12 United States Patent
Wright et al.

US011979499B2

US 11,979,499 B2
May 7, 2024

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR MINING ON
A PROOF-OF-WORK BLOCKCHAIN

NETWORK
(71) Applicant: nChain Licensing AG, Zug (CH)

(72) Inventors: Craig Steven Wright, London (GB);
John Fletcher, London (GB);
Alexander Tennyson MacKay, L.ondon

(GB)
(73) Assignee: nChain Licensing AG, Zug (CH)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 314 days.
(21) Appl. No.: 17/610,390

(22) PCT Filed: Apr. 29, 2020

(86) PCT No.: PCT/IB2020/054033
§ 371 (c)(1),
(2) Date: Nov. 10, 2021

(87) PCT Pub. No.: W02020/229925
PCT Pub. Date: Nov. 19, 2020

(52) U.S. CL
CPC oo HO4L 9/302 (2013.01); GOGF 21/64

(2013.01); HO4L 9/3239 (2013.01); HO4L 9/50
(2022.05); HO4L 2209/46 (2013.01)

(358) Field of Classification Search
CpPC ... GO6F 21/64; HO4L 9/302; HO4L 9/3239;
HO4L 2209/46; HO4L 9/50

(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

9,495,668 Bl ™* 11/2016 Juelscocoooovvinnnni... HO4L 9/50
11,580,321 B2* 2/2023 Wentzcoooenee. GO6F 9/465
(Continued)

FOREIGN PATENT DOCUMENTS

EP 1078491 B1 * 4/2008 G06Q 20/382

OTHER PUBLICATTONS

PC'T/IB2020/054033 International Search Report dated Jul. 7, 2020.
(Continued)

Primary Examiner — Samson B Lemma
(74) Attorney, Agent, or Firm — Messner Reeves LLP

(57) ABSTRACT

Embodiments of the present disclosure provides protocols,

(65) Prior Publication Data methods and systems which provides advantages such as the
US 2022/0224534 A1l Tul. 14. 2027 resistance of centralisation of mining on a blockchain net-
j work, preferably a Proof-of-Work blockchain. A method 1n
(30) Foreign Application Priority Data accordance with an embodiment may comprise generating a
plurality of non-parallelisable challenges (or “puzzles”) and
May 16, 2019 (GB) oo 1906893 allocating one ot said plurality of challenges to each miner
Aug. 22,2019 (GB) oo 1912070 ~ on the network. The miner uses an inherently sequential
(non-parallelisable) algorithm to find a solution to his allo-
(51) Int. CL cated challenge. The challenges are generated by a commuit-
HO4L 9/30 (2006.01) tee of nodes, and a new set of challenges 1s generated for
GOGF 21/64 (2013.01) each block.
(Continued) 19 Claims, 2 Drawing Sheets
Select committee of trusted, independent
computing nodes Step |
Each trusted node in the committee generates
a non-parallelisable, multiparty computational Step 2
challenge
Distribute the challenges to the miners on a
PoW blockchain netwark such that each Step 3
miner receives a different challenge
Each miner uses an inherently sequential
algorithm to attempt to find a solution to the STED 4
challenge they have received
When a miner has found a solution to their
challenge, return to step 1 and select a new Step 5

far next block

committeg, or step 2 if using same committee

US 11,979,499 B2
Page 2

(51) Int. CL

HO4L 9/32 (2006.01)
HO4L 9/00 (2022.01)
(58) Field of Classification Search
USPC e, 713/168

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

11,700,183 B2* 7/2023 Jakobsson G06Q 20/065
709/224

2019/0279210 AL* 9/2019 Penooeoevvvvvnnnnnn, HO4L 9/3239
2019/0305968 Al* 10/2019 Versteeg HO4L 9/3271
2019/0370793 Al* 12/2019 Zhucceeenin G06Q 20/06
2020/0201679 Al* 6/2020 Wentz HO4L 63/1433

OTHER PUBLICATIONS

Henning Kopp et al: “uMine: A Blockchain Based on Human
Miners : 20th International Conference, ICICS 2018, Lille, France,

Oct. 29-31, 2018, Proceedings” In: “12th European Conference on

Computer Vision, ECCV 20127, Jan. 1, 2018 (Jan. 1, 2018),
Springer Berlin Heidelberg, Berlin, Heidelberg 031559, XP055707223,

ISSN: 0302-9743 ISBN: 978-3-642-36741-0, vol. 11149, pp. 20-38.

Naomu Farley et al: “BADGER—Blockchain Auditable Distributed
(RSA) key GEncRation”, TACR, International Association for
Cryptologic, Research, vol. 20190205:174940 Feb. 1, 2019 (Feb. 1,
2019), pp. 1-16, XP061031784, http://eprint.iacr.org/2019/104.pdf.

Isra Mohamed Ali et al: “Foundations, Properties, and Security

Applications of Puzzles: A Survey”, arxiv.org, Cornell University
Library, 201 Olin Library, Cornell University Ithaca, NY 14853,

Apr. 23, 2019.

Yves Igor Jerschow et al: “Non-Parallelizable and Non-Interactive
Client Puzzles from Modular Square Roots”, Availability, Reliabil-
ity and Security (ARES), 2011 Sixth International Conference On,
IEEE, Aug. 22, 2011 (Aug. 22, 2011), pp. 135-142.

UKIPO Combined Search and Examination Report for Application
No. GB1912070.8 dated Feb. 10, 2020.

Kopp, Henning et al., “uMine: A Blockchain Based on Human
Miners”, 20th International Conference, ICICS 2018, Lille, France,
Oct. 29-31, 2018, Proceedings, Jan. 1, 2018, pp. 25-32, 16th
European Conference—Computer Vision, Cornell University.

* cited by examiner

U.S. Patent May 7, 2024 Sheet 1 of 2 US 11,979,499 B2

Figure 1

Select committee of trusted, independent
| Step 1
computing nodes

Each trusted node in the committee generates

a non-parallelisable, multiparty computational Step 2

challenge

v
Distribute the challenges to the miners on a

PoW blockchain network such that each Step 3

miner receives a different challenge

\ 4
Each miner uses an inherently sequential

algorithm to attempt to find a solution to the Step 4

challenge they have received

v
When a miner has found a solution to their

challenge, return to step 1 and select a new Step 5
committee, or step 2 if using same committee

for next block

US 11,979,499 B2

Sheet 2 of 2

May 7, 2024

U.S. Patent

208

IRV SO0IARC INAING
S2RELITFIUL 15

SOUAS(] WU
SLBLAIY ISR W2 L07

SLEC

B S78

SOBLIAILH
HIOAGN

WISBASONG SN

LUSISASUNS AICIBIA;

A E

Sl o

G e

%YL

dnspsAsqne obeiois |

POEC

US 11,979,499 B2

1

SYSTEMS AND METHODS FOR MINING ON
A PROOF-OF-WORK BLOCKCHAIN
NETWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s the U.S. National Stage of Interna-
tional Application No. PCT/IB2020/054033 filed on Apr. 29,
2020, which claims the benefit of United Kingdom Patent
Application No. 1906893.1, filed on May 16, 2019, and
United Kingdom Patent Application No. 1912070.8, filed on
Aug. 22, 2019, the contents of which are incorporated herein
by reference 1n their entireties.

TECHNICAL FIELD

This disclosure relates generally to improved blockchain
networks and associated protocols, including methods and
systems for improving processing efliciency, reliability,
security and resource requirements for computational tasks
performed within a blockchain network. In particular, it
relates to a blockchain network that implements a Proot-oi-
Work protocol.

BACKGROUND

In this document we use the term ‘blockchain’ to include
all forms of electronic, computer-based, distributed ledgers.
These include consensus-based blockchain and transaction-
chain technologies, permissioned and un-permissioned led-
gers, shared ledgers, public and private blockchains, and
variations thereol. The most widely known application of
blockchain technology 1s the Bitcoin ledger, although other
blockchain implementations have been proposed and devel-
oped. While Bitcoin may be referred to heremn for the
purpose of convenience and 1illustration, it should be noted
that the disclosure 1s not limited to use with the Bitcoin
blockchain and alternative blockchain implementations and
protocols fall within the scope of the present disclosure. The
term “‘user” may refer herein to a human or a processor-
based resource. The term “Bitcoin” 1s used herein to include
any version or variation that derives from or 1s based on the
Bitcoin protocol.

A blockchain 1s a peer-to-peer, electronic ledger which 1s
implemented as a computer-based decentralised, distributed
system made up of blocks which 1 turn are made up of
transactions. Each transaction 1s a data structure that encodes
the transier of control of a digital asset/resource between
participants 1n the blockchain system, and includes at least
one 1mput and at least one output. Each block contains a hash
of the previous block to that blocks become chained together
to create a permanent, unalterable record of all transactions
which have been written to the blockchain since 1ts incep-
tion. Transactions contain small programs known as scripts
embedded 1nto their inputs and outputs, which specity how
and by whom the outputs of the transactions can be
accessed. On the Bitcoin platform, these scripts are written
using a stack-based scripting language.

In order for a transaction to be written to the blockchain,
it must be “validated”. Nodes on the network (“miners”)
ensure that each transaction 1s valid, with ivalid transac-
tions being rejected from the network. Software clients
installed on the nodes perform this validation work on an
unspent transaction by checking that 1t conforms to the
blockchain’s protocol rules and also by executing the lock-
ing and corresponding unlocking scripts. If execution of the

10

15

20

25

30

35

40

45

50

55

60

65

2

locking and unlocking scripts evaluate to TRUE, the trans-
action 1s valid. Thus, 1n order for a transaction to be written
to the blockchain, 1t must be 1) validated by the first node that
recerves the transaction—il the transaction 1s validated, the
mining node relays 1t to the other nodes 1n the network; and
1) added to a new block built by a miner; and 111) mined, 1.e.
added to the public ledger of past transactions.

In order to build new blocks, the miners compete by
performing resource-intensive work with the aim of being
the first to find a solution (proof of work, also known as a
“PoW” or “nonce”) to a computation (puzzle). The difliculty
of the puzzle can be adjusted over time to influence the rate
at which new blocks are added to the blockchain. In Bitcoin,
miners use the SHA256 hashing algorithm to find a PoW
which, when hashed, produces a hash value that 1s lower
than or equal to the current difhculty level set by the network
protocol.

If a miner 1s the first to find the PoW to the current puzzle,
that miner generates a new block which 1s then broadcast to
the other miners on the network. The new block must
contain the verifiable PoW 11 the other miners are to accept
it as valid. Thus, mining provides a consensus mechanism
which ensures that nodes on the network are synchronised
and 1n agreement as to the legitimate and current state of the
blockchain. It also protects against certain types of potential
network attack, providing security for the network.

In the early days of Bitcoin, the computational require-
ments of mining were suiliciently low that miners could use
general purpose computers comprising standard CPUSs.
However, a miner with a more powerful computer has a
competitive advantage over a miner with a less powerful
one. This incentive, combined with an historical increase in
puzzle difliculty, has resulted 1n widespread use of Appli-
cation-Specific Integrated Circuit (ASIC) mining devices.
Moreover, groups of ASIC devices can be linked to share the
work mvolved 1 finding the PoW solution. In such cases,
different machines can be used to try diflerent PoW nonces
or ranges thereof. Thus, the mining algorithm can be paral-
lelised across devices.

However, the more powertul devices are more expensive
and require more energy for operation and cooling. Some
have also argued that a hardware 1nequality promotes poten-
tial centralisation of mining power within the network,
leading to possible drawbacks or vulnerabilities. These
concerns have prompted interest in the development of
“ASIC-resistant” mimng solutions. However, proposed
solutions involve modification of the PoW algorithm to
change the collision-resistant SHA256 hash algorithm to
so-called ‘bandwidth-hard’ functions, with limited or
debateable success.

Thus, there 1s a need to solve, amongst others, the
technical challenge of how to preserve the consensus mecha-
nism and security provided by competing nodes on a block-
chain network while reducing the cost, energy usage and
computational resources required, and preserving the advan-
tages of a decentralised network.

The present disclosure addresses at least these technical
concerns by providing aspects and embodiments which
comprise non-parallelised mining (NPM) techniques, hard-
ware and software arrangements, networking technologies
and methods and combinations thereof that use a non-
parallelisable consensus mechanism. The disclosure may
use an inherently sequential algorithm to provide security
for, and establish consensus on, the state of a blockchain.

Herein, we use the term “sequential algorithm” to refer to
an algorithm which has to be executed in sequence, from
start to finish, without other processing executing in parallel.

US 11,979,499 B2

3

Examples include iterative numerical methods such as New-
ton’s method (Lipson, John D. “Newton’s method: a great

algebraic algornithm.” Proceedings of the thivd ACM sympo-
sium on Symbolic and algebraic computation. ACM, 1976.)
and algorithms that can be expressed mathematically using
a recursive formula.

The term “inherently sequential” (or “non-parallelisable™)
algorithm 1s used herein to refer to a sequential algorithm
that cannot be optimized using parallelisable routines/sub-
routines. It should be noted that the phrase has not been
rigorously defined within the technical field, although the
definition used herein 1s compatible with the mtuitive usage
of the term and definitions that exist in the literature (Green-
law, Raymond. “A model classiiying algorithms as inher-
ently sequential with applications to graph searching.” Infor-
mation and Computation 97.2 (1992): 133-149).

It should also be noted that the terms “computational
challenge” and “challenge” are known within the technical
field, and will be readily understood by the person skilled 1n
the art. The “challenge” can also be known as a “puzzle”
within the art.

SUMMARY

Embodiments of the present disclosure provide computer-
implemented protocols, methods and systems for use with or
on a blockchain network. The blockchain network imple-
ments a Proof-of-work (PoW) blockchain protocol. This
could be a blockchain protocol such as, for example, a
version of the Bitcoin protocol. However, other blockchain
protocols and implementations will also fall within the scope
of the present disclosure.

A method 1n accordance with one or more embodiments
may comprise generating a plurality of non-parallelisable
challenges (or “puzzles”) and allocating each one of said
plurality of challenges to a respective miner on the network.
Thus, preferably, the challenges are allocated such that each
miner receives a different challenge from the other miners.
The allocation can be performed 1n any suitable manner,
such as, for example, selecting a node at random as the
recipient for a given challenge from the plurality of chal-
lenges, although other allocation methods may be used. The
challenges may be collision resistant 1n that there 1s a high
probability of each challenge being unique within the plu-
rality. Preferably, each miner then attempts to solve their
allocated challenge. They may add data or mput to the
challenge such that the solution 1s unique among the solu-
tions to the plurality of challenges.

In some embodiments, the generation of at least one of the
multiparty computational challenges and/or further multi-
party computational challenges comprises the calculation of
an output to an operation which uses a random or pseudo-
random mnput. Additionally, or alternatively, the generation
of at least one of the multiparty computational challenges
may comprise the generation of an RSA key pairr.

Preferably, the mining node has to use an inherently
sequential (non-parallelisable) algorithm 1n order to find a
solution to its allocated challenge. The imnherently sequential
algorithm may comprise at least one of the following
operations: a recursive operation; a modular exponentiation;
and/or a repeated squaring operation. Such algorithms com-
prise a set of predetermined steps which must be executed to
arrive at a result. Thus, embodiments of the disclosure
diverge from known PoW arrangements in which the miners
simply repeat a hashing function until a solution 1s arrived
at, without the requirement that they execute a predeter-
mined set of steps or operations. The inherently sequential

10

15

20

25

30

35

40

45

50

55

60

65

4

algorithm may require the output of one operation to be used
as mput to a subsequent operation in order for a result
(solution) to be generated.

Preferably, the challenges are generated by a commiuttee of
nodes, and a new set of challenges 1s generated for each
block. There may be 3 or more nodes, each being a trusted
entity. The nodes are independent from one another in that
they cannot collude. Thus, a cycle or loop may be performed
wherein, for each cycle, a plurality of further (new) multi-
party computational challenges in generated. Each new set
of challenges 1s distributed across the miners at the start of
cach cycle. Thus, each miner may receive a new challenge
at the start of each cycle. The cycle may be repeated so that
new challenges are allocated to the miming nodes. Prefer-
ably, the cycle 1s repeated for each new block that 1s

to be added to the blockchain. Thus, when one of the
mining nodes has found a solution to 1ts allocated challenge
during a previous cycle (1.e. they have provided a prooi-oi-
work which allows them to mine the next block of transac-
tions), a new set ol challenges 1s generated and the cycle
begins again.

Preferably, generation of the plurality of multiparty com-
putational challenges and/or the plurality of further multi-
party computational challenges 1s performed, at least 1n part,
by a plurality of computer-based entities. This may be a
subset of enfities selected from a set/larger plurality of
computer-based entities. In other words, a committee of
nodes may be used to generate the challenges. In accordance
with one more embodiments, the committee may be a sub set
of the mining nodes on the network. In other embodiments,
only some or none of the entities that perform the challenge
generation may be mining nodes. In some embodiments, the
subset of computer-based entities 1s selected from the plu-
rality of computer-based entities by using a process that 1s
random or pseudo-random.

In one or more embodiments, the plurality of computer-
based entities which generates the challenges may be re-
selected from a/the larger plurality of computer-based enti-
ties at a pre-determined time. This time may be based on (or
influenced by) the start of a cycle as described above.

Advantageously, embodiments of the disclosure mvolve
the allocation and/or distribution of an inherently sequential
algorithm that 1s unique to each miner (rather than all miners
attempting to be the first to solve the same common, shared
problem). Thus, the present disclosure adopts an entirely
different, opposing approach to mining compared to the
prior art. This new approach provides a random variance
between the problems that the miners are attempting to
solve. This random variance may be provided, for example,
by the random output of a hash function, 1n which the mput
varies and 1s randomly generated. This means that 1t 1s
difficult to predict, and for every new block the miners have
to find a solution to their newly allocated problem by
repeating the steps of the sequential algorithm. The number
ol iterations required will vary between the set of miners.
This means that it may be possible to more reliably establish
which miner has earned the right to mine the next block. In
contrast, the existing approach means that the miner with a
faster clock speed gains an advantage. Thus, embodiments
of the disclosure provide a significant deviation from the
conventional PoW blockchain mining approach. An
improved blockchain network and associated protocol is,
therefore, provided. Security of the blockchain network 1s
preserved while efliciency 1s enhanced.

These and other aspects of the present invention will be
apparent from and elucidated with reference to, the embodi-
ments described hereimn. An embodiment of the present

US 11,979,499 B2

S

disclosure will now be described, by way of example only,
and with reference to the accompany drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flowchart illustrating an embodiment of the
present disclosure.

FIG. 2 1s a schematic diagram illustrates a computing
environment 1n which various embodiments can be 1mple-
mented.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Embodiments of the present disclosure utilize a mining
puzzle which comprises a ‘trap-door’ computation with the
following characteristics:

1. Can be performed quickly, i1if some secret information

1S known;

2. Requires a configurable time to perform, if the solver

does not know some secret information.

As disclosed in Rivest, Ronald L., Adi Shamir, and David

A. Wagner “Time-lock puzzles and timed-release crypto”
(1996)—herein after “Rivest et al—the ‘trap door’ could be
knowledge of an RSA private key, or at least the ability to
compute two independent values using the private key.

In accordance with one or more preferred embodiments of
the present disclosure we generate a new puzzle for each
miner and for each block, via a multi-party computation
(MPC) between a committee of agents (nodes). In some
embodiments, the committee comprises a subset of eligible
miners which 1s selected 1n a random or pseudo-random
fashion from the plurality of mining nodes on the blockchain
network. Shares i1n the randomly generated RSA modulus
are held by committee members such that the secret keys
corresponding to the puzzles for a given block 1s not known
to anyone (until the block i1s confirmed). In one or more
embodiments, the committee and/or secret keys change after
each block.

This 1s 1llustrated in FIG. 1, in which a committee of
trusted, independent nodes (eg miners) 1s selected at step 1.
At step 2, each node in the committee generates a non-
parallelisable computational challenge. This challenge has
to be solved using a non-parallelisable, inherently sequential
algorithm. At step 3, each miner receives a challenge. Thus,
the miners seek to find a solution to their own problem,
which they do at step 4. When a miner has found a solution
to their challenge, the cycle repeats for each block that 1s
mined into the blockchain.

Components of an arrangement 1n accordance with the
present disclosure comprise:

1. a committee of independent miners (See (Gilad, Yossi,
et al. “Algorand: Scaling byzantine agreements for
croptocurrencies” Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017)

2. Multiparty primes computation (See Algesheimer, Joy,
Camenisch, Jan and Shoup, Victor, Efficient Computa-
tion Modulo a Shared Secret with Application to the
Generation of Shared Safe-Prime Products [Online];
and Boneh, Dan, and Matthew Franklin, “Efficient
generation of shared RSA keys” Annual International
Cryptology Conference, Springer, Berlin, Heidelberg,
1997)

. Hash functions as pseudorandom number generators
4. Time-lock puzzles based on repeated squaring (See
Rivest et al)

(o

10

15

20

25

30

35

40

45

50

35

60

65

6

5. MPC to verify solutions block (See Algesheimer, Joy,
Camenisch, Jan and Shoup, Victor “Efficient Compu-
tation Modulo a Shared Secret with Application to the
Generation of Shared Safe-Prime Products” [Online])

Mining Algorithms

Any mining algorithm, non-parallelisable or otherwise,
fundamentally must adhere to the following properties 1if it
1s to be used to achieve consensus on the state of a
blockchain:

Property 1: The process of completing the mining algo-
rithm, by generating a valid proof of computation C,
must take a sufficiently long time.

Property 2: Given a candidate proof of computation C, it
must be possible to verify that C 1s a valid proof of
computation in a much shorter time than taken to
generate a valid C.

In general, there are two broad ways in which we can have

a mining algorithm achieve the paradigm defined by these
properties: by using a trap-door mining function, or by using
time-based constraints that observes both above properties.

Trap-Door Mining Function

In general, a good one-way trap-door function will be
difficult to compute but will be easy to verily when pre-
sented with some additional information and can therefore
be mapped to a mining process that has both properties one
and two.

For example, in the Rabin Cryptosystem a public key
n=p-q 1s generated from a private key (p, q) where p, q are
both primes. Calculating a signature (S, U) on a message m
1s a one-way function whose solution 1s a value S which
satisfies the equation

H(m||U) = §*% mod .

The algorithm for finding a valid Sis a trap-door algorithm
or function because 1t 1s difficult to find S given (n, m, U),
but 1s easy if the factorisation of n 1s known. The important
point here 1s that, before knowledge of the trap door, mining
should be hard and thus take a period of time sufficiently
larger than network messaging latency. However, once the
solution 1s found the trap door can be published or jointly
computed enabling fast verification the solution using that
trap door. Herein, a trap-door mining function known as a
time-lock puzzle 1s used to construct a consensus algorithm
for non-parallelisable mining on a blockchain network

-

I''me Lock Puzzles
Time-lock puzzles are problems that take a predetermined
time to complete. We call an algorithm F, a time-lock puzzle

if for some given 1nput parameters a, t such that

Fh(til, f) :L:

there exists another algorithm F_ with O(F)<<O(F,) such
that

F.la, t,s) =L

if and only if s 1s known. Moreover, the ability to
accurately control the time taken for a computer to complete

US 11,979,499 B2

7

the algorithm though the input parameters requires F, be a
function that 1s inherently sequential so that the task cannot
be shared between machines.

Repeated Squaring as an Inherently Sequentlal Algorithm

The core problem is to compute a mod n for specified
values of a, t and n. In this paper we consider the problem
when n 1s the product of two large primes, and t 1s chosen
to set the desired level of difficulty of the puzzle. a 1s chosen
to be a random and can be player specific. The most efficient
way of solving the puzzle i1s by performing t successive
squarings modulo n, beginning with the value a. That 1s,
perform the following algorithm:

Algornithm 1

For 1 from O to t — 1 compute
W({0)=a
Wi+ 1) = W(i)? mod n

to yield W(t). There 1s no known way to perform this
computation 1n a more efficient way without knowing the
factorization of n.

RSA Repeated Squaring Time-Lock Puzzle

Rivest et al introduced a time-lock puzzle based on
repeated squaring. Consider a scenario 1in which Alice cre-
ates a puzzle for Bob to solve

1. Alice generates a composite modulus

n=pq

Where p, g are prime. She keeps ret.
2. Alice computes a second modulus

pm)=(p—-Dg-1)

which 1s kept secret.
3. Alice selects puzzle computational time, T, and com-
putes

t=1T5

where S 1s the squaring rate (measure of computational
speed) for Bob.

4. Alice picks random base, a, and computes i:zFE(a, t,
¢(n)) efficiently by using the following algorithm

e = 2" mod ¢(n) d.

L =a®mod n b.

where 0(n) 1s the trap-door function.

5. Alice sends the time-lock puzzle (a, t, n) to Bob and
asks him to find L=F,(a, t), where

f
L =a* modn

10

15

20

25

30

35

40

45

50

35

60

65

3

[t can be shown by using Fermat’s test that I.=L. The
fastest known way of computing L. without knowing (p, q)
and ¢(n) 1s to use Algorlthm 1. Step 4a, however, signifl-
cantly increases efficiency of computing the puzzle solution.
The time-complexity of F_(a, t, 0(n)) 1s O(og (t)) whilst
F,(a, t) has complexity O(t).

Repeated squaring 1s considered an ‘inherently sequen-
fial’ process, meaning that there is no obvious way of
parallelising it to any large degree—see Rivest et al. There-
fore, having many computers solving the puzzle gains no
advantage over having one and the variation in computa-
tional time 1s related to the speed of single computers, which
can be much more easily gauged by the puzzle creator. In
other words, the puzzle sent by Alice has a solution time that
1s controllable i1ndependent of Bob’s computational
resources.

Prime Factorisation Difficulty

An 1mportant assumption 1n the implementation of the
time-lock puzzle 1s that finding the prime factorisation of n
1s a hard problem that cannot be solved faster than the puzzle
itself. To justify this assumption, consider the following
reasoning. The best algorithm for solving the integer facto-
risation problem, the general number field sieve (NEFS) has
time complexity O(exp{c(Inn)"”(In In n)*"}) (c=2.77). (See
Buchmann, Johannes, Jiirgen Loho, and Jorg Zayer. “An
implementation of the general number field sieve.” Annual
International Cryptology Conference. Springer, Berlin,
Heidelberg, 1993).

A 256-bit RSA key for example can be factorised in
approximately O(exp(46.6))=2.5x10E20 operations.
Assuming that each operation in NFS 1s equwalent to 1
floating point operation, cracking 256-bit keys still takes
approximately 250,000 seconds for a 1 petaFLOPS (floating
point operations per second) computer.

Within the context of a regularly updated blockchain, we
require a different RSA modulus to be created every new
block. Therefore, we only requlre that finding the prlme
factorisation of n be infeasible in the same amount of time
as the block generation time (a few minutes for example).
By setting the RSA keys to 512-bits 1t can be safely assumed
that factorisation of the RSA moduli within the mining cycle
1s 1nfeasible.

Verifiable Random Functions

A verifiable random function (VRF) 1s a triple of algo-
rithms (See hittps://medium.com/algorand/algorand-re-
leases-first-open-source-code-of-verifiable-random-func-
tion-93¢2960abd61):

Keygen(r)—(VK, SK)—0On a random 1nput seed r the key
generation algorithm produces a verification key VK
and a secret key SK pair

Evaluate(SK, m)—(Y, p)—The evaluation algorithm
takes as 1nput the secret key SK, a message m and
produces a pseudorandom output string Y and a proof

P
Venty(VK, m, Y, p)—0/1—The verification algorithm

takes as input the verification key VK, the message m,
the output Y and the proof p. It outputs 1 if and only 1f
it verifies that Y 1s the output produced by the evalu-
ation algorithm on inputs SK and m.

Importantly, the output Y 1s unique, meaning that it 1s
impossible to find unless the secret key 1s known. Below, we
provide a detailed implementation of subcommittee selec-
tion using verifiable random functions.

Unique and Secure Subcommittee Selection

In accordance with some embodiments of the disclosure,
the subcommittee selection uses an ECDSA signature to
replicate the verifiable random function. The process can be

US 11,979,499 B2

9

categorised 1nto 3 stages: setup, pseudorandom value cre-
ation and subcommittee selection.

Consider a network of miners M., . .
Setup

., M, (N>3).

Step 1: Miners have public keys PK,, PK,, . . ., PK,
respectively
Step 2: Miners choose unique seeds S, . . ., S,. These

values are propagated and are fixed for each public key
Pseudorandom Value Creation
Step 3: for each new block the miner creates a message.
The message 1s simply the hash of miner’s seed value

concatenated with the previous block header. That 1s for
miner PK; mining block B, his unique message 1s

m; = H (S| X-1)

where X, ; 1s the hash of the previous block header
X,.,=H(BH,_,)

Step 4: Miners produce ECDSA signatures on their mes-
sages that 1s

FECDSA(sk;, mf,;c) — (83, 17)

The miner records the time elapsed between at when the
timestamp for block B, , and when signature was
generated. The difference 1s denoted T.°

Step 5: Each Miner M, propagates his proot (PK;, m, ., s,

r, T;")

Subcommittee Selection

Step 6: On receiving the proof each network node checks

the following

1) The message m, , 1s valid for miner PK,

2) The signature (s;, r;) for message m. 1s valid against PK,

3) The difference between T and the time the proof
message was received 1s less than the network latency,
T,. 1.e. when a message 1s received miner | checks

Tr < T} —(T¢ + Tg)

ecieved

Where T, 1s the timestamp for the most recent block and
T,7 is the time the message is received by miner
j. This constraint prevents miners from falsely report-
ing the time the signature was created

4) Only one proof message will be accepted for a miner
PK.. Any further proof messages will be 1gnored.

Step 7. The subcommittee members 1s selected by the

following process

1) The value for miner with public key PK. 1s

£
V: = s;- 167

2) The public keys are ranked 1n order of value V. 1e
11,....N}

3) The subcommittee 1s selected by choosing the miners
with the 3 lowest values of V,

V. 1s the output of the VRF with components s, and T.". s,
1s the pseudo randomly generated component of the ECDSA
signature. The time value acts as a penalty to prevent miners
from brute-forcing through ECDSA ephemeral keys until a

10

15

20

25

30

35

40

45

50

35

60

65

10

value of s; 1s low enough for them to increase their chances
in being selected for the subcommittee. Although other

solutions that prevent brute-force attacks have been inves-
tigated by Goldberg and Reyzin they require the creation of
new elliptic curve algorithms and cannot be implemented as
easily as embodiments of the present disclosure (Goldberg,
Sharon, et al. “Verifiable random functions (VRFs)’ (2018)).

In order for miners to agree on the subcommittee candi-
date list, each proof needs to be propagated throughout the
network. Assuming low latency and high connectivity, the
network should be able to quickly establish a global list of
miner values and therefore establish the subcommuittee.
Furthermore, the network will only accept one proof mes-
sage (the first one sent) per miner preventing the risk of
spam attacks.

Multiparty Computations

A multiparty computation may be described as a calcu-
lation that requires more than one (independent) entity to
collaborate 1n order to generate some final value. Ideally, the
enfities do not share or communicate their inputs, and keep
their inputs private, whilst generating this final output.
Within the context of non-parallelised mining, and 1n accor-
dance with one or more embodiments of the present disclo-
sure, a multiparty computation may comprise the calculation
of anRSA modulus used in a repeated squaring time-lock
puzzle. In such an embodiment, 1t 1s important that the prime
factorization of the RSA modulus 1s not controlled by any
single miner.

MPC for Generating Secret RSA Moduli

While other algorithms or methods may be selected by the
skilled person, for 1llustrative purposes embodiments of the
present disclosure may use the method disclosed by Boneh
and Franklin for generation of a shared prime modulus n
(Boneh, Dan, and Matthew Franklin, “Efficient generation
of shared RSA keys.” Annual International Cryptology
Conference. Springer, Berlin, Heidelberg, 1997, herein after
“Boneh et al”). In their algorithm 3, independent entities
(Alice, Bob and Henry) establish an RSA modulus of
arbitrary size. The method 1s a quintuple of algorithms:

PickCandidates(k)—(p,, q,)—Each entity picks two ran-

dom k-bit integers
Compute N—Using a private and distributed computation
(p. 3 of Boneh et al) the 3 servers compute

n=(p+p2tp3)-(q1+q2+4g3)

without explicitly sharing (p,, q,)

Since n 1s now public the entities perform trial division to
check that n 1s not divisible by small primes e.g. the
method which 1s used 1n the joint verifiable random
secret sharing (JVRSS) protocol 1n threshold ECDSA
signature 1mplementations.

Primality Test—The 3 servers use a private distributed
computation to test that n 1s 1n fact the product of two
primes (See p. 4, Boneh et al). If the test fails, then the
protocol 1s restarted from step 1.

Boneh et al give empirical data for experiments generat-
ing 512, 1024 and 2048-bit moduli (Table 2, p. 10, Boneh et
al). Notably, the total time for 3 parties (using 333 MHz
Pentium IIs running Solaris 2.5.1) to generate a 512-bit
modulus was 9 seconds and had a total network traffic of
0.18 Mb.

MPC For Computing n

For the multiparty generation of the RSA modulus n=pqg
with private key (p, q) we adapt the method outlined 1n

US 11,979,499 B2

11

Boneh et al. The algorithm assumes a randomly selected
subcommittee of 3 miners using a minimal number of
rounds of communication.

Setup

Miners M;, M,, M, are selected using the Unique and
Secure Subcommittee Selection. Miners must establish a
direct connection with one-another and all messages
between them are encrypted using AES symmetric encryp-
tion. The AES key i1s established using elliptic curve Difhe
Hellmann key exchange.

Multiparty Computation

Step 1: Miners M, M,, M pick candidates (p,, q;), (P>,
qs) and (p,, q5), respectively, keeping the information secret.

Step 2: Miners M,, M,, M, use JVRSS to compute

n={p+p2+p3)-{q+aq +4q3)

Step 3: Miners M, M,, M, perform a distributed primal-
ity test (see p. 4, Boneh et al) to determine whether n 1s a
product of two primes.

Step 4: If step 3 results in a valid composite n being found
n 1s propagated to the rest of the network

MPC For Computing 3(n)

Given that the multiparty computation been computed
above, the next stage i1s computing ¢(n). To do this the
miners need to know who miner M, 1s as the calculation
becomes asymmetric. However, this can be established
during the subcommittee selection process

Step 1: Miner M, computes

¢r=n—p1—q +1

Step 2: M, and M; compute

Po =—pr—Go, P3 = —P3 — g3,

Step 3: Each of the subcommittee members can use a
distributed computation to compute

¢n) =¢1 + @2 + @3

Observe that

¢(n) = (¢ + 2 + ¢3)

=(n—pr—q +D+{(—p2—g2)+{—p3 —g3)
=n—(p1+p2+p3)—(qg1 +q2+qg3) +1
=n—p—g+1

={p—-Dig-1).

Note that once ¢(n) 1s known to the committee, everyone
in the committee will be able to deduce (p, q). It can be
shown (without loss of generality) that

10

15

20

25

30

35

40

45

50

35

60

65

12

n+1 =)+ +1-¢m) —dn
2)

p:

nt1—dm) -+ 1—pm) —4n
2 rl

q:

and so ¢(n) must not be computed until after a solution to
the time-lock puzzle has been proposed. Therefore, it 1s
especlally important that ¢(n) 1s not be shared by the
committee until after a valid block 1s found.
Time-Locked Puzzle Mining on the Non-Parallelisable
Mining (NPM) Blockchain

Embodiments of the disclosure combine verifiable ran-
dom {functions, multiparty computations and time lock
puzzles 1n a novel way to create a mining algorithm for a
PoW blockchain network. The aim of the algorithm 1s to
compute a number, L, that 1s hard to find but can be verified
if some secret information 1s known.

Assumptions:

In order for network-wide consensus to be achieved for

each cycle we require the following:

Honest majority: At least 51% of the miners must be
honest. Same requirement exists for all public block-
chain networks

Honest majority subcommittee: 2 out of 3 members of
each subcommittee must be honest to prevent the
leaking of private keys or trap door function. Any
suitable incentivisation strategy may be employed.

Full Connectivity: The selection of random subcommit-
tees 1n the network require full connectivity between
miners so that multiparty computations can be carried
out efficiently

Method 1: Predetermined number of Squarings

Method

Step 1: A group of network miners M, ..., M_ (n>3) start

the cycle by selecting a subcommittee of 3 (connected)
miners (M;, M, and M, without loss of generality) using a
veriflable random function.

Step 2a: Miners M,, M, and M, do a multiparty compu-

tation to compute

n=p4q

without any individual miner able to calculate (p, q).

Step 2b: Miners M,, M, and M, propagate time-lock
puzzle (t, n) along with a proof that they were chosen at
random

Step 3a: Miner M, with public key PK. receives (t, n) and
computes

Lf — QH(X”PKI-)[D%I] mod »

where X 1s the previous block header hash.
Step 3b: Miner M. receives (t, n) and computes

H:LmedBQ
b=1L +4mod32

t = H(X||PK:)|a:b]

US 11,979,499 B2

13

Step 3¢ (HARD PROBLEM): Miner M. computes a
verifiably random

ot

L =17 mod #

i

L 1s the solution

Step 4: (Assuming M. wins) Miner M, propagates (L., L.,
t.,, PK.). This solution will be propagated along with the
miner’s block.

Step Sa: Verifier checks

Lf — 2H(X| |3 0:4] mod.

Step Sb: Miners M,, M, and M; use a secure multiparty
computation to compute

¢pm) = (p— g - 1)

and computes the shortcut e and e; efficiently using the

formula

e = 2'modp(n)

e; = 2'imodp(n),

Step 5c: Each subcommittee member can check that

o

EE7
L =L, "modn.

And

o

L=L

Step 6: The block 1s accepted as valid by the subcommiut-
tee 1if Step 3¢ passes. 0(n) can be propagated along with the
valid block and (L, L., t,, PK,) to the rest of the network for
other miners to validate the solution before updating the
blockchain.

Analysis:

The scheme presented has the following key features

Puzzles are time-locked using two values: t and t. t 1s the

minimum number of squarings for the puzzle and acts
as a network-wide difficulty parameter. t; 1s a pseudo
randomly generated value, unique to each miner and
each new block. Furthermore t, cannot be immediately
deduced, 1instead requiring some 1nitial computations in
order to be worked out.

Puzzle solution can only be solved using sequential

computation

Hash function digest acts as a random number generator

so that the puzzle 1s unique to each miner

The psendorandom nature of the base and exponent used
in the calculation means that, whilst miners can estimate the
approximate time that the solution will take to compute, they
will not be able to tell exactly until they begin to mine.

Additionally, time-constraints can be imposed on Steps
1-2b and 3c¢ so that corrupted, slow or dishonest subcom-
mittees are rejected and can easily be reselected. Note, this

10

15

20

25

30

35

40

45

50

35

60

65

14

system does not require use proof-of-stake in the selection of
the subcommuittee (although this may be desirable 1n 1mple-
mentation).

Method 2: Repeated Squaring Nonce with a Target
Threshold

An alternative application of the time-lock puzzle mining
for the NPM blockchain uses a target so that the number of
squarings cannot be predetermined by the miner before
calculation begins.

Target and Difficulty:

We 1ntroduce the target

!

T = —
D;

The target value represents the maximum value that will
be accepted as a valid solution. This value 1s analogous to
the target difficulty parameter 1n Bitcoin (1t can be encoded
in the block header for example) and the subcommaittee will
know this value at the time of verification—see https://
en.bitcoin.it/wika/Difficulty.

Distribution of Squares

Note that approximately 4 of all values in the range
10, . . ., n—1} are quadratic residues when n 1s a product of
two primes. This result 1s derived from Euler’s criterion
(Lehmer, Emma. “On Euler’s cnterion.” Journal of the
Australian Mathematical Society 1.1 (1959): 64-70). Fur-
thermore, for sufficiently large random composite modulus,
n, the distribution of quadratic residues 1s approximately
uniform, meaning that the likelithood of selecting a quadratic
residue 1n the range 0, 1, . . . , T, 1s equvalent to the

likelihood of selecting a random number from 7, in the
range 0, 1 . .., T, multiplied by the likelithood of selecting

a quadratic residue Z . This constraint is important because

we assume that for a given input L, Z , and random te Z ,
with

A= L?r mod #,

then

1;
P{A <)~ —.

!

Hashing the Solution: Our solution to the perceived
ambiguity of the distribution of squares 1s to hash L. and
measure that value against the target 1.e. to check if

H(L) < T;.

Method

Step 1: A group of network miners M,, ..., M _(n>3) start
the cycle by selecting a subcommittee of 3 (connected)
miners (M,, M, and M, w.l.o.g.).

Step 2a: Miners M, M, and M; perform a multiparty
computation to compute

n=p4q

without explicitly calculating (p, q).

US 11,979,499 B2

15

Step 2b: Miners M,, M, and M, propagate time-lock
puzzle (t, n) along with a proof that they were chosen at
random

Step 3a: Miner M, with public key PK. receives (t, n) and
computes

L; = ZH(X"PKf)[D:ﬂl] mod 7

where X 1s the previous block header hash.

Step 3b (HARD PROBLEM): Miner M, receives (t, n) and
tries to find t, such that

L=1*" modn, and H(L) < T:.

L. 1s the solution and T, 1s the target.

Step 4: (Assuming M. wins) Miner M, propagates (L, L,
t.,, PK.). This solution will be propagated along with the
miner’s block.

Step Sa: Verifier checks

L, = DHXIPKN04] 0 4

Step Sb: Miners M, M, and M; use a secure multiparty
computation to compute

) =(p— g - 1)

and computes the shortcut e and e, efficiently using the

formula

e = 2" mod ¢(n)

e; = 2" mod ¢(n), and e-e; mod ¢(n)

Step 5c: Each subcommittee member can check that

T

I =L " modn.
and

H({I) < T

Step 6: The block 1s accepted as valid by the subcommiut-
tee 1f Step Sc passes. #(n) can be propagated along with the
valid block and (L, L, t;, PK}) to the rest of the network for
other miners to validate the solution before updating the
blockchain.

Analysis
This technique has the following features

Puzzles are time-locked using two values: t and t,. t acts
as a standard difficulty parameter and 1s a uniform
minimum number of squarings for the puzzle whereas
t. 1s analogous to a nonce. This means that a miner will
not be able to tell how many additional squarings are
required without doing the computations

5

10

15

20

25

30

35

40

45

50

35

60

65

16

Puzzle solution (analogous to the nonce in Bitcoin) can
only be found using sequential computation.

The puzzle solution (nonce) 1s public key dependent. This
means that a new public key has to be generated for
each enfity that iterates nonce values

As with Method 1, time-constraints can be imposed on
Steps 1-2b and 5c so that corrupted, slow or dishonest
subcommittees are rejected and can easily be reselected.
Furthermore, the nonce iteration path 1s inherently sequen-
fial and dependent on a public key, resulting 1n an 1nabaility
for miners to gain any advantage by mining on the same
block candidate. This significantly reduces the incentive to
form mining pools.

Thus, embodiments of the disclosure provide a method
that enables a flat network of distributed computers to
establish consensus through sequential proof of computa-
tion. Four algorithms may be used: subcommittee selection
using verifiable random functions, multiparty computations
for establishing RSA modulus, time-lock puzzles with
pseudo-random 1nputs. Embodiments of the disclosure also
make use of cryptographic primitives native to the Bitcoin
protocol (hash functions, elliptic curve cryptography) as
well as puzzles based on the difficulty of prime factorisation.

Given the assumptions of low network latency and an
honest majority of network participants as well as honest
majority subcommittee selection, embodiments are both
economically feasible at scale and strongly resistant to
mining centralisation.

Turning now to FIG. 2, there 1s provided an 1illustrative,
simplified block diagram of a computing device 2600 that
may be used to practice at least one embodiment of the
present disclosure. In various embodiments, the computing
device 2600 may be used to implement any of the systems
1llustrated and described above. For example, the computing
device 2600 may be configured for use as a data server, a
web server, a portable computing device, a personal com-
puter, or any electronic computing device. As shown 1n FIG.
2, the computing device 2600 may include one or more
processors with one or more levels of cache memory and a
memory controller (collectively labelled 2602) that can be
configured to communicate with a storage subsystem 2606
that includes main memory 2608 and persistent storage
2610. The main memory 2608 can include dynamic random-
access memory (DRAM) 2618 and read-only memory
(ROM) 2620 as shown. The storage subsystem 2606 and the
cache memory 2602 and may be used for storage of infor-
mation, such as details associated with transactions and
blocks as described 1n the present disclosure. The
processor(s) 2602 may be utilized to provide the steps or
functionality of any embodiment as described 1n the present
disclosure.

The processor(s) 2602 can also communicate with one or
more user interface input devices 2612, one or more user
interface output devices 2614, and a network interface
subsystem 2616.

A bus subsystem 2604 may provide a mechanism for
enabling the various components and subsystems of com-
puting device 2600 to communicate with each other as
intended. Although the bus subsystem 2604 1s shown sche-
matically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple busses.

The network interface subsystem 2616 may provide an
interface to other computing devices and networks. The
network 1nterface subsystem 2616 may serve as an interface
for receiving data from, and transmitting data to, other
systems from the computing device 2600. For example, the
network interface subsystem 2616 may enable a data tech-

US 11,979,499 B2

17

nician to connect the device to a network such that the data
technician may be able to transmit data to the device and
recelve data from the device while 1n a remote location, such
as a data centre.

The user interface input devices 2612 may include one or
more user mput devices such as a keyboard; pointing
devices such as an integrated mouse, trackball, touchpad, or
graphics tablet; a scanner; a barcode scanner; a touch screen
incorporated into the display; audio mput devices such as
voice recognition systems, microphones; and other types of
input devices. In general, use of the term “input device” 1s
intended to include all possible types of devices and mecha-
nisms for inputting information to the computing device
2600.

The one or more user interface output devices 2614 may
include a display subsystem, a printer, or non-visual displays
such as audio output devices, etc. The display subsystem
may be a cathode ray tube (CRT), a flat-panel device such
as a liquid crystal display (LCD), light emitting diode (LED)
display, or a projection or other display device. In general,
use of the term “output device” i1s mtended to include all
possible types of devices and mechanisms for outputting
information from the computing device 2600. The one or
more user interface output devices 2614 may be used, for
example, to present user interfaces to facilitate user inter-
action with applications performing processes described and
variations therein, when such interaction may be appropri-
ate.

The storage subsystem 2606 may provide a computer-
readable storage medium for storing the basic programming
and data constructs that may provide the functionality of at
least one embodiment of the present disclosure. The appli-
cations (programs, code modules, istructions), when
executed by one or more processors, may provide the
functionality of one or more embodiments of the present
disclosure, and may be stored 1n the storage subsystem 2606.
These application modules or 1nstructions may be executed
by the one or more processors 2602. The storage subsystem
2606 may additionally provide a repository for storing data
used in accordance with the present disclosure. For example,
the main memory 2608 and cache memory 2602 can provide
volatile storage for program and data. The persistent storage
2610 can provide persistent (non-volatile) storage for pro-
gram and data and may include flash memory, one or more
solid state drives, one or more magnetic hard disk drives,
one or more floppy disk drives with associated removable
media, one or more optical drives (e.g. CD-ROM or DVD or
Blue-Ray) drive with associated removable media, and other
like storage media. Such program and data can include
programs for carrying out the steps of one or more embodi-
ments as described 1n the present disclosure as well as data
associated with transactions and blocks as described 1n the
present disclosure.

The computing device 2600 may be of various types,
including a portable computer device, tablet computer, a
workstation, or any other device described below. Addition-
ally, the computing device 2600 may include another device
that may be connected to the computing device 2600
through one or more ports (e.g., USB, a headphone jack,
Lightning connector, etc.). The device that may be con-
nected to the computing device 2600 may include a plurality
ol ports configured to accept fibre-optic connectors. Accord-
ingly, this device may be configured to convert optical
signals to electrical signals that may be transmitted through
the port connecting the device to the computing device 2600
for processing. Due to the ever-changing nature of comput-
ers and networks, the description of the computing device

10

15

20

25

30

35

40

45

50

55

60

65

18

2600 depicted in FIG. 2 1s intended only as a specific
example for purposes of illustrating the preferred embodi-
ment of the device. Many other configurations having more
or fewer components than the system depicted in FIG. 2 are
possible.

It should be noted that the above-mentioned embodiments
illustrate rather than limit the invention, and that those
skilled 1n the art will be capable of designing many alter-
native embodiments without departing from the scope of the
invention as defined by the appended claims. In the claims,
any relerence signs placed in parentheses shall not be
construed as limiting the claims. The word “comprising” and
“comprises’’, and the like, does not exclude the presence of
clements or steps other than those listed 1n any claim or the
specification as a whole. In the present specification, “com-
prises’ means “includes or consists of” and “comprising’”
means “including or consisting of”. The singular reference
of an element does not exclude the plural reference of such
clements and vice-versa. The mnvention may be implemented
by means of hardware comprising several distinct elements,
and by means of a suitably programmed computer. In a
device claim enumerating several means, several of these
means may be embodied by one and the same i1tem of
hardware. The mere fact that certain measures are recited in
mutually different dependent claims does not indicate that a
combination of these measures cannot be used to advantage.

An embodiment of the disclosure may provide a com-
puter-implemented method comprising the steps:

generating a plurality of multiparty computational chal-

lenges;

providing each mining node in a plurality of mining nodes

on a Proof-of-Work blockchain network with a respec-
tive challenge from the plurality of multiparty compu-
tational challenges.

Preferably, each mining node receives a diflerent chal-
lenge relative to the other nodes. Thus, each challenge may
be unique to the node to which it 1s provided, and no two
challenges within the plurality of multiparty computational
challenges may be the same.

Each mining node i the plurality of mining nodes
attempts to find a solution to 1its respective multiparty
computational challenge. This may comprise each node
generating an output/value. This may be performed by using
one or more mputs to an algorithm. The mput(s) may be kept
secret or private by the respective nodes, 1n that they do not
share or commumnicate their respective mput values with the
other nodes 1n the plurality of nodes.

Preferably, each challenge in the plurality of multiparty
computational challenges requires the use of an inherently
sequential algorithm to find a solution to the challenge. The
method may further comprise the steps of:

generating a plurality of further multiparty computational

challenges; and/or

providing each mining node in the plurality of mining

nodes with a respective further challenge from the
plurality of further multiparty computational chal-
lenges.

Preferably, these steps are performed when a solution has
been found, by one of the mining nodes 1n the plurality of
mining nodes, to a multiparty computational challenge or a
turther multiparty computational challenge.

Preferably, generation of the plurality of multiparty com-
putational challenges and/or the plurality of further multi-
party computational challenges 1s performed, at least 1n part,
by a subset of computer-based entities which 1s selected
from a plurality of computer-based entities. At least one of
the computer-based entities may be a mining node on the

US 11,979,499 B2

19

blockchain network. The subset of computer-based entities
may be selected from the plurality of computer-based enti-
ties according to a random or pseudo-random selection
process.

Generation of at least one of the multiparty computational 5
challenges and/or further multiparty computational chal-
lenges may comprise the calculation of an output to an
operation which uses a random or pseudo-random input.
Generation of at least one of the multiparty computational
challenges and/or further multiparty computational chal- 10
lenges may comprise the generation of an RSA key pair.

The challenge may comprise the calculation of an RSA
modulus. Preferably, the RSA modulus 1s used 1n a repeated
squaring time-lock puzzle.

The method may further comprise the step of using an 15
inherently sequential algorithm to find a solution to at least
one of the multiparty computational challenges and/or fur-
ther multiparty computational challenges. The inherently
sequential algorithm may comprise at least one of the
tollowing operations: a recursive operation; a modular expo- 20
nentiation; and/or a repeated squaring operation.

The 1nvention also provides a system, comprising:

a processor; and

memory mcluding executable mstructions that, as a result

of execution by the processor, causes the system to 25
perform any embodiment of the computer-imple-
mented method described herein.

Preferably, the system comprises a plurality of nodes on
a blockchain network, at least one of the nodes comprising
the processor, memory and executable instructions. 30

The mvention also provides a non-transitory computer-
readable storage medium having stored thereon executable
instructions that, as a result of being executed by a processor
ol a computer system, cause the computer system to at least
perform an embodiment of the computer-implemented 35
method described herein.

The 1nvention claimed 1s:

1. A computer-implemented method, comprising:

generating a plurality of multiparty computational chal- 40

lenges; and providing each mining node in a plurality

of mining nodes on a Proof-of-Work blockchain net-
work with a respective challenge from the plurality of
multiparty computational challenges; and wherein the
respective challenge comprises the calculation of an 45
RSA modulus that 1s used 1n a repeated squaring
time-lock puzzle.

2. The method of claim 1 wherein:

cach challenge 1n the plurality of multiparty computa-

tional challenges requires use of an inherently sequen- 50
tial algorithm to find a solution to the challenge.

3. The method of claim 1, further comprising the step of:

generating a plurality of further multiparty computational

challenges; and

providing each mining node 1n the plurality of mining 55

nodes with a respective further

challenge from the plurality of further multiparty compu-

tational challenges.

4. The method of claim 3, wherein the steps of claim 3 are
performed when a solution has been found, by one of the 60
mimng nodes 1n the plurality of mining nodes, to a multi-
party computational challenge or a further multiparty com-
putational challenge.

5. The method of claim 1, wherein:

generation of the plurality of multiparty computational 65

challenges and/or the plurality of further multiparty
computational challenges 1s performed, at least in part,

20

by a subset of computer-based entities which 1s selected
from a plurality of computer-based entities.

6. The A-method of claim 5 wherein at least one of the
computer-based entities 1s a mining node on the blockchain
network.

7. The A-method of claim 5, wherein the subset of
computer-based entities 1s selected from the plurality of
computer-based entities according to a random or pseudo-
random selection process.

8. The A-method of claim 1, wherein:

the generation of at least one of the plurality of multiparty

computational challenges and/or further multiparty
computational challenges comprises calculation of an
output to an operation which uses a random or pseudo-
random 1nput.

9. The A-method of claam 1, wherein:

the generation of at least one of the plurality of multiparty

computational challenges and/or further multiparty
computational challenges comprises the generation of
an RSA key parr.

10. The A-method of claim 1, further comprising the step
of using an inherently sequential algorithm to find a solution
to at least one of the plurality of multiparty computational
challenges and/or further multiparty computational chal-
lenges.

11. The method of claim 10, wherein the inherently
sequential algorithm comprises at least one of the following,
operations:

a recursive operation;

a modular exponentiation; and

a repeated squaring operation.

12. A computer-implemented system comprising: a pro-
cessor; and memory including executable mstructions that,
as a result of execution by the processor, causes the system
to perform the steps of: generating a plurality of multiparty
computational challenges; and providing each mining node
in a plurality of mining nodes on a Proof-of-Work block-
chain network with a respective challenge from the plurality
of multiparty computational challenges; and wherein the
respective challenge comprises the calculation of an RSA
modulus that 1s used 1n a repeated squaring time-lock puzzle.

13. The computer implemented system of claim 12,
wherein the system comprises a plurality of nodes on a
blockchain network, at least one of the nodes comprising the
processor, memory and executable instructions of claim 12.

14. The computer-implemented system of claim 12,
wherein:

cach challenge in the plurality of multiparty computa-

tional challenges requires use of an inherently sequen-
tial algorithm to find a solution to the challenge.

15. The computer-implemented system of claim 12,
wherein the executable 1nstructions, as a result of execution
by the processor, causes the system to perform the steps of:

generating a plurality of further multiparty computational

challenges; and

providing each mining node in the plurality of mining

nodes with a respective further challenge from the
plurality of further multiparty computational chal-
lenges.

16. The computer-implemented system of claim 12,
wherein the steps of claim 13 are performed when a solution
has been found, by one of the mining nodes 1n the plurality
of mining nodes, to a multiparty computational challenge or
a further multiparty computational challenge.

17. A non-transitory computer-readable storage medium
having stored thereon executable 1nstructions that, as a result
of being executed by a processor of a computer system,

US 11,979,499 B2

21

cause the computer system to perform the steps of: gener-
ating a plurality of multiparty computational challenges; and
providing each mining node 1n a plurality of mining nodes
on a Proof-of-Work blockchain network with a respective
challenge from the plurality of multiparty computational
challenges; and wherein the respective challenge comprises
the calculation of an RSA modulus that is used 1n a repeated
squaring time-lock puzzle.

18. The non-transitory computer-readable storage
medium of claim 17, wherein:

cach challenge 1n the plurality of multiparty computa-

tional challenges requires use of an inherently sequen-
tial algorithm to find a solution to the challenge.

19. The non-transitory computer-readable storage
medium of claim 18, wherein the executable 1nstructions, as
a result of being executed by the processor of the computer
system, cause the computer system to perform the steps of:

generating a plurality of further multiparty computational

challenges; and

providing each mining node 1n the plurality of mining

nodes with a respective further

challenge from the plurality of further multiparty compu-

tational challenges.

% ex *H & o

10

15

20

22

	Front Page
	Drawings
	Specification
	Claims

