US011949945B2

a2 United States Patent (10) Patent No.: US 11,949,945 B2

Zhang et al. 45) Date of Patent: Apr. 2, 2024
(54) DYNAMIC CREATION OF LOW LATENCY (52) U.S. CL
VIDEO STREAMS IN A LIVE EVENT CPC HO4N 21/4384 (2013.01); HO4L 67/02
(2013.01); HO4N 21/4402 (2013.01); HO4IN
(71) Applicant: Brightcove, Inc., Boston, MA (US) 21/8456 (2013.01)
(58) Field of Classification Search
(72) Inventors: Bo Zhang, Boston, MA (US); Yuriy CPC HO4N 21/4384; HO4N 21/4402; HO4N
Reznik, Secattle, WA (US) 21/8456; HO4AN 21/234309; HO4N
21/2358; HO4N 21/26258; HO4AN
(73) Assignee: Brightcove Inc., Boston, MA (US) 21/2187; HO4L 67/02; HO4L 65/61; HO4L
65/765; HO4L 65/65; HO4L 65/80
(*) Notice: Subject to any disclaimer, the term of this See application file for complete search history.
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. (56) References Cited
(21) Appl. No.: 17/942,909 U.S. PATENT DOCUMENTS

(22) Filed: Sep. 12, 2022 2017/0257408 Al 9/2017 Gaunt et al.

Primary Examiner — Anthony Bantamot1
(65) Prior Publication Data (74) Attorney, Agent, or Firm — MUGHAL GAUDRY &

US 2023/0107615 A1 Apr. 6, 2023 FRANKLIN PC

(57) ABSTRACT

. o A method for creating a low latency DASH (LL-DASH)
(60) Provisional application No. 63/261,094, filed on Sep. video stream from a Low latency HLS video stream (LL-

Related U.S. Application Data

10, 2021. HLS) is provided. The LL-HLS video stream corresponding,
to a live event 1s retrieved. The LL-HLS video stream 1s

(51) Imt. CL converted to a LL-DASH video stream. This conversion of

HO4N 21/436 (2011.01) the LL-DASH stream from the LL-HLS stream provides

HO4L 67/02 (2022.01) reformatting without encoding of the LL-DASH stream.

HO4N 21/4402 (2011.01)

HO4N 21/845 (2011.01) 20 Claims, 6 Drawing Sheets

500

AN

502
Capture Live Video Stream f
504
Transcode the Video Stream into
Plurality of Chunks
506
Create LL-HLS Video Stream
. | . 508
Extract First Manifest File from LL-HLS
Video Stream
. . . 510
Convert First Manifest File to Second
Manifest File
512

(Generate LL-DASH from Second
Manifest File

U.S. Patent Apr. 2, 2024 Sheet 1 of 6 US 11,949,945 B2

106

102 ~

110-3

-

..'I
R

-

’ ‘_.-l

F S R R R

= A LA

Tt

: g g Ty, Wi i, g o b, v,y iy iy iy iy, By iy oy Wy

T T S

VAL PSP E L TP AL LTSI I E LA

.

o

N 110-1
1102 <

S

Nl e A BB LLOALLOR AL A ERRALPLL LR = s

r

-

-

jlll' 1

T T VAL A N NS T M MICHIE NS
M et e e e R e e e

U.S. Patent Apr. 2, 2024 Sheet 2 of 6 US 11,949,945 B2

200

206 f208 212
Uooao
nooo |
Uooo DD
‘Ilrjrgiztczig: Segg)eercteartlm DD D D Origin Server
Uoono DDD
OO0
Manifest
Chunk Streams Files

Fig. 2

U.S. Patent Apr. 2, 2024 Sheet 3 of 6 US 11,949,945 B2

300
/P Stream ;

302 304
308
306
LL-Stream Converter _31p

LL-HLS to LL-DASH
Converter

LL-DASH
LL-HLS

314

LL-DASH/HLS Server

316

Network

110

User Devices

Fig. 3

U.S. Patent Apr. 2, 2024 Sheet 4 of 6 US 11,949,945 B2

402-1

Chunk 1

404
Chunk 2 402-2 |

LL-HLS Video Stream
Chunk 3 402-3 _ 406
M3u8 file

Chunk 4 402-4

408

Chunk 5 402-5

LL-DASH Video
Stream

MPD file
402-n 314 410

Fig. 4

LL-HLS to LL-DASH
Converter

U.S. Patent Apr. 2, 2024 Sheet 5 of 6 US 11,949,945 B2

500

502
Capture Live Video Stream f
504
Transcode the Video Stream into
Plurality of Chunks
506
Create LL-HLS Video Stream
. . . 508
Extract First Manifest File from LL-HLS
Video Stream
. . . 510
Convert First Manifest File to Second
Manifest File
512
Generate LL-DASH from Second
Manifest File

Fig. 5

U.S. Patent Apr. 2, 2024 Sheet 6 of 6 US 11,949,945 B2

602
Extract m3u8 File I

600

Common Elements Present? O

to MPD File

612
Check for Missing Elements for LL-
DASH

514 I616

NO END

Missing Elements Identified?

YES
618
Add Missing Element for MPD File

. _ _ _ 690
Generate LL-DASH Video Stream from
MPD File

Fig. 6

US 11,949,945 B2

1

DYNAMIC CREATION OF LOW LATENCY
VIDEO STREAMS IN A LIVE EVENT

CROSS REFERENC.

L1

This application claims benefit of U.S. Provisional Appli-
cation No. 63/261,094 by Zhang et al., filed Sep. 10, 2021,
entitled “DYNAMIC CREATION OF LOW LATENCY

VIDEO STREAMS IN A LIVE EVENT,” the disclosure
which 1s incorporated by reference herein in its entirety.

BACKGROUND

This disclosure relates 1n general to live video streaming
and, but not by way of limitation, creating low latency video
streams for the live video streaming in a live event.

Live streaming 1s used to deliver live experiences of
events occurring 1n public places to a plurality of users
present at various places. The live content 1s typically
delivered to a server which then transmits the content to
different users for playing the live content on their respective
user devices. The devices available with the users may use
different streaming formats for receiving and playing the
video streams. Such streaming formats include Hypertext
Transfer Protocol (HTTP) live streaming (HLS) format or
Dynamic Adaptive Streaming over HI'TP (DASH) format.
Low Latency HLS (LL-HLS) and Low Latency DASH
(LL-DASH) are recently mtroduced extensions of HLS and
DASH formats respectively. They enable lower latency live
streaming. The rendering of videos on user devices entails
processing the video 1n either HLS format or DASH format.
However, some existing devices can only receive and pro-
cess HLS (or LL-HLS) streams, while others can only
receive and process DASH (or LL-DASH) streams. Hence
to reach a population of all recerving devices, the pipeline
for creating streaming content must generate streams 1n both
formats.

SUMMARY

Further areas of applicability of the present disclosure will
become apparent from the detailed description provided
hereinafter. It should be understood that the detailed descrip-
tion and specific examples while indicating various embodi-
ments, are intended for purposes of 1llustration only and are
not intended to necessarily limit the scope of the disclosure.

In one embodiment, the present disclosure provides a
method for creating a low latency DASH (LL-DASH) video
stream from a Low latency HLS video stream (LL-HLS) 1s
provided. The LL-HLS video stream 1s obtained from a live
video stream captured from a live event. The LL-HLS
stream uses a first manifest file which contains the informa-
tion describing the LL-HLS stream. From the LL-HLS
stream, the LL-DASH stream 1s obtained by converting the
first manifest file into a second manifest file. This conversion
of LL-DASH stream from the LL-HLS stream provides
reformatting without encoding of the LL-DASH file.

In one embodiment, a method for creating low latency
video streams for a live event i1s provided. The method
comprises retrieving a {irst low latency video stream corre-
sponding to a live event. The first low latency video stream
uses a low-latency HTTP live streaming (LL-HLS) and
comprises a first plurality of video chunk files. The method
turther comprises converting the first low-latency video
stream 1nto a second low-latency video stream, where the
second low-latency wvideo stream uses a low-latency

Dynamic Adaptive Streaming over HI'TP (LL-DASH). The

10

15

20

25

30

35

40

45

50

55

60

65

2

conversion of the LL-HLS to LL-DASH comprises refor-
matting without reencoding the first plurality of video chunk
files 1nto a second plurality of video chunk files.

In vet another embodiment, a system for creating a low
latency video streams for a live event 1s provided. The
system comprises a low-latency HLS converter configured
to retrieve a first low-latency video stream corresponding to
a live event. The first low-latency video stream uses a
low-latency HT'TP live streaming (LL-HLS), and comprises
a first plurality of video chunk files. The system further
comprises a LL-HLS to LL-DASH converter configured to
convert the first low-latency video stream into a second
low-latency video stream, wherein the second low-latency
video stream uses a low-latency Dynamic Adaptive Stream-
ing over HI'TP (LL-DASH) and the conversion comprises
reformatting without reencoding the first plurality of video
chunk files into a second plurality of video chunk files.

A non-transitory computer-readable medium having
instructions embedded thereon for creating low latency
video streams for a live event, wherein the 1instructions,
when executed by one or more computers, cause the one or
more computers to:

retrieve a first low latency video stream, wherein the first

low latency video stream uses a Low-Latency HITP
Live Streaming (LL-HLS), and comprises a first plu-
rality of video chunk files;
convert the first low latency video stream into a second
low latency video stream, wherein the second low
latency video stream uses a Low-Latency Dynamic
Adaptive Streaming over HTTP (LL-DASH),

the conversion of LL-HLS to LL-DASH comprises refor-
matting without reencoding the first plurality of video
chunk files mto a second plurality of video chunk files
using the second mamifest file.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s described in conjunction with
the appended FIGURES:

FIG. 1 1illustrates an exemplary embodiment describing
rendering of live video stream to a plurality of user devices,
in accordance with one embodiment of the present disclo-
SUre

FIG. 2 1s a functional block diagram illustrating an
example process for ingesting, transcoding, segmentation
and adaptive streaming 1s provided, in accordance with one
embodiment of the present disclosure.

FIG. 3 illustrates a block diagram of low-latency video
stream creation system, 1n accordance with one embodiment
of the present disclosure.

FIG. 4 illustrates a brief overview of conversion of
LL-HLS stream into LL-DASH stream, in accordance with
one embodiment of the present disclosure.

FIG. § illustrates flowchart describing a method for gen-
erating a low-latency video streams, 1n accordance with one
embodiment of the present disclosure.

FIG. 6 1llustrates a flow diagram describing a method for
converting a LL-HLS stream into a LL-DASH stream, 1n
accordance with one embodiment of the present disclosure.

In the appended FIGURES, similar components and/or
features may have the same reference label. Further, various
components of the same type may be distinguished by
tollowing the reference label by a second alphabetical label
that distinguishes among the similar components. If only the
first reference label 1s used 1n the specification, the descrip-

US 11,949,945 B2

3

tion 1s applicable to any one of the similar components
having the same first reference label irrespective of the
second reference label.

DETAILED DESCRIPTION

The ensuing description provides preferred exemplary
embodiment(s) only, and 1s not imntended to limit the scope,
applicability or configuration of the disclosure. Rather, the
ensuing description ol the preferred exemplary embodi-
ment(s) will provide those skilled 1n the art with an enabling,
description for 1mplementing a preferred exemplary
embodiment. It 1s understood that various changes may be
made 1n the function and arrangement of elements without
departing from the spirit and scope as set forth in the
appended claims.

In one embodiment, the present invention proposes a
method for creating streams in both LL-HLS and LL-DASH
formats without doubling the number of content encoding
and packaging operations. The invention, therefore, enables
almost 2x reduction 1n the involved Cost of Goods Sold
(COGS) compared to straightforward encoding workilow
implementations for LL-HLS and LL-DASH streaming

Referring to FIG. 1, illustrates an exemplary embodiment
describing rendering of live video stream to a plurality of
user devices, according to some embodiment of the present
disclosure. A live event 102 can be, for example, a sports
event. An event capturing apparatus 104 can be used to
capture the live event 102. The event capturing apparatus
104 can capture the live event 102 1n the form of continuous
video streams. The content captured by the event capturing
apparatus 104 can include video and audio content. In one
embodiment, the captured content can then be compressed
by the event capturing apparatus 104 before transmitting it
to a server 106. The transmission to the server 106 can be via
wireless communication means.

Server 106 then processes the live video stream received
from the event capturing apparatus 104. The processing can
include converting the live video stream 1n different formats
such that 1t can be made available to different users using
different devices. The server 106 also converts the live video
stream 1n different bitrates such that the users can play the
live video stream using the diflerent bitrates.

After processing by the server 106, the live video streams
can be rendered on different user devices 110-1, 110-2, 110-3
via a network 108. The user devices 110-2, 110-3 can
include smartphones having operating systems such as
Apple®, Android®, Windows®, etc. The user device 110-1
can also include other computing devices such as laptops,
computers, 1Pads, etc. The different user devices 110-1,
110-2, 110-3 having different operating systems can use
different file formats for playing the live video streams. For
example, the user devices 110-1, 110-2, 110-3 can use
various video streaming protocols such as HLS, DASH to
play the live video streams in the different formats.

Referring now to FIG. 2, a functional block diagram
illustrating an example process for ingesting, transcoding,
segmenting, and adaptive streaming 1s provided, 1n accor-
dance with some embodiment of the present disclosure. The
content prepared by and/or delivered from server 106 can be
classified as HT'TP adaptive streaming. Adaptive streaming
(or also referred to as adaptive bitrate (ABR) streaming)
operates by dynamically adjusting the play-out rate to stay
within the actual network throughput to a given endpoint,
lacks the entail for rebuflering. So, 11 the network throughput
suddenly drops, the picture can degrade but an end-user still
sees a picture.

10

15

20

25

30

35

40

45

50

55

60

65

4

Using adaptive streaming technology, during periods of
network congestion, operators can set session management
policies to permit a predefined level of network over-
subscription rather than blocking new sessions (such as
when last-mile bandwidth availability 1s too limited to
permit another client to join). This flexibility will become
more 1imperative as subscribers demand higher quality feeds
(e.g., 1080p and 4K).

As used herein, HI'TP adaptive streaming 1s the generic
term for various implementations: HI'TP Live Streaming
(HLS) used by devices manufactured by Apple®, Microsoit
IIS Smooth Streaming, Adobe HTTP Dynamic Streaming
(HDS), and DASH by manufactures apart from Apple® (for
example Android).

Although each of the various implementations of HTTP
adaptive streaming 1s diflerent, they have a set of common
properties. For example, source content 202 1s transcoded in
parallel at multiple bit rates (e.g., multi-rate coding) by using,
an 1ngest and transcode process 204. The source content 202
can comprise media content such as live source content
and/or file source content. For example, the file source
content can include movies, TV programs, etc. The live
source content can include live streaming, such as a live
broadcast of a sports program or game.

The encoded content 1s divided into fixed duration seg-
ments (e.g., chunks) 1n a segmentation process 206. The
segments or chunks are typically between 2 and 10 seconds
in duration, although they can be longer or shorter. In some
embodiments, shorter segments reduce coding efliciency
while larger segments impact speed to adapt to changes in
network throughput.

A manifest file 1s created and updated as necessary to
describe the encoding rates and URL pointers to segments 1n
a manifest file creation process 212. As used herein, a
manifest file or playlist describes how content 1s prepared,
how many different encoding bitrates, and for each bitrate
stream, how long a segment 1s, and where to obtain each
segment ol each bitrate stream.

In some embodiments, the client uses HTTP to fetch
segments from the network, builer them and then decode
and play them. The client can utilize one or more algorithms
designed to select the optimum profile to maximize quality
lacks risking butler underflow and stalling (e.g., rebuflering)
of the play-out. For example, each time the client fetches a
segment, 1t can choose the profile based on the measured
time to segment.

Referring now to FIG. 3, a block diagram of low-latency
video stream creation system 300 1s shown, 1n accordance
with some embodiment of the present disclosure. The sys-
tem 300 comprises an encoder 302, an Ingester 304, a media
storage 306, a low latency (LL)-stream converter 308a
LL-HLS converter 310, a LL-HLS to LL-DASH converter
312, a LL-DASH/HLS server 314, a network 316 and
plurality of user devices 110.

The encoder 302 receives video streams from a live event
and generates streams that can be transmitted to the Ingester
304. In one embodiment, the encoder 302 can receive
continuous audio and video streams which are further
divided into a plurality of chunks. In another embodiment,
the encoder 302 can directly recerve the plurality of chunks
of the video streams. The plurality of chunks of the video
streams can be continuous streams containing audio and
video.

The encoder 302 compresses the received video stream
into a format that can be easily transmitted. For example, the
encoder 302 can compress the video stream using one or

US 11,949,945 B2

S

more protocols, such as H.264 compression technique. The
compression of video saves bandwidth during transmission
of the video stream.

The encoder 302 transmits the video stream to the
Ingester 304 1n a format such as Secure Reliable Transport
(SRT), Real-Time Streaming Protocol (RTSP), or Real-Time
Messaging Protocol (RTMP) protocols. The Ingester 304
processes the input stream and saves the output in the media
storage 306 in a format, for example, Common Media
Application Format (CMAF) segments or fragmented
MPEG-4 Part 14 (MP4) segments. The Ingester 304 acts as
an intermediate to deliver the encoded video content from
the encoder 302 to the media storage 306.

The LL-stream converter 308 reads the content stored in

the media storage 306 and converts the content 1nto low-
latency HTTP live streaming (LL-HLS). In particular, the
LL-stream converter 308 comprises a Low latency-HLS
(LL-HLS) converter 310 and a Low latency-HLS converter
to Low latency-DASH (LL-DASH) converter (or LL-HLS

MPD elements

10

15

6

to LL-DASH converter) 312. Thus, the stored content from
the media storage 306 1s converted into a LL-HLS streams

by the LL-HLS converter 310. The LL-HLS streams use a
first mamifest file (or a first metadata file) called m3u8 file.
The m3u8 file contains the elements entailed for generating
the LL-HLS streams. In other words, the m3u8 file describes
the LL-HLS video stream. The m3u8 file 1s a metadata file

that contains information about various playback formats.
The m3u8 file of a LL-HLS stream contains most of the
information entailed for converting the LL-HLS stream into
a LL-DASH stream. Specifically, the conversion can be
done by converting the m3u8 file of the LL-HLS stream to
a metadata file, called the Media Presentation Description
(MPD) file for the LL-DASH stream.

The m3u8 file comprises various elements which can be
reused for generating the LL-DASH file. Some of the
clements which are not present 1n the m3u8 file are added 1n
the mpd {file separately for generating the LL-DASH file.

Table 1 below explains various elements used to generate
LL-DASH file from LL-HLS file:

TABLE 1

Value comments

(wprofiles "urn:mpeg:dash:profile:isoff- This 1s a common value for
live:2011" LIL-DASH streams.
(itype "dynamic" This 1s a common value for
LL-DASH streams.
@minimumUpdatePeriod This i1s a choice of the service This 1s a DASH specific
providers. It 1s 1rrelevant to element, not to be converted
the LL-HLS playlists. from an LL-HLS m3ug file.
@avallabilityStartTime Set to the start wall clock time This value 1s known to the
of this live stream. service providers, and ought
be identical for the LL-HLS
and LL-DASH streams.
@publishTime Set to the current time when This value 1s known to the
this manifest 1s generated. service providers.
MaxSegmentDuration Set to the configured segment This value 1s known to the
duration of this stream. service providers. The same
value ought be used for the
LL-HLS and LL-DASH
streams.
@minBuflerTime Set to the configured segment This value 1s known to the

@avallability TimeOfiset

service providers. The same
value ought be used for the
LL-HLS and LL-DASH
streams.

The values of
segmentDuration and
chunkDuration are known to
the service providers. The
same values of
segmentDuration and
chunkDuration ought to be
used for the LL-HLS and
LL-DASH streams.

duration of this stream.

Set to "segmentDuration -
chunkDuration" such that a
client can request a segment
as soon as 1ts first video
chunk 1s available for
download on the server side.

@availlability TimeComplete Set to false as entailed by

timeShiftBuiferDepth

L atencytarget

(@segmentAlignment
@ProducerReferenceTime

LL-DASH specification.

This 1s a choice of the service

providers. It 1s irrelevant to
the LL-HLS playlists.
This 1s a choice of the service

providers. It 1s irrelevant to
the LL-HLS playlists.

This must be set to “true”.
ProducerReferenceTime is
used to signal a pair of wall
clock time wallClockTime
and presentation time
presentation Time in which
the latter 1s the wall clock
time when the video frame
with the given
presentationTime 1s generated
by the encoder.

The mapping of
wallClockTime and
presentation Time can be
obtained from the encoder.
Otherwise, 1t can also be
inferred from EXT-X-
PROGRAM-DATE-TIME 1n
the LL-HLS m3uX file.
“inband” must be set to true
to signal inband prift box n
the media segments.

US 11,949,945 B2

7
TABLE 1-continued

MPD elements Value comments

mimeType, (@codecs, The codec-specific
@bandwidth, (@height, parameters are known to the
width, @irameRate, (@par,service providers, there 1s no
need to copy/convert from the
LL-HLS m3ugR files.

Period start time 1s a DASH
specific attribute, and it 1s a
choice of the service
providers. It i1s irrelevant to
the LL-HLS m3us.

Duration must match the
segment duration used by LL-
HLS. Timescale must match
the value of duration.

The segment naming template
for the mitialization and
media segments and the
segment start number must
match the segment URL used
by LL-HLS, such that the
server can properly locate the
media segments based on the
client’s request URL.

This 1s a DASH-specific
clement. Set to the timing
source url.

(@period

@timescale and (@duration

@initilization and @media
and (@startNumber

@UTCTiming

Table 1 explains various MPD elements entailed for
generating the LL-DASH file. The MPD elements are sec-
ond manifest files (or second metadata files) which can be
used for generating LL-DASH file from the LL-HLS file.
The table also mentions various comments along with each
clement to explain the necessity of the element 1n creating
the LL-DASH file and to explain whether the element 1s
taken from the LL-HLS file or added separately.

For example, the elements “(@profiles” 1s common to
LL-HLS and LL-DASH and hence this element can be
extracted from m3u8 file and used in MPD file. Further, the
clement “@minimumUpdatePeriod” 1s an element only for
LL-DASH file and ought not to be extracted from m3usS file
(LL-HLS).

Additionally, during the conversion process by the LL-
HLS to LL-DASH converter 312, a “ProducerRelerence-
Time (prit)” box must be inserted. This box 1s entailed for
LL-DASH streams to be valid and enable correct playback
by the players. It will be ignored by LL-HLS players.

Very imperatively, the video segment sequence numbers
and the segment URLSs in the MPD must be set correctly for
the same set of segments to be shared/reused by LL-HLS
and LL-DASH. If they do not match, the streaming server
won’t be able to find the right segment which a player
requests.

When the LL-HLS converter 310 1s runming and output-
ting segments and the m3u8 playlist, a separate process
dynamic manifest converter 1s present i the LL-HLS to
LL-DASH converter 312, can run concurrently to dynami-
cally convert the m3u8 file to a mpd file (manifest file for
LL-DASH). There 1s no entail to run dynamic manifest
converter as a persistent daemon, it 1s entailed to be run
when the 1mitial mpd {file 1s generated or when 1t needs to be
updated. The LL-HLS master m3u8 file and the variant

m3u8 file must be converted and combined to generate the
single LL-DASH mpd file.

Specifically, on the input side, dynamic manifest con-
verter reads the whole body of the LL-HLS m3u8 files into
its memory space, 1dentifies all the relevant LL-HLS tags,
and creates a table to store the tag names and tag values. On

30

35

40

45

50

55

60

65

the output side, dynamic manifest converter creates a text
bufler for storing the body of the output LL-DASH mpd file,

then generates and outputs the mpd file by referring to the
table which stores the LL-HLS tags/values.
Unlike the LL-HLS m3u8 files which are updated con-

stantly when new segments and chunks are added, an
LL-DASH mpd file 1s a static file unless its content 1is
updated sporadically by the service providers. Oftentimes, a

sporadic mpd update 1s caused by a configuration change to
the streaming servers. Therefore, dynamic manifest con-
verter runs to create the mitial mpd file when a streaming
session just starts, or whenever a sporadic mpd update 1s
mandated to signal a configuration change.

In the output mpd file, the MPD level elements and
attributes are shared among the renditions (known as rep-
resentations in DASH). The rendition-specific information
contained in the different variant playlists 1s consolidated to
generate the <adaptationSet> element 1n the mpd {ile.

In one embodiment, the system 300 comprises a process-
ing unit (not shown). The processing unit 1s coupled to
encoder 302, Ingester 304, media storage 306, and LL-
stream converter 308 and helps provide communication
between different components present 1n the system 300. For
example, the processing unit helps establish communication
between encoder 302 and Ingester 304, Ingester 304 and
media storage 306, media storage 306 and LL-stream con-
verter 308.

The LL-HLS stream from the LL-HLS converter 312 1s
sent to LL-DASH/HLS server 316 and the LL-DASH stream
obtained from the LL-HLS to LL-DASH converter 314 1s
sent to LL-DASH/HLS server 316 which can then send the
LL-DASH stream for playback to the user devices 110-1,
110-2, 110-3 via the network 318. The LL-DASH/HLS
server 316 must be runming to serve the LL-DASH mpd file
and the media segments. When the user device 110-1
requests the LL-DASH mpd file, and server 316 does not
have 1t stored anywhere, server 316 shall generate the mpd
file for the first time and respond to the client. Otherwise,
server 316 shall read the stored copy of the mpd file, modify
the element “(@publishTime” element, then respond to the

US 11,949,945 B2

9

user device 110-1. After serving the mpd file of a stream, the
LL-DASH/HLS server 316 shall wait for requests for seg-

ments from the clients. The LL-DASH/HLS server 316 shall
be able to serve the CMAF 1nitialization and media seg-
ments properly as 1f they are generated originally for LL-
DASH streaming.

In one embodiment, the network 318 1s a content delivery
network (CDN). The CDN 1s a geographically distributed
network of proxy servers and datacenters. The content
delivery network provides high availability and performance
by distributing the content spatially relative to end user
110-1, 110-2, 110-3.

In one embodiment, the LL-DASH stream can directly be
generated from the content stored 1in media storage 306. In
such a case, the LL-DASH file 1s discarded.

FIG. 4 describes a brief overview of conversion of LL-
HLS stream into LIL-DASH stream, 1n accordance with
some embodiment of the present disclosure. As described
above, a plurality of chunks 402 1s generated from a live
video stream. The plurality of chunks 402 can be labeled as
chunk 402-1, chunk 402-2 . . . chunk 402-7. The plurality of
chunks 402 1s converted into a low latency HLS (LL-HLS)
video streams 404 along with a m3u8 file 406 as a metadata
file. The LL-HLS file 404 1s then fed to LL-HLS to LL-
DASH converter 314. The converter 314 transiforms the
LL-HLS file into LL-DASH 408 file by using the m3u8 file
and the mpd file 410. The mpd file 410 1s a metadata file for
LL-DASH stream and contains the elements (new and
common to LL-HLS and LL-DASH file) for generating the
[LLL-DASH file.

In one embodiment, the generated LL-HLS stream 1s time
delayed with respect to the plurality of chunks. The time
delay can be of between 3-10 seconds. Also, the converted
LL-DASH stream can further be time-delayed with respect
to the LL-HLS stream. The time delay 1s a delay between
capturing the live event and rendering the content on the user
devices 110-1, 110-2, 110-3.

FIG. 5 describes a method 500 for generating low-latency
video streams, 1n accordance with some embodiment of the
present disclosure. A live video stream 1s captured from a
live event, transcoded, and incrementally outputted 1n a
sequence of chunks. The plurality of chunks can be formed
so that the video streams captured from the live event can be
transmitted to one or more servers via a network. The
plurality of transcoded video chunks 1s subsequently con-
verted into a Low Latency HLS stream (a first low latency
video stream) and a Low Latency DASH stream (a second
low latency video stream). The separate LL-HLS and LL-
DASH streams are generated so that they can be used for
different devices for playback. This generation of separate
streams entails duplication in the processing of the genera-
tion of LL-HLS and LL-DASH streams. The present dis-
closure provides reformatting of the LL-DASH streams
without reencoding of a first plurality of video chunk files
(obtained from LL-HLS stream) into a second plurality of
video files.

Method 500 begins at block 3502, where the live video
stream 1s captured from the live event. The live video stream
can be captured by the event capturing apparatus 104. The
live video stream can 1nclude a video and an audio captured
in the live event.

Once the live video stream 1s captured, method 500
proceeds at block 504, where the live video stream 1s
incrementally encoded into a plurality of chunks. The plu-
rality of chunks of video streams are generated such that the
live video stream can be incrementally transmitted to server

106 for playback at the user devices 110-1, 110-2, 110-3.

10

15

20

25

30

35

40

45

50

55

60

65

10

Incremental or “chunk-based” transmission of such chunks
1s needed to ensure low delay. The plurality of chunks of
video streams can be continuous video streams.

From the plurality of chunks of video streams, a Low
Latency HLS video stream 1s generated, at block 506. The
process of creation of LL-HLS stream may include repack-
aging or re-muxing of the encoded video chunks into final
format used for LL-HLS delivery (e.g. fragmented MP4 or
CMAF), and generation of the associated LL-HLS manifest
file.

Once the LL-HLS stream 1is created, at block 508, a first
manifest file or a first metadata file 1s used by the LL-HLS
file. The first manifest file or the first metadata file can be a
m3u8 file. The first manifest file comprises elements or
attributes present in the LL-HLS file. The elements or
attributes can be elements as mentioned 1n the table 1 above.
As shown 1n the table 1, the elements or attributes present in
the m3u8 file comprise information that can be later used to
convert the LL-HLS stream to LL-DASH stream.

At block 510, the m3u8 file 1s converted 1nto a second
manifest file or a second metadata file which can then be
used to generate the LL-DASH file. The common elements
from the m3u8 file are identified and added to mpd file. Also,
the elements which are not common between the m3uS file
and the mpd file but are necessary to generate the LL-DASH
file 1s 1dentified and added in the mpd file. Hence, the mpd
file 1s generated which 1s further used to generate the
LL-DASH file at block 512.

In one embodiment, the generation of the first manifest
file and hence the second manifest file may be omitted. In
that case, the LL-DASH stream can directly be obtained
from the LL-HLS file without creating the first manifest file.

Referring to FIG. 6 now, a method 600 for converting a
LL-HLS stream into a LL-DASH stream. At block 602, the
m3ul file 1s fetched. As mentioned above, the m3u8 file 1s
called a first metadata file or a first manifest file. In one
embodiment, the m3u8 file can be present 1n a memory of a
server 106. In another embodiment, the m3u8 file can be
extracted from the LL-HLS stream. From the m3u8 file, at
block 604, elements common between the LL-HLS and the
LL-DASH streams are identified. In particular, elements
common between the first manifest file (or m3u8 file) and
the second manifest file (or mpd file) are 1dentified. If, at
block 606, 1t 1s 1dentified that common elements are present
between the LL-HLS stream and the LL-DASH stream,
common e¢lements from LL-HLS stream are added to mpd
file, at block 610. If, however, no elements are found to be

missing from LL-HLS stream, it can be indicated that
LL-DASH file can not be generated from LL-HLS file and

the method 600 ends (at block 608).

The method 600 then proceeds to block 612, 1t 1s 1denti-
fied if there are missing elements in the LL-DASH stream
which are necessary for the generation of the LL-DASH
stream. If the missing elements are 1dentified, at block 614,
the missing elements are added to the mpd file, at block 618.
If, however, no missing elements are found, the method 600
ends at block 616. Finally, at block 620, the LL-DASH
stream 15 generated from the mpd file obtained at block 618.

Specific details are given in the above description to
provide a thorough understanding of the embodiments.
However, it 1s understood that the embodiments may be
practiced without these specific details. For example, cir-
cuits may be shown in block diagrams in order not to
obscure the embodiments 1n unnecessary detail. In other
instances, well-known circuits, processes, algorithms, struc-
tures, and techniques may be shown without unnecessary
detail to avoid obscuring the embodiments.

US 11,949,945 B2

11

Also, 1t 1s noted that the embodiments may be described
as a process which 1s depicted as a flowchart, a tlow
diagram, a swim diagram, a data flow diagram, a structure
diagram, or a block diagram. Although a depiction may
describe the operations as a sequential process, many of the
operations can be performed 1n parallel or concurrently. In
addition, the order of the operations may be re-arranged. A
process 1s terminated when 1ts operations are completed but
could have additional steps not included in the figure. A
process may correspond to a method, a function, a proce-
dure, a subroutine, a subprogram, etc. When a process
corresponds to a function, 1ts termination corresponds to a
return of the function to the calling function or the main
function.

For a firmware and/or software implementation, the meth-
odologies may be implemented with modules (e.g., proce-
dures, functions, and so on) that perform the functions
described herein. Any machine-readable medium tangibly
embodying instructions may be used i implementing the
methodologies described heremn. For example, software
codes may be stored in a memory. Memory may be imple-
mented within the processor or external to the processor. As
used herein the term “memory” refers to any type of long
term, short term, volatile, non-volatile, or other storage
medium and 1s not to be limited to any particular type of
memory or number of memories, or type of media upon
which memory 1s stored.

In the embodiments described above, for the purposes of
illustration, processes may have been described 1n a particu-
lar order. It should be appreciated that 1n alternate embodi-
ments, the methods may be performed 1n a different order
than that described. It should also be appreciated that the
methods and/or system components described above may be
performed by hardware and/or software components (in-
cluding integrated circuits, processing units, and the like), or
may be embodied 1 sequences of machine-readable, or
computer-readable, instructions, which may be used to cause
a machine, such as a general-purpose or special-purpose
processor or logic circuits programmed with the mnstructions
to perform the methods. Moreover, as disclosed herein, the
term “‘storage medium” may represent one or more memo-
ries for storing data, including read only memory (ROM),
random access memory (RAM), magnetic RAM, core
memory, magnetic disk storage mediums, optical storage
mediums, flash memory devices and/or other machine-
readable mediums for storing information. The term
“machine-readable medium” 1ncludes but 1s not limited to
portable or fixed storage devices, optical storage devices,
and/or various other storage mediums capable of storing that
contain or carry instruction(s) and/or data. These machine-
readable 1nstructions may be stored on one or more
machine-readable mediums, such as CD-ROMs or other
type of optical disks, solid-state drives, tape cartridges,
ROMs, RAMs, EPROMs, EEPROMSs, magnetic or optical
cards, flash memory, or other types of machine-readable
mediums suitable for storing electronic instructions. Alter-
natively, the methods may be performed by a combination of
hardware and software.

Implementation of the techmiques, blocks, steps and
means described above may be done in various ways. For
example, these techniques, blocks, steps and means may be
implemented 1n hardware, soltware, or a combination
thereol. For a digital hardware implementation, the process-
ing units may be implemented within one or more applica-
tion specific mtegrated circuits (ASICs), digital signal pro-
cessors (DSPs), digital signal processing devices (DSPDs),
programmable logic devices (PLDs), field programmable

10

15

20

25

30

35

40

45

50

55

60

65

12

gate arrays (FPGAs), processors, controllers, micro-control-
lers, microprocessors, other electronic units designed to
perform the functions described above, and/or a combina-
tion thereof. For analog circuits, they can be implemented
with discreet components or using monolithic microwave
integrated circuit (MMIC), radio frequency integrated cir-
cuit (RFIC), and/or micro electro-mechanical systems
(MEMS) technologies.

Furthermore, embodiments may be implemented by hard-
ware, soltware, scripting languages, firmware, middleware,
microcode, hardware description languages, and/or any
combination thereof. When implemented in software, firm-
ware, middleware, scripting language, and/or microcode, the
program code or code segments to perform the necessary
tasks may be stored 1n a machine-readable medium such as
a storage medium. A code segment or machine-executable
instruction may represent a procedure, a function, a subpro-
gram, a program, a routine, a subroutine, a module, a
soltware package, a script, a class, or any combination of
instructions, data structures, and/or program statements. A
code segment may be coupled to another code segment or a
hardware circuit by passing and/or receiving information,
data, arguments, parameters, and/or memory contents. Infor-
mation, arguments, parameters, data, etc. may be passed,
forwarded, or transmitted via any suitable means including
memory sharing, message passing, token passing, network
transmission, etc.

The methods, systems, devices, graphs, and tables dis-
cussed herein are examples. Various configurations may
omit, substitute, or add various procedures or components as
appropriate. For instance, in alternative configurations, the
methods may be performed in an order different from that
described, and/or various stages may be added, omitted,
and/or combined. Also, features described with respect to
certain configurations may be combined in various other
configurations. Different aspects and elements of the con-
figurations may be combined 1 a similar manner. Also,
technology evolves and, thus, many of the elements are
examples and do not limit the scope of the disclosure or
claims. Additionally, the techniques discussed herein may
provide differing results with different types of context
awareness classifiers.

Unless defined otherwise, all technical and scientific
terms used herein have the same meaning as commonly or
conventionally understood. As used herein, the articles “a”
and “an” refer to one or to more than one (1.¢., to at least one)
of the grammatical object of the article. By way of example,
“an element” means one element or more than one element.
“About” and/or “approximately” as used herein when refer-
ring to a measurable value such as an amount, a temporal
duration, and the like, encompasses variations of £20% or
+10%, £5%, or £0.1% from the specified value, as such
variations are appropriate to in the context of the systems,
devices, circuits, methods, and other implementations
described herein. “Substantially” as used herein when refer-
ring to a measurable value such as an amount, a temporal
duration, a physical attribute (such as frequency), and the
like, also encompasses variations of £20% or £10%, £5%, or
+0.1% from the specified value, as such vanations are
appropriate to 1n the context of the systems, devices, circuits,
methods, and other implementations described herein.

As used herein, including 1n the claims, “and” as used 1n
a list of 1tems prefaced by “at least one of” or “one or more
of” indicates that any combination of the listed items may be
used. For example, a list of “at least one of A, B, and C”
includes any of the combinations A or B or C or AB or AC

or BC and/or ABC (1.e., A and B and C). Furthermore, to the

US 11,949,945 B2

13

extent more than one occurrence or use of the items A, B, or
C 1s possible, multiple uses of A, B, and/or C may form part

of the contemplated combinations. For example, a list of “at
least one of A, B, and C” may also include AA, AAB, AAA,
BB, etc.

While illustrative and presently preferred embodiments of
the disclosed systems, methods, and machine-readable
media have been described in detail herein, it 1s to be
understood that the inventive concepts may be otherwise
variously embodied and employed, and that the appended
claims are intended to be construed to include such varia-
tions, except as limited by the prior art. While the principles
of the disclosure have been described above 1n connection
with specific apparatuses and methods, 1t 1s to be clearly
understood that this description 1s made only by way of
example and not as limitation on the scope of the disclosure.

What 1s claimed 1s:
1. A method for creating low latency video streams
corresponding to a live event, the method comprising:
retrieving a first low-latency video stream corresponding
to the live event, wherein:
the first low-latency video stream uses a low-latency
HTTP live streaming (LL-HLS); and
the first low-latency video stream comprises a first
plurality of video chunk files;
converting the first low-latency video stream into a
second low-latency video stream, wherein:
the second low-latency video stream uses a low-latency
Dynamic Adaptive Streaming over HTTP (LL-
DASH);
the converting the first low-latency video stream 1nto a
second low-latency video stream comprises:
reformatting without reencoding the first plurality of
video chunk files mnto a second plurality of video
chunk files.

2. The method for creating low latency video streams for

a live event, as recited 1n claim 1, wherein the first low-
latency video stream and the second low-latency video
stream 1ndicate a delay between receiving the first low
latency video stream and the second low-latency video
stream and rendering the low latency video streams on a user
device.

3. The method for creating low latency video streams for

a live event, as recited 1n claim 1, wherein the first low-
latency video stream comprises a first manifest file and the
second low-latency video stream comprises a second mani-
fest file.

4. The method for creating low latency video streams for

a live event, as recited in claim 1, wherein the LL-HLS
stream 1s used by a plurality of user devices.

5. The method for creating low latency video streams for

a live event, as recited in claim 3, wherein the LL-HLS
stream uses the first manifest file called m3uS file.

6. The method for creating low latency video streams for

a live event, as recited 1n claim 5, wherein the m3u8 file
describes the LL-HLS stream.

7. A system for creating a low latency video streams for

a live event, the system comprising;:

a low-latency HLS converter configured to retrieve a first
low-latency video stream corresponding to the live
event, wherein:
the first low-latency video stream uses a low-latency

HTTP live (streaming (LL-HLS) format; and
the first low-latency video stream comprises a first
plurality of video chunk files; and

10

15

20

25

30

35

40

45

50

55

60

65

14

a LL-HLS to LL-DASH converter configured to con-
vert the first low-latency video stream into a second

low-latency video stream, wherein:
the second low-latency video stream uses a low-
latency Dynamic Adaptive Streaming over HTTP

(LL-DASH) stream:;

the converting the first low-latency video stream into

a second low-latency video stream comprises:
reformatting without reencoding the first plurality of
video chunk files mnto a second plurality of video

chunk files.

8. The system for creating low-latency video streams for
the live event, as recited in claim 7, wherein the first
low-latency video stream and the second low-latency video
stream 1indicate a delay between receiving the first low-
latency wvideo stream and the second low-latency video
stream and rendering the low-latency video streams on a
user device.

9. The system for creating low-latency video streams for
a live event, as recited 1n claim 7, wherein the first low-
latency video stream comprises a first manifest file and the
second low-latency video stream comprises a second mani-
fest file.

10. The system for creating low-latency video streams for
the live event, as recited in claim 7, wherein the LL-HLS
stream 1s used by a plurality of user devices.

11. The system for creating low latency video streams for
the live event, as recited in claim 9, wherein the LL-HLS
stream uses the first manifest file called m3u8 file.

12. The system for creating low latency video streams for
the live event, as recited 1n claim 11, wherein the m3u8 file
describes the LL-HLS stream.

13. The system for creating low latency video streams for
the live event, as recited 1n claim 12, wherein the conversion
1s performed by converting the m3u8 file of the LL-HLS
stream to a metadata file, called the Media Presentation
Description (MPD) file for the LL-DASH stream.

14. A non-transitory computer-readable medium having
instructions embedded thereon for creating low latency
video streams for a live event, wherein the 1instructions,
when executed by one or more computers, cause the one or
more computers to:

retrieving a first low-latency video stream corresponding

to the live event, wherein:

the first low-latency video stream uses a low-latency

HTTP live streaming (LL-HLS); and

the first low-latency video stream comprises a first plu-
rality of video chunk files;

convert the first low-latency video stream into a second
low-latency video stream, wherein:

the second low-latency video stream uses a low-latency

Dynamic Adaptive Streaming over HI'TP (LL-DASH)

stream;
the converting the {first low-latency video stream 1into the

second low-latency video stream comprises:
reformatting without reencoding the first plurality of
video chunk files mto a second plurality of video
chunk files.

15. The non-transitory computer-readable medium as
recited 1 claim 14, wheremn the first low-latency video
stream and the second low-latency video stream indicate a
delay between receiving the first low-latency video stream
and the second low-latency video stream and rendering the
low latency video streams on a user device.

16. The non-transitory computer-readable medium as
recited 1 claim 14, wheremn the first low-latency video

US 11,949,945 B2

15

stream comprises a first manifest file and the second low-
latency video stream comprises a second manifest file.

17. The non-transitory computer-readable medium as
recited in claim 14, wherein the LL-HLS stream 1s used by
a plurality of user devices.

18. The non-transitory computer-readable medium as
recited in claim 16, wherein the LL-HLS stream uses the
first manifest file called m3u8 file.

19. The non-transitory computer-readable medium as
recited 1n claim 18, wherein the m3u8 file describes the
LL-HLS stream.

20. The non-transitory computer-readable medium as
recited 1n claim 19, wherein the conversion 1s performed by
converting the m3u8 file of the LL-HLS stream to a meta-
data file, called the Media Presentation Description (MPD)
file for the LL-DASH stream.

¥ ¥ H ¥ K

10

15

16

	Front Page
	Drawings
	Specification
	Claims

