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GLAUCOMA DETECTION AND EARLY
DIAGNOSIS BY COMBINED MACHINE

LEARNING BASED RISK SCORE
GENERATION AND FEATURE
OPTIMIZATION

BACKGROUND

Glaucoma 1s a group of eye conditions that damage the
optic nerve, the health of which 1s vital for good vision. This
damage 1s often caused by an abnormally high pressure 1n
your eye. Although scientists are unsure as to what causes
the most common types of glaucoma, it has been found that
many people with glaucoma have high eye pressure. There-
fore, treatments that lower eye pressure may help to slow the
disease. There’s no way to prevent glaucoma. An eye exam
may be used 1n order to detect glaucoma before it affects an
individual’s vision, but current techniques are unable to
accurately, efliciently, and reliably detect such glaucoma 1n
individuals. Therefore, there 1s a need to have a technique
that allows for the accurate, eflicient, and reliable prediction
and detection of the onset of glaucoma.

SUMMARY

According to some embodiments of the present disclo-
sure, methods of and computer program products for pre-
dicting and detecting the onset of glaucoma are provided. In
various embodiments, a method of detecting glaucoma 1s
provided. At least one neural network model of a plurality of
neural network models may be pre-trained using a small data
classifier. The plurality of neural network models may be
trained based on a plurality of indications of glaucoma. A
risk score associated with each of the plurality of indications
may be simultaneously generated based on the tramned
plurality of neural network models. The risk score associated
with each of the plurality of indications may be combined
based on a classification model to produce a likelihood of
glaucoma. A determination of whether glaucoma 1s present
may be made based on the likelihood of glaucoma.

In various embodiments, a system 1s provided including a
computing node comprising a computer readable storage
medium having program instructions embodied therewith.
The program 1nstructions are executable by a processor of
the computing node to cause the processor to perform a
method. At least one neural network model of a plurality of
neural network models may be pre-trained using a small data
classifier. The plurality of neural network models may be
trained based on a plurality of indications of glaucoma. A
risk score associated with each of the plurality of indications
may be simultaneously generated based on the tramned
plurality of neural network models. The risk score associated
with each of the plurality of indications may be combined
based on a classification model to produce a likelihood of
glaucoma. A determination of whether glaucoma is present
may be made based on the likelihood of glaucoma.

In various embodiments, a computer program product for
backing up and restoring a managed cluster of nodes 1s
provided including a computer readable storage medium
having program instructions embodied therewith. The pro-
gram 1nstructions are executable by a processor to cause the
processor to perform a method. At least one neural network
model of a plurality of neural network models may be

pre-trained using a small data classifier. The plurality of

neural network models may be trained based on a plurality
of indications of glaucoma. A risk score associated with each
of the plurality of indications may be simultaneously gen-
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2

crated based on the trained plurality of neural network
models. The risk score associated with each of the plurality
of indications may be combined based on a classification
model to produce a likelihood of glaucoma. A determination
of whether glaucoma i1s present may be made based on the
likelihood of glaucoma.

In various embodiments, a risk score may be generated for
cach of multiple indications of glaucoma, such as a cup-disc
ratio, peripapillary atrophy, disc hemorrhage, blood vessel
structure/fractal dimension, nasalness of blood vessels, and
retinal entire image. Examples of cup-disc ratio may include
binary cup-disc ratio as glaucoma vs. non-glaucoma, and a
3-class cup-disc ratio for glaucoma and non-glaucoma prob-
ability score. Detection of peripapillary atrophy may be
achieved with a higher confidence using the Optimizing
Small Datasets Problem—Domain-Specific Pre-Training
(OSDP-DSPT) algorithm, described further below, as well
as an independent peripapillary atrophy measure to deter-
mine a risk score associated with peripapillary atrophy. Disc
hemorrhage may be assessed via the OSDP-DSPT algorithm
as well as an independent disc hemorrhage measure. Each of
the risk scores may be generated based on an output of a
separate machine learning model, such as a deep learning
model, a deep neural network, or the like, with the multiple
indications as input to each of the the deep learning models.
A classification model, such as a logistic model tree (LMT)
may be used to combine each of the risk scores to produce
a probability/likelihood risk score of glaucoma. This tech-
nique may achieve a substantially high accuracy for the
detection of glaucoma.

In various embodiments, the technique described herein
may break down a glaucoma screening task into multiple,
such as three, individual problems 1n a type of divide and
conquer approach. Each of the aforementioned models may
learn the respective features that are relevant to glaucoma
independent of other features. For example, the features may
include glaucoma features such as peripapillary atrophy and
disc hemorrhage versus fifteen different features of retinal
pathologies such as drusen, hemorrhage, exudates, cotton
wool spots, and the like. Such an approach may increase the
accuracy of feature detection for whether glaucoma 1s or will
be present.

In various embodiments, the techniques described herein
may divide a main problem 1nto subproblems, each of which
1s associated with a machine learning model that may be
pre-trained and trained. The output of each machine learnming
model may be combined using a classification model, such
as a LMT, which may output value(s) used to determine
whether glaucoma 1s or will be present. In particular, the
output of each model may be a prediction for a particular
indication of glaucoma. The classification model may learn
from predictions from the output of each model. The clas-
sification model may provide a probabaility/likelihood risk
score of glaucoma. The risk score of glaucoma may act as a
binary classifier, for example by comparing the risk score to
a predetermined or dynamically set threshold. The threshold
may be set 1n a way that 1s balanced and/or a clinically usetul
sensitivity and specificity.

In various embodiments, a glaucoma probability/likeli-
hood risk score may be generated using a OSDP-DSPT
algorithm and a disc hemorrhage model (DHM). In various
embodiments, peripapillary atrophy may be detected using
OSDP-DSPT and a penpapillary atrophy model and to
generate the glaucoma probability/likelihood risk score.

In various embodiments, a disc nasalness based glaucoma
probability/likelihood risk score may be generated using

OSDP-DSPT and a retinal disc center 20 degree image. This
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may be combined with information regarding other indica-
tions of glaucoma which may be generated separately. In
various embodiments. In various embodiments, a glaucoma
probability/likelihood risk score may be generated from the
vessel architecture, which may be analyzed by removing the
disc area of a fundus 1mage and considering the entire blood
vessel structure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an overall ligh-level architecture of a
proposed pre-training technique according to various
embodiments of the present disclosure.

FIG. 2 depicts an example glaucoma screening system
according to various embodiments of the present disclosure.

FIG. 3 1s a flow diagram of an example process of
detecting glaucoma according to various embodiments of
the present disclosure.

FIG. 4 depicts a graph related to the results of the all
features experiments as related to UK Biobank data 1n terms
the true positive rate versus the false positive rate according,
to various embodiments of the present disclosure.

FIG. 5 depicts a graph related to the results of the all
features experiments as related to ORIGA-light data 1in terms
the true positive rate versus the false positive rate according,

to various embodiments of the present disclosure.
FIG. 6 depicts a computing node according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

Glaucoma 1s a group of diseases that damage the eye’s
optic nerve and can result 1 vision loss and blindness.
Glaucoma, with age-related macular degeneration (AMD)
and diabetic retinopathy (DR), 1s one of the three leading
causes of blindness 1n developed countries, and 1s now the
second leading cause of blindness globally, after cataracts.

(Glaucoma 1s characterized by loss of retinal ganglion cells
(RGCs), which results in visual field impairment and struc-
tural changes to the retinal nerve fiber layer (RNFL) and
optic disc. Glaucoma has few early symptoms. Over 3
million individuals 1n the United States have glaucoma, over
76 million individuals have glaucoma worldwide. It 1s
projected that 111 million individuals will have glaucoma by
the year 2040. About half of those affected do not know that
they have glaucoma. In many cases, when glaucoma 1s
detected, 1t 1s already too late, 1.e., the case will involve an
individual with irreversible visual field loss.

The social and economic costs of vision loss from glau-
coma are very high. Early detection of conditions associated
with glaucoma halts a downward spiral 1n overall health,
which may be affect an individual because of the onset of:
depression, loss of independence, need for nursing home
care, falls, fractures, and death. These adverse outcomes are
also extremely costly. The total economic burden of vision
loss and blindness from all causes 1n the United States,
including the direct and indirect costs, 1s now $145 billion,
which 1s expected to triple by the year 2030 1n real dollars,
with 1ncreased longevity generally (Source: Prevent Blind-
ness).

Theretfore, there 1s a need to 1dentily, at the early stages,
individuals for treatment that have or that are suspected/
prone to have glaucoma. Although glaucoma prediction/
screening has been a focus area in medical research for many
years, 1t 1s still diflicult to diagnose, let alone predict,
glaucoma with high degree of confidence. In particular, there
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1s a lack of techniques or algorithms that present a more
holistic approach in predicting and detecting or screening for
the onset of glaucoma.

Recent studies have shown that retinal cup-disc ratio
(CDR) may be highly correlated with glaucoma. The rela-
tionship between estimated RGC counts and CDR suggests
that an assessment of change in CDR may be a sensitive
method for the evaluation of progressive neural losses in
glaucoma. Even relatively small changes in CDR may be
associated with sigmificant losses of RGCs, especially 1n
eyes with larger CDRs, such as CDR>0.5. Enlarged CDR
may be one indicator of the risk of glaucoma. Most 1ndi-
viduals fall within an average vertical CDR o1 0.4, and 2.5%
of the population have a cup/disc ratio of over 0.7. In
general, an eye with vertical CDR above 0.5 may be
considered a glaucoma suspect and thus screening of the
general population based on CDR may be highly effective
for referral.

The medical imaging and diagnostics field has been
revolutionized by advances 1n artificial intelligence (Al) and
deep learning 1n recent years. Extensive research interest 1s
being shown in using artificial intelligence for solving
medical problems. For example, Ting et al. detailed the
potential applications of Al in ophthalmology. Gulshan et al.
showed the application of Al 1n diabetic retinopathy from
fundus 1mages using deep learming. There have been ground-
breaking works published on late AMD prediction and
diabetes screening in primary care settings. There 1s also
considerable research 1n using deep learning in other medi-
cal areas such as multiple sclerosis, neurodegeneration and
age-related macular degeneration.

Although several conventional Al techniques have been
proposed to measure the cup-disc ratio, they have not been
validated for screening individuals for glaucoma. Conven-
tional research has focused on the detection of glaucoma, the
disease 1tsell, rather than the possible onset of glaucoma. For
example, one conventional technique for glaucoma detec-
tion focused on using the standard Online Retinal fundus
Image database for Glaucoma Analysis (ORIGA). This
technique was proposed by Saxena et al. 1n 2020, which has
a receiver operating characteristic (ROC) area under the
curve (AUC) of 0.82.

Several of these studies with conventional techniques
refer to glaucoma. To the extent that these studies refer to
glaucoma, however, they do not differentiate the term glau-
coma, a diagnosis of the disease that requires demonstrated
structural and functional abnormalities, from glaucoma sus-
pect, which 1s exactly what 1ts name implies—a category or
marker with an increased likelihood of disease that merits
turther 1nvestigation—i.¢., a prediction of the onset of the
disease. For example, in the ORIGA analysis described
above, these terms are conflated, and the definition used for
glaucoma, taken from ORIGA, 1s just C/D>0.65, which 1s
purely structural, and which 1s inadequate for glaucoma
diagnosis. Furthermore, the methodology 1n this ORIGA
analysis 1s mnadequate for deep learning, with only 90 1mages
used for training. As another example, several of the other
studies all have the stated goal of detecting glaucoma, by
vartous means. However, this stated goal, by definition,
would be too restrictive and not be appropriate for predict-
ing, screening for, or detecting the onset of glaucoma.
Optimizing Small Datasets Problem—Glaucoma (Domain-
Specific Pre-Training): OSDP-DSPT Algorithm

The following describes the Optimizing Small Datasets
Problem (OSDP) for Glaucoma, and more specifically the
ODSP-Domain-Specific Pre-Training (DSPT) algorithm.

Deep learning often requires an abundance of data. For
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example, 1mn the medical field this data may include an
abundance of medical images. However, the medical field, 1t
may be rare to have such images to perform eflective data
science using traditional approaches. This 1s often the case
for images of glaucoma-related abnormalities as well. For
example, there 1s often a dearth of data available for disc
hemorrhage, peripapillary atrophy and other lesions, and/or
abnormalities. The novel techniques as described herein
optimize machine learning techmiques despite using small
datasets. For example, such techniques described herein may
be applied to glaucoma.

In various embodiments described herein, as much data as
possible 1s collated 1n a specific domain of interest, such as
glaucoma-related information and/or 1mages. Then, all the
available data that 1s collated 1s labeled 1n a multi-label
fashion, such as by using a label vector or the like. This
labeled data may be referred to as a “‘universal” dataset, and
this may be used to train a multi-label classifier, which may
be machine learning model(s), that can classify the dataset
into not just multi-class but also multi-label. In particular, an
intuition 1 performing such data processing may be that the
relevant features in the specific domain may be learned by
this “universal” multi-label classifier. Such a classifier may
then be used as a “pretrained” machine learning model(s)/
network, such as a neural network, to classity other 1images
within the same specific domain of interest. Based on such
pretraining, the classifier may have already learned the
necessary and/or key features in the domain of interest, and
higher level features may be learned in a new smaller
dataset.

Using such an approach in the glaucoma domain an
excellent classification model, as described herein, 1s
achieved for an overall glaucoma detection system. In
particular, 1n various embodiments described herein,
machine learning models/sub-models may be enhanced by
using such a “domain-specific pre-traiming” approach. For
example, sub-models such as disc hemorrhage, peripapillary
atrophy, and vessel analysis models may be enhanced by
using such an approach.

As one example, nearly 500 thousand eye fundus 1mages
from various sources, such as AREDS, UKBiobank, SIMES,
Kaggle-DR, etc., were used in a massive multi-label clas-
sification machine learning model. In this example, the
labels used were all fundus abnormality related diseases
classes such as diabetic retinopathy (DR), age-related macu-
lar degeneration (AMD), etc. During pre-training, multiple
labels, such as 15 labels, were used to create a large
multi-label fundus dataset. Fundus abnormalities such as
microaneurysms, vessel abnormalities, cotton-wool spots,
and hemorrhages were learned by a machine learning model
in the pre-training step. The model also learned to 1gnore
common artefacts, insignificant retinal patterns, lighting
variations, and/or anomalies.

FIG. 1 depicts the overall high-level architecture of the
proposed pre-tramning technique 100. In various embodi-
ments described herein, FIG. 1 shows a general technique
100 for the development and/or pre-training of machine
learning model(s) for use 1 the glaucoma domain. In
various embodiments, technique 100 may be referred to as
the ODSP-DSPT algorithm. Feature vector generator 110
may accept as mputs, information regarding fundus images,
such as from the database(s) described herein. Each image
may include a label that identifies one or more eye condi-
tions, such as any fundus abnormality related disease 1n the
fundus 1mage. For example, the fundus images that are
received as input by feature vector generator 110 may
include labels such as AMD, DR, glaucoma, and/or the like.
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Using these mput labels, feature vector generator 110 may
generate one or more vectors for each image. For example,
feature vector generator 110 may generate a multi-label
vector that indicates the presence of and abnormality and/or
other 1ssue as seen 1n 1n an input fundus 1image using a value
‘1’ and the absence of such an abnormality and/or other 1ssue
using a value ‘0°. This may be repeated for each label
associated with each fundus 1image. Feature vector generator
110 may output one or more vectors, each associated with a
fundus 1mage, which include such binary values. The output
of feature vector generator 110 may be input to a “‘universal”
multi-label classifier 120. For example, feature vector gen-
erator 110 may accept 500 thousand fundus images each
with 15 labels, as input, and may output a binary vector with
15 elements to multi-label classifier 120.

Multi-label classifier 120 may accept as input, one or
more vectors from feature vector generator 110. Multi-label
classifier 120 may use machine learning techniques to assign
a single class label, out of several possible labels, to each
vector that 1t receives from multi-label classifier 120. For
example, multi-label classifier 120 may use a neural net-
work, such as a deep neural network architecture, to classify
and assign the single class label. The labels may be consid-
ered a “universal” label, which takes into account many
possible eye conditions 1dentified in fundus 1mages. Thus,
cach fundus 1image input to feature vector generator 110 may
have a “umiversal” label associated with 1t assigned by
multi-label classifier 120. Multi-label classifier 120 may
output the trained machine learning model and/or its prop-
erties, such as 1ts weights, to optimized specific small data
classifier 130. For example, multi-label classifier 120 may
output a domain-specific, such a glaucoma-specific, pre-
trained model and its properties to optimized specific small
data classifier 130. This optimized specific small data clas-
sifier 130 may further process the input model that it
receives, and 1t may generate a pre-trained machine learnming,
model to be used by glaucoma screening system 200 and/or
its constituent systems and processes.

Disc Hemorrhage Model (DHM)

In various embodiments described herein, machine learn-
ing model(s), such as a neural network that may be using a
deep learning architecture, may be pre-trained with a dataset
of eye fundus. In particular, the neural network may be
pre-trained to detect one or more abnormalities 1n fundus
images, for example, using datasets available to perform
such pre-training. For example, this pre-training may
include the use of general technique 100 for the develop-
ment and/or pre-training ol machine learning model(s) for
use 1n the glaucoma domain. As one example, a deep
machine learning architecture named “EflicientNet B3, was
pre-trained with the “ImageNet” dataset. This dataset was
implemented to train a neural network to detect the disc
hemorrhages 1n fundus images. This dataset included 150
images with disc hemorrhages and 650 normal or without
disc hemorrhages that were used to train and test the
machine learning model.

The traiming dataset of eye fundus may first be processed,
scaled, cropped, resized, transformed, and/or otherwise
altered 1 order to reduce the number of retinal features
encountered by the machine learming model(s). The sets of
images within the dataset may be randomly or determinis-
tically augmented, for example at each epoch, to produce
variations in the dataset. For example, rotation, translation,
and/or sheering with noise addition may be used to generate
a new dataset containing such variations. During the training
of the machine learning model(s), an early stopping mecha-
nism for the training may be employed 11 no improvement in
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the error and/or training loss 1s observed 1n a predetermined
number of epochs. In some 1nstances, the stopping mecha-
nisms may be employed if no improvement in the error
and/or training loss 1s observed beyond a predetermined or
dynamically changing threshold. The model(s) parameters
with the least error and/or best training loss may be saved for
tuture use. Another dataset may be used for validation and
determination of accuracy of the trained machine learning
model(s).

Continuing with the previous example of the neural
network, “EflicientNet B5,” full-color fundus images were
first cropped using automated Al to get only the optic disc
arca ol the retina. These i1mages were then resized to
100x100 pixels. This cropping and resizing reduced the
number of retinal features that the neural network encoun-
tered, given the relatively small amount of training data. The
image sets were randomly augmented at each epoch for
variation with rotation, translation and sheering with noise
addition. This augmentation of the images resulted in newly
generated images, which included up to 35 times the number
of 1mages as in the original number of 1mages. An early
stopping mechanism was employed wherein the training was
stopped if no improvement 1n tramning loss 1s seen 1 25
consecutive epochs. The network weights with the best
training loss were saved. For external validation, another
dataset obtained from the Department of Ophthalmology at
Icahn School of Medicine at Mount Sinai was used. This
validating dataset included 144 images with disc hemor-
rhage and 831 normal or without disc hemorrhages 1images.
For detection of disc hemorrhage on the external validation

dataset, 93.13% accuracy (95% CI: 91.35% to 94.64%) was
achieved with a sensitivity of 71.53% (95% CI: 63.42% to
78.73%), a specificity of 96.87% (95% CI:. 95.45% to
97.93%), and a kappa score o1 0.71 (95% CI: 0.65 to 0.78).

FIG. 2 depicts an example glaucoma screening system
200. This glaucoma screening system 200 1s a solution made
by 1Healthscreen™. The system 200 may be used to screen
individuals at risk of developing glaucoma and/or individu-
als at risk of having the disease worsening within them. The
system 200 accepts as mput eye fundus image, such as a
fundus 1mage for each eye of an individual. This 1nput may
be analyzed to automatically evaluate the features such as
the cup-disc-ratio, the presence of peripapillary atrophy, disc
hemorrhages, blood vessel pattern analysis, and/or the like.
The system 200 may use machine learning model(s)/algo-
rithm(s), such as deep neural network model(s), designed to
evaluate a cumulative risk of glaucoma based on these
teatures. The system 200 may them provide a final output,
such as a binary output, indicating whether an individual 1s
at risk of glaucoma or not, and/or to what extent the
individual 1s at risk. As such, the system and 1ts output may
be used for glaucoma screening of an individual.

FI1G. 2 shows a technical overview of the constituent parts
of the glaucoma screening system 200. In general, as can be
seen 1n FIG. 2, the system 200 combines multiple deep
learning as well as traditional machine learning model(s)
and approaches to build an accurate glaucoma screening
system based on input fundus 1mage(s). In particular, glau-
coma screening system 200 of FIG. 2 includes a camera
sensor 210, optic disc cropping system 220, image masking
system 230, a cup-to-disc ratio estimation system 2350, a
peripapillary atrophy detection system 2352, a disc hemor-
rhage detection system 254, nasalness system 256, a first
binary classifier system 258, a second binary classifier
system 260, a vessel analysis system 262, and a logistic
model tree classifier 270, and a final glaucoma screening,
component 280.
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Camera sensor 210 may be any suitable 1mage and/or
video capture device that may be able to capture fundus
images from an 1individual. For example, camera sensor 210

may be fundus cameras available from Welch Allyn, Digi-
sight, Volk, Topcon, Zeiss, Canon, Nidek, Kowa, CSQO,
CenterVue, Ezer, Optos and/or the like. Camera sensor 210
may capture fundus image(s) and may provide the image(s)
to optic disc cropping system 220 and to image masking
system 230.

Optic disc cropping system 220 may crop the fundus
image(s) that 1t recerves. Optic disc cropping module 220
may additionally or alternatively process, scale, resize,
transform, and/or otherwise alter the image(s) that 1t
receives. In various embodiments, optic disc cropping sys-
tem 220 may reduce the number of retinal features in the
fundus 1mage(s) that 1t receives by performing one or more
alterations to the image(s). This reduction in retinal features
may be advantageous when the image(s) are processed by
machine learning model(s), such as the machine learning
model(s) used by the cup-to-disc ratio estimation system
250, the penipapillary atrophy detection system 252, the disc
hemorrhage detection system 254, the nasalness system 256,
the first binary classifier system 2358, the second binary
classifier system 260, the vessel analysis system 262, and/or
the logistic model tree classifier 270.

Optic disc masking system 230 may mask the optic disc
arca 1n the fundus 1mage(s) that 1t receives. For example,
optic disc masking system 230 may mask the optic disc area
that may be cropped by optic disc cropping system 220.

The cup-to-disc ratio estimation system 2350 may take the
retinal disc and/or macula center 1image or cropped disc
center 1mage(s) as mput and returns the high cup-to-disc
ratio probability or glaucoma probability and the binary
value of the glaucoma subject or normal.

The peripapillary atrophy detection system 2352 may take
the retinal disc and/or macula center 1mage or cropped disc
center 1image as input and returns the probability of presence
of peripapillary atrophy or the subject’s glaucoma probabil-
ity and the binary value of the glaucoma subject or normal.

The disc hemorrhage detection system 254 may take the
retinal disc and/or macula center image or cropped disc
center image as input and returns the probability of presence
of disc hemorrhage probability and the subject’s glaucoma
probability and the binary value of the glaucoma subject or
normal.

In various embodiments, each of the the cup-to-disc ratio
estimation system 230, the penipapillary atrophy detection
system 252, the disc hemorrhage detection system 254, and
the nasalness system 256 may be pre-trained using the
technique, such as the general technique 100 for the devel-
opment and/or pre-training of machine learning model(s),
described with reference to FIG. 1.

The nasalness system 256 may take the retinal disc and/or
macula center image as input and returns the nasalness
probability as output which 1s a significant risk factor for
glaucoma.

The first binary classifier system 258 may take the retinal
disc and/or macula center image as mput and returns the
glaucoma probability and binary value of the glaucoma
subject or normal.

The second binary classifier system 260 may take the
retinal disc and/or macula center image as input and returns
the glaucoma probability without the disc area and binary
value of the glaucoma subject or normal.

The vessel analysis system 262 may take the retinal disc
and/or macula center 1image as input and returns the glau-
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coma probability without the disc area and binary value of
the glaucoma subject or normal.

The logistic model tree (LMT) classifier 270 may receive
the outputs of each of the each of the cup-to-disc ratio
estimation system 250, the pernipapillary atrophy detection
system 252, the disc hemorrhage detection system 2354, the
nasalness system 236, the first binary classifier system 238,
the second binary classifier system 260, and the vessel
analysis system 262 and may combine these outputs to
produce a probability/likelihood risk score of glaucoma.
LMT considers one or multiple parameters through its
function to determine the glaucoma or non-glaucoma. For
example, logistic model tree (LMT) classifier 270 may be
used to combine each of the risk scores that 1t receives as
input to produce a probability/likelihood risk score of glau-
coma. The LMT classifier 270 may output 1its result to final
glaucoma screening component 280. Final glaucoma screen-
ing component 280 may make a determination of whether
glaucoma 1s and/or will be present based on the probability/
likelithood of glaucoma that 1t receives. Final glaucoma
screening component 280 may also output the indications
and/or risk scores associated with the cup-to-disc ratio
estimation system 2350, the pernipapillary atrophy detection
system 2352, the disc hemorrhage detection system 234, the
nasalness system 236, the first binary classifier system 238,
the second binary classifier system 260, and/or the vessel
analysis system 262. This output may be used to indicate the
significance or risk associated with each of the associated
abnormalities of the eyes.

FIG. 3 1s a flow diagram of an example process of
detecting glaucoma according to various embodiments of
the present disclosure. At 310, at least one neural network
model of a plurality of neural network models may be
pre-trained using a small data classifier. At 320, the plurality
of neural network models may be tramned based on a
plurality of indications of glaucoma. At 330, a risk score
associated with each of the plurality of indications may be
simultaneously generated based on the trained plurality of
neural network models. At 340, the risk score associated
with each of the plurality of indications may be combined
based on a classification model to produce a likelihood of
glaucoma. At 350, a determination of whether glaucoma 1s
present may be made based on the likelihood of glaucoma.
Based on the likelylihood or probability and the samples, a
glaucoma and non-glaucoma or normal class 1s determined
through a cutofl value.

EflicientNet Architecture for Individual Feature Based Glau-
coma Risk Probability Generation

The EfficientNet [1] architecture uses a model scaling
technique for neural networks performing deep learning
tasks. The EflicientNet architecture uses a simple yet highly
ellective compound coetl

icient to scale up convolutional
neural networks (CNNs) mm a more structured manner.
Unlike conventional approaches that arbitrarily scale net-
work dimensions, such as width, depth and resolution, this
technique uniformly scales each dimension with a fixed set
of scaling coeflicients. The compound scaling technique
used by EflicientNet 1s based by the intuition that 11 the input
image 1s bigger, then the network needs more layers to
increase the receptive field and more channels to capture
more fine-grained patterns on the bigger image.

Any neural network architecture may be used with the
methods and systems for predicting and detecting the onset
of glaucoma described herein. For example, 1n addition to or
instead of EfhicentNet, the architectures associated with
Inception, Resnet, Xception, and/or the like may be used.
For these methods and systems, for the experiments
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10
described herein, a version of EflicientNet architecture
known as “FflicientNetB4” was used. This architecture
includes 19.5 million parameters, and a depth of 238 layers.

Using the ImageNet dataset, the architecture achieved
82.9% accuracy (top-1) and 96.4% accuracy (top-5).

Through experimentations, such as what 1s describes 1n
the examples below, 1t was determined that “Efficient-
NetB4” achieved eflicient learning without the pitfalls of
higher inference time, memory usage, and/or slower
response times. After experimentation, as compared to the
architectures used by Inception, Resnet and Xception, “Efli-
cientNetB4™” appeared to be the best architecture the predic-

tion of glaucoma.

EXAMPLES

Data used as well as the experimental results as related to
the models used by the methods, systems, and computer
program products discussed herein are described in the
Examples below. However, these Examples are only for
illustrative purposes, and the data used as well as the
experimental results as related to the present invention 1s not
limited to the specific Examples mentioned below 1n any
way.

Table 1 shows information regarding data from the UK
Biobank. This data 1s also discussed in Appendix A included

herein.

TABLE 1

UK Biobank Data

Number of glaucoma patients (overall) - 9198
Number of fundus 1images of glaucoma patients - 301

Number of images whose CDR identified as 0.6 and
above by the system - 127
Number of 1images identified as 0.4 to 0.6 - 82

Number of images below 0.4 - 92

Number of images with peripapillary atrophy, as graded
by the peripapillary identification system - 39
Number of images with disc hemorrhages (identified with DR

hemorrhage system) - 12

Example 1

Peripapillary Atrophy Experiments

Tables 2A and 2B show datasets used for peripapillary
atrophy experiments and results of the peripapillary experi-
ments respectively. Some of the datasets are also discussed
in Appendix A included herein.

TABLE 2A

Datasets Used for Peripapillary Atrophy Experiments

Datasets used - IDRID, ORIGA-light and REFUGE
Training dataset

Number of positive images - 294

Number of negative images (no pp atrophy) -

600 (randomly selected)

Test

Number of positive images - 42

Number of normal images - 42
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Results of Peripapillary Atrophv Experiments

Statistic Value 95% CI

Sensitivity 93.18% 81.34% to 98.57%
Specificity 97.67% 87.71% to 99.94%
Positive Predictive Value 97.62% 85.51% to 99.65%
Negative Predictive Value 93.33% 82.43% to 97.66%
Accuracy 95.40% 8&.64% to 9%8.73%

From the prospective trial data, using the peripapillary
atrophy model described herein, there were 43 images
classified as 1images with peripapillary atrophy. The 1images
were saved separately.

Example 2

Results on CDR

Table 3A shows the results of CDR experiments. Tables
3B and 3C show validation results from mixed datasets as
well as external datasets, respectively. Table 3D shows
sensitivity and specificity for CDR values of 0.6 and above.
Some of the datasets are also discussed in Appendix A

included herein. The model described herein categorizes the
images in 3 classes—CDR values below 0.4, CDR values

between 0.4 and 0.6, and CDR values 0.6 and above. While
the training dataset was built using AREDS, ORIGA-light
and REFUGE, the experimental results shown here are from
the prospective trial.

TABLE 3A

CDR Results

Traming dataset (mixed group)

CDR < 0.4-1000
0.4 < CDR < 0.6-390
0.6 < CDR - 600

TABLE 3B

CDR Validation results from the mixed dataset
(AREDS, ORIGA-light & REFUGE)

Predicted Predicted Predicted
Actual CDR <04 0.4 <CDR < 0.6 0.6 < CDR
CDR <04 34 3 4
0.4 <CDR <0.6 3 24 1
0.6 < CDR 4 6 72

Weighted Kappa = 0.785

Kappa = 0.772

SE of kappa = 0.046

95% confidence interval: From 0.682 to 0.861

TABLE 3C

CDR External validation results (from the prospective trial)

Predicted Predicted Predicted
Actual CDR <04 0.4 < CDR < 0.6 0.6 < CDR
CDR < 0.4 8K 19 6
0.4 < CDR < 0.6 2 66 22
0.6 < CDR 8 13 101

Weighted Kappa = 0.717
Kappa = 0.675
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TABLE 3C-continued

CDR External validation results (from the prospective trial)

Predicted
0.6 < CDR

Predicted
0.4 < CDR < 0.6

Predicted

Actual CDR <04

SE of kappa = 0.034
95% confidence interval: From 0.608 to 0.742

TABLE 3D

Sensitivity and Specificity for CDR 0.6 and above

Statistic Value 95% CI

Sensitivity 82.79% 74.90% to 89.02%

Specificity 86.21% 80.69% to 90.63%

Positive Predictive Value 78.29% 71.70% to 83.70%

Negative Predictive Value 89.29% 84.91% to 92.51%

Accuracy 84.92% 80.56% to 88.63%
Example 3

Disc Hemorrhage Experiments

Tables 4A shows the training data for disc hemorrhage
experiments. Tables 4B and 4C show the confusion matrix
used for the disc hemorrhage experiments and the results of
these experiments, respectively. Table 4D and 4FE show the
confusion matrix used for an external dataset used in disc
hemorrhage experiments and the results of these experi-
ments.

TABLE 4A

Traming data for Disc Hemorrhage Experiments

Total positive images — 287 (from AREDS, SIMES,

UK Biobank and other public sources)
Total negative (no disc hemorrhages) — 860 1mages
(randomly chosen from the same sources)

TABLE 4B

Confusion Matrix (with test data for model building)
for Disc Hemorrhage Experiments

Disc Hem present Disc hem absent

(predicted) (predicted)
Disc hem present 73 13
Disc Hem absent 33 225
TABLE 4C

Results for Disc Hemorrhage Experiments

Statistic Value 95% CI

Sensitivity 84.88% 75.54% to 91.70%
Specificity 87.21% 82.51% to 91.03%
Positive Predictive Value 68.87% 61.37% to 75.49%
Negative Predictive Value 94.54% 91.28% to 96.62%
Accuracy 86.63% 82.57% to 90.04%
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TABLE 4D

Confusion Matrix (on External Dataset) for
Disc Hemorrhage Experiments

Disc Hem present Disc hem absent

(predicted) (predicted)
Disc hem present 119 25
Disc Hem absent 62 769
TABLE 4E

Results of External Dataset for Disc Hemorrhage Experiments

Statistic Value 95% CI

Sensitivity 82.64% 75.45% to 88.44%

Specificity 92.54% 90.54% to 94.23%

Positive Predictive Value 65.75% 59.90% to 71.15%

Negative Predictive Value 96.85% 95.56% to 97.78%

Accuracy 91.08% 89.11% to 92.79%
Example 4

Glaucoma Vs Non-Glaucoma Model Results on UK
Biobank Data

Table 5 shows the experimental results of the glaucoma

model described herein versus a non-glaucoma model as
related to the UK Biobank data. The UK Biobank data 1s also
discussed in Appendix A included herein.

TABLE 5

Results of Glaucoma Vs Non-Glaucoma Model on UK Biobank Data

Statistic Value 95% CI

Sensitivity 85.00% 70.16% to 94.29%

Specificity 87.00% 78.80% to 92.89%

Positive Predictive Value 72.34% 60.78% to 81.53%

Negative Predictive Value 93.55% 87.35% to 96.82%

Accuracy 86.43% 79.62% to 91.63%
Example 5

Glaucoma Vs Non-Glaucoma Model Results on Origa Data
Table 6 shows theexperimental results of the glaucoma
model described herein versus a non-glaucoma model as

related to the ORIGA-light data. The ORIGA-light data 1s
also discussed 1 Appendix A included herein.

TABLE 6

Results of Glaucoma Vs Non-Glaucoma Model on ORIGA-light Data

Statistic Value 95% CI

Sensitivity 89.26% 83.15% to 93.74%

Specificity 93.81% 91.33% to 95.76%

Positive Predictive Value 81.10% 75.23% to 85.84%

Negative Predictive Value 96.71% 94.87% to 97.90%

Accuracy 92.777% 90.50% to 94.64%
Example 6

All Features Results on UK Biobank Data
Table 7 shows the experimental results of all features
described herein as related to the UK Biobank data. FIG. 4
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depicts a graph related to the results of the all features
experiments as related to the UK Biobank data 1n terms the
true positive rate versus the false positive rate. The UK
Biobank data 1s also discussed in Appendix A included
herein.

TABLE 7

Results of All Features Experiment on UK Biobank Data

Statistic Value 95% CI

Sensitivity 95.00% 83.08% to 99.39%

Specificity 94.00% 87.40% to 97.77%

Positive Predictive Value 86.36% 74.40% to 93.24%

Negative Predictive Value 97.92% 92.40% to 99.45%

Accuracy 94.29% 89.05% to 97.50
Example 7

All Features Results on Origa-light Data

Table 8A shows the data split of all features described

herein as related to the ORIGA-light data. Table 8B shows

the predicted experimental results of all features described
herein as related to the color fundus image taken from

ORIGA-light data. Table 8C shows the experimental results
of all features described herein as related to the ORIGA-
light data. FIG. 5 depicts a graph related to the results of the
all features experiments as related to the color fundus 1mage
based glaucoma detection taken from the ORIGA-light data

in terms the true positive rate versus the false positive rate.
The ORIGA-light data 1s also discussed in Appendix A
included herein.

TABLE 8A

Data Split All Features Experiment
on ORIGA-light Data

Data split -

Total: 648
Glaucoma: 167
No-glaucoma: 481

TABLE 8B

Predicted Results of All Features
Experiment on ORIGA-light Data

Glaucoma No glaucoma
(predicted) (predicted)
Glaucoma 156 11
No glaucoma 27 454
TABLE 8C

Results of All Features Experiment on ORIGA-light Data

Statistic Value

Sensitivity 93.41%
Specificity 94.39%
Positive Predictive Value 85.25%
Negative Predictive Value 97.63%
Accuracy 94.14%

95% CI

8&8.52% to 96.67%
91.94% to 96.27%
79.98% to 89.31%
95.89% to 98.65%
92.04% to 95.82%
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Appendix a: Data Sources

UK Biobank

UK Biobank [2] has involved the collection of extensive
baseline questionnaire data, physical measurements and
biological samples from 500,000 men and women aged
40-69 at baseline between 2006 and 2010 i 22 centers
across the UK. In the on-going study, 1t re-contacted subjects
to the follow up information. Out of this large and popular
dataset, subjects who had the follow up data were chosen.

This large open access database has enabled large studies
on socio-demographic and epidemiological associations for
an extensive range ol health-related outcomes and condi-
tions. Ocular data collection 1n UK Biobank commenced in
September 2009. Acquisition of OCT 1mages and retinal
photography began 1n December 2009. The methods and
protocol for the ocular examination component of UK
Biobank were designed by ophthalmologists from Moor-
fields Eye Hospital, London, UK. Written, informed consent
was obtained for all participants in UK Biobank. OCT
images were acquired using Spectral Domain OCT device
(3D OCT-1000 Mark II). This system has an axial resolution
of 6 um and an 1mage acquisition speed of 18,000 A-scans
per second (each A-scan 1s the measurement of the reflec-
tance profile along the optical axis within the retina). OCT
images were obtained using a raster scan protocol, 6 mmx6
mm 1n area, centered on the fovea. This raster scan consisted
of 128 B-scans, each composed of 512 A-scans (a B-scan 1s
a two-dimensional, cross-sectional 1image of retinal tissue).
Using this protocol, a whole macular 3D volume of 512
A-scans by 128 B-scans 1s obtammed in 3.6 seconds
(512*128/18000).

Age-Related Eye Disease Study (AREDS)

AREDS i1s a major clinical trial sponsored by the National
Eve Institute. AREDS participants were 55 to 80 years old
at enrollment, and they had to be free of any illness or
condition that would make a long-term follow-up or com-
pliance with study medications unlikely. Based on fundus
photographs graded by a central reading center, the best-
corrected visual acuity, and ophthalmologic evaluations,
4,753 participants were enrolled 1in one of several AMD
categories, including persons with no AMD. Subjects were
randomly assigned to the vitamins and mineral supplements
and placebo groups.

AREDS participants were assigned to four categories
based on the size and extent of drusen and other AMD
lesions: Normal, Early, Intermediate, and Advanced or Late
AMD. These assignments were made for the left and right
eyes individually. Deidentified AREDS data was used in this
study and was approved by the National Eye Institute Data
Access Committee, National Institute of Health.

ImageNet

Pre-trained networks helped greatly when dealing with
smaller datasets. The ethicientNetB4 architecture used 1n this
experiment pretrained on the popular ImageNet dataset. The
ImageNet [3] project 1s a large visual database designed for
use i visual object recognition software research. The
subset of ImageNet used for pretraining the architecture has
more than 1 million images with 1000 categories. These
images have been hand-annotated for the classes and cat-
cgories by the project.

Refuge

REFUGE dataset part of one of the first open challenges
focused on glaucoma classification and optic disc/cup seg-
mentation from color fundus photographs. The challenge
consisted of two primary tasks, namely optic disc/cup seg-
mentation and glaucoma classification. As part of REFUGE,
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the dataset 1s publicly released including 1200 fundus
images with ground truth segmentations and clinical glau-
coma labels.

ORIGA-Light

The ORIGA-light dataset [4] 1s an ophthalmic reference
image database specifically designed for glaucoma analysis.
ORIGA-light serves as a benchmarking resource {for
researchers to evaluate 1mage processing algorithms that
detect and analyze various image signs highly related to
glaucoma diagnosis. To facilitate this, the authors of ORIGA
used their in-house grading tools to grade several glaucoma-
related signs. The publicly available dataset that we used has
650 graded 1images, out of which 460 are healthy and the rest
are graded as glaucoma, taken from adults aged between 40
and 80 years. Each 1mage 1s segmented and annotated by
trained professionals from the Singapore Eye Research
Institute.

It should be understood that the foregoing description 1s
only 1llustrative of the present disclosure. Various alterna-
tives and modifications can be devised by those skilled 1n the
art without departing from the disclosure. Accordingly, the
present disclosure i1s mtended to embrace all such alterna-
tives, modifications, and variances. The aspects described
with reference to the attached drawing figures are presented
only to demonstrate certain examples of the disclosure.
Other elements, steps, methods, and techniques that are
insubstantially diflerent from those described above and/or
in the appended claims are also intended to be within the
scope of the disclosure.
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What 1s claimed 1s:
1. A method of detecting glaucoma, the method compris-
ng:
obtaining a first dataset including eye images;
augmenting the eye images to generate a second dataset
including eye image variations by at least one of
rotation, translating, or sheering the eye 1mages;
pre-training at least one neural network model of a
plurality of neural network models based on a small
data classifier, wherein the pre-training 1s performed
using the second dataset and includes:
generating a plurality of vectors based on the eye image
variations, wherein each vector includes a plurality
of labels with binary values designating eye condi-
tions;
assigning a class label to each vector based on the
plurality of labels; and
generating a glaucoma-specific pre-trained model
based on the assigned class labels;
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training the plurality of neural network models based on
a plurality of indications of glaucoma based on retinal
data including at least two of a pernipapillary atrophy
value, a disc hemorrhage value, and a blood vessel
structure analysis value;

simultaneously generating a risk score associated with
cach of the plurality of indications based on the trained
plurality of neural network models;

combining the risk score associated with each of the
plurality of indications based on a classification model
to produce a likelithood of glaucoma; and

determining whether glaucoma 1s present based on the
likelihood of glaucoma.

2. The method of claim 1, wherein the plurality of neural
network models are each a deep learning neural network
model.

3. The method of claam 1, wheremn the plurality of
indications of glaucoma further include at least two of a
cup-disk ratio, a nasalness value, and a retinal entire 1mage
value.

4. The method of claim 1, wherein the risk score associ-
ated with each of the plurality of indications includes at least
one continuous probability value.

5. The method of claam 4, wheremn the plurality of
indications includes a cup-disk ratio, and wherein the risk
score associated with the cup-disk ratio includes at least two
continuous probability values.

6. The method of claim 1, wherein the classification
model 1s a logistic model tree (LMT).

7. The method of claim 1, further comprising displaying,
on a display, the determination of whether glaucoma 1is
present, the plurality of indications, and the risk score
associated with each of the plurality of indications.

8. A system comprising:

a computing node comprising a computer readable stor-
age medium having program instructions embodied
therewith, the program instructions executable by a
processor of the computing node to cause the processor
to perform a method comprising:
obtaining a first dataset including eye images;
augmenting the eye images to generate a second dataset

including eye image variations by at least one of
rotation, translating, or sheering the eye images;
pre-training at least one neural network model of a
plurality of neural network models based on a small
data classifier, wherein the pre-training 1s performed
using the second dataset and 1ncludes:
generating a plurality of vectors based on the eye
image variations, wherein each vector includes a
plurality of labels with binary values designating
eye conditions;
assigning a class label to each vector based on the
plurality of labels; and
generating a glaucoma-specific pre-trained model
based on the assigned class labels;
training the plurality of neural network models based
on a plurality of indications of glaucoma based on
retinal data including at least two of a peripapillary
atrophy value, a disc hemorrhage value, and a blood
vessel structure analysis value;
simultaneously generating a risk score associated with
cach of the plurality of indications based on the
trained plurality of neural network models;
combining the risk score associated with each of the
plurality of indications based on a classification
model to produce a likelihood of glaucoma; and
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determining whether glaucoma 1s present based on the
likelihood of glaucoma.

9. The system of claim 8, wherein the plurality of neural
network models are each a deep learning neural network
model.

10. The system of claim 8, wherein the plurality of
indications of glaucoma further include at least two of a
cup-disk ratio, a nasalness value, and a retinal entire 1mage
value.

11. The system of claim 8, wherein the risk score asso-
ciated with each of the plurality of indications includes at
least one continuous probability value.

12. The system of claim 11, wherein the plurality of
indications includes a cup-disk ratio, and wherein the risk
score associated with the cup-disk ratio includes at least two
continuous probability values.

13. The system of claim 8, wherein the classification
model 1s a logistic model tree (LMT).

14. The system of claim 8, wherein the method further
comprises displaying, on a display, the determination of
whether glaucoma 1s present, the plurality of indications,
and the rnisk score associated with each of the plurality of
indications.

15. A non-transitory computer-readable medium storing
instructions that, when executed by a processor, cause the
processor to perform a method for backing up and restoring
a cluster of nodes, the method comprising:

obtaining a first dataset including eye 1mages;

augmenting the eye images to generate a second dataset

including eye image variations by at least one of
rotation, translating, or sheering the eye images;

pre-training at least one neural network model of a

plurality of neural network models based on a small

data classifier, wherein the pre-training 1s performed

using the second dataset and includes:

generating a plurality of vectors based on the eye image
variations, wherein each vector includes a plurality
of labels with binary values designating eye condi-
tions;

assigning a class label to each vector based on the
plurality of labels; and

generating a glaucoma-specific pre-trained model
based on the assigned class labels;

training the plurality of neural network models based on

a plurality of indications of glaucoma based on retinal
data including at least two of a pernipapillary atrophy
value, a disc hemorrhage value, and a blood vessel
structure analysis value;

simultaneously generating a risk score associated with

cach of the plurality of indications based on the trained
plurality of neural network models;
combining the risk score associated with each of the
plurality of indications based on a classification model
to produce a likelihood of glaucoma; and

determiming whether glaucoma 1s present based on the
likelihood of glaucoma.

16. The non-transitory computer-readable medium of
claim 15, wherein the plurality of neural network models are
cach a deep learning neural network model.

17. The non-transitory computer-readable medium of
claim 135, wherein the plurality of indications of glaucoma
turther include at least two of a cup-disk ratio, a nasalness
value, and a retinal entire 1image value.

18. The non-transitory computer-readable medium of
claim 15, wherein the risk score associated with each of the
plurality of indications includes at least one continuous
probability value.
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19. The non-transitory computer-readable medium of
claiam 15, wherein the plurality of indications includes a
cup-disk ratio, and wherein the risk score associated with the
cup-disk ratio includes at least two continuous probability
values. 5

20. The non-transitory computer-readable medium of
claim 15, wherein the classification model 1s a logistic model

tree (LMT).

20
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