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(57) ABSTRACT

Present embodiments use deep remnforcement Ilearning
(DRL) algorithms and use one or more path planning
approaches to create a path using a deep learning approach
using a reinforcement learning algorithm, trained using
traditional learning algorithms such as A-Star. The rein-
forcement learming algorithm takes 1 a forward-facing
camera operative as part of a computer vision system for a
robot, and utilizes training the algorithm to train the robot to
traverse from point A to point B 1n an operating environment
using a sequence of waypoints as a breadcrumb trail. The
system trains the robot to learn the path section by section
by the waypoints, which prevents requiring the robot to
solve the entire path. At test/deploy time, A-star 1s not used,
and the robot navigates the entire start to goal path without
any intermediate waypoints
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RECEIVING, VIA A PROCESSOR, AN FLECTRONIC MAP OF A ROOM, THE
ELECTRONIC MAP COMPRISING A RANDOM FIRST START POINT AND A FIRST
DESTINATION GOAL POINT

FLECTRONIC MAP, A FIRST PLURALITY OF WAYPOINTS DEFINING A PATH FROM
THE RANDOM FIRST START POINT TO THE FIRST DESTINATION GOAL POINT,
WHEREIN THE FIRST PLURALITY OF WAYPOINTS COMPRISES A FIRST WAYPOINT
AND A SECOND WAYPOINT

910

s e e e

TRAINING A ROBOT CONTROLLER TO TRAVERSE THE ROOM USING A
CURRICULUM LEARNING ALGORITHM BASED ON THE FIRST PLURALITY OF
WAYPOINTS.
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VISION-BASED ROBOT NAVIGATION BY
COUPLING DEEP REINFORCEMENT
LEARNING AND A PATH PLANNING

ALGORITHM

BACKGROUND

[0001] Robot navigation 1s a challenging problem 1n many
environments as i1t imvolves the confluence of several dii-
ferent sub-problems such as mapping, localization, path
planning, dynamic & static obstacle avoidance and control.
Furthermore, a high-resolution map may not always be
available, or a map may be available but 1s of low-resolution
to the point that 1t 1s only partially usable. For instance, a
low-resolution map may be usable to 1dentity local points of
interest to navigate to a final goal, but may not be trustwor-
thy for avoiding obstacles. Collisions with obstacles are
obviously undesired and a robust navigation policy must
take all these factors 1into account.

[0002] It 1s with respect to these and other considerations
that the disclosure made herein 1s presented.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The detailed description 1s set forth with reference
to the accompanying drawings. The use of the same refer-
ence numerals may indicate similar or identical items.
Various embodiments may utilize elements and/or compo-
nents other than those illustrated 1n the drawings, and some
clements and/or components may not be present in various
embodiments. Flements and/or components in the figures
are not necessarily drawn to scale. Throughout this disclo-
sure, depending on the context, singular and plural termai-
nology may be used interchangeably.

[0004] FIG. 1 depicts an example computing environment
in which techniques and structures for providing the systems
and methods disclosed herein may be implemented.

[0005] FIG. 2 illustrates an example room environment
used to train a deep reinforcement learning (DRL) algorithm
in accordance with the present disclosure.

[0006] FIG. 3 depicts a twin variational autoencoder
(VAE) for learning visual embeddings in accordance with
the present disclosure.

[0007] FIG. 4 depicts a flow diagram for generating an
embedding using the VAE of FIG. 3 1n accordance with the
present disclosure.

[0008] FIG. 5 illustrates an example Deep Reinforcement
Learning (DRL) setup 1n accordance with the present dis-
closure.

[0009] FIG. 6 1s a graph 1llustrating a decrease 1n training
times for learning a navigation pathway using the system of
FIG. 1 1n accordance with the present disclosure.

[0010] FIG. 7 depicts a demonstration of quality of paths
followed using an algorithm trained using the setup of FIG.
5 1n accordance with the present disclosure.

[0011] FIGS. 8A-8H depict demonstrations of test time

paths followed while training the robot of FIG. 1 1n accor-
dance with the present disclosure.

[0012] FIG. 9 depicts a flow diagram of an example
method for controlling a vehicle 1n accordance with the
present disclosure.
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DETAILED DESCRIPTION

Overview

[0013] The systems and methods disclosed herein are
configured and/or programmed to utilize curriculum-based
training approaches to train Deep Reinforcement Learning
(DRL) agents to navigate indoor environments. A high-level
path planning algorithm such as A-Star 1s used to assist the
training of a low-level policy learned using DRL. Once the
DRL policy 1s trained, the robot uses only the current 1mage
from 1ts red-green-blue (RGB) camera to successtully find
its way to the goal.

[0014] Present embodiments use reinforcement learning
algorithms and use one or more path planming approaches to
create a path using a deep learning approach using rein-
forcement learning algorithms, traimned using traditional
learning algorithms.

[0015] According to one or more embodiments, a RGB
and depth cameras are utilized to navigate map-iree indoor
environments. Given random start and target positions 1n an
indoor environment, the robot 1s tasked to navigate from the
start to target position without colliding with obstacles.

[0016] According to one or more embodiments, a pre-
trained perception pipeline (a twin Vanational Auto-Encoder
or VAE) learns a compact visual embedding at each position
in the environment 1n simulation.

[0017] Aspects of the present disclosure may use A-Star,
a traditional path-planming algorithm (or similar algorithm)
to mcrease the speed of the training process.

[0018] According to one or more embodiments, a DRL
policy 1s curriculum-trained using a sequentially increasing,
spacing of A-Star waypoints between the start and goal
locations (waypoint spacing increases as training pro-

gresses ), representing increasing dithculty of the navigation
task.

[0019] Aspects of the present disclosure may provide a
robust method for speeding up the training of the DRL based
algorithm. In addition, aspects of the present disclosure may
improve the performance of the DRL-based navigation
algorithm.

ITlustrative Embodiments

[0020] The disclosure will be described more fully here-

inafter with reference to the accompanying drawings, in
which example embodiments of the disclosure are shown,
and not mtended to be limiting.

[0021] Traditionally, robots have used routing/path plan-
ning algorithms like A-Star and RRT for navigating through
spaces using learning-based approaches, but these only work
when a map 1s given, and 1s of sufliciently high-resolution,
which may not always be the case. In addition, there might
be un-mapped objects like moved furniture, or dynamic
objects like a person in the robot’s vicinity, that are dealt
with local path planners that depend on on-board sensing
(visual &/or LIDAR) for in-situ decisions and local paths 1n
addition to the global path decided by A-Star (also called
A¥).

[0022] Recently, inexpensive and eflective vision and
depth sensors (like the Intel® RealSense® sensor) have
assisted systems to obtain RGB scans of operational envi-
ronments. Such sensors are cost-eflective and easy to use for
indoor mobile robots.
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[0023] Simultaneously, research and development of mod-
ermn Deep Remnforcement Learning (DRL) enables robot
control policies to be learnt through a data-driven approach.
Using recent methods, robots are set free in simulated
environments, and DRL 1s used to learn a control policy that
maximizes the expected future reward with massive
amounts ol simulation data.

[0024] However, the amount of data, time and computa-
tional resources required to train these DRL algorithms 1s
often prohibitive. For example, experiments conducted by us
and the research community have shown that such a DRL
path planner that uses RGB and depth data from one robot
in one simulated imndoor environment takes 240 GPU-hours
(approximately 10 days) to learn on a desktop computer.

[0025] As robotics are increasingly used 1n last-mile deliv-
ery and for factory-tloor automation, the ability to train such
navigation policies through a data driven approach 1 simu-
lation will become crucial. Self-driving delivery platiforms
may curb the high cost of last-mile and last 100-meter
delivery of goods. Robot control systems configured to
perform these tasks require path plan training before deploy-
ment 1n the field.

[0026] Embodiments of the present disclosure describe
methods to combine traditional perception and path planning
algorithms with DRL to improve the quality of the learnt
path planning policies and decrease the time taken to train 1t.
Experimental results are presented that demonstrate an algo-
rithm utilizing a pre-trained visual embedding for an envi-
ronment, and a traditional path-planner such as A-Star (or
the like) to train a DRIL-based control policy. As demon-
strated 1n the experimental results, the learnt DRL policy
trains faster and results in improved robotic navigation 1n an
indoor environment. It should also be appreciated that
embodiments described in the present disclosure may also
work efliciently for training robots 1n outdoor environments.

[0027] FIG. 1 depicts an example computing environment
100 that can include a robotic vehicle 105. The vehicle 105
can 1nclude a robotic vehicle computer 145, and a Vehicle
Controls Unit (VCU) 163 that typically includes a plurality
ol electronic control units (ECUs) 117 disposed 1n commu-
nication with the robotic vehicle computer 145, which may
communicate via one or more wireless connection(s) 130,
and/or may connect with the vehicle 105 directly using near
field communication (NFC) protocols, Bluetooth® proto-

cols, Wi-Fi1, Ultra-Wide Band (UWB), and other possible
data connection and sharing techniques.

[0028] Although not utilized according to embodiments
described hereafter the vehicle 105 may also receive and/or
be 1 communication with a Global Positioning System
(GPS) 175. The GPS 175 may be a satellite system (as
depicted in FIG. 1) such as the global navigation satellite
system (GLNSS), Galileo, or navigation or other similar
system. In other aspects, the GPS 175 may be a terrestrial-
based navigation network, or any other type of positioning,
technology known 1n the art of wireless navigation assis-
tance.

[0029] The robotic vehicle computer 145 may be or
include an electronic vehicle controller, having one or more
processor(s) 150 and memory 155. The robotic vehicle
computer 145 may, 1 some example embodiments, be
disposed in communication with a mobile device 120 (not
shown 1 FIG. 1), and one or more server(s) 170. The
server(s) 170 may be part of a cloud-based computing
infrastructure, and may be associated with and/or include a
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Telematics Service Delivery Network (SDN) that provides
digital data services to the vehicle 105 and other vehicles
(not shown 1n FIG. 1) that may be part of a robotic vehicle
fleet.

[0030] Although illustrated as a four-wheeled delivery
robot, the vehicle 105 may take the form of another robot
chassis such as, for example, a two-wheeled vehicle, a
multi-wheeled vehicle, a track-driven vehicle, etc., and may
be configured and/or programmed to include various types
of robotic drive systems and powertrains. Methods of train-
ing a deep reinforcement learming algorithm using the DRL
robot tramning system 107 may take in RGB and depth
images using one or more forward facing camera(s) 177
operative as part of a computer vision system for the robotic
vehicle 105, and train the DRL algorithm to go from a
starting point 186 to a destination 187 using a sequence of
waypoints 188 as a breadcrumb trail. The DRL robot train-
ing system 107 may train the robot to learn the path
section-by-section along the plurality of waypoints 188,
which prevents requiring the robot to solve the entire path to
the destination 187.

[0031] According to embodiments of the present disclo-
sure, the DRL robot training system 107 may be configured
and/or programmed to operate with a vehicle having an
autonomous vehicle controller (AVC) 194. Accordingly, the
DRL robot training system 107 may provide some aspects of
human control to the vehicle 105, when the vehicle is
configured as an AV,

[0032] In some aspects, the mobile device 120 may com-
municate with the vehicle 105 through the one or more
wireless connection(s) 130, which may be encrypted and
established between the mobile device 120 and a Telematics
Control Unit (TCU) 160. The mobile device 120 may
communicate with the TCU 160 using a wireless transmaitter
(not shown 1n FIG. 1) associated with the TCU 160 on the
vehicle 105, The transmitter may communicate with the
mobile device 120 using a wireless communication network
such as, for example, the one or more network(s) 125. The
wireless connection(s) 130 are depicted 1n FIG. 1 as com-
municating via the one or more network(s) 125, and via one
or more wireless connection(s) 130 that can be direct
connection(s) between the vehicle 105 and the mobile
device 120. The wireless connection(s) 130 may include
various low-energy protocols including, for example, Blu-
ctooth®, BLE, or other Near Field Communication (NFC)

protocols.

[0033] The network(s) 125 1llustrate an example of com-
munication infrastructure i which the connected devices
discussed in various embodiments of this disclosure may
communicate. The network(s) 125 may be and/or include the
Internet, a private network, public network or other con-
figuration that operates using any one or more known
communication protocols such as, for example, transmission
control protocol/Internet protocol (TCP/IP), Bluetooth®,
Wi-F1 based on the Institute of Electrical and FElectronics
Engineers (IEEE) standard 802.11, Ultra-Wide Band
(UWB), and cellular technologies such as Time Division
Multiple Access (TDMA), Code Division Multiple Access
(CDMA), High Speed Packet Access (HSPDA), Long-Term
Evolution (LTE), Global System for Mobile Communica-
tions (GSM), and Fifth Generation (5G), to name a few
examples.

[0034] The robotic vehicle computer 145 may be installed
in an mterior compartment of the vehicle 105 (or elsewhere
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in the vehicle 105) and operate as a functional part of the
DRL robot training system 107, in accordance with the
disclosure. The robotic vehicle computer 145 may 1nclude
one or more processor(s) 1530 and a computer-readable
memory 153.

[0035] The one or more processor(s) 150 may be disposed
in communication with one or more memory devices dis-
posed 1n communication with the respective computing
systems (e.g., the memory 155 and/or one or more external
databases not shown 1n FIG. 1). The processor(s) 150 may
utilize the memory 155 to store programs in code and/or to
store data for performing aspects in accordance with the
disclosure. The memory 155 may be a non-transitory com-
puter-readable memory storing a DRL robot training pro-
gram code. The memory 155 can include any one or a
combination of volatile memory elements (e.g., dynamic
random access memory (DRAM), synchronous dynamic
random access memory (SDRAM), etc.) and can include any
one or more nonvolatile memory elements (e.g., erasable
programmable read-only memory (EPROM), flash memory,
clectronically erasable programmable read-only memory
(EEPROM), programmable read-only memory (PROM),
etc.).

[0036] The VCU 1635 may share a power bus (not shown
in FIG. 1) with the robotic vehicle computer 145, and may
be configured and/or programmed to coordinate the data
between vehicle 105 systems, connected servers (e.g., the
server(s) 170), and other vehicles such as a transport and
mobile warechouse vehicle (not shown 1n FIG. 1) operating
as part of a vehicle fleet. The VCU 165 can include or
communicate with any combination of the ECUs 117, such
as, for example, a Body Control Module (BCM) 193. The
VCU 165 may further include and/or communicate with a
Vehicle Perception System (VPS) 181, having connectivity
with and/or control of one or more vehicle sensory system(s)
182. In some aspects, the VCU 1635 may control operational
aspects of the vehicle 105, and implement one or more
instruction sets operational as part of the DRL robot training
system 107. The VPS 181 may be disposed in communica-
tion with a package delivery controller 196.

[0037] The VPS 181 may include a LIDAR device, a sonar
device, an IR camera, an RGB camera, an inertial measure-
ment unit (IMU), and/or other sensing devices disposed
onboard the vehicle, which may be used by the package
delivery controller 196 to sense vehicle location, generate a
navigation map (not shown in FIG. 1), and navigate to the
destination 187. The vehicle 105 may generate the naviga-
tion map with or without using a prior high definition map,
and may update the map, once created or accessed, with new
information encountered during delivery operations.

[0038] The TCU 160 can be configured and/or pro-
grammed to provide vehicle connectivity to wireless com-
puting systems onboard and offboard the vehicle 105, and
may include a Navigation (NAV) receiver 188 for receiving
and processing a GPS signal from the GPS 175, a Blu-
ctooth® Low-Energy (BLE) Module (BLEM) 195, a Wi-Fi
transceiver, an Ultra-Wide Band (UWB) transceiver, and/or
other wireless transceivers (not shown in FIG. 1) that may
be configurable for wireless communication between the
vehicle 1035 and other systems, computers, and modules. The
TCU 160 may be disposed in communication with the ECU
117 by way of a bus 180. In some aspects, the TCU 160 may
retrieve data and send data as a node 1n a CAN bus.
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[0039] The BLEM 195 may establish wireless communi-
cation using Bluetooth® and Bluetooth Low-Energy® com-
munication protocols by broadcasting and/or listening for
broadcasts of small advertising packets, and establishing
connections with responsive devices that are configured
according to embodiments described herein. For example,
the BLEM 195 may include Generic Attribute Profile
(GATT) device connectivity for client devices that respond
to or mitiate GATT commands and requests.

[0040] The bus 180 may be configured as a Controller
Area Network (CAN) bus organized with a multi-master
serial bus standard for connecting two or more of the ECUs
117 as nodes using a message-based protocol that can be
configured and/or programmed to allow the ECUs 117 to
communicate with each other. The bus 180 may be or
include a high speed CAN (which may have bit speeds up to
1 Mb/s on CAN, 5 Mb/s on CAN Flexible Data Rate (CAN
FD)), and can include a low-speed or fault-tolerant CAN (up
to 125 Kbps), which may, in some configurations, use a
linear bus configuration. In some aspects, the ECUs 117 may
communicate with a host computer (e.g., the robotic vehicle
computer 145, the DRL robot training system 107, and/or
the server(s) 170, etc.), and may also communicate with one
another without the necessity of a host computer such as, for
example, a teleoperator terminal 171. The bus 180 may
connect the ECUs 117 with the robotic vehicle computer 145
such that the robotic vehicle computer 145 may retrieve
information from, send information to, and otherwise inter-
act with the ECUs 117 to perform steps described according
to embodiments of the present disclosure. The bus 180 may
connect CAN bus nodes (e.g., the ECUs 117) to each other
through a two-wire bus, which may be a twisted pair having
a nominal characteristic impedance. The bus 180 may also
be accomplished using other communication protocol solu-
tions, such as Media Oriented Systems Transport (MOST) or
Ethernet. In other aspects, the bus 180 may be a wireless
intra-vehicle bus.

[0041] The VCU 165 may control various loads directly
via the bus 180 communication or implement such control in
conjunction with the BCM 193. The ECUs 117 described
with respect to the VCU 165 are provided for example
purposes only, and are not intended to be limiting or
exclusive. Control and/or communication with other control
modules not shown 1n FIG. 1 1s possible, and such control
1s contemplated.

[0042] In an example embodiment, the ECUs 117 may
control aspects of vehicle operation and communication
using inputs from human teleoperators, inputs from the AVC
194, the DRL robot training system 107, and/or via wireless
signal mputs recetved via the wireless connection(s) 130
from other connected devices. The ECUs 117, when con-
figured as nodes 1n the bus 180, may each include a central
processing umt (CPU), a CAN controller, and/or a trans-
ceiver (not shown 1 FIG. 1).

[0043] The BCM 193 generally includes integration of
sensors, vehicle performance indicators, and variable reac-
tors associated with vehicle systems, and may include pro-
cessor-based power distribution circuitry that can control
functions associated with the vehicle body such as lights,
windows, security, door locks and access control, and vari-
ous comiort controls. The BCM 193 may also operate as a
gateway lfor bus and network interfaces to interact with
remote ECUs (not shown in FIG. 1). The BCM 193 may

turther include robot power management circuitry that can
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control power distribution from a power supply (not shown
in FIG. 1) to vehicle 105 components.

[0044] The BCM 193 may coordinate any one or more
functions from a wide range of vehicle functionality, includ-
ing energy management systems, alarms, vehicle immobi-
lizers, driver and rider access authorization systems, and
other functionality. In other aspects, the BCM 193 may
control auxiliary equipment functionality, and/or be respon-
sible for integration of such functionality.

[0045] The computing system architecture of the robotic
vehicle computer 145, VCU 165, and/or the DRL robot
training system 107 may omit certain computing modules. It
should be readily understood that the computing environ-
ment depicted m FIG. 1 1s an example of a possible
implementation according to the present disclosure, and
thus, 1t should not be considered limiting or exclusive.

[0046] The sensory systems 182 may provide the sensory
data obtained from the sensory system 182 responsive to an
internal sensor request message. The sensory data may
include information from various sensors where the sensor
request message can include the sensor modality with which

the respective sensor system(s) are to obtain the sensory
data.

[0047] The sensory system 182 may include one or more
camera sensor(s) 177, which may include thermal cameras,
optical cameras, and/or a hybrid camera having optical,
thermal, or other sensing capabilities. Thermal and/or inira-
red (IR) cameras may provide thermal information of
objects within a frame of view of the camera(s), including,
for example, a heat map figure of a subject 1n the camera
frame. An optical camera may provide RGB and/or black-
and-white and depth 1mage data of the target(s) and/or the
robot operating environment within the camera frame. The
camera sensor(s) 177 may further include static imaging, or
provide a series of sampled data (e.g., a camera feed).

[0048] The sensory system 182 may further include an
inertial measurement umt IMU (not shown 1n FIG. 1), which

may include a gyroscope, an accelerometer, a magnetometer,
or other nertial measurement device.

[0049] The sensory system 182 may further include one or
more lighting systems such as, for example, a flash light
source 179, and the camera system 177. The flash light
source 179 may include a flash device, similar to those used
in photography for producing a flash of artificial light
(typically 1000 to Y200 of a second) at a color temperature of
about 3500 K to illuminate a scene, and/or capture quickly
moving objects or change the quality of light 1n the operating,
environment 100. Flash refers either to the flash of light
itsell or to the electronic flash unit (e.g., the flash light source
179) discharging the light. Flash units are commonly built
directly into a camera. Some cameras allow separate tlash
units to be mounted via a standardized “accessory mount”™
bracket (a hot shoe).

[0050] The package delivery controller 196 may include
program code and hardware configured and/or programmed
for obtaining 1mages and video feed via the VPS 181, and
performing semantic segmentation using IR thermal signa-
tures, RGB 1mages, and combinations of RGB/depth and IR
thermal 1maging obtained from the sensory system 182.
Although depicted as a separate component with respect to
the robot vehicle computer 145, 1t should be appreciated that
any one or more of the ECUs 117 may be integrated with
and/or include the robot vehicle computer 145.
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[0051] FIG. 2 illustrates an example environment 200
used to train the DRL algorithm in accordance with the
present disclosure. The robotic vehicle 105 1s depicted n
FIG. 1 following a path comprising a plurality of waypoints
205A, 2058, 205C, . .. 205N to a destination goal point 187.

[0052] A high-level path-planner may obtain a set of
intermediate waypoints 205A-205N from a path planning
engine (such as A-Star or similar path planning engine) on
a global map that connects a starting point 201 and the
destination goal point 187. It should be appreciated that the
number ol mntermediate waypoints 2035 that the high-level
planner provides 1s typically only a handful, say 1-10. It
should be appreciated that the A-Star algorithm discretizes
the continuous path 1into a much larger number of waypoints,
100-200 1n our environment, out of which a smaller equi-
distant subset, 1-10 1s chosen. The DRL policy 1s then learnt
to provide optimal control commands: LEFT, STRAIGHT,
or RIGHT, to navigate these waypoints 205, given the sensor
data from the camera 177 disposed on a forward-facing
portion of the robotic vehicle 105. The LEFT and RIGHT
control commands may turn the robot by 10 degrees toward
a respective direction, whereas the STRAIGHT 1s a com-
mand to move the robot a predetermined distance (e.g., 0.25
m) forward. This 1s the discretization of control for experi-
ments described 1n the present disclosure. It should be
appreciated that the learnt policy could alternatively be
trained to output continuous velocity commands, like linear
and angular velocities.

[0053] DRL based traming typically requires a substantial
volume of data, where the robotic vehicle 1s trained 1n
simulation across a large number (e.g., 5, 10, 20, 50, etc.) of
episodes, where each episode involves randomly chosen
start and goal/target locations, while navigating to the des-
tination point 187 through a plurality of obstacles 210. The
start and destination points 201, 187 are fixed for the
episode, but may vary at the start of the next episode.

[0054] Embodiments of the present disclosure describe
experiments demonstrating that 150,000 episodes may be
completed during a training session, which may utilize
computing time of about ~240 GPU hours (or 10 days) to
train the agent. Fach training episode may include multiple
time step, and the robotic vehicle 105 may be tasked to
achieve its episodic goal within a pre-defined maximum

number of time steps per episode (empirically determined to
be 500).

[0055] Present embodiments use deep reinforcement
learning (DRL) algorithms and use one or more path plan-
ning approaches to create a path using a deep learning
approach using reinforcement learning algorithms, trained
using traditional learning algorithms such as A-Star.

[0056] The DRL robot training system 107 may utilize a
DRL based methodology for the robotic vehicle 105, which
may be equipped with the RGB and depth camera(s) 177 to
navigate map-iree mdoor environment 200. Given random
start and target positions in an indoor environment, the
robotic vehicle 105 1s tasked to navigate from the start 201

to the destination point 187 without colliding with the
obstacles 210.

[0057] In one embodiment, the DRL robot training system
107 utilizes a pre-trained perception pipeline (a twin Varia-
tional Auto-Encoder or VAE depicted in FIG. 3) that learns
a compact visual embedding at each position in the envi-
ronment 1 simulation. In some aspects, the DRL robot
training system 107 may utilize A-Star or another a tradi-
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tional path-planning algorithm to increase the speed of the
training process. It should be appreciated that reference to
A-Star waypoints, or utilization of A-Star as a path planning,
platform may be substituted with another similar path plan-
ning engine.

[0058] The DRL policy i1s curriculum-trained using a
sequentially increasing spacing of A-Star waypoints (from
which the waypoints 205 are selected) between the start
point 201 and the destination point 187. The DRL robot
training system 107 may increase waypoint spacing as
training progresses, representing increasing dithculty of the
navigation task. Once the DRL robot training system 107
trains the DRL, the DRL can generate a policy that 1s able
to navigate the robotic vehicle 105 between any arbitrary
start and goal locations.

[0059] The A-Star algorithm typically uses a top-down
map ol the environment and the start and goal locations, as
illustrated 1n FIG. 2, to generate a series of waypoints. From
the A-Star waypoints, the system may select a subset of
waypoints We will use the notation WP1, WP2, WP3, WPN
to represent each of the N intermediate waypoints (typically
1-10 waypoints 205). The DRL robot training system 107
may represent the start 201 and destination point 187
locations with S and T, respectively, and so the order of the
points the robot has to navigate 1s S to WP1 205A to WP2
205B to WP3 205C . . . to WPN 205N to T (the destination
point 187).

[0060] When the robotic vehicle 105 1s localized at the
start location, S 201, at the beginning of an episode, the
robot vehicle 105 1s programmed and/or configured for
achieving an immediate goal to navigate to WP1 205A. This
DRL policy 1s used to navigate to WP1 with the three control
commands as atforementioned: LEFT, STRAIGHT, RIGHT.
The DRL robot training system 107 may utilize a Proximal
Policy Optimization (PPO) algorithm with the DRL navi-
gation policy being represented by a neural network with
two hidden layers, and a Long Short Term Memory (LSTM)
for temporal recurrent information.

[0061] FIG. 3 depicts a twin variational autoencoder
(VAE) 300 for learning visual embeddings in accordance
with the present disclosure. FIG. 4 deplcts a flow diagram
400 for generating an embedding 4135 usmg the twin VAE
embedding output (reconstructed RGB 1mage data 325 and
reconstructed depth image data 345 of FIG. 3), in accor-
dance with the present disclosure. The tlow diagrams of FIG.
3 and FIG. 4 together illustrate an overview of steps used 1n
training the DRL algorithm.

[0062] With reference first to FIG. 3, the RGB and depth

image camera(s) 177 disposed on a front-facing portion of
the robotic vehicle 105 may generate RGB image data 305
and 1mage depth data 330. The DRL robot training system
107 may encode the RGB 1mage data 305 using an RGB
encoder 310, encode the image depth data 330 with a depth
encoder 335 for a twin VAE embedding process 3135. The
system may learn visual embeddings for the environment by
decoding the RGB 1mage data 305 and the image depth data
330 using an RGB decoder 320 and depth decoder 340, and
generate reconstructed RGB 1mage data (RGB') 325 and a
reconstructed depth image data (DEPTH') 345.

[0063] As illustrated 1n the tflow diagram 400 of FI1G. 4, the
DRL robot training system 107 may process the RGB image
data 305 and Image depth data 330 through a pre-trained
twin Variational Autoencoder (VAE) comprising the RGB
encoder 310 and the depth encoder 335, which provides a
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compact representation of the environment as one-dimen-
sional vectors (e.g., the RGB' 325 and the DEPTH' 345, as
shown 1n FIG. 3). This 1s termed “Representation Learning”
in Deep Learning parlance.

[0064d] The RGB image 1s encoded to a one-dimensional
representation ZRGB, and the Depth encoded to zDepth. In
addition, the Euclidean distance d between the current and
target (goal) locations are also provided to the DRL during
training. Accordingly, the DRL robot training system 107
may supplement the embedding 415 with a distance indica-
tive ol a travel distance from 1ts current position (e.g., a
waypoint position expressed as cartesian coordinates in the
map) and target/goal location 201/187, which the DRL robot
training system 107 may utilize to train the agent.

[0065] With reference again to FIG. 2, the DRL robot

training system 107 may tramn the DRL using a known
reward function configured to reward the robotic vehicle 105
based on 1ts change 1n instantaneous distance to the current
goal (in this case, WP1 205A) between adjacent time steps.
Thus, the robotic vehicle 105 may learn to navigate to the
current goal location, WP1. Once the robotic vehicle 105
reaches WP1 to within a threshold distance (e.g., 0.2 m), the
DRL algorithm, the DRL robot training system 107 gives a
bonus reward, and the goal 1s set to WP2. The DRL robot
training system 107 may repeat this same procedure until
WP2 205B 1s reached, after which the robotic vehicle 105
aims to reach WP3 203C, all the way until the final target T

(the destination point 187) 1s reached by the robotic vehicle
105.

[0066] The DRL robot tramming system 107 may next
concatenate respective zDepth and zRGB to obtain a state
vector for a current pose of the robotic vehicle 105 with
respect to the target (e.g., the destination point 187), and
utilize the concatenated data in the training of the DRL agent
for operation of the robotic vehicle 105.

[0067] FIG. 5 illustrates an example schematic 500 for a
DRL setup 1n accordance with the present disclosure. The
DRL robot tramning system 107 may concatenate the
encoded RGB data 305 and image depth data 330 received
from the RGB encoder 310 and 335, respectively, to obtain
a state vector (zZRGB, zDepth, d), where d 1s the distance to
the goal point, for the current pose of the robotic vehicle 3035
with respect to the destination point 187. The DRL robot
training system 107 may use this 1n the training of the DRL
agent 530. The DRL robot training system 107 may utilize
the embedding 415 as mnput for the trained DRL agent 530.
The robotic vehicle 105 may choose actions 535 1n the
operation environment 540 using the DRL agent 5330, based
on DRL agent policies, and provide feedback RGB 1mage
data 305 and 1mage depth data 330 to the RGB encoder 310
and depth encoder 335, respectively, during each training
episode.

[0068] The traimning of the agent 1s undertaken using
Curriculum Learning. In Curriculum Learning, the agent 1s
trained on relatively easier tasks during the first traiming
episodes. Once this easier task 1s learned, the level of
difliculty 1s subsequently increased 1n small increments, akin
to a student’s curriculum, all the way until the level of
dificulty of the task 1s equal to what 1s desired.

[0069] According to one or more embodiments, two meth-
odologies of curriculum-based training of the DRL agents
are utilized using the method described above: (1) a sequen-
tial waypoint method, and (2) a farther waypoint method.
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[0070] In the sequential waypoint method, the DRL robot
training system 107 may use 10 intermediate way points
(N=10) for a first training episode. Once the agent has
successiully learned to navigate from S to T with 10
intermediate waypoints (after a few 1000s of episodes), the
DRL robot training system 107 may increase the level of
difficulty by using only 8 intermediate waypoints for the
next few (e.g., 1000s) of episodes. It should be appreciated
that with fewer intermediate waypoints, the distance
between two adjacent waypoints 1s now greater, and so the
level of difliculty 1s enhanced. Subsequently, the DRL robot
training system 107 may train with only 6 intermediate
waypoints for few 1000s of episodes, then 4, 3, 2, 1, and
finally without any intermediate waypoints. Thus, the level
of dithiculty follows a curriculum, and increases in discrete
mumps every few 1000s of episodes. Once the robotic vehicle
105 has completed the full curriculum, 1t no longer requires
the high-level A-Star waypoints, as it can now navigate to
the target T without the intermediate waypoints. Thus, at
test/deployment stage the robotic vehicle 105 may be able to
navigate all the way from start to target without the help of

A-Star.

[0071] FIG. 6 1s a graph 1llustrating a decrease 1n training
times for learming a navigation pathway from start to end
without the system of FIG. 1, compared with training times
for the system of FIG. 1, in accordance with the present
disclosure. The graph 600 illustrates Success-weighted-
Path-Length or SPL 605 (a metric of navigational success)
with respect to a number of episodes 610. The SPL metric
determines the coincidence between the path output by the
DRL algorithm and the optimal path between the start and
target locations. In our experiments, the optimal path 1s
given by a simulator (not shown).

[0072] Three data results are shown, include results for
PointNav 623, where the whole policy 1s learned from start
to end, versus training times for curriculum learning Success
Weighted Path (SWP)-10 615, and FWP 620, according to
embodiments described herein. The curriculum learning
methods SWP-10 615 and Farther WayPoint (FWP) 620
achieved a higher SPL, in half the time, as compared to
PointNav 6235 results, which 1s a baseline approach without
the A-Star and Curriculum Learning based traiming speed-
ups.

[0073] In the farther waypoint method of training, the
DRL robot tramning system 107 may commence with a
revised target (1"), which 1s a small fraction of the total path
between S and T. T' starts off close to S at the first episode
of tramning and 1s gradually moved closer to T as training
progresses. Specifically, T' 1s set to be the point correspond-
ing to the 20th percentile of the list of waypoints obtained
from A-Star 1n the first episode. Thus, the robotic vehicle
105 may only needs to learn to navigate 20% of the distance
between S and T, after which the vehicle 105 1s rewarded,
and the episode ends.

[0074] For subsequent training episodes, the DRL robot
training system 107 may slowly increase the distance of T
from S 1n linear increments. At the final tramning episode, T
comcides with T, and the robotic vehicle 105 may aim
directly for the target T. In experiments, this i1s done over a
span of 100,000 episodes. This 1s also consistent with
Curriculum Learning as the level of difficulty 1s slowly
increased over the training episodes with the agent required
to navigate only 20% of the distance from S to T for the first

episode, and 100% of the distance by the end of the training
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(1.., the last episode). Once trained, the robotic vehicle 105
1s deployed, the system 107 may aim only for T and not the
intermediate waypoints.

[0075] FIG. 7 depicts a demonstration of quality of paths
followed using an algorithm trained using the setup of FIG.
5 1 accordance with the present disclosure. FIGS. 8A, 8B,
8C, 8D, 8E, 8F, 8G, and 8H depict demonstrations of test
time paths followed while training the robotic vehicle 105 of
FIG. 1, in accordance with the present disclosure.

[0076] With attention first given to FIG. 7, a path 720 1s
illustrated 1n a map 715 of the operational training environ-
ment. The robotic vehicle 105 1s 1llustrated at a starting point
201, with the travel path connecting the starting position to
a destination point 187, including deviations from the opti-
mal pathway connecting those points.

[0077] This 1illustrates an example path taken by the
robotic vehicle 105 in a simulation environment during
training. SPL (Success weighted Path Length) indicates the
level of success 1n reaching the goal. As the relative success
of the navigational path increases, the SPL approaches a
value of 1. As shown 1n FIG. 7, the SPL of 0.444 indicates

intermediate quality output by the algorithm during training.
[0078] FIGS. 8 A-8H shows paths after training the algo-
rithm completely and contrasts the baseline approach (Point-
Nav) vs our curriculum based improvements (SWP, FWP) in
training. Test time paths traced by the PointNav system (e.g.,
A-Star) shown as empty circles, SWP-10 (shown as solid
circles), and FWP shown as triangles, 1n a bird’s eye view
representation of the environment for respective episodes.
The start point 201N, and the destination point 187N posi-
tions are shown 1n each respect FIG.

[0079] FIG. 9 1s atlow diagram of an example method 900
for training a robot controller, according to the present
disclosure. FIG. 9 may be described with continued refer-
ence to prior figures, including FIGS. 1-6. The following
process 1s exemplary and not confined to the steps described
hereafter. Moreover, alternative embodiments may include
more or less steps that are shown or described herein, and
may include these steps 1n a diflerent order than the order
described in the following example embodiments.

[0080] Referring first to FIG. 9, at step 905, the method
900 may commence with receiving, via a processor, an
clectronic map of a room, the electronic map comprising a
random first start point and a first destination goal point.
[0081] At step 910, the method 900 may further include
generating, via a pathfinding algorithm, and using the elec-
tronic map, a first plurality of waypoints defining a path
from the random {irst start point to the first destination goal
point, wherein the first plurality of waypoints comprises a
first waypoint and a second waypoint. According to one
embodiment, the pathfinding algorithm 1s A-Star.

[0082] This step may include generating, with the path-
finding algorithm, a first set of waypoints connecting the
start point and the first destination goal point, and selecting,
from the first set of waypoints, the first plurality of way-
points. In one aspect, the first plurality of waypoints are
equidistant from one another.

[0083] According to another embodiment, first plurality of
waypoints includes a maximum of 10 waypoints.

[0084] Generating the first plurality of waypoints may
turther include generating the first waypoint with the path-
finding algorithm, generating the second waypoint with the
pathfinding algorithm, where the second waypoint 1s con-
tiguous to the first waypoint, and connecting the second
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waypoint to a third waypoint contiguous to the second
waypoint and closer to the first destination goal point.

[0085] At step 915, the method 900 may further include
training a robot controller to traverse the room using a
curriculum learning algorithm based on the first plurality of
waypoints. This step may include navigating from the first
waypoint to the second waypoint using three control com-
mands that can include left, straight, and right. The step may
turther include generating a red-green-blue (RGB) image
and a depth image, encoding the RGB image and the depth
image through an embedding, and supplementing the
embedding with a distance between a current position and
the first destination goal point.

[0086] According to another aspect of the present disclo-
sure, this step may further include rewarding, with a reward
function, the curriculum learning algorithm with a bonus
reward responsive reaching a position less than a threshold
distance from a subsequent waypoint.

[0087] This step may further include loading a pre-trained
perception pipeline, and defining, using the curriculum
learning algorithm, a compact visual embedding at each
waypoint of the first plurality of waypoints, determining that
the vehicle has reached the first destination goal point,
selecting a second random destination goal point that 1s
different from the first destination goal point, and selecting
a second plurality of waypoints having fewer waypoints than
the first plurality of waypoints.

[0088] According to another aspect of the present disclo-
sure, this step may include determining that the vehicle has
reached the first random destination goal point, selecting a
second random start point having a distance to a second
destination goal point that 1s a threshold distance further to
the second random start point than a distance from the first
start point and the first destination goal point, and selecting
a third plurality of waypoints connecting the second desti-
nation goal point and the second random start point. The
system may reward the curriculum learming algorithm with
a bonus reward responsive reaching a position less than a
threshold distance from a subsequent waypoint.

[0089] Aspects of the present disclosure use curriculums-
based training approaches to train Deep Reinforcement
Learning (DRL) agents to navigate indoor environments. A
high-level path planning algorithm (A-Star, for example) 1s
used to assist the training of a low-level policy learned using
DRL. Once the DRL policy 1s trained, the robotic vehicle
uses only the current image from 1ts RGBD camera, and its
current and goal locations to generate navigation commands
to successiully find 1ts way to the goal. The training system
accelerates the DRL ftraining by pre-learning a compact
representation of the camera data (RGB and depth images)
throughout the environment. In addition, the A-Star based
supervision with curriculum-based learming also decreases
the training time by at least a factor of 2 and with a further
improvement 1n performance (measured by SPL).

[0090] Inthe above disclosure, reference has been made to
the accompanying drawings, which form a part hereof,
which illustrate specific implementations 1n which the pres-
ent disclosure may be practiced. It 1s understood that other
implementations may be utilized, and structural changes
may be made without departing from the scope of the
present disclosure. References 1n the specification to “one
embodiment,” “an embodiment,” “an example embodi-
ment,” etc., indicate that the embodiment described may
include a particular feature, structure, or characteristic, but
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every embodiment may not necessarily include the particu-
lar feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodi-
ment. Further, when a feature, structure, or characteristic 1s
described 1n connection with an embodiment, one skilled in
the art will recognize such feature, structure, or character-
1stic 1n connection with other embodiments whether or not
explicitly described.

[0091] Further, where appropriate, the functions described
herein can be performed 1n one or more of hardware,
soltware, firmware, digital components, or analog compo-
nents. For example, one or more application specific inte-
grated circuits (ASICs) can be programmed to carry out one
or more of the systems and procedures described herein.
Certain terms are used throughout the description and claims
refer to particular system components. As one skilled in the
art will appreciate, components may be referred to by
different names. This document does not ntend to distin-
guish between components that differ in name, but not
function.

[0092] It should also be understood that the word

“example” as used herein 1s intended to be non-exclusionary
and non-limiting in nature. More particularly, the word
“example” as used herein indicates one among several
examples, and 1t should be understood that no undue empha-
s1s or preference 1s being directed to the particular example
being described.

[0093] A computer-readable medium (also referred to as a
processor-readable medium) includes any non-transitory
(e.g., tangible) medium that participates 1n providing data
(e.g., instructions) that may be read by a computer (e.g., by
a processor of a computer). Such a medium may take many
forms, including, but not limited to, non-volatile media and
volatile media. Computing devices may include computer-
executable 1nstructions, where the instructions may be
executable by one or more computing devices such as those
listed above and stored on a computer-readable medium.

[0094] With regard to the processes, systems, methods,
heuristics, etc. described herein, i1t should be understood
that, although the steps of such processes, etc. have been
described as occurring according to a certain ordered
sequence, such processes could be practiced with the
described steps performed 1n an order other than the order
described herein. It further should be understood that certain
steps could be performed simultaneously, that other steps
could be added, or that certain steps described herein could
be omitted. In other words, the descriptions of processes
herein are provided for the purpose of illustrating various
embodiments and should 1n no way be construed so as to
limit the claims.

[0095] Accordingly, 1t 1s to be understood that the above
description 1s intended to be 1llustrative and not restrictive.
Many embodiments and applications other than the
examples provided would be apparent upon reading the
above description. The scope should be determined, not with
reference to the above description, but should instead be
determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled. It 1s anticipated and intended that future develop-
ments will occur in the technologies discussed herein, and
that the disclosed systems and methods will be incorporated
into such future embodiments. In sum, 1t should be under-
stood that the application 1s capable of modification and
variation.
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[0096] All terms used 1n the claims are itended to be
given their ordinary meanings as understood by those
knowledgeable in the technologies described herein unless
an explicit indication to the contrary 1s made heremn. In
particular, use of the singular articles such as “a,” “the,”
“said,” etc. should be read to recite one or more of the
indicated elements unless a claim recites an explicit limita-
tion to the contrary. Conditional language, such as, among,
others, “can,” “could,” “might,” or “may,” unless specifi-
cally stated otherwise, or otherwise understood within the
context as used, 1s generally intended to convey that certain
embodiments could include, while other embodiments may
not include, certain features, elements, and/or steps. Thus,
such conditional language 1s not generally intended to imply
that features, elements, and/or steps are 1n any way required
for one or more embodiments.

That which 1s claimed 1s:

1. A method for controlling a vehicle, comprising:

receiving, via a processor, an electronic map of a room,
the electronic map comprising a random {irst start point
and a first destination goal point;

generating, via a pathfinding algorithm, and using the
clectronic map, a first plurality of waypoints defining a
path from the random first start point to the first
destination goal point, wherein the first plurality of
waypolints comprises a lirst waypoint and a second
waypoint; and

training a robot controller to traverse the room using a
curriculum learning algorithm based on the first plu-
rality of waypoints.

2. The method according to claim 1, wherein generating,

the first plurality of waypoints comprises:

generating, with the pathfinding algorithm, a first set of
waypoints connecting the start point and the first des-
tination goal point; and

selecting, from the first set of waypoints, the first plurality
of waypoints, wherein the first plurality of waypoints
are equidistant.

3. The method according to claim 2, wherein the first
plurality of waypoints comprises a maximum of 10 way-
points.

4. The method according to claim 1, wherein the path-
finding algorithm 1s A-Star.

5. The method according to claim 1, wherein creating the
first plurality of waypoints comprises:

generating the first waypoint with the pathfinding algo-
rithm;
generating the second waypoint with the pathfinding

algorithm, wherein the second waypoint 1s contiguous
to the first waypoint; and

connecting the second waypoint to a third waypoint
contiguous to the second waypoint and closer to the
first destination goal point.

6. The method according to claim 1, wherein training the
robot controller to traverse the room using the curriculum
learning algorithm comprises:

navigating from the first waypoint to the second waypoint
using three control commands comprising left, straight,
and right;

generating a red-green-blue (RGB) image and a depth
1mage;

encoding the RGB 1mage and the depth image through an
embedding; and
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supplementing the embedding with a distance between a
current position and the first destination goal point.

7. The method according to claim 6, wherein training the
robot controller to traverse the room using the curriculum
learning algorithm further comprises:

rewarding, with a reward function, the curriculum leamn-
ing algorithm with a bonus reward responsive reaching
a position less than a threshold distance from a subse-
quent waypoint.

8. The method according to claim 1, wherein training the
robot controller comprises:

loading a pre-trained perception pipeline; and

defining, using the curriculum learning algorithm, a com-

pact visual embedding at each waypoint of the first
plurality of waypoints.

9. The method according to claim 1, wherein training the
robot controller to traverse the room using the curriculum
learning algorithm comprises:

determiming that the vehicle has reached the first desti-
nation goal point;

selecting a second random destination goal point that 1s
different from the first destination goal point; and

selecting a second plurality of waypoints having fewer
waypoints than the first plurality of waypoints.

10. The method according to claim 1, wherein traiming the
robot controller to traverse the room using the curriculum
learning algorithm comprises:

determining that the vehicle has reached the first desti-
nation goal point;

selecting a second random start point having a distance to
a second destination goal point that 1s a threshold
distance further to the second random start point than a
distance from the first start point and the first destina-
tion goal point; and a

selecting a third plurality of waypoints connecting the

second destination goal point and the second random
start point.

11. A system, comprising:

d Processor, and

a memory for storing executable instructions, the proces-
sor programmed to execute the mstructions to:

receive an electronic map of a room, the electronic map
comprising a random first start point and a first
destination goal point;

generate, via a pathfinding algorithm, and using the
clectronic map, a first plurality of waypoints defining,
a path from the random first start point to the first
destination goal point, wherein the first plurality of
waypoints comprises a first waypoint and a second
waypoint; and

train a robot controller to traverse the room using a
curriculum learming algorithm based on the first
plurality of waypoints.

12. The system according to claim 11, wherein the pro-
cessor 1s Turther programmed to generating the first plurality
of waypoints by executing the instructions to:

generate, with the pathfinding algorithm, a first set of
waypoints connecting the start point and the first des-
tination goal point; and

select, from the first set of waypoints, the first plurality of
waypoints, wherein the first plurality of waypoints are
equidistant.
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13. The system according to claim 12, wherein the first
plurality of waypoints comprises a maximum of 10 way-
points.

14. The system according to claim 11, wherein the path-
finding algorithm 1s A-Star.

15. The system according to claim 11, wherein the pro-
cessor 1s further programmed to creating the first plurality of
waypoints by executing the instructions to:

generate the first waypoint with the pathfinding algorithm;

generate the second waypoint with the pathfinding algo-

rithm, wherein the second waypoint 1s contiguous to
the first waypoint; and

connect the second waypoint to a third waypoint contigu-

ous to the second waypoint and closer to the first
destination goal point.

16. The system according to claim 11, wherein the pro-
cessor 1s Turther programmed to train the robot controller to
traverse the room using the curriculum learming algorithm
by executing the instructions to:

navigate from the first waypoint to the second waypoint

using three control commands comprising left, straight,
and right;

generate a red-green-blue (RGB) image and a depth

1mage;

encode the RGB 1mage and the depth image through an

embedding; and

supplement the embedding with a distance between a

current position and the first destination goal point.

17. The system according to claim 16, wherein the pro-
cessor 1s Turther programmed to train the robot controller to
traverse the room using the curriculum learming algorithm
by executing the instructions to:

reward, with a reward function, the curriculum learning

algorithm with a bonus reward responsive reaching a
position less than a threshold distance from a subse-
quent waypoint.
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18. The system according to claim 11, wherein the pro-
cessor 1s Turther programmed to train the robot controller by
executing the istructions to:

load a pre-trained perception pipeline; and

define, using the curriculum learning algorithm, a com-
pact visual embedding at each waypoint of the first
plurality of waypoints.

19. The system according to claim 11, wherein the pro-
cessor 1s Turther programmed to train the robot controller by
executing the istructions to:

determine that the robotic robot controller has caused a
robotic vehicle to reach the first destination goal point;

select a second random destination goal point that 1s
different from the first destination goal point; and

select a second plurality of waypoints having fewer
waypoints than the first plurality of waypoints.

20. A non-transitory computer-readable storage medium
having instructions stored thereupon which, when executed
by a processor, cause the processor to:

recerve an electronic map of a room, the electronic map
comprising a random {first start point and a first desti-
nation goal point;

generate, via a pathfinding algorithm, and using the
clectronic map, a first plurality of waypoints defining a
path from the random first start point to the first
destination goal point, wherein the first plurality of
waypoints comprises a first waypoint and a second
waypoint; and

train a robot controller to traverse the room using a
curriculum learning algorithm based on the first plu-
rality of waypoints.
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