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OBJECT POSE ESTIMATION

BACKGROUND

[0001] Deep neural networks can be trained to perform a
variety of computing tasks. For example, neural networks
can be trained to extract data from i1mages. Data extracted
from i1mages by deep neural networks can be used by
computing devices to operate systems including vehicles,
robots, security, product manufacturing and product track-
ing. Images can be acquired by sensors included 1n a system
and processed using deep neural networks to determine data
regarding objects 1 an environment around a system.
Operation of a system can rely upon acquiring accurate and
timely data regarding objects 1n a system’s environment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 1s a block diagram of an example deep
neural network system.

[0003] FIG. 2 1s a diagram of an example deep neural
network.
[0004]

[0005]
vehicle.

[0006] FIG. S 1s a diagram of an example three-dimen-
sional model of a vehicle.

[0007] FIG. 6 15 a diagram of an example computer aided
design model of a vehicle.

[0008] FIG. 7 1s a diagram of an example self-supervised
training system.

[0009] FIG. 8 1s a flowchart diagram of an example
process to train a deep neural network.

FIG. 3 1s a diagram of an example parking deck.
FIG. 4 1s a diagram of three example 1mages of a

DETAILED DESCRIPTION

[0010] A deep neural network (DNN) can be trained to
determine objects 1n 1image data acquired by sensors using a
training dataset for systems including vehicle guidance,
robot operation, security, manufacturing, and product track-
ing. Vehicle gmidance can include operation of vehicles 1n
autonomous or semi-autonomous modes. Robot guidance
can include guiding a robot end eflector, for example a
gripper, to pick up a part and orient the part for assembly.
Security systems 1nclude features where a computer acquires
video data from a camera observing a secure area to provide
access to authorized users and detect unauthorized entry.
Security systems can also provide an authorized user access
to a computing device or cell phone, for example. In a
manufacturing system, a DNN 1n a computer can detect
undesired operation of machinery in a manufacturing opera-
tion by determining a location of a person’s hands at a
particular time 1n relation to a machine operating cycle, for
example. In a product tracking system, a deep neural net-
work can detect a person removing an object from a shelf
and putting 1t into a shopping cart and automatically charge
the person for the object, for example. Other product track-
ing systems include package sorting for shipping, for
example.

[0011] Vehicle guidance will be described herein as a
non-limiting example of using a DNN to detect objects, for
example vehicles. For example, a computing device 1n a
traflic infrastructure can be programmed to acquire data
regarding its environment detect objects 1n the data using a
DNN. The data can include 1image data acquired from a still
or video camera and range data acquired from a range sensor
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including a lidar sensor. A DNN can be trained to label and
locate objects in the image data or range data. A computing
device included in the traflic infrastructure system can use
the 1dentity and location of the detected objects to determine
a vehicle path upon which to operate a vehicle 1 an
autonomous or semi-autonomous mode. A vehicle can oper-
ate based on a vehicle path by determiming commands to
direct the vehicle’s powertrain, braking, and steering com-
ponents to operate the vehicle to travel along the path.

[0012] A large number of annotated visual or range images
can be required to train a DNN to detect objects for vehicle
guidance. Annotated visual or range 1mages are 1images that
include data regarding an identity and location of objects
included 1n the visual or range 1mages. Annotating visual or
range 1mages can require many hours of user input and many
hours of computer time. For example, some training datasets
include millions of 1mages and can require millions of hours
of user mput and computer time. Techniques discussed
herein 1mprove training of DNNs to i1dentify and locate
objects by acquiring registered visual and range 1image data
and using the range 1image data to provide ground truth for
training the DNN. Registered visual and range data, referred
to herein as RGB-D (red, green, blue, distance) image data,
1s 1mage data in which corresponding pixels in the RGB, or
visual image and the D or range 1image acquire data from the
same point 1n the external environment. Two non-limiting,
commercial examples of RGB-D cameras are the Astra S 3D
Camera by Orbbec and the Realsense D435 by Intel; other
examples exist. The range image data provides ground truth
data to train the DNN without requiring annotation of the
visual or range 1mage data, thereby reducing the time and
computer resources required to produce a training dataset for
training a DNN. Ground truth refers to data that can be used
to determine the correctness of a result output from a DNN
acquired from a source independent from the DNN.

[0013] A method 1s discloses herein including inputting a
depth 1mage of an object to a deep neural network to
determine a first four degree-of-ifreedom pose of the object,
inputting the first four degree-of-freedom pose and a three-
dimensional model of the object to a silhouette rendering
program to determine a first two-dimensional silhouette of
the object and thresholding the depth image to determine a
second two-dimensional silhouette of the object. A loss
function 1s determined based on comparing the first two-
dimensional silhouette of the object to the second two-
dimensional silhouette of the object, deep neural network
parameters are optimized based on the loss function and the
deep neural network 1s output. The first four degree-oi-
freedom pose can be determined based on X, y, and z
coordinates and an angle 1 an x, y plane. A translation
matrix and a rotation matrix can be determined based on the
first four degree-of-freedom pose. The translation matrix
and the rotation matrix can permit differentiation with
respect to the first four degree-of-freedom pose. The loss
function can be determined by determiming a distance
between the first two-dimensional silhouette of the object to
the second two-dimensional silhouette of the object. The
distance can be one or more of an [L1 distance, a chamf{er
distance, and a centroid distance.

[0014] Deep neural network parameters can be optimized
based on the loss function by backpropagating the loss
function through the deep neural network. The deep neural
network can be a convolutional neural network that includes

convolutional layers and fully connected layers. The three-
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dimensional model of the object can be determined based on
one or more of computer aided design data or a lidar scan.
A second four degree-of-freedom pose of the object can be
based on a red, green, blue 1image and fiducial markers
applied to the object. A second loss function can be deter-
mined based on comparing the second four degree-oi-
freedom pose of the object with the first four degree-oi-
freedom pose of the object. A vehicle path can be determined
based determining one or more four degree-oif-freedom
poses for a vehicle. The vehicle can be operated on the
vehicle path by controlling one or more of vehicle pow-
ertrain, vehicle brakes, and vehicle steering. The differen-
tiation can determine in which direction to change the
welghts for a succeeding processing pass.

[0015] Further disclosed 1s a computer readable medium,
storing program instructions for executing some or all of the
above method steps. Further disclosed 1s a computer pro-
grammed for executing some or all of the above method
steps, including a computer apparatus, programmed to 1nput
a depth image of an object to a deep neural network to
determine a first four degree-of-freedom pose of the object,
input the first four degree-of-freedom pose and a three-
dimensional model of the object to a silhouette rendering
program to determine a first two-dimensional silhouette of
the object and threshold the depth image to determine a
second two-dimensional silhouette of the object. A loss
function 1s determined based on comparing the first two-
dimensional silhouette of the object to the second two-
dimensional silhouette of the object, deep neural network
parameters are optimized based on the loss function and the
deep neural network i1s output. The first four degree-oi-
freedom pose can be determined based on X, y, and z
coordinates and an angle 1n an x, y plane. A translation
matrix and a rotation matrix can be determined based on the
first four degree-oi-freedom pose. The translation matrix
and the rotation matrix can permit differentiation with
respect to the first four degree-of-freedom pose. The loss
function can be determined by determiming a distance
between the first two-dimensional silhouette of the object to
the second two-dimensional silhouette of the object. The
distance can be one or more of an L1 distance, a chamfier
distance, and a centroid distance.

[0016] The mstructions can include further instructions to
optimize deep neural network parameters based on the loss
function by backpropagating the loss function through the
deep neural network. The deep neural network can be a
convolutional neural network that includes convolutional
layers and fully connected layers. The three-dimensional
model of the object can be determined based on one or more
of computer aided design data or a lidar scan. A second four
degree-ol-freedom pose of the object can be based on a red,
green, blue image and fiducial markers applied to the object.
A second loss function can be determined based on com-
paring the second four degree-of-freedom pose of the object
with the first four degree-of-freedom pose of the object. A
vehicle path can be determined based determining one or
more four degree-oi-freedom poses for a vehicle. The
vehicle can be operated on the vehicle path by controlling
one or more of vehicle powertrain, vehicle brakes, and
vehicle steering. The differentiation can determine in which
direction to change the weights for a succeeding processing
pass.

[0017] FIG. 1 1s a diagram of an object detection system
100 that can include a traflic infrastructure system 1035 that
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includes a server computer 120 and sensors 122. Object
detection system includes a vehicle 110, operable 1n autono-
mous (“autonomous” by itsell 1 this disclosure means
“fully autonomous™), semi-autonomous, and occupant
piloted (also referred to as non-autonomous) mode. One or
more vehicle 110 computing devices 115 can receive data
regarding the operation of the vehicle 110 from sensors 116.
The computing device 115 may operate the vehicle 110 1n an
autonomous mode, a semi-autonomous mode, or a non-
autonomous mode.

[0018] The computing device 115 includes a processor and
a memory such as are known. Further, the memory includes
one or more forms of computer-readable media, and stores
istructions executable by the processor for performing
vartous operations, including as disclosed herein. For
example, the computing device 115 may include program-
ming to operate one or more of vehicle brakes, propulsion
(e.g., control of acceleration 1n the vehicle 110 by control-
ling one or more of an internal combustion engine, electric
motor, hybrid engine, etc.), steering, climate control, interior
and/or exterior lights, etc., as well as to determine whether
and when the computing device 1135, as opposed to a human
operator, 1s to control such operations.

[0019] The computing device 115 may include or be
communicatively coupled to, e.g., via a vehicle communi-
cations bus as described further below, more than one
computing devices, e.g., controllers or the like 1included 1n
the vehicle 110 for monitoring and/or controlling various
vehicle components, e.g., a powertrain controller 112, a
brake controller 113, a steering controller 114, etc. The
computing device 115 1s generally arranged for communi-
cations on a vehicle communication network, e.g., including
a bus 1n the vehicle 110 such as a controller area network
(CAN) or the like; the vehicle 110 network can additionally
or alternatively include wired or wireless communication
mechanisms such as are known, e.g., Ethernet or other
communication protocols.

[0020] Via the vehicle network, the computing device 115
may transmit messages to various devices in the vehicle
and/or receive messages from the various devices, e.g.,
controllers, actuators, sensors, etc., including sensors 116.
Alternatively, or additionally, in cases where the computing
device 115 actually comprises multiple devices, the vehicle
communication network may be used for communications
between devices represented as the computing device 115 1n
this disclosure. Further, as mentioned below, various con-
trollers or sensing elements such as sensors 116 may provide
data to the computing device 115 via the vehicle commu-
nication network.

[0021] In addition, the computing device 115 may be
configured for communicating through a vehicle-to-inira-
structure (V-to-I) interface 111 with a remote server com-
puter 120, e.g., a cloud server, via a network 130, which, as
described below, includes hardware, firmware, and software
that permits computing device 115 to communicate with a
remote server computer 120 via a network 130 such as
wireless Internet (WI-FI®) or cellular networks. V-to-I
interface 111 may accordingly include processors, memory,
transceivers, etc., configured to utilize various wired and/or
wireless networking technologies, e.g., cellular, BLU-
ETOOTH® and wired and/or wireless packet networks.
Computing device 115 may be configured for communicat-
ing with other vehicles 110 through V-to-I interface 111
using vehicle-to-vehicle (V-to-V) networks, e.g., according
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to Dedicated Short Range Commumnications (DSRC) and/or
the like, e.g., formed on an ad hoc basis among nearby
vehicles 110 or formed through infrastructure-based net-
works. The computing device 115 also includes nonvolatile
memory such as 1s known. Computing device 115 can log
data by storing the data in nonvolatile memory for later
retrieval and transmittal via the vehicle communication
network and a vehicle to infrastructure (V-to-I) interface 111
to a server computer 120 or user mobile device 160.

[0022] As already mentioned, generally included in
instructions stored in the memory and executable by the
processor of the computing device 1135 1s programming for
operating one or more vehicle 110 components, €.g., brak-
ing, steering, propulsion, etc., without intervention of a
human operator. Using data received in the computing
device 115, e.g., the sensor data from the sensors 116, the
server computer 120, etc., the computing device 115 may
make various determinations and/or control various vehicle
110 components and/or operations without a driver to oper-
ate the vehicle 110. For example, the computing device 1135
may include programming to regulate vehicle 110 opera-
tional behaviors (i.e., physical manifestations of vehicle 110
operation) such as speed, acceleration, deceleration, steer-
ing, etc., as well as tactical behaviors (1.e., control of
operational behaviors typically mm a manner intended to
achieve safe and eflicient traversal of a route) such as a
distance between vehicles and/or amount of time between
vehicles, lane-change, minimum gap between vehicles, left-
turn-across-path minimum, time-to-arrival at a particular
location and intersection (without signal) minimum time-to-
arrival to cross the intersection.

[0023] Controllers, as that term 1s used herein, include
computing devices that typically are programmed to monitor
and/or control a specific vehicle subsystem. Examples
include a powertrain controller 112, a brake controller 113,
and a steering controller 114. A controller may be an
clectronic control unit (ECU) such as 1s known, possibly
including additional programming as described herein. The
controllers may communicatively be connected to and
receive 1nstructions from the computing device 1135 to
actuate the subsystem according to the instructions. For
example, the brake controller 113 may receive instructions
from the computing device 115 to operate the brakes of the

vehicle 110.

[0024] The one or more controllers 112, 113, 114 for the
vehicle 110 may include known electronic control units
(ECUs) or the like including, as non-limiting examples, one
or more powertrain controllers 112, one or more brake
controllers 113, and one or more steering controllers 114.
Each of the controllers 112, 113, 114 may include respective
processors and memories and one or more actuators. The
controllers 112, 113, 114 may be programmed and connected
to a vehicle 110 communications bus, such as a controller
area network (CAN) bus or local iterconnect network
(LIN) bus, to receive mstructions from the computing device
115 and control actuators based on the instructions.

[0025] Sensors 116 may include a variety of devices
known to provide data via the vehicle communications bus.
For example, a radar fixed to a front bumper (not shown) of
the vehicle 110 may provide a distance from the vehicle 110
to a next vehicle in front of the vehicle 110, or a global
positioning system (GPS) sensor disposed 1n the vehicle 110
may provide geographical coordinates of the vehicle 110.
The distance(s) provided by the radar and/or other sensors
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116 and/or the geographical coordinates provided by the
GPS sensor may be used by the computing device 115 to
operate the vehicle 110 autonomously or semi-autono-
mously, for example.

[0026] The vehicle 110 1s generally a land-based vehicle
110 capable of autonomous and/or semi-autonomous opera-
tion and having three or more wheels, e.g., a passenger car,
light truck, etc. The vehicle 110 includes one or more
sensors 116, the V-to-I interface 111, the computing device
115 and one or more controllers 112, 113, 114. The sensors
116 may collect data related to the vehicle 110 and the
environment in which the vehicle 110 1s operating. By way
of example, and not limitation, sensors 116 may include,
¢.g., altimeters, cameras, LIDAR, radar, ultrasonic sensors,
infrared sensors, pressure sensors, accelerometers, gyro-
scopes, temperature sensors, pressure sensors, hall sensors,
optical sensors, voltage sensors, current sensors, mechanical
sensors such as switches, etc. The sensors 116 may be used
to sense the environment in which the vehicle 110 1s
operating, €.g., sensors 116 can detect phenomena such as
weather conditions (precipitation, external ambient tempera-
ture, etc.), the grade of a road, the location of a road (e.g.,
using road edges, lane markings, etc.), or locations of target
objects such as neighboring vehicles 110. The sensors 116
may further be used to collect data including dynamic
vehicle 110 data related to operations of the vehicle 110 such
as velocity, yaw rate, steering angle, engine speed, brake
pressure, oil pressure, the power level applied to controllers
112, 113, 114 1n the vehicle 110, connectivity between
components, and accurate and timely performance of com-
ponents of the vehicle 110.

[0027] Vehicles can be equipped to operate 1n both autono-
mous and occupant piloted mode. By a semi- or fully-
autonomous mode, we mean a mode of operation wherein a
vehicle can be piloted partly or entirely by a computing
device as part of a system having sensors and controllers.
The vehicle can be occupied or unoccupied, but 1n either
case the vehicle can be partly or completely piloted without
assistance ol an occupant. For purposes of this disclosure, an
autonomous mode 1s defined as one 1n which each of vehicle
propulsion (e.g., via a powertrain including an internal
combustion engine and/or electric motor), braking, and
steering are controlled by one or more vehicle computers; 1n
a semi-autonomous mode the vehicle computer(s) control(s)
one or more of vehicle propulsion, braking, and steering. In
a non-autonomous mode, none of these are controlled by a
computer.

[0028] FIG. 21s adiagram of a DNN 200. A DNN 200 can
be a soitware program executing on a computing device 1135
or a server computer 120 included 1 an object detection
system 100. In this example DNN 200 1s illustrated as a
convolutional neural network (CNN). Techniques described
herein can also apply to DNNs that are not implemented as
CNNs. A DNN 200 implemented as a CNN typically inputs
an input 1mage (IN) 202 as input data. The input 1image 202
1s processed by convolutional layers 204 to form latent
variables 206 (1.¢., variables passed between neurons in the
DNN 200). Convolutional layers 204 include a plurality of
layers that each convolve an input image 202 with convo-
lution kernels that transform the input image 202 and
process the transformed mmput 1mage 202 using algorithms
such as max pooling to reduce the resolution of the trans-
formed mput 1mage 202 as it 1s processed by the convolu-
tional layers 204. The latent variables 206 output by the
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convolutional layers 204 are passed to fully connected layers
208. Fully connected layers 208 include processing nodes.
Fully connected layers 208 process latent variables 206
using linear and non-linear functions to determine an output
prediction (OUT) 210. In examples discussed herein the
output prediction 210 includes an object label and an object
location. DNN 200 can be a software program executing on
a server computer 120 1n a traflic infrastructure system 105.
The server computer 120 can input RGB 1mages acquired by
sensors 122 including RGB-D cameras included in traflic
infrastructure system 105.

[0029] DNN 200 can be trained using a training dataset
that includes 1images and corresponding ground truth. Train-
ing datasets for a DNN 200 can include thousands or
millions of 1mages and corresponding annotations or ground
truth. Each image of the training dataset can be processed a
plurality of times by the DNN 200. A prediction 210 output
from the DNN 200 in response to an mput image 202 is
compared to the ground truth corresponding to the nput
image 202 to determine a loss function. The loss function 1s
a mathematical function that determines how closely the
prediction 210 output from DNN 200 matches the ground
truth corresponding to the mput image 202. The value
determined by the loss function 1s mnput to the convolutional
layers 204 and fully connected layers 208 of DNN 200
where 1t 1s backpropagated to determine weights for the
layers that correspond to a minimum loss function. Back-
propagation 1s a technique for training a DNN 200 where a
loss function 1s 1mput to the convolutional layers 204 and
tully connected layers 208 furthest from the input and
communicated from back-to-front and determining weights
for each layer 204, 208 by selecting weights that minimize
the loss function. Tramning a DNN 200 to determine a four
degree-of-freedom (DoF) pose for a vehicle will be dis-
cussed 1n relation to FIG. 7, below

[0030] A DNN can be trained to determine a four degree-
of-freedom (DoF) pose for a vehicle. A three-dimensional
pose for an object can be specified by determining the
location and orientation of the object 1n six DoF. Six DoF
include x, y, and z location coordinates determined waith
respect to X, y, and z orthogonal coordinate axes and roll,
pitch, and yaw rotations about the x, y, and z axes, respec-
tively. In examples discussed herein, the object, a vehicle, 1s
assumed to be supported by a roadway or other surface such
as a parking deck or lot that 1s a plane parallel to the x and
y axes and the roll and pitch rotations are therefore assumed
to be zero. A four DoF pose for a vehicle supported by a
planar surface includes values for X, vy, z, and yaw, where
yaw 1s an angle in the plane defined by the x and y axes.
Techniques discussed herein improve training of a DNN to
determine a four DoF pose for a vehicle by annotating RGB
image data using four DoF data acquired from a range image
acquired by an RGB-D camera. Annotating RGB 1image data
in this fashion can provide a large number (greater than
thousands) of annotated RGB 1mages for training a DNN
without requiring manual annotation, thereby saving com-
puter resources and time.

[0031] FIG. 3 1s a diagram of a floor 302 of a parking deck
300. A parking deck 300 1s a structure that includes one or
more floors 302 upon which vehicles 110 can be parked. A
floor 302 of a parking deck 300, 1.e., a surface on which
vehicles 110 can travel, can be accessed by a vehicle 110 via
an entrance 304, which can be accessed via a ramp or
clevator that permits a vehicle 110 to access the floor 302 of
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the parking deck 300 when the floor 302 1s not at ground
level. A floor 302 of a parking deck 300 can include a
plurality of parking locations 306, which are areas of the
floor 302 designed to permit a vehicle 110 to be temporarily
stored and retrieved. Parking deck 300 can include traflic
infrastructure system 105 having a plurality of RGB-D
cameras 308 attached to the parking deck 300. For example,
the plurality of RGB-D cameras 308 can be attached to a
ceiling of the parking deck 300 above the floor 302, which
permits the RGB-D cameras 308 to view vehicles 110
operating on the floor 302 from above. The location of each
RGB-D camera 308 with respect to the parking deck 300 can
be determined and therefore determining the location of a
vehicle 110 1n an 1image acquired by an RGB-D camera 308
can determine the location of the vehicle 110 with respect to
the parking deck 300. A server computer 120 can commu-
nicate with the RGB-D cameras 308 to determine a vehicle
path 310 upon which the vehicle 110 can operate to travel to
a parking location 306. The vehicle path 310 can be com-
municated to the vehicle 110 to permit the vehicle 110 to
operate autonomously or semi-autonomously to park 1n a
parking location 306 and later exit the parking location 306
and return to the entrance 304.

[0032] The plurality of RGB-D cameras 308 can include
computing devices 115 that include a DNN soltware pro-
gram that permits the RGB-D camera to determine a four
DoF pose of a portion of a vehicle 110 in the field of view
of the RGB-D camera. Based on one or more four DoF poses
of a vehicle 110, the trathic infrastructure system 105 can
determine a vehicle path 310. The vehicle path 310 can
include a plurality of locations, which can be called
“breadcrumbs” which, when joined, for example, by a
polynomial function, can be used to operate a vehicle 110 to
a location in the parking deck 300. For example, the vehicle
path 310 can be used to direct a vehicle 110 from an entrance
304 of a tloor 302 of a parking deck 300 to a parking location
306. While the vehicle 110 1s operating 1n parking deck 300,
RGB-D cameras 308 can be acquiring data regarding the
location of vehicle 110 to determine whether the vehicle 110
1s correctly following the vehicle path 310 determined by the
traflic infrastructure system 1035. In examples where vehicle
110 1s deviating from the vehicle path 310, traflic infrastruc-
ture system 105 can transmit updated commands to a vehicle
110 to correct the operation of vehicle 110. In addition to
parking decks 300, tratlic infrastructure system 103 includ-
ing RGB-D cameras 308 can be installed in manufacturing
facilities, service facilities, or charging stations to direct the
operation of vehicles 110 that include autonomous or semi-
autonomous capabilities.

[0033] FIG. 4 15 a diagram that includes an RGB image
402, a depth 1mage 404, and a binary image 406 from an
RGB-D camera 308. RGB 1mage 402 includes a portion of
a vehicle 408. RGB 1mage 402 includes Aruco markers 410.
Aruco markers 410 are fiducial patterns that can be pro-
cessed using the ArUco software library developed by the
Applications of Artificial Vision research group from the
University of Cordoba, Cordoba, Spain, and available, as of
the time of filing this document, at the uco.es website. Aruco
markers 410 can be applied to a vehicle 408 and once the
location of the Aruco markers 410 with respect to the vehicle
408 are established by physically measuring the Aruco
markers 410, for example, the locations of the Aruco mark-
ers 410 mm an RGB image determined using the ArUco
software library can be used to determine the location of the
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vehicle 408 to which they are attached. Aruco markers 410
can be used as an optional technique for training a DNN 200
to locate vehicles 110 using RGB-D cameras to be discussed
in relation to FIG. 7, below.

[0034] Depth image 404 of a vehicle 412 1s acquired by a
range sensor such as a lidar sensor of by the depth or range
portion of an RGB-D camera 308. In examples discussed
herein, the depth image 404 1s registered with the RGB
image 402. This means that for a given pixel x, v location 1n
images 402, 404, the RGB image 402 will include the color
of a location and the depth image 404 will include the
distance or range to the same location. In examples where
the RGB 1mage 402 and depth 1image 404 are not reglstered
the oflset 1n locations of each pixel between the RGB 1image
402 and the depth image 404 can be determined and the
oflset used to register the RGB image 402 and the depth
image 404.

[0035] Binary image 406 of a vehicle 414 1s the result of
thresholding depth image 404. Thresholding 1s an 1mage
processing operation where a threshold value 1s selected and
all pixels having value greater than or equal to the threshold
value are set to “1”” and all pixels having a value less that the
threshold value are set to “0”. Thresholding a depth 1image
404 to determine a binary image 406 permits determining
differences 1n vehicle 412 location between a binary image
406 formed by thresholding a depth image 404 and a vehicle
location 1n a binary image determined by rendering a depth
image based on a three-dimensional (3D) model of a vehicle.
Techniques discussed herein can train a DNN 200 by mnput-
ting a depth 1image 404 to the DNN to determine a four DoF
pose for a vehicle 412 included in the depth image 404. The
tour DoF pose can be converted 1into a format for input to an
image rendering software program by determiming transla-
tion and rotation matrices that can be used to translate and
rotate a 3D model from an input pose to a pose correspond-
ing to the four DoF pose. Translation moves the 3D model
in the X, y plane and rotation rotates the 3D model around
the z axis at a selected center point 3D model. Converting
the four DoF pose 1n this fashion preserves the differentia-
bility of the four DoF pose. This 1s important when the four

DoF pose 15 used to determine a loss function for training the
DNN 200 as discussed 1n relation to FIG. 7, below.

[0036] The output and converted four DoF pose can be
input to an 1image rendering soitware program, for example,
UnReal Engine, available from Epic Games, Cary, N.C.
2’7518, along with a 3D model of the vehicle to generate a
rendered depth image that includes a 3D rendering of a
vehicle at the mput four DoF pose. The 3D model of the
vehicle can be based on computer aided design (CAD) data
for the vehicle, discussed 1n relation to FIG. 6, below or can
be generated by scanning the vehicle with a lidar scanner,
discussed 1n relation to FIG. 5, below, to generate the 3D
model data. The 3D model data 1s rotated and translated
using the rotation and translation matrices and the 3D model
1s rendered by the rendering software to generate an 1image
that includes a rendered version of the 3D model at the
image coordinates corresponding to the four DoF pose. The
rendered depth image can be thresholded to generate a
rendered binary image.

[0037] The rendered binary image can be compared to the
binary image 406 generated from the depth image 404 to
determine a loss function for training the DNN 200. The
comparison between the rendered binary image and the
binary image 406 generated from the depth image 404 can
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be determined by determining differences 1n locations of the
vehicles 1in the binary image 406 and the rendered binary
image using .1 metrics, chamier distance, centroid distance,
or a combination of these measures. An L1 metric measures
the vector distance between two binary images by summing
the X and y distances between corresponding pixels of each
image. This 1s also sometimes referred to as “Taxicab”
distance. Chamier distance weights the distance between
corresponding pixels in the two binary 1images by weighting
the distance, e.g., the greater the distance, the larger the
weight. Centroid distance finds a center for the areas cor-
responding to the “1” pixels in the binary image and the
rendered binary 1mage and measures the distance between
the centers. The differences between the binary image and
the rendered binary image determines the loss function to be
backpropagated through the layers of the DNN 200. Back-
propagation 1s a technique for transmitting a loss function
from the last layers of a DNN 200 to the first layers and
selecting weights for each layer based on minimizing the
loss function while processing the same 1mput data a plural-
ity of times while varying the weights.

[0038] Techniques discussed herein which determine the
loss function from rendered four DoF poses and depth
images 404 are differentiable. Differentiable means that the
functions used to determine the loss functions have partial
derivatives with respect to the weights used to determine the
four DoF poses by the DNN 200. This means that, for a
given loss function, a direction 1n which to change the
weights for the next processing pass that will reduce the loss
function can be determined. In this fashion, over a plurality
of processing passes, weights can be determined that cause

the loss functions to converge to a minimal value, thereby
training the DNN 200.

[0039] FIG. 5 1s a diagram of a 3D model 500 of a vehicle
502 generated by scanning a real-world vehicle with a lidar
scanner, for example. The 3D model 500 can be mnput to an
image rendering soitware program and rotated, translated,
and scaled according to a four DoF pose to produce a
rendered, top-down depth image of the vehicle 502. The
rendered, top-down depth image of the vehicle 502 can be
thresholded to produce a rendered binary 1mage of the
vehicle 502 that can be compared to a binary image 406
based on a depth image 404 of the same type of vehicle

acquired by an RGB-D camera 308 to form a loss function
for training a DNN 200.

[0040] FIG. 6 1s a diagram of a CAD drawing 600 of a
vehicle 602. A CAD drawing 600 i1s a rendering based on
CAD data corresponding to a vehicle 602. The CAD data
corresponding to a vehicle 602 includes the locations, ori-
entations, and textures of the surfaces that make up a vehicle
602. The CAD data can be mput to a rendering software
program to produce a rendered top-down depth image that
can be thresholded to generate a rendered binary image that
can be compared to a binary image 406 based on a depth
image 404 of the same type of vehicle acquired by an

RGB-D camera 308 to form a loss function for training a
DNN 200.

[0041] FIG. 7 1s a diagram of a self-supervised training
system 700 for training a DNN 706 to determine a four DoF
pose based on depth image 702 input. A selif-supervised
training system 700 1s a soltware program executing on a
server computer 120 or computing device 1135 included 1n a
traflic infrastructure system 105. Self-supervised traiming
system 700 inputs a depth image (DI) 702 acquired by a
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depth generating sensor, for example an RGB-D camera
308. The depth image 702 1s first input to a resize program
(RS) 704 that reduces a high-resolution depth image 702, for
example, 1Kx1K pixels (1000 pixels by 1000 pixels), to a
lower resolution, for example, 256x256 pixels. The lower
resolution depth 1mage 1s input to a DNN (DNN) 7086, also
referred to herein as SirtusNet 706. DNN or SirtusNet 706
1s mcluded in SirtusRenderNet 708 along with a 3D model
renderer (3D) 710. DNN or SirtusNet 706 mputs a low-
resolution depth 1mage and outputs an estimated four DoF
pose (POSE) 712 as (X, y, z, yaw). The estimated four DoF
pose 712 1s input to the 3D model renderer 710 along with
a 3D model of a vehicle, which can be the same make and
model vehicle as was imaged by RGB-D camera 308 to form
the depth image 702. The 3D model renderer 710 generates
the rendered depth image 714 at the same high-resolution as
the original mput depth 1mage 702.

[0042] The 3D model renderer 710 outputs a rendered
depth 1mage to a first silhouette processor (SIL1) 716 which
thresholds the rendered depth 1image to form a first binary
image 718. The mput depth image 702 1s passed to a second
silhouette processor (SIL2) which thresholds the depth
image 702 to form a second binary image 722. The two
binary images 718, 722 are input to silhouette error (SERR)
724 to measure the distance between the two binary images
718, 722 to generate a binary silhouette error according to
the equation:
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Where t,, . iisance 18 based on one or more of L1 distance,

chamfter distance, and centroid distance as discussed above
in relation to FIG. 4. The silhouette error 1s passed to loss
function (LOSS) 726 which generates a loss value to be
returned to DNN or SirtusNet 706 where 1t 1s backpropa-
gated to determine weights by minimizing the loss value.
[0043] In addition to training DNN or SirtusNet 706 using
depth 1images 702 and rendered 3D models, a smaller subset
of RGB 1mages of vehicles 402 which include Aruco mark-
ers 410 can be acquired by the RGB-D camera 308 at the
same time as the depth image 702. Because these 1mages
require calibrated Aruco markers 410, they typically require
more computational expense and time to acquire than depth
images 702. An advantage of using Aruco markers 410 1s
that they are applied to the vehicle as thin layer and do not
interfere with the depth image 702. The RGB 1mage includ-
ing the Aruco markers 410 can be input to ArUco software
library to determine a four DoF pose for the vehicle 1n the
RGB mmage. The four DoF pose output by the ArUco
software library can be mput to the selif-supervised training
system 700 as an annotation (ANNQO) 730, also referred to
herein as ground truth. The annotation 730 1s passed to pose
error (POSE) 728, where the annotation 730 1s compared to
the four DoF pose 712 output by SirtusNet 706. Pose error
728 can be determined by the equation:
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where (X, v, z, yvaw) 1s the four DoF pose determined by the
ArUco software library, (X, v, z, yaw) 1s the four DoF pose
determined by DNN or SirtusNet 706 and 1., siance 15 @
mean square error metric. The pose error 728 can be
combined with silhouette error 724 at loss function 726 to
generate a combined loss value. Loss functions 726 gener-
ated based on pose error 728 can be used for 1mitial training

of DNN or SirtusNet 706 to assist in making DNN or
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SirtusNet 706 training converge more quickly, however,
pose error 728 1s not required to train DNN or SiriusNet 706.
[0044] Techniques discussed herein can improve seli-
supervised training of a DNN or SirtusNet 706 by reducing
the requirement for annotated ground truth 1mages such as
provided by Aruco markings 410. This permits traiming
using a large number, up to one million or more, of depth
images acquired by depth sensors such as RGB-D cameras
308 without any further intervention to determine four DoF
poses. The only requirement 1s that a 3D model of the
vehicle being 1maged 1s available to generate 3D models
based on the estimated pose 712.

[0045] FIG. 8 1s a diagram of a flowchart, described 1n
relation to FIGS. 1-7, of a process for training a DNN 200
based on depth images 702. Process 800 can be implemented
by a processor of a computing device 115 or server computer
120, taking as input information from sensors, and executing,
commands, and outputting object information, for example.
Process 800 includes multiple blocks that can be executed 1n
the 1llustrated order. Process 800 could alternatively or
additionally 1include fewer blocks or can include the blocks
executed 1n different orders.

[0046] Process 800 begins at block 802, where a depth
image 702 1s acquired with a depth sensor, which can
include an RGB-D camera 308. The RGB-D camera 308 can
be included in a traflic infrastructure system 105 included in
a structure such as a parking deck 300, a manufacturing
facility, a service facility, or an electric vehicle charging
tacility, for example. The depth image 702 1s input to a DNN
or SiriusNet 706 to determine a four DoF pose of an object
included, at least 1n part, in the depth image 702. The object
can be a vehicle 110, for example. The DNN 706 can be
executing on a server computer 120 included 1n the traflic
infrastructure system 105.

[0047] At block 804 process 800 determines a first silhou-
ctte 1image by inputting the four DoF pose of the object into
a 3D rendering program along with a 3D model of the object
to determine a rendered depth image of the object. For
example, the 3D model can be CAD data regarding the
particular make and model of vehicle included 1n the depth
image 702 input to the DNN 706 at block 802. The rendered
depth 1image can be thresholded based on a user determined
threshold to determine the first silhouette 1mage.

[0048] At block 806 process 800 thresholds the depth
image 702 from block 802 based on a user determined
threshold to determine as second silhouette 1mage.

[0049] At block 808 process 800 compares the first sil-
houette image with the second silhouette 1mage to determine
a loss function as discussed 1n relation to FIG. 7.

[0050] At block 810 the DNN 706 1s trained based on the
loss function determined at block 808. The loss function can
be backpropagated through the DNN 706 layers to deter-
mine weights that yield a minimum loss function based on
processing the mput depth image a plurality of times and
determining a loss function for each processing pass.
Because the steps used to determine the loss function are
differentiable, the partial derivatives determined with
respect to the weights can indicate 1n which direction to
change the weights for a succeeding processing pass that
will reduce the loss function and thereby permit the traiming
function to converge, thereby optimizing the DNN 706.

[0051] At block 812 the DNN 706 can be output to a
server computer 120 included 1n a traffic infrastructure
system 1035. The DNN 706 can input depth images 702 and
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output four DoF poses 712 for a vehicle 110 operating 1n a
structure such as a parking deck 300. The server computer
120 can process the four DoF poses 712 to determine a
plurality of locations, referred to herein as “breadcrumbs™
that are included 1n a vehicle path 310. A vehicle path 310
can be determined based on the “breadcrumbs™ by deter-
mimng a polynomial function that passes through the
“breadcrumbs™, for example. The vehicle path 310 can be
used by a computing device 115 1n a vehicle 110 to operate
the vehicle 110 by controlling one or more of vehicle
powertrain, vehicle brakes, and vehicle steering to cause the

vehicle 110 to travel along the vehicle path 310. Following
block 812 process 800 ends.

[0052] Computing devices such as those discussed herein
generally each includes commands executable by one or
more computing devices such as those 1dentified above, and
for carrying out blocks or steps of processes described
above. For example, process blocks discussed above may be
embodied as computer-executable commands.

[0053] Computer-executable commands may be compiled
or interpreted from computer programs created using a
variety of programming languages and/or technologies,
including, without limitation, and either alone or 1n combi-
nation, Java™, C, C++, Python, Julia, SCALA, Visual
Basic, Java Script, Perl, HTML, etc. In general, a processor
(e.g., a microprocessor) receives commands, e.g., from a
memory, a computer-readable medium, etc., and executes
these commands, thereby performing one or more processes,
including one or more of the processes described herein.
Such commands and other data may be stored 1n files and
transmitted using a variety of computer-readable media. A
file 1n a computing device 1s generally a collection of data
stored on a computer readable medium, such as a storage
medium, a random access memory, efc.

[0054] A computer-readable medium (also referred to as a
processor-readable medium) includes any non-transitory
(c.g., tangible) medium that participates 1n providing data
(e.g., instructions) that may be read by a computer (e.g., by
a processor of a computer). Such a medium may take many
forms, 1ncluding, but not limited to, non-volatile media and
volatile media. Instructions may be transmitted by one or
more transmission media, including fiber optics, wires,
wireless communication, including the internals that com-
prise a system bus coupled to a processor ol a computer.
Common forms ol computer-readable media include, for
example, RAM, a PROM, an EPROM, a FLASH-EEPROM,
any other memory chip or cartridge, or any other medium
from which a computer can read.

[0055] All terms used in the claims are mtended to be
given their plain and ordinary meanings as understood by
those skilled in the art unless an explicit indication to the
contrary 1in made hereimn. In particular, use of the singular
articles such as ““a,” “the,” “said,” etc. should be read to
recite one or more of the imndicated elements unless a claim
recites an explicit limitation to the contrary.

[0056] The term “exemplary” 1s used herein 1n the sense of
signifying an example, e.g., a reference to an “exemplary
widget” should be read as simply referring to an example of
a widget.

[0057] The adverb “approximately” moditying a value or
result means that a shape, structure, measurement, value,
determination, calculation, etc. may deviate from an exactly
described geometry, distance, measurement, value, determi-
nation, calculation, etc., because of imperfections 1n mate-
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rials, machining, manufacturing, sensor measurements,
computations, processing time, communications time, efc.
[0058] In the drawings, the same reference numbers 1ndi-
cate the same elements. Further, some or all of these
clements could be changed. With regard to the media,
processes, systems, methods, etc. described herein, 1t should
be understood that, although the steps or blocks of such
processes, etc. have been described as occurring according
to a certain ordered sequence, such processes could be
practiced with the described steps performed 1n an order
other than the order described herein. It further should be
understood that certain steps could be performed simulta-
neously, that other steps could be added, or that certain steps
described herein could be omitted. In other words, the
descriptions of processes herein are provided for the purpose
of illustrating certain embodiments, and should 1n no way be
construed so as to limit the claimed invention.

1. A computer, comprising;

a processor; and

a memory, the memory including instructions executable

by the processor to:

mput a depth image of an object to a deep neural
network to determine a first four degree-of-freedom
pose ol the object;

input the first four degree-of-freedom pose and a three-
dimensional model of the object to a silhouette
rendering program to determine a first two-dimen-
sional silhouette of the object;

threshold the depth 1mage to determine a second two-
dimensional silhouette of the object;

determine a loss function based on comparing the first
two-dimensional silhouette of the object to the sec-
ond two-dimensional silhouette of the object;

optimize deep neural network parameters based on the
loss function; and

output the deep neural network.

2. The computer of claim 1, wherein the first four degree-
of-freedom pose 1s determined based on X, y, and z coordi-
nates and an angle 1n an X, v plane.

3. The computer of claim 1, the instructions including
further 1nstructions to determine a translation matrix and a
rotation matrix based on the first four degree-of-freedom
pose.

4. The computer of claim 3, wherein the translation matrix
and the rotation matrix permit diflerentiation with respect to
the first four degree-of-freedom pose.

5. The computer of claim 1, the instructions including
further mstructions to determine the loss function by deter-
mining a distance between the first two-dimensional silhou-
ctte of the object to the second two-dimensional silhouette of
the object.

6. The computer of claim 5, wherein the distance 1s one
or more of an .1 distance, a chamfer distance, and a centroid
distance.

7. The computer of claim 1, the instructions including
turther instructions to optimize deep neural network param-
cters based on the loss function by backpropagating the loss
function through the deep neural network.

8. The computer of claim 1, wherein the deep neural
network 1s a convolutional neural network that includes
convolutional layers and fully connected layers.

9. The computer of claim 1, wherein the three-dimen-
sional model of the object 1s determined based on one or
more of computer aided design data or a lidar scan.
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10. The computer of claim 1, the instructions including
turther instructions to determine a second four degree-oi-
freedom pose of the object based on a red, green, blue image
and fiducial markers applied to the object.

11. The computer of claim 10, the instructions including
further instructions to determine a second loss function
based on comparing the second four degree-of-freedom pose
of the object with the first four degree-oi-freedom pose of
the object.

12. The computer of claim 1, the instructions including
turther 1nstructions to determine a vehicle path based deter-
mimng one or more four degree-of-freedom poses for a
vehicle.

13. The computer of claim 12, the mstructions mcluding
turther instructions to operate the vehicle on the vehicle path
by controlling one or more of vehicle powertrain, vehicle
brakes, and vehicle steering.

14. A method, comprising:

inputting a depth 1mage of an object to a deep neural

network to determine a first four degree-of-freedom
pose ol the object;

inputting the first four degree-oi-freedom pose and a

three-dimensional model of the object to a silhouette
rendering program to determine a first two-dimensional
silhouette of the object;

thresholding the depth image to determine a second
two-dimensional silhouette of the object;
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determining a loss function based on comparing the first
two-dimensional silhouette of the object to the second
two-dimensional silhouette of the object;

optimizing deep neural network parameters based on the

loss function; and

outputting the deep neural network.

15. The method of claim 14, wherein the first four
degree-of-freedom pose 1s determined based on X, vy, and z
coordinates and an angle 1n an X, y plane.

16. The method of claim 14, further comprising deter-
mining a translation matrix and a rotation matrix based on
the first four degree-of-freedom pose.

17. The method of claim 16, wherein the translation
matrix and the rotation matrix permit differentiation with
respect to the first four degree-of-freedom pose.

18. The method of claim 14, further comprising deter-
mining the loss function by determining a distance between
the first two-dimensional silhouette of the object to the
second two-dimensional silhouette of the object.

19. The method of claim 18, wherein the distance 1s one
or more of an [.1 distance, a chamfer distance, and a centroid
distance.

20. The method of claim 14, further comprising optimiz-
ing deep neural network parameters based on the loss
function by backpropagating the loss function through the
deep neural network.
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