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ANOMALY DETECTION AND EVALUATION
FOR SMART WATER SYSTEM
MANAGEMENT

BACKGROUND

Technical Field

The present disclosure relates generally to monitoring,
water distribution systems and more specifically to tech-
niques for anomaly detection and evaluation 1n smart water
distribution systems.

Background Information

Water distribution systems have traditionally been moni-
tored using supervisory control and data acquisition
(SCADA) technology, which monitors key control devices
and facilities. In such SCADA deployments, only a rela-
tively limited amount of flow data was typical recorded,
typically at the inlet of the system or district meter area
(DMA). More recently, with ubiquitous Internet connectiv-
ity and the widespread availability of low-cost sensors, large
numbers of smart meters, sensors and data loggers have been
deployed 1n many water distributions systems. Such smart
water distribution systems often also collect pressure mea-
surements at locations within the water distribution system,
for example, at individual pipes, junctions, tanks, etc. A goal
of smart water distribution systems 1s to enable better
detection of anomaly events that may lead to water service
disruptions, so that actions can be taken to mitigate impact.

The term “anomaly event” refers to a deviation from
normal or mtended operation of a water distribution system.
In general, anomaly events may be categorized into opera-
tion-related anomaly events and cyber security-related
anomaly events. Examples ol operation-related anomaly
events pipe bursts (e.g., with overflow 1nto streets or existing
hidden underground) and unauthorized (e.g., illegal) water
usage. Examples of cyber security-related anomaly events
include unauthorized activations or deactivations of devices
or facilities (e.g., valves, pumps, water treatment plants, etc.)
and unauthorized changes to the functions of such devices or
facilities. If anomaly events can be efliciently and reliable
detected, then appropriate repair and maintenance personnel
may be eflectively dispatched.

In traditional SCADA deployments, where only flow data
1s typical recorded at the inlet of the system or DMA,
anomaly event detection often involved a comparison of
average flow rate at minimum night flow (MNF) hours (e.g.,
2 to 4 AM). If the most recent rate at MNF 1s significantly
greater than the previous days, it may be assumed an
anomaly event occurred. MNF methods are simple and easy
to 1implement but cannot make use of the whole dataset
provided by more modern smart water distribution systems
at all hours (e.g., non-MNF hours).

In more modern smart water distribution systems, where
pressure data at locations within the water distribution
system 1s typically also recorded, several types of
approaches have been, or potentially could be, attempted to
detect anomaly events, including prediction classification
(PC) approaches, clustering algorithms (CA) approaches
and statistical process control (SPC) methods. However,
cach of these approaches has a number of shortcomings.

Existing PC approaches generally involve constructing a
prediction model using historical data. Once established, the
prediction model 1s used to forecast tlow or pressure. If the
prediction 1s out of predefined bounds, an anomaly event 1s
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concluded to have occurred. However, to be ellective, PC
approaches generally require large amounts of historical
data to establish and train the prediction model and such
training may be computationally expensive (in terms of
memory and processor resources). This may prove a burden
in real-world deployments, where such historical data may
not be readily available and more eflicient approaches are
desired.

Existing CA approaches generally construct a classifier by
using data features carefully selected and processed or
automatically learned from a historical dataset. After being
constructed, the classifier may be applied to new data for
anomaly detection. However, existing CA approaches may
not be entirely reliable, tending to produce false alarms. To
be usable 1n 1n real-world deployments, they may need to be
deployed in conjunction with sophisticated alarm rules
designed to screen out such false alarms, which may impose
burdens.

Existing SPC methods generally define a control chart
that helps to detect an unusual event such as a very high or
low observation compared with ‘normal” process perfor-
mance. However, existing SPC methods typically require a
number of assumptions and have various limitations that
may be problematic for real-world systems. For example,
existing SPC methods are typically limited to stationary time
series data, yet in most real-world systems flows and pres-
sures vary periodically (e.g., daily, weekly, monthly, etc.).
Various attempts to address the periodicity of typical real-
world flows and pressures have mtroduced spurious anoma-
lies (i1.e., anomalies that are not in the original time series
data) which may render any eventual anomaly detection
unreliable.

A Tfurther general limitation of many existing PC
approaches, CA approaches and SPC methods 1s that they
usually fail to effectively quantitatively evaluate anomaly
cvents mto different levels of significance or importance.
Without quantitative evaluation, 1t may be unclear whether
an event requires an immediate dispatch of personnel or can
be mvestigated in the normal course of maintenance (or
potentially even 1gnored).

Accordingly, there 1s a need for more eflicient and reliable
techniques for anomaly detection and evaluation 1n water
distribution systems. It would be desirable if such tech-
niques could address some or all of the shortcomings of prior

approaches, which have hindered their deployment waith
real-world smart water distribution systems.

"y

SUMMARY

In various example embodiments, techniques are pro-
vided for eflicient and reliable anomaly detection and evalu-
ation 1n a water distribution system (e.g., a smart water
distribution system) using both flow and pressure time series
data from sensors of the system. The techniques may imple-
ment a multi-step workiflow that involves decomposing the
time series data to remove seasonality and rendering the
time series data stationary (e.g., using an improved Sea-
sonal-Trend decomposition using LOESS (STL) algorithm),
detecting outliers of the stationary time series data, classi-
ftying sensor events 1n response to tlow or pressure of
detected outliers exceeding high or low thresholds for at
least a given number of time steps, classifying anomaly
events by correlating one or more sensor events related to
flow with one or more sensor events related to pressure or by
clustering a plurality of sensor events in temporal proximity,
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and determining a quantitative score for each of the detected
anomaly events that indicates a level of significance or
importance.

Such a workiflow may intrinsically address, or may
include features that address, many of the shortcomings of
prior approaches. In contrast to existing PC approaches, it
may not require large amounts of historical data and may
avoid extensive, computationally expensive training. In con-
trast to existing CA approaches, 1t may produce less false
positives, and may not require sophisticated alarm rules to
screen out false alarms. In confrast to existing SPC
approaches, the improved decomposition utilized may 1ntro-
duce fewer spurious anomalies, rendering eventual anomaly
detection more reliable. Finally, in contrast to various exist-
ing approaches, 1t may provide eflective quantitative evalu-
ation to enable maintenance and repair personnel to be
cellectively deploved.

It should be understood that a variety of additional
features and alternative embodiments may be implemented
other than those example embodiments discussed in this
Summary. This Summary 1s intended simply as a brief
introduction to the reader for the further description which
follows and does not indicate or imply that the example
embodiments mentioned herein cover all aspects of the

disclosure or are necessary or essential aspects of the dis-
closure.

BRIEF DESCRIPTION OF THE DRAWINGS

The description below refers to the accompanying draw-
ings of example embodiments, ol which:

FIG. 1 1s a block diagram of an example computing
device that may be used with the present techniques;

FI1G. 2 1s a flow diagram of an example worktlow that may
be performed to ethiciently and reliably detect and evaluate
anomaly events 1n a water distribution system:;

FIG. 3A 1s a plot of example time series data (here
pressure data over a one-day period) that has missing data
records;

FIG. 3B 1s a plot of example time series data (here flow
data over a one-day period) that has sensor failure time steps
where flow values are constant over an extended period;

FIG. 4 1s a graph of an example decomposition of flow
measurements that may be performed as a part of the
workflow of FIG. 2;

FIG. 35 1s a plot showing an example of an improved STL
algorithm contrasted with a regular STL algorithm for use 1n
decomposing time series data (here flow measurements) to
remove seasonality; and

FIG. 6 1s a pair of graphs showing a correlated HF sensor
event and LP sensor event.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of an example computing
device 100 that may be used with the present techniques.
The computing device 100 includes at least one processor
110 coupled to a host bus 124. The processor 110 may be any
of a variety of commercially available processors. A
memory 120, such as a Random-Access Memory (RAM), 1s
also coupled to the host bus 124 via a memory controller
122. When 1n operation, the memory 120 stores executable
instructions and data that are provided to the processor 110.
An mput/output (I/0) bus 128 1s accessible to the host bust
124 via a bus controller 126. A variety of additional com-
ponents are coupled to the I/O bus 128. For example, a video
display subsystem 130 1s coupled to the I/O bus 128. The
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video display subsystem 130 may include a display screen
132 and hardware to drive the display screen. At least one
mput device 134, such as a keyboard, a touch sensor, a
touchpad, a mouse, etc., 1s also coupled to the I/O bus 128.
Storage device(s) 136, such as a hard disk drive, a solid-state
drive, or other type of persistent data store, are further
attached, and may persistently store the executable mstruc-
tions and data, which are loaded into the memory 120 when
needed. Still further, a network interface 138 1s coupled to
the I/O bus 128. The network interface 138 enables com-
munication over a computer network, such as the Internet,
between the computing device 100 and other devices, using
any of a number of well-known networking protocols. Such
communication may enable collaborative, distributed, or
remote computing with functionality spread across multiple
devices.

Working together the components of the computing
device 100 (and other devices 1n the case of collaborative,
distributed, or remote computing) may execute instructions
for a software application 140 that 1s adapted to efliciently
and reliably detect and evaluate anomaly events 1n a water
distribution system (e.g., a smart water distribution system).
The application 140 may utilize time series data 142 that
includes both flow and pressure measurements captured at
regular intervals (1.e., time steps) by sensors of the water
distribution system. Preferably the flow and pressure mea-
surements mclude measurements within the water distribu-
tion system, for example, at individual pipes, junctions,
tanks, etc., in addition the inlet of the system or DMA. The
application 140 may include a number of software modules
(or simply “modules”, including a data cleansing module
150, a data decomposition module 152, a outlier detection
module 154, a sensor event classification module 156, a
system anomaly classification module 158 an event evalu-
ation module 160, and a user interface module 162, the
operation of each which 1s discussed 1n more detail below.

The application 140 and modules 152-162 may work
together to implement a workflow. In general, the worktlow
may begin by cleaning the time series data 142 to correct
data errors. The cleaned time series data may then be
decomposed to ensure data stationarity, which allows out-
liers to be detected using data-driven analytics. The detected
outliers may be classified first into sensor events, and then
the sensor events used to classily anomaly events for the
water distribution system. Each of the anomaly events may
then be quantitatively evaluated to categorize its importance
for mvestigation by field personnel. Results may be pro-
vided by display in a user interface, storage to memory/
storage devices, or by other means.

Looking to this general workflow in more detail, FIG. 2
1s a flow diagram of an example workilow 200 that may be
performed by the application 140 and modules 152-162 to
ciiciently and reliably detect and evaluate anomaly events
in a water distribution system. At workflow step 210, the
application 140 receives time series data 142 that includes
both flow and pressure measurements captured at time steps.
The time series data 142 may be fully pre-recorded data, or
preferably built 1n real-time to include substantially current
data for the latest time step.

At worktlow step 220, the data cleansing module 150 of
the application 140 cleans the time series data 142 to correct
data errors. By its nature, raw date captured by sensors 1n a
water distribution network typically includes a number of
data errors that if unaddressed could impair effective detec-
tion and evaluation of anomaly events. These data error may
include missing time steps, duplicate time steps, irregular
time steps and sensor failure time steps. The data cleansing
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module 150 may address each data error type in a different
manner using user-configurable parameters. The user-con-
figurable parameters may include a maximum allowable
number of missing time steps, a minimuim consecutive steps
parameter, a minimum value parameter, and a maximum
value parameters, the functions of which are discussed
below. Such parameters may be configured using input
provided via the user interface module 162 or 1n other ways.

Missing time steps refers to a number of data records (1.e.,
flow and/or pressure measurements) in a period (e.g., In one
day) 1s less than the number of data records expected for the
complete period. FIG. 3A 1s a plot 300 of example time
series data (here pressure data over a one-day period) that
has missing data records. The data cleansing module 150
may address missing data records by filling in the missing
data with values from the time step from a last period (e.g.,
a last day) 1f the number of missing data records 1s less than
the user-configurable maximum allowable number of miss-
ing time steps parameter. Otherwise, the data cleansing
module 150 may remove the data records for the whole
period (e.g., whole day) in which there 1s missing data
records from the time series data 142.

Duplicate time steps refers to a data error where there are
more than one data record (i.e., flow and/or pressure mea-
surement) with the same timestamp when only a single data
record 1s expected. The data cleansing module 150 may
address missing data records by checking whether each of
the data records for the same time step have the same flow
and pressure values, and, 1f they are the same, deleting all
but one data record. If their values are different, the data
cleansing module 150 may average values of the data
records and store a single data record for the time step with
the averaged values.

Irregular time steps refers to a data error where there 1s
one or more data records (1.e., flow and/or pressure mea-
surements) with a timestamp that does not coincide with an
expected interval of the time series data. Time series data 1s
usually recorded at a fixed time interval (e.g., every 3
minutes). If there are any data records with timestamps that
do not align with this interval, they may be considered to
have an 1rregular time step. The data cleansing module 150
may address irregular time steps by generating a data record
at each expected time step where 1t 1S missing by interpo-
lating flow and pressure values from data records at adjacent
irregular time steps.

Sensor failure time steps refers to a data error where a
falled sensor 1n the water distribution network causes an
erroneous data record (1.e., flow and/or pressure measure-
ment). The erroneous data record may have an extremely
large value, an extremely small value, or a value that
“locked” to a constant over an extended period of time,
where values of such size or consistency are unlikely to
naturally occur. FIG. 3B 1s a plot 350 of example time series
data (here flow data over a one-day period) that has sensor
fallure time steps where flow measurements are constant
over an extended period. The data cleansing module 150
may address sensor failure time steps by comparing data
records to the minimum value parameters and the maximum
value parameters, and eliminating those that exceed the
bounds. The data cleansing module 150 may further com-
pare consecufive data records (1.e., flow and/or pressure
measurements) and if their values remain constant for more
than the minimum consecutive steps parameter, remove
these data records. The removed data records may be
replaced with data records from the same time step from the
last period (e.g., a last day).
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At workflow step 230, the data decomposition module
152 of the application 140 decomposes the time series data
142 to remove seasonality and render the data records (1.e.,
flow and/or pressure measurements) stationary Seasonality
refers to the presence of variations that occur at specific
regular intervals, for example, daily, weekly, or monthly, efc.
Real-world flow and pressure measurements often contains
seasonality and therefore the mean and the variance of the
dataset changes over time (i.e., 1s non--stationary). Opera-
tion of workflow step 230 may remove such changes over
time (1.e making the time series data 142 stationary).

The data decomposition module 152 may decompose a
series of original values (O) 1n the time series data 142 into
three series, including a seasonal component (S), a trend
component (T) and a remainder component (R), which may
be represented as:

O=R+5+1.

M

FIG. 4 1s a graph 400 of an example decomposition of flow
measurements that may be performed as a part of workflow
step 230 of FIG. 2.

A variety of different decomposition algorithms may be
used by the data decomposition module 152. One example
type of decomposition algorithm that may be used 1s an
autoregressive integrated moving average (ARIMA) algo-
rithm. Alternatively, an algorithm based on STL may be
employed. STL algorithms may employ locally weighted
scatterplot smoothing to smooth data using a weight v (Xx) for
any X, in the neighborhood of x, given as:

L4

(x) W(|If —-?‘f|]
VilX) = .
Ag(x)

where

(1-2£),
74 =
0 { 0, u <1

where A_(x) is distance of the q™ farthest x, from x and W
1s a tricube function. Thus, the closer X, to X the greater the
welght. Smoothing may be applied repeatedly to remove
various seasonal components. This may result in a stationary
fime series, given as:

R=0-5-1.

In some cases, STL algorithms may yield spurious
anomalies (i1.e., anomalies not in the original time series
data) in the residual component. In one embodiment, the
data decomposition module 152 may employ an improved
STL algorithm for decomposition, which replaces the trend
value with a median value (M) for the time series data 142.
An improved STL algorithm may be given as:

R=0-5-M.

FIG. 5 1s a plot 500 showing an example of an improved
STL algorithm contrasted with a regular STL algorithm for
use 1n decomposing time series data (here flow measure-
ments) to remove seasonality. As can be seen, with a regular
STL algorithm that subtracts a trend component, a breakout
(e.g., a pulse) 1s observed 1n the trend component leading to
spurious anomalies 1n the remainder component. However,
with the improved STL algorithm that subtracts a median,
the remainder component does not exhibit spurious anoma-
lies.
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At workilow step 240, the outlier detection module 154 of
the application 140 detecting outliers of the now-stationary
fime series data 142 using one or more stafistical process
control (SPC) algorithms or machine learning. In one
embodiment, a combination of four SPC algorithms 1s
employed including an x-bar algorithm, a cumulative sum
control chart (CUSUM) algorithm, an exponentially
weighted moving average (EWMA) algorithm, and a sea-
sonal hybrid-extreme student deviate (SH-ESD).

An x-bar algorithm i1s an algorithm typically used to
monitor a variable attribute 1n data. It assumes that the
attribute to be monitored can be modeled by a normally
distributed random variable. An upper control limit (UCL)
and a lower control limit (LCL) of an x-bar may be defined
as:

UCL=p+pxc

LCL=p—pXxoc

where p 1s the sample mean, & 1s standard deviation, and p
1s a confidence level coefficient (e.g., a p value of 1, 2 and
3 may approximately correspond to a confidence level of
68%, 95%, and 99.7% respectively).

A CUSUM algorithm 1s an algorithm used for monitoring
small shifts in data. It involves the calculation of a cumu-
lative sum and comparison of the cumulative sum to a
threshold value. When the value of the cumulative sum
exceeds the threshold value, a shift 1s identified. A CUSUM
algorithm may calculate a high side cumulative sum (SH)
and a low side cumulative sum (SL) of data as follows:

SH(0)=S1(0)=0
SH(j)=Max[0,5H(j—1)+X —u—0.50

SL(j)=Min[0,SL(j—1)+X,¥0.5G

where X 1s the mean of each successive subgroup j of the
data.

An EWMA algorithm 1s an algorithm used for detecting
small shifts in a process mean. It weights samples in
geometrically decreasing order so that the most recent
samples are weighted highly while the most distant samples
contribute very little. It monitors an EQMA value Z; instead
of the original data values using smoothing operations, that
may be given as:

Z=AH(1-MZ,

where A is a configured smoothing constant. An upper
control limit UCL and lower 1s control imit LCL may be
specified as:

UCL; =,u+3c:r\/(2_(1)[1 - (1 =Y

A )
LCL; = pu-30 (2_{1)[1—(1—1) ]

An SH-ESD algorithm 1s an algorithm that detects outhiers
within a univariant set of data. It assumes that the underlying
data follows a normal distribution. It 1s based on the extreme
student deviate (ESD) test, which 1dentifies anomalies by
their distance from a mean value. If one data value deviates
greatly from the mean value, it 1s very likely to be an outlier.
ESD may compute test statistics C, for the k most extreme
values 1n a dataset, as:
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Max;fl.xk — fl

Cp =
T

The test statistics are then compared with a critical value v,
given as:

(N =&t v—i—1
NV =k =142, YN —k+ 1)

Yk

where k 1s the number of most extreme values in the data,
N 1s the total number of data values and t,, 5., is the upper
critical value of the t-distribution test at p percentage point
with (N—k—1) degrees of freedom. If a value 1s determined
to indeed be anomalous based on the comparison, it 1s
removed from the data, and the critical value 1s recalculated
for the remaining data.

At workilow step 250, the sensor event classification
module 156 of the application 140, classifies sensor events
1in response to flow or pressure of detected outliers exceed-
ing high or low thresholds for at least a given number of time
steps. The term “sensor event” refers to an anomalous event
detected by an individual sensor. A sensor event may be the
result of normal system operation (e.g., a result of operation
of control facilities such as valves, pumps, etc.) or may be
part of a true anomaly event, where there 1s a deviation from
the normal or intended operation of the water distribution
system.

As part of workilow step 250, the sensor event classifi-
cation module 156 may i1dentify high flow (HF) sensor
events and high pressure (HP) sensor events by comparing
flow and pressure outliers, respectively, to high flow and
high-pressure thresholds, and may idenfify low flow (LF)
sensor events and low pressure (LLP) sensor events by
comparing flow and pressure outliers, respectively, to low
flow and low-pressure thresholds. Outliers may be classified
as a sensor event 1f a temporal proximity criteria 1s met, for
example, that consecutive outliers occur over at least a
minimum number of fime steps (e.g., occur over 6 consecu-
tive time steps yielding 30 minutes with S5-minute time
steps). This may exclude 1solated outliers. Adjacent sensor
events may be combined 1nto one sensor event if a time gap
between the two sensor events 1s less than a predetermined
time gap (e.g., 5 minutes). This may prevent one actual
sensor event from being divided into multiple sensor events.

At workilow step 260, the system anomaly classification
module 158 of the application 140 classifies anomaly events
by correlating one or more sensor events related to flow
(e.g., HF sensor events) with one or more sensor events
related to pressure (e.g., LF sensor events) or clustering a
plurality of sensor events (e.g., including HF sensor events
and LF sensor events) in temporal proximity.

It should be remembered that a sensor event 1dentified by
only one flow sensor, or only one pressure sensor, may not
necessarlly mean there 1s a true anomaly event. A true
anomaly event 1s highly likely to cause an increased system
inflow and pressure drop 1in some portion of the water
distribution system, which typically will be detected by
multiple sensors, including both flow sensors and pressure
sensors, in that portion. Using this, the system anomaly
classification module 158 may classifies anomaly events by
correlating one or more sensor events related to flow (e.g.,
HF sensor events) with one or more sensor events related to
pressure (e.g., LP sensor events) within a same time window,



US 11,960,254 Bl

9

and by clustering HF sensor events and/or LP sensor events
that occur within temporal proximity.

FIG. 6 1s a pair of graphs 600 showing a correlated HF
sensor event and LLP sensor event. As can be observed, flow
spikes and pressure drops within an approximately half-hour
time window. While FIG. 6 shows a single correlated HF
sensor event and LLP sensor event, in a real water distribution
system there may be many correlated HF sensor events and
LP sensor events. The more correlated HF sensor events and
LP sensor events 1n the same time window, the greater the
confidence there 1s a true anomaly event. The system
anomaly classification module 158 may classify an anomaly
event when confidence exceeds a confidence threshold.

The anomaly classification module 158 may alternatively
rely on clustering a plurality of sensor events (including HF
sensor events and/or LLP sensor events) 1n temporal proxim-
ity. Such clustering may be regardless of specific correlation
between HF sensor events and LP sensor events. Assume
Qf(i) represent an HF sensor event at a flow sensor f at time
step 1 and P,(j) represents a LLP sensor event at a pressure
sensor k at time step j. All the HF sensor events and LP
sensor events may be treated together. An anomaly event 1s
then defined by a cluster of HF sensor events and/or LP
sensor events within temporal proximity. Temporal proxim-
1ty may be defined by comparing a time difference between
adjacent sensor events (HF or LLP) to a configured time gap
At, which may be a few time steps. For example, if the time
series data 1s 1n time steps of 15 minutes, time gap At may
be specified as 2- or 3-time steps (i.e., 30 or 45 minutes). The
fime gap value may be fine-tuned to improve accuracy of
anomaly event classification by comparing detected
anomaly events with field reported data.

At workflow step 270, the evaluation module 160 of the
application 140 determines a quanfitative score for each of
the detected anomaly events that indicates a level of sig-
nificance or importance. For example, each anomaly event
may be evaluated with a score based on the density of sensor
events 1n the anomaly event and the spread of the sensor
events. As used herein “spread of the sensor events” for an
anomaly event refers to a duration of the anomaly event, for
example, the time difference between an earliest 1dentified
sensor event of the anomaly event and a last identified sensor
event of the anomaly event. Such duration may be noted as
AT, for an anomaly event n. As used herein “density of
sensor events” for an anomaly event refers to a ratio of a
total number of sensor events to a number of data records
with the anomaly event’s duration. For example, a HF
sensor event density for event n within duration AT, for an
anomaly event n may be given as:

Nqou (1)
Np(n) X Ny

D, (n) =

where N (n) 1s the total number of flow data records for the
anomaly event n, N, 1s the number of flow sensors and
Ng_ .(n) 1s the number of HF sensor events for anomaly
event n within duration AT, . Similarly, a LP sensor event
density for event n within duration AT for an anomaly event
n may be given as:

N pour(#)
Np(n) X Nps

Dpy(n) =
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where Np_ (n) 1s the total number of LP sensor events
among all pressure sensors, N (n) is the number of pressure
data records per pressure sensor over the duration AT, and
N, 1s the number of pressure sensors.

Both D_(n) and D (n) typically will be in a range between
0 and 1. The score S for an anomaly event n may be given
as:

AT,
AT,

S(n) = [D;(n)Xw,; + D,(n) Xw,]

where w_ and w, are weighting coefficients and AT, 1s a
minimum effective event spread (e.g., in minutes or hours)
over which an anomaly event 1s highly trusted. The weight-
ing coelfficients may be either user-configured respectively
for flow and pressure contributions or calculated as average
values of HF and LP sensor events within a cluster. The
minimum effective event spread AT, may be determined
based on data records of historical events for a water
distribution system. In general, a true anomaly event 1s
expected to generate a cluster of outhiers over an extended
period of time (e.g., at least 60 minutes). The greater the
minimum effective event spread, the smaller the score for
the anomaly event.

The value of minimum effective event spread may be
adjusted to produce a meaningiul score. As may be observed
in the equation above, the score S of an anomaly event may
be proportional to the outhier density, the weighted contri-
bution of HF and LP sensor events, and the ratio of the event
spread to the minimum effective event spread. When the
event duration 1s less than the minimum effective event
spread, the score will be less than 1; otherwise, the score will
be greater than one. A greater sensor event density with
longer duration usually leads to a more likely true positive
and/or more sever anomaly event than those with sparse
sensor density 1n a shorter duration. Therefore, the greater
the score, the more significant or important the anomaly
event.

Although the event score as described above can be used
as a good quantitative criteria for indicating whether the
event requires an immediate dispatch of personnel or can be
investigated 1n the normal course of maintenance (or poten-
tially even 1gnored), it may have some lhmitations. For
example, 1t may not capture the importance of repeated
anomaly events within a time window (e.g., within a 48-hour
time window). In general, the more anomaly events detected
in the time window prior to a current anomaly event, the
more likely the current anomaly event 1s a true and signifi-
cant anomaly event. One way to quanfify the impact of
anomaly events prior to a currently detected anomaly event
1s to calculate an accumulative score. For example, for
anomaly event n an accumulative score AccuS may be
calculated as:

AceuS(n) =

where S(m) 1s an individual score of anomaly event m
detected prior to a current anomaly event n, and 1 1s a number
of anomaly events detected within a prescribed time window
before event n.

At workflow step 280, the application 140 provides at
least the detected anomaly events and their respective quan-
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titative scores. For example, the user iterface module 162
of the application 140 may display an indication of each
detected anomaly event and 1ts score on the display screen
132. Alternatively, or additionally, the application 140 may
store an indication of each detected anomaly event and 1ts
score to memory 120/storage device 136 for later use by the
application 140, or by other applications executing on the
computing device 100 or other devices 1n communication
therewith.

It should be understood that various adaptations and
modifications may be readily made to what 1s described
above to suit various implementations and environments.
While 1t 1s discussed above that many aspects of the tech-
niques may be implemented by specific software modules
executing on hardware, i1t should be understood that some or
all of the techniques may also be implemented by different
software on different hardware. In addition to general-
purpose computing devices, the hardware may include spe-
cially configured logic circuits and/or other types of hard-
ware components. Above all, it should be understood that
the above descriptions are meant to be taken only by way of
example.

What 1s claimed 1s:

1. A method for detecting and evaluating anomaly events
in a water distribution system, comprising:

receiving, by an application executing on one or more

computing devices, time series data that includes both
flow and pressure measurements at a plurality of time
steps from one or more sensors of the water distribution
system;

decomposing, by a decomposition algorithm of the appli-

cation, the time series data to remove seasonality and
render the time series data stationary;

detecting, by one or more statistical process control (SPC)

algorithms of the application, outliers of the stationary
time series data;

classitying, by the application, sensor events 1n response

to flow or pressure of detected outliers exceeding high
or low thresholds for at least a given number of time
steps:
classitving, by the application, anomaly events by corre-
lating one or more sensor events related to tlow with
one or more sensor events related to pressure;

determining, by the application, a quantitative score for
cach of the detected anomaly events that indicates a
level of significance or importance; and

providing, by the application, at least the detected

anomaly events and their respective quantitative scores.

2. The method of claim 1, turther comprising;:

cleaning, by the application, the time series data to correct

data errors including at least one data error selected
from the group consisting of missing time steps, dupli-
cate time steps, irregular time steps and sensor failure
time steps.

3. The method of claam 1, wherein the decomposition
algorithm 1s an 1mproved Seasonal-Trend decomposition
using LOESS (STL) algorithm that subtracts a seasonal
component and a median value for the time series data from
original values of the time series data.

4. The method of claim 1, wherein the one or more SPC
algorithms comprise an x-bar algorithm.

5. The method of claim 1, wherein the one or more SPC
algorithms comprise a cumulative sum control chart
(CUSUM) algorithm.

6. The method of claim 1, wherein the one or more SPC
algorithms comprise an exponentially weighted moving

average (EWMA) algorithm.
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7. The method of claim 1, wherein the one or more SPC
algorithms comprise a seasonal hybrid-extreme student

deviate (SH-ESD) algorithm.

8. The method of claim 1, wherein classilying sensor
events further comprises:

identifying at least ligh flow (HF) sensor events by

comparing flow measurements to a HF threshold and
identifying low pressure (LP) sensor events by com-
paring pressure measurements to a LP threshold.

9. The method of claim 1, wherein the classifying sensor
events further comprises:

combining two sensor events mnto a single sensor event

when the two sensor events are associated with time
steps less than a predetermined time gap.

10. The method of claam 1, wherein the classifying
anomaly events correlates one or more high flow (HF)
sensor events with one or more low pressure (LP) sensor
events.

11. The method of claim 1, wherein the determining the
quantitative score further comprises:

calculating the quantitative score based on a density of

sensor events for the anomaly event and a spread of the
sensor events for the anomaly event.
12. A non-transitory electronic device readable medium
having instructions stored thereon that when executed on
one or more processors of one or more electronic devices are
operable to:
recerve time series data that includes both flow and
pressure measurements at a plurality of time steps from
one or more sensors ol a water distribution system:;

detect, using a statistical process control (SPC) algorithm,
outliers of the time series data;

classily sensor events 1n response to flow or pressure of

detected outliers exceeding high or low thresholds for
at least a given number of time steps;

classity anomaly events by correlating one or more sensor

events related to flow with one or more sensor events
related to pressure;

determine a quantitative score for each of the detected

anomaly events that indicates a level of significance or
importance based on a density of sensor events for the
anomaly event and a spread of the sensor events for the
anomaly event; and

provide at least the detected anomaly events and their

respective quantitative scores.

13. The non-transitory electronic device readable medium

of claim 12, wherein the instructions when executed are
turther operable to:

clean the time series data to correct data errors including

at least one data error selected from the group consist-
ing ol missing time steps, duplicate time steps, 1rregular
time steps and sensor failure time steps.

14. The non-transitory electronic device readable medium
of claim 12, wherein the instructions when executed are
turther operable to:

decompose, using a decomposition algorithm, the time

series data to remove seasonality and render the time
series data stationary, wherein the decomposition algo-
rithm 1s an improved Seasonal-Trend decomposition
using LOESS (STL) algorithm that subtracts a seasonal
component and a median value for the time series data
from original values of the time series data.

15. The non-transitory electronic device readable medium
of claim 12, wherein SPC algorithm 1s selected from the
group consisting of an x-bar algorithm, a cumulative sum
control chart (CUSUM) algorithm, an exponentially
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weighted moving average (EWMA) algorithm and a sea-
sonal hybrid-extreme student deviate (SH-ESD) algorithm.

16. The non-transitory electronic device readable medium
of claim 12, wherein the instructions when executed are
turther operable to:

identifying at least high tflow (HF) sensor events by

comparing flow measurements to a HF threshold and
identifying low pressure (LP) sensor events by com-
paring pressure measurements to a LP threshold.

17. The non-transitory electronic device readable medium
of claim 12, wherein the classification of anomaly events
correlates one or more high tlow (HF) sensor events with
one or more low pressure (LP) sensor events or clusters one
or more HF sensor events and one or more LP sensor events
that occur within a time window.

18. The non-transitory electronic device readable medium
of claim 12, wherein the instructions when executed are
turther operable to:

calculate the quantitative score based on a density of

sensor events for the anomaly event and a spread of the
sensor events for the anomaly event.
19. A method for detecting and evaluating anomaly events
in a water distribution system, comprising:
using one or more sensors of the water distribution system
to collect time series data that includes both tlow and
pressure measurements at a plurality of time steps;

decomposing, by a decomposition algorithm of an appli-
cation executing on one or more computing devices,
the time series data to remove seasonality and render
the time series data stationary;

detecting, by one or more statistical process control (SPC)

algorithms of the application, outliers of the stationary
time series data;

classitying, by the application, sensor events 1n response

to flow or pressure of detected outliers exceeding high
or low thresholds for at least a given number of time
steps;
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classifying, by the application, anomaly events by corre-
lating one or more sensor events related to flow with
one or more sensor events related to pressure; and

based on the classification of at least one anomaly event,
deploying maintenance or repair personnel to the at
least one anomaly event.

20. The method of claim 19, wherein classifying sensor
events further comprises:

identifying, by the application, at least high tlow (HF)

sensor events by comparing tlow measurements to a HF
threshold and identifying low pressure (LP) sensor
events by comparing pressure measurements to a LP
threshold.

21. The method of claim 19, wherein the classiiying
anomaly events correlates one or more high flow (HF)
sensor events with one or more low pressure (LP) sensor
events.

22. The method of claim 19, further comprising;

cleaning, by the application, the time series data to correct

data errors including at least one data error selected
from the group consisting of missing time steps, dupli-
cate time steps, irregular time steps and sensor failure
time steps.

23. The method of claim 19, wherein the decomposition
algorithm 1s an mmproved Seasonal-Trend decomposition
using LOESS (STL) algorithm that subtracts a seasonal

component and a median value for the time series data from
original values of the time sernies data.

24. The method of claim 19 wherein the one or more SPC
algorithms comprise an x-bar algorithm, a cumulative sum
control chart (CUSUM) algorithm, an exponentially
weilghted moving average (EWMA) algorithm or a seasonal
hybrid-extreme student deviate (SH-ESD) algorithm.
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