follows the block number of the transition block 806.

In addition, the regenesis block 814 additionally comprises
a second block number which indicates the number of
blocks 1n the sub-chain from the first block 1n the sub-chain
(e.g. 0). Thus the second block number of the regenesis
block 814 has an initial value that does not sequentially
follow the block number of the transition block 806. The
block numbers used 1n embodiments of the present disclo-
sure are not limited to being a number and may comprise one
or more alphanumeric character.

New blocks that are added to the blockchain 800 after the
regenesis block 814 also comprise these two block numbers:
(1) a block number which indicates the number of blocks 1n
the blockchain from the genesis block; and (2) an additional
block number which indicates the number of blocks 1n the
sub-chain from the first block 1n the sub-chain.

10

15

20

25

30

35

40

45

50

55

60

65

14

At a point 1in time, the computing device 104 detects that
the blockchain that 1s stored 1n memory associated with the
computing device 104 meets predetermined criteria e.g. the
length of the first sub-chain 812 has reached a predetermined
threshold number of blocks, and thus a new successor
sub-chain 1s needed. In response to this detection, a second
transition block 816 1s added to the blockchain thus com-
pleting the second sub-chain 812 comprising the regenesis
block 814, a plurality of data blocks, and ending with the
transition block 816.

The second ftransition block 816 comprises a signed
regenesis request 500 comprising a sub-chain block number
502 having a value of 9,998 and a block number 504 since
the genesis block having a value of 19,998.

FIG. 8 illustrates a second regenesis block 824 that
tollows the transition block 816. The second regenesis block
824 1s the first block 1n a third sub-chain 822. As shown 1n
FIG. 8 the third sub-chain 822 comprises data blocks fol-
lowing the second regenesis block 824 (e.g. block 8235 and
block 826) however the sub-chain 822 has not yet met the
predetermined threshold number of blocks and thus a tran-
sition block has not been added to the blockchain 800.

The second regenesis block 824 comprises the regenesis
request described above which includes a sub-chain block
number 502 having a value o1 9,998 and a block number 504
since the genesis block having a value of 19,998.

It will be apparent from the above that the plurality of
linked data blocks in each “sub-chain” each have a sub-
chain block number which indicates the location of the block
within the sub-chain with reference to the first block of the
sub-chain (which 1s at the beginning of the sub-chain).

As shown in FIG. 8, in embodiments of the present
disclosure that are applied to blockchain, the blockchain
maintains 1ts linear structure with the sub-chains represent-
ing portions of the blockchain. It will be appreciated that
embodiments of the present disclosure can be applied to
other distributed ledger technologies.

Reference 1s now made to FIG. 9a-b, which shows a flow
chart of a process 900 for verniying the integrity of a
blockchain comprising a transition block 600 and a regen-
esis block 700 that 1s performed by a chain verification
module 204 on a computing device.

As shown FIG. 9a, the process 900 starts at step S902
where the block B(n) at the end of the blockchain, e.g. block
826 of blockchain 800, 1s read by the chain verification
module 204.

At step S904 the chain venfication module 204 deter-
mines whether the cryptographic hash of the preceding
block B(n-1), e.g. block 825 of blockchain 800, 1s included

in the block B(n).

If the chain verification module 204 determines that the
cryptographic hash of the preceding block B(n-1) 1s not
present 1 the block B(n) then the process proceeds to step
S906 where the verification of the integrity of the blockchain
fails.

At step S908, the chain verification module 204 reads the
next block on the blockchain B(n) (moving in the direction
towards the genesis block).

If at step S910, the chain verification module 204 deter-
mines that the block read at step S908 15 a transition block
(e.g. transition block 816 of blockchain 800) 1.¢. the integrity
verification process 900 has reached a block at the end of a
sub-chain (e.g. sub-chain 812 in FIG. 8), the process pro-
ceeds to step S912, otherwise the process loops backs to the
determination at step S904. The determination at step S910
as to whether block Bn i1s a transition block may comprise
whether the block Bn has contents 1n a format associated

US 11,921,689 B2

15

with a transition block. That 1s, the determination at step
S910 may be based on whether the block comprises data
fields associated with the contents of the regenesis request
500 and a data field associated with a cryptographic hash of
a block at the start of the sub-chain (e.g. a cryptographic

hash of regenesis block 814).

FIG. 9b 1illustrates the steps performed by the chain
verification module 204 upon encountering a transition
block 600 (determined at step S910).

At step S912, the chain vernification module 204 reads the
cryptographic hash 608 of the block at the start of the
sub-chain that 1s included in the transition block. It will be
appreciated that for the first sub-chain in the blockchain (e.g.
sub-chain 802) the block at the start of 1ts sub-chain 1s a
genesis block, and for any other sub-chain in the blockchain
(e.g. sub-chain 812) the block at the start of the sub-chain 1s
a regenesis block.

At step S914, the chain vernification module 204 reads the
block B(s) (e.g. regenesis block 814 of blockchain 800) at
the start of the sub-chain (e.g. sub-chain 812 of blockchain
800), and at step S916 computes a cryptographic hash of the
block at the start of the sub-chain.

At step 918, the chain verification module 204 determines
whether the cryptographic hash of the block at the start of
the sub-chain determined at step S916 matches the crypto-
graphic hash 608 of the block at the start of the sub-chain
that 1s 1ncluded 1n the transition block.

If the computed cryptographic hash of the block at the
start of the sub-chain does not match the cryptographic hash
608 of the block at the start of the sub-chain that 1s included
in the transition block, then the process proceeds to step
S920 where the verification of the integrity of the blockchain
fails.

If the computed cryptographic hash of the block at the
start of the sub-chain does match the cryptographic hash 608
of the block at the start of the sub-chain that 1s included 1n
the transition block, then the chain verification module 204
successiully verifies the integrity of the subchain and then
the process proceeds to step S922.

At step 5922, the chain venfication module 204 deter-
mines whether there are further sub-chains of the blockchain
to verily. If there are no further sub-chains of the blockchain
to verily (the previous sub-chain verified comprises the
genesis block) then the process proceeds to step S924 where
the chain verification module 204 successtully verifies the
integrity of the blockchain.

If there are further sub-chains of the blockchain to verify
(the previous sub-chain verified comprises a regenesis
block) then the process proceeds to step S926 where the
chain verification module 204 skips to the next (earlier)
sub-chain in the blockchain, and 1n particular skips to the
next transition block and the process loops back to step
S912.

The venification 1s complete when the genesis block 1s
reached (1.e. the sub-chain beginning with the genesis block
1s verified).

It will be apparent that in the second embodiment, rather
than having to store every block of every sub-chain a
computing device 1s only required to store (1) the genesis
block, (1) all transition blocks, (1) all regenesis blocks, and
(1v) all blocks of the final sub-chain (e.g. blocks 824-826 1n
FIG. 8). This enables the computing device to verily that
there has been no additions to the chain, no removals to the
chain, and no modifications to the chain. Having the genesis
block ensures nothing has been snipped ofl the beginning of
the chain, having the complete chain of trailing end blocks
(of the final sub-chain) ensures nothing has been snipped off

5

10

15

20

25

30

35

40

45

50

55

60

65

16

the end of the chain, and having coherent pairs of {transi-
tion, regenesis } blocks ensures nothing has been snipped out
of the middle of the chain. Any other block does not have to
be retained by the computing device and the integrity of the
blockchain can still be validly verified by the computing
device.

Thus 1t can be seen that embodiments of the present
disclosure enable enterprise adoption of distributed ledger
technology by retaining the trust and security properties of
DLT whilst freeing them of the burden of procuring and
maintaining unbounded storage space.

Generally, any of the functions described herein can be
implemented using software, firmware, hardware (e.g., fixed
logic circuitry), or a combination of these implementations.
The terms “module” as used herein generally represent
software, firmware, hardware, or a combination thereof. In
the case of a software implementation, the module repre-
sents program code that performs specified tasks when
executed on a processor (e.g. CPU or CPUs). The program
code can be stored i one or more computer readable
memory devices. The features of the techniques described
below are platform-independent, meaning that the tech-
niques may be implemented on a variety of commercial
computing platforms having a variety of processors.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

The mvention claimed 1s:

1. A method of vernitying a data structure comprising a
plurality of linked data blocks, the method performed on a
computing device, and comprising:

reading a data block of the data structure;

determining that the data block 1s a sub-chain end block

at an end of a sub-chain i1n the data structure, the
sub-chain comprising a first data block at a start of the
sub-chain and at least one intervening data block
between the first data block and the sub-chain end
block;

extracting a cryptographic hash of the first data block at

the start of the sub-chain from the end data block:
computing a cryptographic hash of the first data block at
the start of the sub-chain;

determining if the extracted cryptographic hash of the first

data block matches the computed cryptographic hash of
the first data block,

successtully verifying the mtegrity of the data blocks of

the sub-chain based on the extracted cryptographic
hash of the first data block matching the computed
cryptographic hash of the first data block; and

only storing a genesis block of the data structure, a

sub-chain end block of each sub-chain of the data
structure, a first data block of each sub-chain of the data
structure, and all blocks of a final sub-chain corre-
sponding to the verified data blocks of the sub-chain
thereby enabling a computing device to verniy that
there are no additions, removals, or modifications to the
data structure.

2. The method of claim 1, wherein the determining that
the data block 1s a sub-chain end block 1s based on the format
of the data block.

3. A non-transitory computer-readable storage medium
comprising instructions which, when executed by a proces-

US 11,921,689 B2

17

sor of a computing device cause the computing device to
perform the method of claim 1.

4. The method of claim 1, wherein the determiming that
the data block 1s a sub-chain end block comprises determin-
ing that the data block comprises:

the cryptographic hash of the first data block at the start

of the sub-chain; and

a request, the request comprising:

a block number indicating a number of blocks in the
data structure from a genesis block of the data
structure;

a block number indicating a number of blocks 1n the
sub-chain from the first data block; and

at least one integrity measure associated with one or
more authorised signatory computing devices.

5. The method of claim 4, wherein the at least one
integrity measure comprises a digital signature associated
with at least one of the one or more authorised signatory
computing devices.

6. The method of claim 4, wherein the at least one
integrity measure comprises a digital signature associated
with all of the one or more authorised signatory computing
devices.

7. The method of claim 4, wherein the at least one
integrity measure 1s a multi-party signature associated with
a plurality of the authorised signatory computing devices.

8. The method of claim 7, wherein the multi-party sig-
nature 1s a group signature or a ring signature.

9. The method of claim 4, wherein the request comprises
a timestamp i1ndicating the time at which the request was
generated.

10. The method of claim 4, wherein the request comprises
a public key of each of the one or more authorised signatory
computing devices.

10

15

20

25

30

18

11. The method of claim 1, wherein the data structure 1s
structured 1n accordance with a distributed ledger technol-
0gy.

12. The method of claim 11, wherein the distributed
ledger technology 1s blockchain.

13. A computing device for veritying a data structure
comprising a plurality of linked data blocks, wherein the
data structure 1s stored 1n memory accessible to the com-
puting device, and the computing device comprising a
processor configured to:

read a data block of the data structure;

determine that the data block 1s a sub-chain end block at
an end of a sub-chain 1n the data structure, the sub-
chain comprising a first data block at a start of the
sub-chain and at least one intervening data block
between the first data block and the sub-chain end

block;
extract a cryptographic hash of the first data block at the

start of the sub-chain from the end data block;
compute a cryptographic hash of the first data block at the

start of the sub-chain;
determine 1f the extracted cryptographic hash of the first

data block matches the computed cryptographic hash of
the first data block,
successiully verily the integrity of the data blocks of the

sub-chain based on the extracted cryptographic hash of
the first data block matching the computed crypto-
graphic hash of the first data block; and

only store a genesis block of the data structure, a sub-
chain end block of each sub-chain of the data structure,
a first data block of each sub-chain of the data structure,
and all blocks of a final sub-chain corresponding to the
verified data blocks of the sub-chain thereby enabling
a computing device to verily that there are no additions,
removals, or modifications to the data structure.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

