a9y United States

US 20110134793A1

12y Patent Application Publication (o) Pub. No.: US 2011/0134793 Al

ELSEN et al. 43) Pub. Date: Jun. 9, 2011
(54) PREVENTING LOOPS ON NETWORK (32) US.CL . 370/254
TOPOLOGIES BUILT WITH VIRTUAL
S7 ABSTRACT
SWITCHES AND VMS (57)
A method and apparatus 1s disclosed for preventing loops on
(76) Inventors: CHRISTIAN ELSEN, Rolle (CH): a network topology which includes virtual switches and vir-

Maurizio Portolani, Rolle (CH)

(21) Appl. No.: 12/630,637

(22) Filed: Dec. 3, 2009

Publication Classification

(51) Int.Cl.
HO4L 12/28 (2006.01)

tual machines. For example, a virtualization management
application may prevent loops from being introduced into a
network topology where a virtual machine forwards traffic
between any two (or more) virtual network interface cards
(vNICs). A method to prevent loops may include recerving a
request to create a virtual network interface (vNIC) for a
virtual machine (VM) instance on a computing system, and in
response to determining that the requested vNIC 1s to be
connected to the same network segment as an existing vINIC
of the VM instance, failing the request to generate the
requested vINIC.

APPLICATION 136 | 130

OPERATING SYSTEM 135

APPLICATION 136 | 130

OPERATING SYSTEM 135

vCPU vMEMORY CPU MEMORY
133 132 133 132
vSTORAGE vNIC vSTORAGE vNIC
134 131 134 131
MANAGEMENT 141 VIRTUAL 142 OS KERNEL 143
APPLICATION SWITCH
HYPERVISOR 140
150
CACHE 155
NIC MEMORY STORAGE
151 152 CPU(S) 183 154
COMPUTER SYSTEM 120

Patent Application Publication

Jun. 9, 2011 Sheet1 of 4

US 2011/0134793 Al

APPLICATION 136 130

OPERATING SYSTEM 135

APPLICATION 136 130

OPERATING SYSTEM 135

vCPU vVMEMORY CPU MEMORY
133 132 133 132
vSTORAGE VvNIC vSTORAGE VNIC
134 131 134 131
MANAGEMENT 141 VIRTUAL 142 OS KERNEL 143
APPLICATION SWITCH
HYPERVISOR 140
150
CACHE 155
NIC MEMORY STORAGE
151 152 CPU(S) 153 154
COMPUTER SYSTEM 120

FIG. 1

US 2011/0134793 Al

Jun. 9, 2011 Sheet 2 of 4

Patent Application Publication

0cl

T
INAWNOD3S NV 1A

¢ 9Ol
Y15 ~J"E g T
¢1LGL
HOLIMS HOLIMS HOLIMS
& ¢ |
cvh qunLidIA A4 VTN CVF qvnLidIA
IINA S 1 | DINA o~ A A
€1 - €LEl OIN DNV
9161 /7/ viIEl ZLel ~I""1el
Yogl t0g| ¢ogl LOE L
(PAA) (SAN) (ZWA) (LAN)
INIHOVIA INIHOVW INIHOVIA INIHOVIA
WNLHIA TVNLYIA TWNLNIA TVNLHIA
veel SO €6¢l SO eel SO legl SO
ool SddVv €oc| SddV cge | Sddv log | SddV

’

INJNDIS NV 1A

US 2011/0134793 Al

Patent Application Publication Jun. 9, 2011 Sheet 3 of 4
VIRTUAL VIRTUAL
MACHINE MACHINE
ol VA FIG. 3A
130, 130,
310
MAC BROADCAST
FRAME 305 315
VIRTUAL VIRTUAL
VZL&N SWITCH SWITCH VZL%N
142 142,
VIRTUAL VIRTUAL
MACHINE MACHINE
M1 VA FIG. 3B
130, 130,
310
315 /FRAME
VIRTUAL 3205 VIRTUAL
VZL&N SWITCH SWITCH V2L1’°(‘)N
142, 142,
VIRTUAL VIRTUAL
MACHINE MACHINE
130, |325 130 330
‘ z 310 2 2
FRAME FRAME
/ 315
VIRTUAL VIRTUAL
VZL%N SWITCH SWITCH V2L1’°(‘)N
142 142,

Patent Application Publication

Jun. 9, 2011 Sheet 4 of 4

(START,

RECEIVE REQUEST TO ADD/CREATE VIRTUAL

NETWORK INTERFACE (vNIC) TO
VIRTUAL MACHINE (VM)

410

DOES VM NO
ALREADY HAVE
vNIC?
YES
420

REQUESTED

VNIC CONNECT TO NO

US 2011/0134793 Al

400

405

415

CREATE
REQUESTED
vNIC

|

SAME VLAN SEGMENT
AS EXISTING
VNIC?

YES

425
GENERATE ERROR MESSAGE; FAIL
REQUEST TO CREATE VNIC

Ceno>

FIG. 4

US 2011/0134793 Al

PREVENTING LOOPS ON NETWORK
TOPOLOGIES BUILT WITH VIRTUAL
SWITCHES AND VMS

TECHNICAL FIELD

[0001] Embodiments described in this disclosure generally
relate to virtualized computer networks. More particularly,
described embodiments relate to methods and apparatus for
preventing loops on network topologies built with virtual
switches and virtual machines.

BACKGROUND

[0002] Computer virtualization techniques provide a rich
set of networking capabilities that integrate well with sophis-
ticated enterprise networks. Virtual networking allows users
to network virtual machines 1n the same manner as physical
machines. Thus, users can build complex networks within a
single physical server host or across multiple server hosts.
Virtual switches allow virtual machines on the same server
host to communicate with each other using the same proto-
cols used over physical switches, without the need for addi-
tional networking hardware. Further, virtual switches support
virtual LANs (VLANSs) that are compatible with standard
VLAN mmplementations from a variety of networking and
virtualization vendors. A virtual machine can be configured
with one or more virtual Ethernet adapters (vINIC), each of
which each has 1ts own MAC address. As a result, virtual
machines have properties similar to those of physical
machines, from a networking standpoint. In addition, virtual
networks enable functionality not possible with physical net-
works.

[0003] Thus, virtual server environments use software
based virtual switches 1nside a virtual server to enable com-
munication among the virtual machines (VM) as well as
between VMs and the outside world. The virtual switches are
typically designed to not introduce loops 1n the network. They
achieve this result without using a spanning-tree protocol;
instead virtual switches use a combination of pinning VMs to
a given physical NIC (MAC pinning) and a distance vector
logic whereby a frame received by a virtual switch coming
from outside into the physical server 1s not forwarded back to
another physical NIC. This approach, however, assumes that
the VMs operate as a computing node or an end-point desti-
nation and not as a networking node (e.g., a firewall or other
networking appliance).

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] So that the manner 1n which the above recited fea-
tures of the present disclosure can be understood 1n detail, a
more particular description of the disclosure, briefly summa-
rized above, may be had by reference to embodiments, some
of which are 1llustrated 1n the appended drawings. It 1s to be
noted, however, that the appended drawings illustrate only
typical embodiments of this disclosure and are therefore not
to be considered limiting of 1ts scope, for the disclosure may
admuit to other equally effective embodiments.

[0005] FIG. 1 1s a block diagram illustrating a computer
server hosting multiple virtual machines, according to one
embodiment.

[0006] FIG. 2 illustrates an example network topology
within a computer server hosting multiple virtual machines,
according to one embodiment.

Jun. 9, 2011

[0007] FIGS. 3A-3C illustrate an example of a network
topology built with virtual switches and virtual machines
which may resultin looping network frames, according to one
embodiment.

[0008] FIG. 4 1llustrates a method for preventing loops on
network topologies built with virtual switches and virtual
machines, according to one embodiment.

DESCRIPTION

Overview

[0009] Embodiments of the present disclosure provide
techniques to prevent loops on network topologies which
include virtual switches and virtual machines. For example,
embodiments described herein protect against loops being
introduced 1nto a network topology where a virtual machine
forwards traffic between any two (or more) virtual network
interface cards (vNICs). One embodiment described herein
includes a method for preventing loops on network topologies
built with virtual switches and virtual machines. The method
may generally include recerving a request to create a vINIC for
a VM 1nstance on a computing system. In response to deter-
mining that the VM mstance does not include an existing
vINIC, the requested vNIC 1s created. Otherwise, 1n response
to determining that the VM 1nstance includes one or more
existing vNICs, the method includes determining whether the
requested vINIC 1s to be connected to a same network segment
as one of the existing vINICs of the VM 1nstance. In response
to determining that the requested vINIC is to be connected to
the same network segment as one of existing vINICs of the VM
instance, the request to generate the requested vINIC 1s failed.
[0010] In a particular embodiment, the VM 1nstance oper-
ates as a networking appliance to bridge a first virtual local
area network (VLAN) segment and a second VL AN segment.
For example, the VM instance may operate as a layer 2 fire-
wall appliance. Further, the request to create the vINIC may be
associated with a request to create the VM 1nstance. Alterna-
tively, the request to create the vNIC may be received as a
request to add the vNIC to an mstantiated VM 1nstance.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0011] Embodiments of the present disclosure provide
techniques to prevent loops on network topologies which
include virtual switches and virtual machines. For example,
embodiments described herein protect against loops being
introduced 1nto a network topology where a virtual machine
forwards traffic between any two (or more) virtual network
interface cards (vINICs). That 1s, where the virtual machine
does not operate 1n the end-host, but acts as a network appli-
ance. For example, the virtual machine may operate as a
firewall connecting an untrusted VL AN segment to a trusted
one. In such a case, one vINIC may connect the VM (operating
as the firewall) to the untrusted segment and a second vNIC
may connect 1t to the trusted segment.

[0012] When a second physical connection between a end-
host or anetwork appliance and layer 2 segment increases the
network bandwidth available to the host/appliance as well as
allows for load balancing and redundancy. Further, in such a
case, the physical network hardware may be configured to use
a spanning tree protocol to cut loops 1n the network topology.
In contrast, adding a second vINIC to a VM does not provide
additional bandwidth or redundancy between that VM and a
given VLAN segment. Further, spanning tree does not pre-
vent loops when a host (regardless of whether the host 1s a

US 2011/0134793 Al

physical server or a virtual machine) forwards traific between
two physical (or virtual) NICs. This occurs because hosts do
not typically forward Bridge Protocol Data Units (BPDUSs)
and spanning tree protocol (STP) relies on BPDUSs to ensure
a loop-free topology for bridged LLANs. Further, virtual
switch implementations do not typically perform the span-
ning tree protocol because of how taxing spanning tree 1s on
a host (server) control plane. As a result, spanning tree pro-
tocol does not prevent loops where a VM forwards Layer 2

traific to two (or more) virtual network adapters connected to
the same VLAN.

[0013] In one embodiment, a hypervisor managing mul-
tiple virtual machine (VM) instances on a computer system
may be configured to prevent an instance of a virtual machine
from being created with multiple vINICs connected to the
same VLAN segment. Stmilarly, the hypervisor may prevent
a VNIC from being added to an existing VM (or a vNIC
configuration from being modified) where doing so results 1n
multiple connections to the same VLAN segment. This may
include preventing multiple vINICs from being connected to
the same VLAN where the VLAN 1s presented to virtual
machines using two or more distinct port-group names
(which may lead an administrator to conclude that the VM 1s
actually connecting to different VLANSs).

[0014] This disclosure references various embodiments.
However, 1t should be understood that this disclosure 1s not
limited to embodiments described herein. Instead, any com-
bination of the following features and elements, whether
related to different embodiments or not, 1s contemplated to
implement and practice an embodiment. Furthermore, 1n
various embodiments, embodiments provide numerous
advantages over the prior art. However, although embodi-
ments may achieve advantages over other possible solutions
and/or over the prior art, whether or not a particular advantage
1s achieved by a given embodiment 1s not limiting. Thus, the
tollowing aspects, features, embodiments and advantages are
merely 1llustrative and are not considered elements or limita-
tions of the appended claims except where explicitly recited
in a claim

[0015] Additionally, application programs disclosed herein
may be distributed on a variety of computer-readable storage
media. Illustrative computer-readable storage media include,
but are not limited to: (1) non-writable storage media (e.g.,
read-only memory devices within a computer such as CD-
ROM disks readable by a CD-ROM drive) on which infor-
mation 1s permanently stored; (1) writable storage media
(e.g., loppy disks within a diskette drive or hard-disk drive)
on which alterable information 1s stored. For example, as
described herein, one embodiment includes a computer-read-
able storage medium containing a program, which when
executed on a processor 1s configured to perform an operation
for preventing loops on network topologies built with virtual
switches and virtual machines. Other media include commu-
nications media through which information i1s conveyed to a
computer, such as through a computer or telephone network,
including wireless communications networks.

[0016] FIG. 1 1s a block diagram illustrating a computer
system 120 hosting multiple virtual machines 130, according
to one embodiment. As shown, the computer system 120
generally includes system hardware 150, such as one or more
network interface cards (NICs) 151, a memory 152, CPU(s)
153 and a storage device 154. The hypervisor 140, also known
as a virtual machine monitor (VMM), generally runs over the
system hardware 150 and allows the system hardware 150 to

Jun. 9, 2011

host multiple virtual machines 130 (sometimes referred to as
guest systems). A cache 1535 provides a high-speed memory
accessed by the CPU 153. While memory 152 can be seg-
mented across virtual machines 130, cache 155 1s often
shared, 1.e., each virtual machine may be have a more-or-less
dedicated partition of memory 152 (mapping to virtual
memory 132).

[0017] In one embodiment, the hypervisor 140 may be
implemented as a soiftware layer that runs directly on the
system hardware 150 where an OS kernel 143 intercepts
some, or all, operating system calls to the system hardware
150. In some embodiments, the hypervisor 140 virtualizes
CPU 1353 and memory 152, while a single privileged guest
virtual machine manages and virtualizes network traffic and
storage 1/0. That 1s, the host (one of the virtual machines 130)
1s also tasked with performing as a management system for
some aspects of the virtualized system. The host generally
runs using a specially privileged kernel (OS 135) that can
access system hardware 150 and can create/modity/destroy
virtual machines 130.

[0018] Illustratively, the hypervisor 140 includes a man-
agement application 141, a virtual switch 142 and an operat-
ing system kernel 143. The management application 141 may
allow users to create and manage instances of the virtual
machines 130. As part of creating a VM 1nstance, the user may
specily a configuration for the virtual CPU 133, virtual
memory 132 and virtual storage 134. Further, the user may
specily networking components (e.g., one or more vINICs
131) to include 1n a VM 1nstance, as well as network configu-
ration settings for the VM instance, e.g., an IP address, an
Ethernet MAC address, as well as specily a network configu-
ration, €.g., a connection between a given vINIC 131 and a
virtual switch 142. In turn, the virtual switch 142 may act as
anetworking device for multiple VM 1nstances 130, allowing
network traffic to flow from an application 136 executing on
one of the virtual machines 130 to another using the same
network protocols that would be used if such applications
were executing on distinct physical machines and connected
to a physical switch.

[0019] As shown, virtualization allows multiple virtual
machines 130 to run simultaneously on the computer system
120, sharing the system hardware 150. However, the virtual
machines 130 are not generally aware of the system hardware
150 directly. Instead, the hypervisor 140 provides a collection
of virtual hardware for each virtual machine 130. As shown in
FIG. 1, e.g., each virtual machine includes a virtual CPU 133,
a virtual memory 132, one or more virtual network interfaces
131 and virtual storage 134. Similarly, each virtual machine
130 runs an operating system (OS) 135 on the virtual hard-
ware (131-134) exposed by the hypervisor 140. Together, the
virtual hardware (131-134) and operating system 136 provide
a virtualized computing platform for applications 136. Note,
while these virtual hardware allocations appear distinct to the
OS 135 and applications 136 running on each virtual machine
130, often they are either shared or contend for some shared
resource below the virtualization layer. That 1s, the virtual
resources provide an abstraction for the underlying physical
resources—and the underlying physical resources are shared
among the virtual machines 130.

[0020] Additionally, 1n one embodiment, one of the appli-
cations 136 may be a network application or appliance (e.g.,
a firewall) configured to evaluate and forward layer 2 network
traffic (e.g., Ethernet frames). In such a case, tratfic received
over one vINIC 131 may be forwarded back towards virtual

US 2011/0134793 Al

switch 142 over another vINIC 131. Further, a management
application 141 running as part of the hypervisor 140 may be
configured to prevent a configuration for such a virtual
machine 130 where multiple vINICs 131 are connected to the
same VLAN segment.

[0021] FIG. 2 illustrates an example network topology
within a computer system hosting multiple virtual machines,
according to one embodiment. In this example, four virtual
machines 130, _, have been instantiated on computer system
120 and each 1s running an operating system (OS) 135, _, and
applications 136, ,. Additionally, each wvirtual machine
130, _, includes one or more virtual NIC (vNICs) 131. For
example, vINIC 131, connects virtual machine 130, to virtual
switch 142, . Similarly, vINIC 131, connects virtual machine
130, to virtual switch 142, . Virtual switch 142, also includes
a connection to two physical NICs 151, ,, linking virtual
switch 142, with VL AN segment 205. That 1s, physical NICs
151, _, bridge the connection between the virtual network
topology within the computer system 120 and a physical
network infrastructure (1.e., with VLAN segment 2035).

[0022] Virtual machine 130, also includes vINIC 131, con-
necting it to virtual switch 142, and physical NIC 151;. In
turn, NIC 151, 1s connected to VLAN segment 210. Illustra-
tively, virtual machine 130, also includes two vNICS 130, ..
The vNIC 131, connects virtual machine 130, to virtual
switch 142, and vNIC 131 connects virtual machine 130, to
virtual switch 142,. Lastly, virtual machine 130, includes a
vINIC 131, connecting it to virtual switch 142, itself con-
nected to physical NIC 151, (and VLAN segment 215).

[0023] For this example, assume that the application 136,
on virtual machine 130, 1s a firewall configured to permait
certain traific received over vNIC 131, (from virtual switch
142, and VL AN segment 205) to be forwarded out over vINIC
131, towards VLAN segment 210. That 1s, application 136,
acts as a network bridge between VLAN segment 205 and
VLAN segment 210. Note, while the virtual machine 130,
includes two vNICS (131,_,), each 1s connected to a distinct
VLAN (1.e., VLAN segments 205 and 210). Thus, no loops
are present in the network topology shown in FIG. 2. In
contrast, FIGS. 3A-3C illustrate an example of a network
topology built with virtual switches and virtual machines
which may result in looping network frames, according to one
embodiment. The network topology shown in FIGS. 3A-3C
corresponds to the network topology of FIG. 2. However, the
configuration of virtual machine 130, 1s modified to include
two vNICs connecting this VM to switch 142 ,—represented
in FIGS. 3A-3C as links 310 and 315.

[0024] FIG. 3A shows virtual machine 130, forwarding a
MAC broadcast frame 305 towards virtual switch 142,. As
noted, virtual machine 130, includes two links 310, 315 to
virtual switch 142, . Assume each link 310, 315 1s the result of
a vINIC created for virtual machine 130, and that an applica-
tion running on virtual machine 130, acts as a network bridge

passing layer 2 frames between VLAN 205 and VLAN 210
(e.g., a firewall).

[0025] FIG. 3B shows virtual switch 142, forwarding
frame 320 towards virtual machine 130,. One of ordinary
skill 1n the art will recognize that virtual switch 142, may
forward a broadcast frame over both links 310 and 315. How-
ever, Tor stmplicity, frame 320 1s shown being sent over link
315. Once received, virtual machine 130,, may forward the
broadcast frame over each available network link.

[0026] This result 1s shown 1n FIG. 3C. As shown, the
virtual machine 130, forwards broadcast a frame 330 towards

Jun. 9, 2011

virtual switch 142,. However, because link 310 i1s distinct
from link 315, virtual machine 130, also forwards a frame

325 towards virtual switch 142, over link 310. Frame 325

completes the loop 1n this example because, once recerved by
virtual switch 142, the frame 1s forwarded a second time
back towards virtual machine 130,. From here, the network
simply loops between the state shown in FIG. 3B (where
frame 320 1s sent from virtual switch 142, to virtual machine

130,) and FIG. 3C (where frame 325 1s sent from virtual
machine 130, to virtual switch 142). Further, because Layer
2 frames do not include any time-to-live (TTL) parameters,
the loop just continues indefinitely. Further still, each addi-
tional broadcast (or multicast) frame are forwarded towards
virtual machine 130, results in another looping frame 1n this
example network topology.

[0027] FIG. 41llustrates a method 400 for preventing loops
on network topologies built with virtual switches and virtual
machines, according to one embodiment. As shown, the
method 400 begins at step 405 where the VM management
application receives a request to create (or add) a virtual
network interface (vINIC) to a virtual machine (VM). For
example, a user may be defining a new VM 1nstance to spawn
on a virtualized system. In such a case, the user may specity
what virtual hardware elements to create for the virtual
machine instance (e.g., processor, memory, block storage
devices) as well as one or more vNICs. The user may also
specily a network configuration for a VM instance, e.g., an IP
address and Ethernet MAC address, as well as specily a
configuration between a grven vINIC 131 and a virtual switch
142 (or a mapping between a vINIC and a physical NIC
connected to a VLAN). Alternatively, a user may request to
moditly the configuration of a virtual machine to add a vINIC
to a VM mstance (or modily an existing vNIC configuration).

[0028] Atstep 410, the management application may deter-
mine whether the VM instance already includes a vNIC. IT
not, then at step 415 the requested vINIC 1is created. Other-
wise, at step 420, the management application may determine
whether the requested vINIC includes a connection to the
same VLAN as an existing vNIC. For example, the manage-
ment application may evaluate the network topology of the
existing vINICs 1n a VM to identity what network segments
(e.g., what VL AN segment) each vNIC 1s attached to. If the
requested vINIC does not connect to the same network seg-
ment as any existing vNIC, then at step 415, the management
application creates the requested vNIC. Otherwise, 11 the user
has requested a network configuration resulting in two vINIC
connections to the same network segment, then at step 325,
the management application may fail the request tyo generate
a vINIC. Further, in one embodiment, the management appli-
cation may generate an error message to inform the user that
the requested vINIC would result 1n a network topology prone
to looping frames at the Layer 2 level.

[0029] Thus, as described, loops may be prevented on net-
work topologies which include virtual switches and virtual
machines. For example, loops may be prevented from being
introduced 1nto a network topology where a virtual machine
forwards traffic between any two (or more) virtual network
interface cards (vINICs). That 1s, where the virtual machine
does not operate as an end-host, but acts as a network appli-

ance or bridge between network subnets (e.g., bridging two
VLAN segments).

[0030] While the foregoing is directed to embodiments of
the present disclosure, other and further embodiments of the

US 2011/0134793 Al

disclosure may be devised without departing from the basic
scope thereof, and the scope thereof 1s determined by the
claims that follow.

1. A computer-implemented method for preventing loops
on virtual network topologies, comprising:

receiving a request to create a virtual network interface

(vNIC) for a virtual machine (VM) instance on a com-
puting system;

in response to determining that the VM 1nstance does not

include an existing vNIC, generating the requested
vINIC;

in response to determining that the VM 1nstance icludes

one or more existing vINICs, determining whether the
requested vINIC 1s to be connected to a same network
segment as one of the existing vNICs of the VM
instance; and

in response to determining that the requested vINIC 1s to be

connected to the same network segment as one of exist-
ing vNICs of the VM 1nstance, failing the request to
generate the requested vINIC.

2. The method of claim 1, wherein the VM 1nstance oper-
ates as a networking appliance to bridge a first virtual local
area network (VLAN) segment and a second VL AN segment.

3. The method of claim 2, wherein the appliance 1s a layer
2 firewall appliance.

4. The method of claim 1, wherein the request to create the
vINIC 1ncludes a set of network configuration parameters.

5. The method of claim 4, wherein the set of network
configuration parameters includes at least a MAC address and
an indication of a network connection to create between the
requested vNIC and a virtual switch.

6. The method of claim 1, wherein the request to create the
vINIC 1s associated with a request to create the VM 1nstance.

7. The method of claim 1, wherein the request to create the
vINIC 1s recerved as a request to add the vINIC to an instanti-
ated VM 1nstance.

8. A computing system, comprising;:

a processor; and

a memory containing a virtualization program configured

to perform an operation for preventing loops on virtual

network topologies, the operation comprising:

receiving a request to create a virtual network interface
(VNIC) for a virtual machine (VM) instance on a
computing system,

in response to determining that the VM 1nstance does not
include an existing vNIC, generating the requested
vINIC,

in response to determining that the VM instance includes
one or more existing vINICs, determiming whether the
requested vINIC 1s to be connected to a same network
segment as one of the existing vINICs of the VM
instance, and

in response to determining that the requested vINIC 1s to
be connected to the same network segment as one of

Jun. 9, 2011

existing vINICs of the VM 1nstance, failing the request
to generate the requested vINIC.

9. The system of claim 8, wherein the VM 1nstance operates
as a networking appliance to bridge a first virtual local area
network (VLAN) segment and a second VLAN segment.

10. The system of claim 9, wherein the appliance 1s a layer
2 firewall appliance.

11. The system of claim 8, wherein the request to create the
vINIC includes a set of network configuration parameters.

12. The system of claim 11, wherein the set of network
configuration parameters includes at least a MAC address and
an indication of a network connection to create between the
requested vINIC and a virtual switch.

13. The system of claim 8, wherein the request to create the
vINIC 1s associated with a request to create the VM 1nstance.

14. The system of claim 8, wherein the request to create the

vINIC 1s recerved as a request to add the vNIC to an instanti-
ated VM 1nstance.

15. A computer-readable storage medium, containing a
program, which, when executed on a processor prevents

loops on virtual network topologies, the program being oper-
able to:

recerve a request to create a virtual network interface

(vNIC) for a virtual machine (VM) instance on a com-
puting system;

in response to determining that the VM instance does not

include an existing vINIC, generate the requested vNIC;
and

in response to determining that the VM 1nstance includes

one or more existing vNICs, determine whether the
requested vINIC 1s to be connected to a same network
segment as one of the existing vNICs of the VM
instance; and

in response to determimng that the requested vINIC 1s to be

connected to the same network segment as one of exist-
ing vNICs of the VM i1nstance, failing the request to
generate the requested vINIC.

16. The computer-readable storage medium of claim 135,
wherein the VM 1nstance operates as a networking appliance
to bridge a first virtual local area network (VLAN) segment
and a second VLAN segment.

17. The computer-readable storage medium of claim 16,
wherein the appliance 1s a layer 2 firewall appliance.

18. The computer-readable storage medium of claim 15,
wherein the request to create the vINIC includes a set of
network configuration parameters including at least a MAC
address and an mdication of a network connection to create
between the requested vINIC and a virtual switch.

19. The computer-readable storage medium of claim 135,
wherein the request to create the vINIC 1s associated with a
request to create the VM instance.

20. The computer-readable storage medium of claim 15,
wherein the request to create the vINIC 1s recerved as a request
to add the vNIC to an mstantiated VM 1nstance.

ke i o e 3k

	Front Page
	Drawings
	Specification
	Claims

