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(57) ABSTRACT

A plurality of virtual three-dimensional (3D) points distrib-
uted on a 3D reference plane for a camera array including a
plurality of cameras are randomly selected. The plurality of
cameras includes a host camera and one or more additional
cameras. Respective two-dimensional (2D) projections of
the plurality of virtual 3D points for the plurality of cameras
are determined based on respective poses of the cameras.
For the respective one or more additional cameras, respec-
tive homography matrices are determined based on the 2D
projections for the respective camera and the 2D projections
for the host camera. The respective homography matrices
map the 2D projections for the respective camera to the 2D
projections for the host camera. A stitched image 1s gener-
ated based on respective images captured by the plurality of
cameras and the respective homography matrices.
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OBJECT POSE ESTIMATION

BACKGROUND

[0001] Deep neural networks can be trained to perform a
variety of computing tasks. For example, neural networks
can be trained to extract data from i1mages. Data extracted
from i1mages by deep neural networks can be used by
computing devices to operate systems including vehicles,
robots, security, product manufacturing and product track-
ing. Images can be acquired by sensors included 1n a system
and processed using deep neural networks to determine data
regarding objects 1 an environment around a system.
Operation of a system can be supported by acquiring accu-

rate and timely data regarding objects in a system’s envi-
ronment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 1s a block diagram of an example traflic
infrastructure system.

[0003] FIG. 2 1s a diagram of an example operating area.
[0004] FIG. 3 1s a diagram of three example 1images of a
calibration vehicle.

[0005] FIG. 4 1s a diagram of an example second deep
neural network used to determine a six degree-oi-freedom

pose for a camera.
[0006] FIGS. 5A and 3B are diagrams of an example 3D

reference plane.

[0007] FIG. 6 1s a diagram of a plurality of images
including a portion of a vehicle and acquired by respective
cameras 1n a camera array.

[0008] FIG. 7 1s a diagram of an example stitched image
of the vehicle generated from the plurality of images 1n FIG.
6

[0009] FIG. 8 1s a diagram of an example first deep neural
network used to determine a four degree-of-freedom pose of
an object.

[0010] FIG. 9 1s a diagram of an example three-dimen-
sional model of a vehicle.

[0011] FIG. 10 1s a diagram of an example computer aided
design model of a vehicle.

[0012] FIG. 11 1s a diagram of an example self-supervised
training system.

[0013] FIG. 12 1s a flowchart diagram of an example
process 1o generate a stitched 1mage.

[0014] FIG. 13 1s a flowchart diagram of an example
process to train a deep neural network.

DETAILED DESCRIPTION

[0015] A deep neural network (DNN) can be trained to
determine objects 1n 1image data acquired by sensors using a
training dataset for systems including vehicle gudance,
robot operation, security, manufacturing, and product track-
ing. Vehicle guidance can include operation of vehicles 1n
autonomous or semi-autonomous modes. Robot guidance
can include guiding a robot end eflector, for example a
gripper, to pick up a part and orient the part for assembly.
Security systems 1nclude features where a computer acquires
video data from a camera observing a secure area to provide
access to authorized users and detect unauthorized entry.
Security systems can also provide an authorized user access
to a computing device or cell phone, for example. In a
manufacturing system, a DNN in a computer can detect
undesired operation of machinery in a manufacturing opera-

Mar. 30, 2023

tion by determining a location of a person’s hands at a
particular time 1n relation to a machine operating cycle, for
example. In a product tracking system, a deep neural net-
work can detect a person removing an object from a shelf
and putting 1t 1nto a shopping cart and automatically charge
the person for the object, for example. Other product track-
ing systems include package sorting for shipping, for
example.

[0016] Vehicle guidance will be described herein as a
non-limiting example of using a DNN to detect objects, for
example, vehicles. For example, a computing device 1n a
traflic infrastructure system can be programmed to acquire
data regarding its environment and to detect objects 1n the
data using a DNN. The data can include image data acquired
from a still or video camera and range data acquired from a
range sensor imcluding a lidar sensor. A DNN can be trained
to label and locate objects 1n the 1image data or range data.
A computing device included in the tratflic infrastructure
system can use the identity and location of the detected
objects to determine a vehicle path upon which to operate a
vehicle 1n an autonomous or semi-autonomous mode. A
vehicle can operate based on a vehicle path by determiming
commands to direct the vehicle’s powertrain, braking, and

steering components to operate the vehicle to travel along
the path.

[0017] However, image data from one camera of a plural-
ity ol cameras 1n the traflic inirastructure system may lack
suflicient data about a detected vehicle to correctly deter-
mine an orientation of the detected vehicle. For example, the
image data from the one camera may 1nclude a portion of the
detected vehicle. In this situation, a plurality of orientations
for the vehicle may correspond the detected portion of the
vehicle in the image data from the one camera. Techniques
discussed herein improve determination of a detected vehi-
cle’s orientation by acquiring respective image data of the
vehicle from the plurality cameras and generating a stitched
image from the plurality of images based on respective
homography matrices between a host camera and additional
cameras 1n the plurality of cameras.

[0018] A system includes a computer including a proces-
sor and a memory, the memory storing istructions execut-
able by the processor to randomly select a plurality of virtual
three-dimensional (3D) points distributed on a 3D reference
plane for a camera array including a plurality of cameras.
The plurality of cameras including a host camera and one or
more additional cameras. The instructions further include
instructions to determine respective two-dimensional (2D)
projections of the plurality of virtual 3D points for the
plurality of cameras based on respective poses of the cam-
eras. The instructions further include instructions to deter-
mine, for the respective one or more additional cameras,
respective homography matrices based on the 2D projec-
tions for the respective camera and the 2D projections for the
host camera. The respective homography matrices map the
2D projections for the respective camera to the 2D projec-
tions for the host camera. The instructions further include
instructions to generate a stitched 1mage based on respective
images captured by the plurality of cameras and the respec-
tive homography matrices.

[0019] The instructions can further imnclude instructions to
input the stitched image nto a neural network that outputs
a pose of an object icluded in the stitched 1image.
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[0020] The pose of the object can be determined 1n coor-
dinates of a real-world coordinate system based on orthogo-
nal x, y, and z axes and a yaw rotation about the z axis.
[0021] The object can be a vehicle. The instructions can
turther include 1nstructions to generate a path for the vehicle
based on the determined pose. The instructions can further
include 1nstructions to operate the vehicle along the gener-
ated path.

[0022] The mstructions can further include instructions to
determine a first 2D silhouette of the object based on
inputting the pose of the object and a 3D model of the object
to a silhouette rendering program. The instructions can
turther include instructions to determine a second 2D sil-
houette of the object based on the stitched image. The
instructions can further include instructions to train the
neural network based on a difference between the first 2D
silhouette and the second 2D silhouette.

[0023] The mstructions can further include instructions to
determine respective poses of the plurality of cameras based
on calibration 1mages captured by the respective cameras
and including a fiducial marker.

[0024] The poses of the respective cameras can be deter-
mined in coordinates of a real-world coordinate system
based on orthogonal X, y, and z axes and roll, pitch, and vaw
rotations about the x, y, and z axes, respectively.

[0025] The mstructions can further include instructions to
determine update poses for respective cameras based on a
reprojection error 1n the stitched image.

[0026] The 3D reference plane can be defined by one of a
ground surface or a surface of an object.

[0027] The images can be time-synchronized.

[0028] The plurality of cameras can be red-green-blue-
depth (RGB-D) cameras.

[0029] A method includes randomly selecting a plurality
of virtual three-dimensional (3D) points distributed on a 3D
reference plane for a camera array including a plurality of
cameras. The plurality of cameras including a host camera
and one or more additional cameras. The method further
includes determining respective two-dimensional (2D) pro-
jections of the plurality of virtual 3D points for the plurality
of cameras based on respective poses of the cameras. The
method further includes determining, for the respective one
or more additional cameras, respective homography matri-
ces based on the 2D projections for the respective camera
and the 2D projections for the host camera. The respective
homography matrices map the 2D projections for the respec-
tive camera to the 2D projections for the host camera. The
method further includes generating a stitched 1mage based
on respective 1images captured by the plurality of cameras
and the respective homography matrices.

[0030] The method can further include inputting the
stitched 1mage into a neural network that outputs a pose of
an object included 1n the stitched image.

[0031] The pose of the object can be determined 1n coor-
dinates of a real-world coordinate system based on orthogo-
nal X, y, and z axes and a yaw rotation about the z axis
[0032] The object can be a vehicle. The method can
turther include generating a path for the vehicle based on the
determined pose. The method can further include operating
the vehicle along the generated path.

[0033] The method can further include determiming a first
2D silhouette of the object based on 1nputting the pose of the
object and a 3D model of the object to a silhouette rendering
program. The method can further include determining a
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second 2D silhouette of the object based on the stitched
image. The method can further include training the neural
network based on a difference between the first 2D silhouette
and the second 2D silhouette.

[0034] The method can {further include determining
respective poses of the plurality of cameras based on cali-
bration 1mages captured by the respective cameras and
including a fiducial marker.

[0035] The poses of the respective cameras can be deter-
mined in coordinates of a real-world coordinate system
based on orthogonal X, y, and z axes and roll, pitch, and yaw
rotations about the x, y, and z axes, respectively.

[0036] The method can {further include determining
updated poses for respective cameras based on a reprojec-
tion error in the stitched 1image.

[0037] Further disclosed herein 1s a computing device
programmed to execute any of the above method steps. Yet
further disclosed herein 1s a computer program product,
including a computer readable medium storing instructions
executable by a computer processor, to execute an of the
above method steps.

[0038] With reference to FIGS. 1-11, an example traflic

infrastructure system 100 includes a vehicle 103, a remote
server computer 140, and a remote camera array 145 1nclud-
ing a plurality of cameras 150 positioned to obtain respec-
tive 1mages ol an operating areca 200. A vehicle computer
110 1n the vehicle 105 1s programmed to operate the vehicle
105 using a four degree-oi-freedom (4DoF) pose for the
vehicle 105 received from the remote server computer 140,
as discussed below.

[0039] To determine the 4DoF pose for the vehicle 105,
the remote server computer 140 1s programmed to randomly
select a plurality of virtual three-dimensional (3D) points
502 distributed on a 3D reference plane 500 for the remote
camera array 1435. The plurality of cameras 1350 include a
host camera 152 and one or more additional cameras 154.
The remote server computer 140 1s further programmed to
determine respective two-dimensional (2D) projections 612
of the plurality of virtual 3D points 502 for the plurality of
cameras 150 based on respective poses of the cameras 150.
The remote server computer 140 1s further programmed to
determine, for the respective one or more additional cameras
154, respective homography matrices based on the 2D
projections 612 for the respective additional camera 154 and
the 2D projections 612 for the host camera 152. The
respective homography matrices map the 2D projections 612
for the respective additional camera 154 to the 2D projec-
tions 612 for the host camera 152. The remote server
computer 140 1s further programmed to generate a stitched
image 700 based on respective images captured by the
plurality of cameras 150 and the respective homography
matrices.

[0040] Techniques described herein can generate the
stitched 1mage 700 from a perspective of the host camera
152. Any one of the cameras 150 may be selected as the host
camera 152. For example, upon generating a stitched image
700 from the perspective of one camera 1350, the remote
server computer 140 can select another camera 150 as the
host camera 152 and generate a subsequent stitched 1mage
700 from the perspective of the other camera 150. That 1is,
the remote server computer 140 can generate a plurality of
stitched 1mages 700 from respective perspectives of the
plurality of cameras 150.




US 2023/0097584 Al

[0041] Turning now to FIG. 1, the vehicle 105 includes the
vehicle computer 110, sensors 115, actuators 120 to actuate
various vehicle components 1235, and a vehicle communi-
cations module 130. The communications module 130
allows the vehicle computer 110 to communicate with a
remote server computer 140, and/or other vehicles, e.g., via
a messaging or broadcast protocol such as Dedicated Short
Range Communications (DSRC), cellular, and/or other pro-
tocol that can support vehicle-to-vehicle, vehicle-to infra-
structure, vehicle-to-cloud communications, or the like, and/
or via a packet network 135.

[0042] The vehicle computer 110 includes a processor and
a memory such as are known. The memory includes one or
more forms ol computer-readable media, and stores mstruc-
tions executable by the vehicle computer 110 for performing,
vartous operations, including as disclosed herein. The
vehicle computer 110 can further include two or more
computing devices operating in concert to carry out vehicle
operations including as described herein. Further, the
vehicle computer 110 can be a generic computer with a
processor and memory as described above, and/or may
include an electronic control unit (ECU) or electronic con-
troller or the like for a specific function or set of functions,
and/or may include a dedicated electronic circuit including
an ASIC that 1s manufactured for a particular operation, e.g.,
an ASIC for processing sensor data and/or communicating
the sensor 115 data. In another example, the vehicle com-
puter 110 may include an FPGA (Field-Programmable Gate
Array) which 1s an integrated circuit manufactured to be
configurable by a user. Typically, a hardware description
language such as VHDL (Very High Speed Integrated Cir-
cuit Hardware Description Language) 1s used 1n electronic
design automation to describe digital and mixed-signal
systems such as FPGA and ASIC. For example, an ASIC 1s
manufactured based on VHDL programming provided pre-
manufacturing, whereas logical components imnside an FPGA
may be configured based on VHDL programming, e.g.,
stored 1n a memory electrically connected to the FPGA
circuit. In some examples, a combination of processor(s),
ASIC(s), and/or FPGA circuits may be included in the

vehicle computer 110.

[0043] The vehicle computer 110 may operate and/or
monitor the vehicle 105 1n an autonomous mode, a semi-
autonomous mode, or a non-autonomous (or manual) mode,
1.€., can control and/or monitor operation of the vehicle 105,
including controlling and/or monitoring components 125.
For purposes of this disclosure, an autonomous mode 1s
defined as one 1n which each of vehicle 105 propulsion,
braking, and steering are controlled by the vehicle computer
110; 1n a semi-autonomous mode the vehicle computer 110
controls one or two of vehicle 105 propulsion, braking, and
steering; 1 a non-autonomous mode a human operator
controls each of vehicle 105 propulsion, braking, and steer-
ng.

[0044] The vehicle computer 110 may include program-
ming to operate one or more of vehicle 105 brakes, propul-
sion (e.g., control of acceleration i1n the vehicle 105 by
controlling one or more of an 1nternal combustion engine,
clectric motor, hybrid engine, etc.), steering, transmission,
climate control, interior and/or exterior lights, horn, doors,
etc., as well as to determine whether and when the vehicle
computer 110, as opposed to a human operator, 1s to control
such operations.
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[0045] The vehicle computer 110 may include or be com-
municatively coupled to, e.g., via a vehicle communications
network such as a communications bus as described further
below, more than one processor, e.g., included 1n electronic
controller units (ECUs) or the like included 1n the vehicle
105 for momitoring and/or controlling various vehicle com-
ponents 125, e.g., a transmission controller, a brake control-
ler, a steering controller, etc. The vehicle computer 110 1s
generally arranged for communications on a vehicle com-
munication network that can include a bus 1n the vehicle 105
such as a controller area network (CAN) or the like, and/or
other wired and/or wireless mechanisms.

[0046] Via the vehicle 105 network, the vehicle computer
110 may transmit messages to various devices in the vehicle
105 and/or recerve messages (e.g., CAN messages ) from the
various devices, e.g., sensors 115, actuators 120, ECUSs, efc.
Alternatively, or additionally, 1n cases where the vehicle
computer 110 actually comprises a plurality of devices, the
vehicle communication network may be used for commu-
nications between devices represented as the vehicle com-
puter 110 1n this disclosure. Further, as mentioned below,
various controllers and/or sensors 115 may provide data to
the vehicle computer 110 via the vehicle commumnication
network.

[0047] The vehicle computer 110 1s programmed to
receive data from one or more sensors 115 substantially
continuously, periodically, and/or when instructed by a
remote server computer 140, etc. The sensors 115 may
include a varniety of devices such as are known, e.g., Light
Detection And Ranging (LIDAR) sensor (s), radar sensors,
camera sensors, etc., to provide data to the vehicle computer
110.

[0048] The vehicle 103 actuators 120 are implemented via
circuits, chips, or other electronic and or mechanical com-
ponents that can actuate various vehicle 105 subsystems in
accordance with appropnate control signals as 1s known.
The actuators 120 may be used to control components 125,
including braking, acceleration, and steering of a vehicle

125.

[0049] In the context of the present disclosure, a vehicle
component 125 1s one or more hardware components
adapted to perform a mechanical or electro-mechanical
function or operation—such as moving the vehicle 105,
slowing or stopping the vehicle 105, steering the vehicle
105, etc. Non-limiting examples of components 125 include
a propulsion component (that includes, e.g., an internal
combustion engine and/or an electric motor, etc.), a trans-
mission component, a steering component (e.g., that may
include one or more of a steering wheel, a steering rack,
etc.), a suspension component (e.g., that may include one or
more of a damper, e.g., a shock or a strut, a bushing, a spring,
a control arm, a ball joint, a linkage, etc.), a brake compo-
nent, a park assist component, an adaptive cruise control
component, an adaptive steering component, one or more
passive restraint systems (e.g., airbags), a movable seat, eftc.

[0050] In addition, the vehicle computer 110 may be
configured for communicating via a vehicle-to-vehicle com-
munications module 130 or interface with devices outside of
the vehicle, e.g., through a vehicle-to-vehicle (V2V) or
vehicle-to-infrastructure (V2X) wireless communications
(cellular and/or short-range radio commumnications, etc.) to
another vehicle, and/or to a remote server computer 140
(typically via direct radio frequency communications). The
communications module 130 could include one or more
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mechanisms, such as a transceiver, by which the computers
of vehicles may communicate, including any desired com-
bination of wireless (e.g., cellular, wireless, satellite, micro-
wave and radio frequency) communication mechanisms and
any desired network topology (or topologies when a plural-
ity of communication mechanisms are utilized). Exemplary
communications provided via the communications module
include cellular, Bluetooth, IEEE 802.11, dedicated short
range communications (DSRC), cellular V2X (CV2X), and/
or wide area networks (WAN), including the Internet, pro-
viding data communication services. For convenience, the
label “V2X” 1s used herein for communications that may be
vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure
(V2I), and that may be provided by the communications
module 130 according to any suitable short-range commu-
nications mechanism, e.g., DSRC, cellular, or the like.

[0051] The network 135 represents one or more mecha-
nisms by which a vehicle computer 110 may communicate
with remote computing devices, e.g., the remote server
computer 140, another vehicle computer, etc. Accordingly,
the network 135 can be one or more of various wired or
wireless communication mechanisms, including any desired
combination of wired (e.g., cable and fiber) and/or wireless
(e.g., cellular, wireless, satellite, microwave, and radio ire-
quency) communication mechanisms and any desired net-
work topology (or topologies when multiple communication
mechanisms are utilized). Exemplary communication net-
works 135 include wireless communication networks (e.g.,
using Bluetooth®, Bluetooth® Low Energy (BLE), IEEE
802.11, Vehlcle-to-vehlcle (V2V) such as Dedicated Short
Range Commumcatlons (DSRC), etc.), local area networks

(LAN) and/or wide area networks (WAN), including the
Internet, providing data communication services.

[0052] The remote server computer 140 can be a conven-
tional computing device, 1.e., including one or more proces-
sors and one or more memories, programmed to provide
operations such as disclosed herein. Further, the remote
server computer 140 can be accessed via the network 135,
¢.g., the Internet, a cellular network, and/or or some other
wide area network.

[0053] The plurality of cameras 150 in the remote camera
array 145 are positioned to view the operating area 200 from
above. The plurality of cameras 150 may, for example, be
spaced from each other so as to minimize overlap of their
respective fields of view. Alternatively, the plurality of
cameras 150 may be spaced from each other so as to achieve
a desired amount of overlap, e.g., specified by an owner of
a structure defining the operating area 200.

[0054] The cameras 150 may, for example, be any suitable
type of camera which 1s capable of acquiring registered
visual and range data. Registered visual and range data,
referred to herein as RGB-D (red, green, blue, distance)
image data, 1s 1image data in which corresponding pixels 1n
the RGB, or visual image, and the D, or range 1mage, acquire
data from the same point in the external environment. One
non-limiting example of a camera 150 1s a red-green-blue-
depth (RGB-D) camera. In such an example, the camera 150
may include a photosensitive array (not shown), an infrared
(IR) emitter (not shown), and an IR depth sensor (not
shown). In operation, the camera 150 determines one or
more 1mages (e.g., image frames), and each image frame
comprises color mformation and depth information corre-
sponding to objects within the 1mage frame. For example,
the photosensitive array may receive color image data while
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concurrently the IR emitters and IR depth sensors are used
to determine depth image data; and ultimately a processor
(not shown) of the camera 150 correlates both color image
data and depth image data into an 1image which i1s provided
to remote server computer 140 (as described below). Two
non-limiting commercial examples of RGB-D cameras are
the Astra S 3D Camera by Orbbec and the Realsense D435
by Intel; other examples exist. In some implementations of
the traflc inirastructure system 100, an RGB-D camera 1s
desirable as RGB-D cameras typically have a front focal
distance (FFD) between 2 and 5 meters (e.g., as opposed to
lidar systems which typically have an FFD 1n the hundreds
of meters). The shorter FFD for the RGB-D camera as
compared to lidar systems allows the RGB-D camera to
capture a wider field of view than lidar systems. Addition-
ally, the shorter FFD allows the RGB-D camera to capture
a deeper depth of field, 1.e., a larger distance between a
nearest and a farthest object from the RGB-D camera that 1s
in focus 1n an 1mage, than lidar systems.

[0055] As another example, a camera 150 may obtain
image data of the operating area 200. Image data herein
means digital image data, e.g., comprising pixels with
intensity and color values. Additionally, a lidar system may
obtain depth data, 1.¢., a range between the camera 150 and
a surface of an object within the field of view of the camera
150. In this situation, the remote server computer 140 could
employ various techniques for fusing data from the lidar
sensor and the camera 150. Sensor 115 fusion 1s combining,
data from disparate sources together so that the resulting
data has less uncertainty than if the data from each source
were used individually, e.g., 1n creating a umfied model of
the surrounding environment of the vehicle 105. The sensor
115 fusion can be performed with one or more algorithms,
¢.g., Kalman filter, Bayesian networks, Dempster-Shafer,
convolutional neural networks, etc.

[0056] FIG. 2 1s a diagram 1illustrating a vehicle 105
operating 1n an example operating area 200 that includes
marked sub-areas 205 (e.g., parking spaces) for vehicles
105. An operating area 200 1s a specified area of ground
surface for operating and/or stowing a vehicle 105. The
operating area 200 may be included 1n a structure, e.g., a
parking deck (1.e., a structure that includes one or more
tfloors upon which a vehicle can be operated and/or stowed),
manufacturing facilities, service facilities, a tunnel, etc. The
structure includes a ceiling above the operating area 200.
The ceilling may or may not be parallel to the operating area
200. The plurality of cameras 150, including a host camera
152 and additional cameras 154q, 1545, 154¢, are mounted
to the ceiling. A sub-area 205 may, for example, be a parking
space indicated by conventional markings, e.g., painted lines
on a ground surface, and conventional 1mage recognition
techniques can be employed by the vehicle computer 110 to
identify the sub-area 203.

[0057] In general, at least some regions of operating area
200 may be devoid of a usetul satellite-based positioning
signal (1.e., absent a satellite-based positioning signal or
alternatively, the satellite positioning signal 1s present but
weak). Weak may be defined as being attenuated and being
less than a threshold; e.g., the threshold may be below a
predetermined value that i1s usable by vehicle-navigation
equipment. According to an example, the satellite-based
positioning signal may be a wireless signal from a satellite
using global positioning system (GPS), global satellite navi-

gation system (GLONASS), or the like.
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[0058] Respective six degree-of-freedom (6DoF) poses
for the cameras 150 with respect to a global coordinate
system can be determined and therefore determining the
location of a vehicle 105 1n a stitched 1mage 700 generated
from 1mages acquired by the cameras 150 can determine the
location of the wvehicle 105 with respect to the global
coordinate system. The remote server computer 140 can
communicate with the cameras 150 to determine a vehicle
path 210 upon which the vehicle 105 can operate to travel
through the operating area 200, ¢.g., to a sub-area 205. The
vehicle path 210 can be communicated to the vehicle 105 to
permit the vehicle 105 to operate autonomously or semi-
autonomously through the operating area 200.

[0059] The remote server computer 140 can include a
DNN, 1.e., a software program that permits the remote server
computer 140 to determine a 4DoF pose for the vehicle 105
relative to the operating area 200. The remote server com-
puter 140 can then determine the vehicle path 210 based on
the 4DoF pose for the vehicle 105. The vehicle path 210 can
include a plurality of locations, which can be called
“breadcrumbs” which, when jomned, for example, by a
polynomial function, can be used to operate a vehicle 105 to
a location, e.g., a sub-area 205, 1n the operating area 200.
While the vehicle 105 1s operating 1n operating area 200, the
cameras 150 can be acquiring data regarding the location of
vehicle 105 to determine whether the vehicle 105 1s cor-
rectly following the vehicle path 210 determined by the
remote server computer 140. In examples where the vehicle
105 1s deviating from the vehicle path 210, remote server
computer 140 can transmit updated commands to the vehicle
computer 110 to correct the operation of vehicle 105, e.g., by
actuating one or more vehicle components 123.

[0060] FIG. 3 1s a diagram that includes an example RGB
image 302, an example depth image 304, and an example
binary 1mage 306 from an RGB-D camera 150. The RGB
image 302, the depth image 304, and the binary image 306
cach includes a same portion of a calibration vehicle 308.
The RGB 1mmage 302 1s acquired by the visual portion of an

RGB-D camera 150.

[0061] The depth image 304 1s acquired by a range sensor
such as a lidar sensor or by the depth or range portion of an
RGB-D camera 150. In examples discussed herein, the depth
image 304 1s registered with the RGB image 302. This
means that for a given pixel x, y location in 1images 302, 304,
the RGB 1mmage 302 will include the color of a location and
the depth image 304 will include the distance or range to the
same location. In examples where the RGB 1mage 302 and
depth image 304 are not registered, the oflset in locations of
cach pixel between the RGB 1mage 302 and the depth image
304 can be determined, and the ofiset can be used to register
the RGB 1mage 302 and the depth 1mage 304.

[0062] The binary image 306 1s the result of thresholding
depth 1mage 304. Thresholding 1s an i1mage processing
operation where a threshold value 1s selected and all pixels
having value greater than or equal to the threshold value are
set to “1” and all pixels having a value less that the threshold
value are set to “0”. Thresholding a depth image 304 to
determine a binary image 306 permits determimng difler-
ences 1n vehicle location between a binary image 306
formed by thresholding a depth image 304 and a vehicle
location 1n a binary image determined by rendering a depth
image based on a three-dimensional (3D) model of a vehicle.
Techniques discussed herein can train a first deep neural

network (DNN) 800 (as described below 1n relation to FIG.
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8) by mputting a stitched depth 1mage to the first DNN 800
to determine a 4DoF pose for a vehicle 105 included in the
stitched depth 1image. The 4DoF pose can be converted 1nto
a Tormat for input to an 1mage rendering software program
by determining translation and rotation matrices that can be
used to translate and rotate a 3D model from an input pose
to a pose corresponding to the 4DoF pose. Translation
moves the 3D model 1n the X, v plane and rotation rotates the
3D model around the z axis at a selected center point 3D
model. Converting the 4DoF pose 1n this fashion preserves
the differentiability of the 4DoF pose. This 1s important
when the 4DoF pose 1s used to determine a loss function for
training the first DNN 800 as discussed 1n relation to FIG.
11, below.

[0063] The calibration vehicle 308 includes a fiducial
marker 310. A fiducial marker 310 can 1include a number of
ArUco fiducial marks. ArUco fiducial marks are two-dimen-
sional (2D) patterns from a library of fiducial marks
described at www.uco.es/grupos/ava/node/26, “Aplica-
ciones de la Vision Artificial”, University of Cordoba, Spain,
May 15, 2019. ArUco fiducial marks are designed to be read
by machine vision software that can determine a pose with
respect to a coordinate system for each ArUco fiducial mark
included 1n a fiducial marker 310 by processing a 2D image

of the fiducial marker 310.

[0064] The calibration vehicle 308 may include a com-
puter (not shown) that includes a second processor and a
second memory such as are known. The second memory
includes one or more forms of computer-readable media,
and stores instructions executable by the second computer
for performing various operations, including as disclosed
herein.

[0065] Additionally, the calibration vehicle 308 may
include sensors (not shown), actuators (not shown) to actu-
ate various components (not shown), and a communications
module (not shown). The sensors, actuators to actuate vari-
ous components, and the communications module typically
have features in common with the sensors 115, actuators 120
to actuate various vehicle components 125, and the vehicle
communications module 130, and therefore will not be
described further to avoid redundancy.

[0066] FIG. 4 1s a diagram of an example second deep
neural network (DNN) 400 used to determine a six degree-
of-freedom (6DoF) pose for a camera 150. The remote
server computer 140 can determine respective 6DoF poses
for the plurality of cameras 150 1n the remote camera array
145 based on respective calibration images 402 acquired by
respective cameras 150. A calibration image 402 1s an RGB
image that includes at least a portion of the calibration
vehicle 308, e.g., a fiducial marker 310. Six degree-oi-
freedom refers to the freedom of movement of an object 1n
three-dimensional space (e.g., translation along three per-
pendicular axes and rotation about each of the three perpen-
dicular axes). A 6DoF pose of a camera 150 means a location
relative to a coordinate system (e.g., a set of coordinates
speciiying a position in the coordinate system, e.g., X, Y, 7
coordinates) and an orientation (e.g., a yaw, a pitch, and a
roll) about each axis in the coordinate system. The 6DoF
pose of the camera 150 can be determined in real world
coordinates based on orthogonal x, y, and z axes and roll,
pitch, and yaw rotations about the x, y, and z axes, respec-
tively. The 6DoF pose of the camera 150 locates the camera
150 with respect to a global coordinate system.
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[0067] As the calibration vehicle 308 traverses the oper-
ating area 200, the calibration vehicle 308 can localize 1itself
within the operating area 200. For example, the calibration
vehicle 308 can receive location data from a sensor, a
navigation system, etc. Location data specifies a point or
points on a ground surface and may be 1n a known form, e.g.,
geo-coordinates such as latitude and longitude coordinates
obtained via a navigation system, as 1s known, that uses the
Global Positioning System (GPS). In this situation, the
computer in the calibration vehicle 308 can determine a
6DoF pose for the fiducial marker 310 relative to the global
coordinate system. For example, a location of the fiducial
marker 310 relative to the calibration vehicle 308 can be
physically measured. The 6DoF pose of the fiducial marker
310 can then be determined by combining the geo-coordi-
nates with the physically measured location of the fiducial
marker 310. That 1s, the 6DoF pose for the fiducial marker
310 locates the fiducial marker 310 relative to the global
coordinate system. The computer in the calibration vehicle
308 can then provide the 6DoF pose for the fiducial marker
310 to the remote server computer 140. For example, the
computer in the calibration vehicle 308 can transmit the
6DoF pose for the fiducial marker 310 to the remote server
computer 140, e.g., via the network 135, V-to-1 communi-
cations, etc.

[0068] As the calibration vehicle 308 enters a field of view
of one camera 150, the camera 150 can capture a calibration
image 402. The camera 150 can then provide the calibration
image 402 to the remote server computer 140. Upon receiv-
ing the calibration 1mage 402, the remote server computer
140 can mput the calibration image 402 into the second
DNN 400. The second DNN 400 may be trained to accept
the calibration 1image 402 as input and to generate an output
of a 6DoF pose of the camera 150 with respect to the fiducial
marker 310 based on an orientation of the fiducial marker
310 in the calibration image 402.

[0069] According to one non-limiting example, the second
DNN 400 may comprise a convolutional layer 404, a pool-
ing layer 406, and flattening 408. The convolutional layer
404 may recerve 1mmage frames and convolve the image
frames using a kernel or filter—e.g., yielding a plurality of
convolved features. Therealter, the pooling layers 406 may
reduce the spatial size of the convolved features. Typically
(although not required), there may exist multiple 1terations
of convolution followed by pooling. Thereafter, tlattening
408 may convert the pooling output to a suitable column
vector for input to a neural network, wherein classification
occurs (e.g., using at least one predetermined neural network
function, e.g., such as SoiftMax)—the classification in the
instant example pertaining to the 6DoF pose of the camera
150 with respect to the fiducial marker 310. Other aspects
and convolution techniques may be employed as well.

[0070] The remote server computer 140 can then deter-
mine the 6DoF pose for the camera 150 relative to the global
coordinate system based on the 6Dof pose of the fiducial
marker 310 and the 6DoF pose for the camera 150 relative
to the fiducial marker 310. The remote server computer 140
can determine the 6DoF pose for the camera 150 relative to
the global coordinate system by concatenation of the fiducial
marker 310 pose data and the camera 150 pose data. For
example, the 6DoF pose for the camera 150 relative to the
global coordinate system can be calculated by performing
matrix multiplication using the matrix values representing,
the fiducial marker 310 pose data and the camera 150 pose
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data. The remote server computer 140 can continue deter-
mining the 6DoF pose for respective cameras 1350 relative to
the global coordinate system 1n this manner until a 6DoF
pose relative to the global coordinate system 1s determined
for all of the cameras 150 1n the remote camera array 145.
The remote server computer 140 can then store the respec-
tive 6DoF poses for the cameras 150, e.g., 1n a memory of
the remote server computer 140.

[0071] FIGS. 5A and 3B are diagrams of an example 3D
reference plane 500. The remote server computer 140 can
determine the 3D reference plane 500 based on a depth
image 304 acquired by the host camera 152. For example,
the remote server computer 140 can determine the 3D
reference plane 500 by inserting a plurality of points to the
depth 1image 304 and fitting a plane to the points. The remote
server computer 140 inserts the points such that all inserted
points exist on a common surface. That is, the remote server
computer 140 can insert points to the depth image 304
according to a portion 1n the depth image 304 indicating a
common range from the camera 150. As one example, the
common surface can be ground surface of the operating area
200 (see FIG. 5A). As another example, the common surface
can be a surface, e.g., a roof, a hood, etc., of a vehicle
included 1n the depth image 304. The 3D reference plane 500
can be fit to the points using a least-squares algorithm, for
example. A least-squares algorithm minimizes the difler-
ences between the real-world locations of points and the
location of the 3D reference plane 500. That 1s, the 3D
reference plane 500 generally corresponds to the common
surface.

[0072] The 3D reference plane 500 can be described 1n
real-world coordinates. The real-world coordinates can
describe the location and orientation of the 3D reference
plane 500 1n s1x axes, namely three X, y, and z location axes
and three roll, pitch, and yaw rotations about the three
location axes, respectively. The 3D reference plane 500 can,
for example, extend entirely across the operating area 200.

[0073] Upon determining the 3D reference plane 500, the
remote server computer 140 randomly selects a plurality of
virtual 3D points 502 in the 3D reference plane 500 (see
FIG. 5B). A virtual 3D point 502 i1s defined by a set of
coordinates in the 3D reference plane 500. The remote
server computer 140 selects at least four virtual 3D points
502 so that the remote server computer 140 1s able to
generate respective homography matrices for the additional
cameras 154, as discussed below. That 1s, at least four virtual
3D points 502 are required to fully constrain transformation
of an 1image from a perspective of one camera 150 to a
perspective ol another camera 150.

[0074] FIG. 6 1s a diagram of example respective 1images

602, 604, 606, 608 acquired by the host camera 152 and
additional cameras 154a, 1545, 154¢ (see FIG. 2) and 2D
projections 612 for the respective cameras 152, 154. Each
image 602, 604, 606, 608 includes a portion of a vehicle 105.
The portion of the vehicle 105 included in one image 602,

604, 606, 608 may overlap with the portion of the vehicle
included in one or more other 1images 602, 604, 606, 608.

[0075] Respective cameras 150 may acquire a plurality of
images of the operating area 200. The respective cameras
150 can then provide the respective acquired images to the
remote server computer 140. The remote server computer
140 can select the images 602, 604, 606, 608, ¢.g., from the
acquired 1images received from the respective cameras 150,
based on time stamps associated with the respective images
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602, 604, 606, 608 corresponding to a same time. That 1s, the
images 602, 604, 606, 608 may be time synchronized.

[0076] The remote server computer 140 generates a
stitched 1mage 700 based on the plurality of selected images
602, 604, 606, 608 and the 2D projections 612 for the
respective cameras 152, 154. Images 604, 606, 608 from
three additional cameras 154a, 1545, 154¢ are shown 1n FIG.
6, but 1t 1s to be understood that respective images from any
suitable number of additional cameras 154 can be used to
generate the stitched image 700. Generating the stitched
image 700 can improve training of a first DNN 800 to
determine the 4DoF pose of the vehicle 105 included in the
stitched 1mage 700. The plurality of 1images 602, 604, 606,
608 can be a plurality of RGB images, a plurality of depth
images registered with the plurality of RGB 1mages, and/or
binary images generated by thresholding the plurality of
depth 1mages. That 1s, techniques described herein can
generate a stitched RGB 1mage, a stitched depth image,
and/or a stitched binary 1mage.

[0077] For the respective cameras 150, the remote server
computer 140 can then determine 2D projections 612 cor-
responding to the virtual 3D points 502 based on the
respective 6DoF poses of the cameras 150. For example, the
remote server computer 140 can determine 2D projections
612 for a camera 150 corresponding to the virtual 3D points
502 by rendering the virtual 3D points 502. Rendering can
produce 2D projections 612 from virtual 3D points 502 by
determining a virtual camera point of view from which to
project the virtual 3D points 502 to a 2D plane 614.

[0078] A virtual camera can be provided by programming
of the remote server computer 140 to generate the 2D
projections 612 from the virtual 3D points 502. The remote
server computer 140 can generate virtual light rays that pass
from a virtual image sensor through a virtual lens, obeying
the laws of physics just as 1f the 1mage sensor and lens were
physical objects. The remote server computer 140 1inserts
data into the virtual 1mage sensor corresponding to the
appearance of a virtual 3D point 502 that a ray of light
emitted by the virtual 3D point 502 and passing through a
physical lens would produce on a physical image sensor. By
situating a virtual camera at a selected location and orien-
tation with respect to the virtual 3D points 502, 2D projec-
tions 612 corresponding to a selected viewpoint with respect
to the 3D reference plane 500 can be generated.

[0079] The virtual camera point of view includes location
and orientation data for an optical axis of the virtual camera
and data regarding the magnification of the virtual camera
lens. The virtual camera point of view 1s determined based
on the location and ornentation of a virtual camera with
respect to the 3D reference plane 500. The location of the
virtual camera 1s selected to be the location of the respective
camera 150, and the orientation of the virtual camera 1s
selected to be the orientation of the respective camera 150.
The location and the orientation of the respective camera
150 are determined from the 6DoF pose of the respective
camera 150. Projecting the virtual 3D points 502 onto a 2D
plane 614 corresponds to determining the coordinates of the
virtual 3D points 502 1n the 2D plane 614 relative to a
camera 1350 at the selected location and orientation. Because
the 2D projections 612 were generated from virtual 3D
points 502 based on a virtual camera at a selected location
and orientation, data regarding the location and orientation
of the 2D projections 612 1s known.
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[0080] The 2D plane 614 can be described 1n real-world
coordinates. The real-world coordinates can describe the
location and ornentation of the 2D plane 614 1n three axes,
namely X and y location axes and yaw rotation about the z
location axis.

[0081] Upon determining the 2D projections 612 for the
plurality of cameras 150, the remote server computer 140
can compute respective homography matrices for the one or
more additional cameras 154 based on the 2D projections
612 for the respective additional camera 154 and the 2D
projections 612 for the host camera 152. A homography
matrix 1s used to transform the 2D projections 612 for the
respective additional camera 154 from coordinates in an
image plane defined by the respective additional camera 154
to coordinates 1n an 1mage plane defined by the host camera
152. Said differently, the homography matrix provides a
mathematical relationship between coordinates of 2D pro-

jections 612 in the images. The remote server computer 140

determines the homography matrix based on a translational
difference along each of the three orthogonal axes and a
rotational difference about each of the three orthogonal axes
between 2D projections 612 for the respective additional
camera 154 and corresponding 2D projections 612 for the
host camera 152.

[0082] FIG. 7 1s a diagram of a stitched image 700
generated from the plurality of 1images 602, 604, 606, 608 1n
FIG. 6. The remote server computer 140 generates the
stitched 1mage 700 from the perspective of the host camera
152 based on respective images 604, 606, 608 acquired by
the additional cameras 154a, 1545, 154¢ and the correspond-
ing homography matrices for the respective additional cam-
cras 154a, 154b, 154¢. Upon receiving an image 604, 606,
608 from one additional camera 154a, 15456, 154c¢, the
remote server computer 140 warps the image 604, 606, 608,
1.€., transforms pixel coordinates for the image 604, 606, 608
to a host pixel coordinate system, e.g., defined by the image
plane of the host camera 152, by using the homography
matrix for the respective additional camera 154a, 1545,
154¢. The remote server computer 140 can then, e.g.,
employing known computer vision techniques, stitch the
image 604, 606, 608 acquired by the additional camera
154a, 154b, 154¢ to the image 602 acquired by the host
camera 152, e.g., by aligning the 2D projections 612 1n the
respective 1mages 602, 604, 606, 608. The remote server
computer 140 can then employ alpha blending to the over-
lapping portions of the respective images 602, 604, 606,
608. Alpha blending 1s an 1mage processing technique that
adjusts a transparency of overlapped pixels in a stitched
image such that an overlapped pixel of one 1image used to
generate the stitched 1mage 1s, at least partially, transparent,
and the corresponding overlapped pixel in another image
used to generate the stitched 1mage 1s visible. As used herein,
“transparent” means that the overlapped pixel of the one
image does not show through the overlapped pixel of the
other 1image, 1.e., the overlapped pixel of the one 1image 1s
invisible. That 1s, only the overlapped pixel of the other
image 1s visible. As used herein, “partially transparent”, 1.e.,
translucent, means that the overlapped pixel of the one
image may show through the overlapped pixel of the other
image. In other words, both overlapped pixels may be
visible. For example, alpha blending techniques may specily
one level, e.g., from 254 levels between fully visible and
transparent, of partial transparency for the overlapped pixel
of the one image, which corresponds to how visible the
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overlapped pixel of the one 1image 1s relative to the over-
lapped pixel of the other image. The remote server computer
140 can continue stitching 1images 604, 606, 608 acquired by
additional cameras 154a, 1545, 154¢ to the i1mage 602
acquired by the host camera 152 1n this manner until the
entire vehicle 105 1s included 1n the stitched 1image 700.

[0083] The stitched image 700 may include a reprojection
error E, 1.e., a geometric error corresponding to an image
distance (1.e., an oflset or misalignment) in the stitched
image 700 between corresponding features, e€.g., a line, a
surface, a marking, etc., included 1n a plurality of images
602, 604, 606, 608 used to generate the stitched image 700.
The remote server computer 140 can update the 6DoF poses
for the respective additional cameras 154 based on the
reprojection error E. For example, the remote server com-
puter 140 can use a non-linear optimization technique, e.g.,
Levenberg-Marquardt, to optimize extrinsic calibration
parameters, €.g., a rotation matrix and a translation matrix,
for the respective additional camera 154 to reduce the
reprojection error E in the stitched image 700 between the
corresponding features included in the plurality of images
602, 604, 606, 608. The remote server computer 140 can
then update the 6DoF poses for the respective additional
cameras 154 to correspond to the optimized extrinsic cali-
bration parameters.

[0084] FIG. 8 1s a diagram of an example first DNN 800.
The first DNN 800 can be a software program executing on
the remote server computer 140 included i1n the traflic
infrastructure system 100. In this example, the first DNN
800 1s illustrated as a convolutional neural network (CNN).
Techniques described herein can also apply to DNNs that are
not implemented as CNNs. A first DNN 800 implemented as
a CNN typically mputs an input image (IN) 802 as input
data. The input image 802 1s processed by convolutional
layers 804 to form latent variables 806 (1.e., variables passed
between neurons in the first DNN 800). Convolutional
layers 804 include a plurality of layers that each convolve an
input 1image 802 with convolution kernels that transform the
input 1image 802 and process the transformed mmput image
802 using algorithms such as max pooling to reduce the
resolution of the transformed imput image 802 as 1t 1s
processed by the convolutional layers 804. The latent vari-
ables 806 output by the convolutional layers 804 are passed
to fully connected layers 808. Fully connected layers 808
include processing nodes. Fully connected layers 808 pro-
cess latent variables 806 using linear and non-linear func-
tions to determine an output prediction (OUT) 810. In
examples discussed heremn, the output prediction 810
includes an object label and an object location. The server
computer 140 can mnput a stitched depth image.

[0085] First DNN 800 can be tramned using a training
dataset that includes 1images and corresponding ground truth.
Training datasets for a first DNN 800 can include thousands
or millions of 1mages and corresponding annotations or
ground truth. Each image of the training dataset can be
processed a plurality of times by the first DNN 800. A
prediction 810 output from the first DNN 800 1n response to
an mput 1mmage 802 1s compared to the ground truth corre-
sponding to the mput image 802 to determine a loss func-
tion. The loss function 1s a mathematical function that
determines how closely the prediction 810 output from the
first DNN 800 matches the ground truth corresponding to the
input image 802. The value determined by the loss function
1s 1put to the convolutional layers 804 and fully connected
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layers 808 of the first DNN 800 where it 1s backpropagated
to determine weights for the layers that correspond to a
minimum loss function. Backpropagation 1s a technique for
training a first DNIN 800 where a loss function 1s input to the
convolutional layers 804 and fully connected layers 808
furthest from the mput and communicated from back-to-
front and determining weights for each layer 804, 808 by
selecting weights that minimize the loss function. Training
a first DNN 800 to determine a 4DoF pose for a vehicle will
be discussed 1n relation to FIG. 11, below

[0086] A first DNN 800 can be tramned to determine a
4DoF pose for a vehicle. A three-dimensional pose for an
object can be specified by determining the location and
orientation of the object 1n 6DoF, as described above. In
examples discussed herein, the object, a vehicle, 1s assumed
to be supported by a roadway or other surface such as a
parking deck or lot that 1s a plane parallel to the x and y axes
and the roll and pitch rotations are therefore assumed to be
zero. A 4DoF pose for a vehicle supported by a planar
surface includes values for x, vy, z, and yaw, where yaw 1s an
angle 1n the plane defined by the x and y axes. Techniques
discussed herein improve traiming of a first DNN 800 to
determine a 4DoF pose for a vehicle by annotating RGB
image data using 4DoF data acquired from a range image
acquired by an RGB-D camera.

[0087] Typically, a large number of annotated visual or
range 1mages can be required to tramn a DNN to detect
objects for vehicle guidance. Annotated visual or range
images are 1mages that include data regarding an identity
and location of objects included in the wvisual or range
images. Annotating visual or range 1mages can require many
hours of user mput and many hours of computer time. For
example, some training datasets include millions of 1mages
and can require millions of hours of user input and computer
time. Techmiques discussed herein improve ftraining of
DNNSs to identily and locate objects by acquiring registered
visual and range 1image data and using the range image data
to provide ground truth for training the DNN. The range
image data provides ground truth data to train the DNN
without requiring annotation of the visual or range 1mage
data, thereby reducing the time and computer resources
required to produce a tramning dataset for training a DNN.
Ground truth refers to data that can be used to determine the
correctness of a result output from a DNN acquired from a
source independent from the DNN. Annotating RGB 1mage
data 1n this fashion can provide a large number (greater than
thousands) of annotated RGB 1mages for training a DNN
without requiring manual annotation, thereby saving com-
puter resources and time.

[0088] The output and converted 4DoF pose can be input
to an 1mage rendering soltware program, for example,
UnReal Engine, available from Epic Games, Cary, N.C.
2’7518, along with a 3D model of the vehicle to generate a
rendered depth i1mage that includes a 3D rendering of a
vehicle at the mnput 4DoF pose. The 3D model of the vehicle
can be based on computer aided design (CAD) data for the
vehicle, discussed 1n relation to FIG. 10, below or can be
generated by scanning the vehicle with a lidar scanner,
discussed 1n relation to FIG. 9, below, to generate the 3D
model data. The 3D model data 1s rotated and translated
using the rotation and translation matrices and the 3D model
1s rendered by the rendering software to generate an 1image
that 1includes a rendered version of the 3D model at the
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image coordinates corresponding to the 4DoF pose. A ren-
dered binary image can be generated by thresholding the
rendered depth image.

[0089] The rendered binary image can be compared to a
stitched binary image, e.g., generated according to the
techniques discussed above in relation to FIGS. 3-7, to
determine a loss function for training the first DNN 800. The
comparison between the rendered binary image and the
stitched binary 1mage can be determined by determining
differences 1n locations of the vehicles in the stitched binary
image and the rendered binary image using L1 metrics,
chamier distance, centroid distance, or a combination of
these measures. An L1 metric measures the vector distance
between two binary images by summing the x and y dis-
tances between corresponding pixels of each 1mage. This 1s
also sometimes referred to as ““Taxicab” distance. A chamier
distance weights the distance between corresponding pixels
in the two binary 1mages by weighting the distance, e.g., the
greater the distance, the larger the weight. A centroid dis-
tance finds a center for the areas corresponding to the “1”
pixels in the stitched binary image and the rendered binary
image and measures the distance between the centers. The
differences between the stitched binary 1mage and the ren-
dered binary image determines the loss function to be
backpropagated through the layers of the first DNN 800.
Backpropagation 1s a technmique for transmitting a loss
function from the last layers of a first DNN 800 to the first
layers and selecting weights for each layer based on mini-
mizing the loss function while processing the same input
data a plurality of times while varying the weights.

[0090] Techniques discussed herein which determine the
loss function from rendered 4DoF poses and stitched images
are differentiable. Diflerentiable means that the functions
used to determine the loss functions have partial derivatives
with respect to the weights used to determine the 4DoF
poses by the first DNN 800. This means that, for a given loss
function, a direction in which to change the weights for the
next processing iteration that will reduce the loss function
can be determined. In this fashion, over a plurality of
processing iterations, weights can be determined that cause
the loss functions to converge to a mimimal value, thereby

training the first DNN 800.

[0091] FIG. 9 1s a diagram of a 3D model 900 of a vehicle

902 generated by scanning a real-world vehicle with a lidar
scanner, for example. The 3D model 900 can be mput to an
image rendering soiftware program and rotated, translated,
and scaled according to a 4DoF pose to produce a rendered,
top-down depth 1image of the vehicle 902. A rendered binary
image of the vehicle 902 can be produced by thresholding
the rendered, top-down depth 1mage of the vehicle 902. The
rendered binary image of the vehicle 902 can be compared
to a stitched bmary 1mage based on a stitched depth 1mage
of the same type of vehicle acquired by an RGB-D camera
150 to form a loss function for tramning a first DNN 800.

[0092] FIG. 10 15 a diagram of a CAD drawing 1000 of a
vehicle 1002. A CAD drawing 1000 1s a rendering based on
CAD data corresponding to a vehicle 1002. The CAD data
corresponding to a vehicle 1002 includes the locations,
orientations, and textures of the surfaces that make up a
vehicle 1002. The CAD data can be mput to a rendering,
soltware program to produce a rendered top-down depth
image. A rendered binary image can be generated by thresh-
olding the rendered top-down depth image. The rendered
binary image can be compared to a stitched binary image
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based on a stitched depth 1mage of the same type of vehicle
acquired by an RGB-D camera 150 to form a loss function
for training a first DNN 800.

[0093] FIG. 11 1s a diagram of a self-supervised training
system 1100 for tramning a DNN 1106 to determine a 4DoF
pose based on stitched depth image 1102 input. A seli-
supervised tramning system 1100 1s a software program
executing on a remote server computer 140 included 1n a
traffic infrastructure system 100. Self-supervised training
system 1100 inputs a stitched depth image (DI) 1102
acquired by a depth generating sensor, for example an
RGB-D camera 150. The stitched depth 1image 1102 1s first
iput to a resize program (RS) 1104 that reduces a high-
resolution stitched depth image 1102, for example, 1IKx1K
pixels (1000 pixels by 1000 pixels), to a lower resolution, for
example, 256x256 pixels. The lower resolution stitched
depth 1mage 1s input to a DNN (DNN) 1106, also referred to
herein as SiriusNet 1106. DNN or SirtusNet 1106 1s included
in SirtusRenderNet 1108 along with a 3D model renderer
(3D) 1110. DNN or SiriusNet 1106 1nputs a low-resolution
stitched depth 1image and outputs an estimated 4DoF pose
(POSE) 1112 as (X, y, z, yaw). The estimated 4DoF pose
1112 1s input to the 3D model renderer 1110 along with a 3D
model of a vehicle, which can be the same make and model
vehicle as was 1imaged by RGB-D camera 150 to form the
stitched depth 1mage 1102. The 3D model renderer 1110
generates the rendered depth image 1114 at the same high-
resolution as the original mput stitched depth image 1102.
[0094] The 3D model renderer 1110 outputs a rendered
depth 1mage to a first silhouette program (SIL1) 1116 which
thresholds the rendered depth image to form a first binary
image 1118. The mput stitched depth image 1102 1s passed
to a second silhouette program (SIL2) which thresholds the
stitched depth 1image 1102 to form a stitched binary image
1122. The two binary images 1118, 1122 are input to
silhouette error program (SERR) 1124 to measure the dis-
tance between the two binary images 1118, 1122 to generate
a binary silhouette error according to the equation:

CITON i ovetre :f.*:‘fmap_dfs tar .:‘:E'( Silh Gueaer&nd ered ) Silhou-
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where 1, sistance 15 based on one or more of L1 distance,

chamfter distance, and centroid distance as discussed above
in relation to FIG. 8. The silhouette error 1s passed to a loss
function (LOSS) 1126 which generates a loss value to be
returned to DNN or SirtusNet 1106 where it 1s backpropa-
gated to determine weights by minimizing the loss value.
[0095] FIG. 12 1s a diagram of an example process 1200
executed 1 a remote server computer 140 according to
program nstructions stored 1n a memory thereof for gener-
ating a stitched image 700 from respective images 602, 604,
606, 608 acquired by a plurality of cameras 150 and respec-
tive homography matrices for the additional cameras 154.
Process 1200 includes multiple blocks that can be executed
in the illustrated order. Process 1200 could alternatively or
additionally 1include fewer blocks or can include the blocks
executed 1n different orders.

[0096] Process 1200 begins 1n a block 1203. In the block
1205, the remote server computer 140 determines respective
6DoF poses for the plurality of cameras 150. As discussed
above, the cameras 150 are arranged in a remote camera
array 145 to acquire images of an operating area 200. The
plurality of cameras 150 include a host camera 152 and one
or more additional cameras 154. The remote server com-
puter 140 can determine the respective 6DoF poses for the
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cameras 150 based on a 6DoF pose for a fiducial marker 310
and a 6DoF pose for the respective camera 150 relative to

the fiducial marker 310, as discussed above 1n relation to
FIG. 4. The process 1200 continues 1n a block 1210.

[0097] In the block 1210, the remote server computer 140
receives respective images 602, 604, 606, 608 from the
plurality of cameras 150. The images 602, 604, 606, 608
include at least a portion of a vehicle 1035. As set forth above,
the 1mages may be RGB images, depth 1mages registered
with RGB 1mages, and/or binary images generated by

thresholding the depth 1images. The process 1200 continues
in a block 1215.

[0098] In the block 1215, the remote server computer 140
determines a 3D reference plane 500 based on a depth image
acquired by the host camera 152, as discussed above 1n
relation to FIG. SA. As set forth above, the 3D reference
plane 500 can be defined by one of a ground surface or a
surface of the vehicle 105, e.g., a hood, a roof, etc. The
remote server computer 140 then randomly selects a plural-
ity of virtual 3D points 502 1n the 3D reference plane 500,
as discussed above 1n relation to FIG. 5B. The process 1200
continues 1 a block 1220.

[0099] In the block 1220, the remote server computer 140
determines 2D projections 612 of the virtual 3D points 502
for the respective additional cameras 154. That 1s, the remote
server computer 140 renders the selected virtual 3D points
502 1n a 2D plane 614 based on a 6DoF pose for the
respective additional cameras 154, as discussed above in
relation to FIG. 7. The process 1200 continues 1n a block

1225.

[0100] In the block 1225, the remote server computer 140
computes respective homography matrices for the additional
cameras 154. As set forth above, a homography matrix
speciflies a mathematical relationship between pixel coordi-
nates 1n one 1mage and pixel coordinates 1n another 1mage.
That 1s, the homography matrix can be used to transform
pixel coordinates from a pixel coordinate system defined by
one camera 150 to a pixel coordinate system defined by
another camera 150. The remote server computer 140 com-
putes the respective homography matrices for transforming,
the 2D projections 612 for the respective additional cameras
154 to the 2D projections 612 for the host camera 152, as
discussed above 1n relation to FIG. 7. The process 1200
continues 1 a block 1230.

[0101] In the block 1230, the remote server computer 140
warps respective, e.g., RGB, depth, and/or binary, images
604, 606, 608 acquired by the additional cameras 154 based
on the respective homography matrices for the additional
cameras 154. That 1s, the remote server computer 140
transiforms the pixel coordinates for the respective images
604, 606, 608 to pixel coordinates for the image 602
acquired by the host camera 152, 1.e., a pixel coordinate
system defined by the host camera 152, as discussed above

in relation to FIG. 8. The process 1200 continues 1n a block
1235.

[0102] In the block 1235, the remote server computer 140
generates a stitched, e.g., RGB, depth, and/or binary, image
700 by aligning the 2D projections 612 in the respective
warped 1mages 604, 606, 608 with the 2D projections 1n the
image 602 acquired by the host camera 152, as discussed
above 1n relation to FIG. 8. Additionally, the remote server
computer 140 can update respective 6DoF poses for the
additional cameras 154 by applying optimization techniques
that optimize extrinsic calibration parameters for the addi-
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tional cameras 154 to reduce a reprojection error E 1n the
stitched 1mage 700, as discussed above. The process 1200
ends following the block 1235.

[0103] FIG. 13 1s a diagram of an example process 1300
executed 1 a remote server computer 140 according to
program instructions stored in a memory thereof for traiming
a first DNN 800 based on stitched depth images 1102.
Process 1300 includes multiple blocks that can be executed
in the illustrated order. Process 1300 could alternatively or
additionally include fewer blocks or can include the blocks
executed 1n different orders.

[0104] Process 1300 begins 1n a block 1303. In the block
1305, the remote server computer inputs a stitched depth
image 1102 (e.g., generated according to the process 1200)
to a DNN or SirtusNet 1106 to determine a 4DoF pose of an
object included in the stitched depth image 1102, as dis-
cussed above 1n relation to FIG. 11. The object can be a

vehicle 105, for example. The process 1300 continues 1n a
block 1310.

[0105] In the block 1310, the remote server computer 140
determines a {first silhouette 1mage by nputting the 4DoF
pose of the object into a 3D rendering program along with
a 3D model of the object to determine a rendered depth
image of the object. For example, the 3D model can be CAD
data regarding the particular make and model of vehicle
included 1n the stitched depth 1image 1102 mput to the DNN
1106 1n the block 1302. The first silhouette 1mage can be
determined by thresholding the rendered depth image based
on a user determined threshold, as discussed above 1n

relation to FIG. 11. The process 1300 continues 1n a block
1315.

[0106] In the block 1315, the remote server computer 140
thresholds the stitched depth image 1102 based on a user
determined threshold to determine as second silhouette

image, as discussed above 1n relation to FIG. 11. The process
1300 continues in a block 1320.

[0107] In the block 1320, the remote server computer 140
compares the first silhouette 1mage with the second silhou-
ctte 1mage to determine a loss function, as discussed above

in relation to FIG. 11. The process 1300 continues 1n a block
1325.

[0108] In the block 1325, the remote server computer 140
trains the DNN 1106 based on the loss function. The loss
function can be backpropagated through the DNN 1106
layers to determine weights that yield a mimmum loss
function based on processing the input stitched depth 1image
a plurality of times and determining a loss function for each
processing 1teration. Because the steps used to determine the
loss function are differentiable, the partial derivatives deter-
mined with respect to the weights can indicate in which
direction to change the weights for a succeeding processing
iteration that will reduce the loss function and thereby
permit the training function to converge, thereby optimizing

the DNN 1106. The process 1300 continues 1n a block 1330.

[0109] In the block 1330, the remote server computer 140
provides a vehicle path 210 to a vehicle computer 110 1n a

vehicle 105. The remote server computer 140 can input
stitched depth images 1102 to the trained DNN 1106, and the

trained DNN 1106 can output 4DoF poses 1112 for the
vehicle 105 operating in an operating area 200. The remote
server computer 140 can process the 4DoF poses 1112 to
determine a plurality of locations, referred to herein as
“breadcrumbs™ that are included in the vehicle path 210.
That 1s, the remote server computer 140 can determine the
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vehicle path 210 based on the output 4DoF poses 1112 for
the vehicle 105. A vehicle path 210 can be determined based
on the “breadcrumbs™ by determining a polynomial function
that 1terates through the “breadcrumbs™, for example. The
remote server computer 140 can transmit the vehicle path
210 to the vehicle computer 110, e.g., via V-to-I communi-
cations, the network 133, etc. The vehicle path 210 can be
used by the vehicle computer 110 to operate the vehicle 105
by controlling one or more of vehicle components 125 to

cause the vehicle 105 to travel along the vehicle path 210.
Following block 1330 process 1300 ends.

[0110] As used herein, the adverb “substantially” means
that a shape, structure, measurement, quantity, time, etc.
may deviate from an exact described geometry, distance,
measurement, quantity, time, etc., because of imperfections
in materials, machining, manufacturing, transmission of
data, computational speed, etc.

[0111] In general, the computing systems and/or devices
described may employ any of a number of computer oper-
ating systems, including, but by no means limited to, ver-
sions and/or varieties of the Ford Sync® application, App-
Link/Smart Device Link middleware, the Microsoft
Automotive® operating system, the Microsolt Windows®
operating system, the Unix operating system (e.g., the
Solaris® operating system distributed by Oracle Corpora-
tion of Redwood Shores, Calit.), the AIX UNIX operating
system distributed by International Business Machines of
Armonk, N.Y., the Linux operating system, the Mac OSX
and 10S operating systems distributed by Apple Inc. of
Cupertino, Calif., the BlackBerry OS distributed by Black-
berry, Ltd. of Waterloo, Canada, and the Android operating,
system developed by Google, Inc. and the Open Handset
Alliance, or the QNX® CAR Platform for Infotainment
offered by QNX Software Systems. Examples of computing
devices include, without limitation, an on-board first com-
puter, a computer workstation, a server, a desktop, notebook,
laptop, or handheld computer, or some other computing
system and/or device.

[0112] Computers and computing devices generally
include computer-executable 1nstructions, where the istruc-
tions may be executable by one or more computing devices
such as those listed above. Computer executable instructions
may be compiled or interpreted from computer programs
created using a variety of programming languages and/or
technologies, including, without limitation, and either alone
or 1n combination, Java™, C, C++, Matlab, Simulink, State-
flow, Visual Basic, Java Script, Perl, HIML, etc. Some of
these applications may be compiled and executed on a
virtual machine, such as the Java Virtual Machine, the
Dalvik virtual machine, or the like. In general, a processor
(e.g., a microprocessor) receives instructions, €.g., from a
memory, a computer readable medium, etc., and executes
these 1instructions, thereby performing one or more pro-
cesses, mcluding one or more of the processes described
herein. Such instructions and other data may be stored and
transmitted using a variety of computer readable media. A
file 1n a computing device 1s generally a collection of data
stored on a computer readable medium, such as a storage
medium, a random access memory, efc.

[0113] Memory may include a computer-readable medium
(also referred to as a processor-readable medium) that
includes any non-transitory (e.g., tangible) medium that
participates 1n providing data (e.g., instructions) that may be
read by a computer (e.g., by a processor of a computer).
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Such a medium may take many forms, including, but not
limited to, non-volatile media and wvolatile media. Non-
volatile media may include, for example, optical or magnetic
disks and other persistent memory. Volatile media may
include, for example, dynamic random access memory
(DRAM), which typically constitutes a main memory. Such
instructions may be transmitted by one or more transmission
media, including coaxial cables, copper wire and {fiber
optics, including the wires that comprise a system bus
coupled to a processor of an ECU. Common forms of
computer-readable media include, for example, RAM, a
PROM, an EPROM, a FLASH-EEPROM, any other
memory chip or cartridge, or any other medium from which
a computer can read.

[0114] Databases, data repositories or other data stores
described herein may include various kinds of mechanisms
for storing, accessing, and retrieving various kinds of data,
including a hierarchical database, a set of files 1 a file
system, an application database in a proprietary format, a
relational database management system (RDBMS), efc.
Each such data store 1s generally included within a comput-
ing device employing a computer operating system such as
one of those mentioned above, and are accessed via a
network 1in any one or more ol a variety of manners. A file
system may be accessible from a computer operating sys-
tem, and may include files stored in various formats. An
RDBMS generally employs the Structured Query Language
(SQL) 1n addition to a language for creating, storing, editing,
and executing stored procedures, such as the PL/SQL lan-
guage mentioned above.

[0115] In some examples, system elements may be imple-
mented as computer-readable instructions (e.g., software) on
one or more computing devices (e.g., servers, personal
computers, etc.), stored on computer readable media asso-
ciated therewith (e.g., disks, memories, etc.). A computer
program product may comprise such instructions stored on

computer readable media for carrying out the functions
described herein.

[0116] With regard to the media, processes, systems,
methods, heuristics, etc. described herein, 1t should be
understood that, although the steps of such processes, eftc.
have been described as occurring according to a certain
ordered sequence, such processes may be practiced with the
described steps performed 1n an order other than the order
described herein. It further should be understood that certain
steps may be performed simultaneously, that other steps may
be added, or that certain steps described herein may be
omitted. In other words, the descriptions of processes herein
are provided for the purpose of illustrating certain embodi-
ments and should 1n no way be construed so as to limit the
claims.

[0117] Accordingly, 1t 1s to be understood that the above
description 1s intended to be 1llustrative and not restrictive.
Many embodiments and applications other than the
examples provided would be apparent to those of skill 1n the
art upon reading the above description. The scope of the
imnvention should be determined, not with reference to the
above description, but should instead be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled. It is
anticipated and intended that future developments will occur
in the arts discussed herein, and that the disclosed systems
and methods will be incorporated into such future embodi-
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ments. In sum, 1t should be understood that the invention 1s
capable of modification and variation and 1s limited only by
the following claims.
[0118] All terms used 1n the claims are intended to be
given their plain and ordinary meanings as understood by
those skilled 1n the art unless an explicit indication to the
contrary 1n made hereimn. In particular, use of the singular
articles such as “a,” “the,” “said.,” etc. should be read to
recite one or more of the indicated elements unless a claim
recites an explicit limitation to the contrary.
1. A system, comprising a computer including a processor
and a memory, the memory storing instructions executable
by the processor to:
randomly select a plurality of virtual three-dimensional
(3D) points distributed on a 3D reference plane for a
camera array including a plurality of cameras, the
plurality of cameras including a host camera and one or
more additional cameras;
determine respective two-dimensional (2D) projections of
the plurality of virtual 3D points for the plurality of
cameras based on respective poses of the cameras;

determine, for the respective one or more additional
cameras, respective homography matrices based on the
2D projections for the respective camera and the 2D
projections for the host camera, wherein the respective
homography matrices map the 2D projections for the
respective camera to the 2D projections for the host
camera; and

generate a stitched 1mage based on respective 1mages

captured by the plurality of cameras and the respective
homography matrices.

2. The system of claim 1, wherein the instructions further
include instructions to input the stitched image into a neural
network that outputs a pose of an object included 1n the
stitched 1mage.

3. The system of claim 2, wherein the pose of the object
1s determined in coordinates of a real-world coordinate
system based on orthogonal x, v, and z axes and a yaw
rotation about the z axis.

4. The system of claim 2, wherein the object 1s a vehicle,
and wherein the istructions further include instructions to
generate a path for the vehicle based on the determined pose.

5. The system of claim 4, wherein the instructions further
include 1nstructions to operate the vehicle along the gener-
ated path.

6. The system of claim 2, wherein the instructions further
include instructions to:

determine a first 2D silhouette of the object based on

inputting the pose of the object and a 3D model of the
object to a silhouette rendering program;

determine a second 2D silhouette of the object based on

the stitched 1mage; and

train the neural network based on a difference between the

first 2D silhouette and the second 2D silhouette.

7. The system of claim 1, wherein the instructions further
include 1instructions to determine respective poses of the
plurality of cameras based on calibration 1images captured by
the respective cameras and including a fiducial marker.

8. The system of claim 1, wherein the poses of the
respective cameras are determined 1n coordinates of a real-
world coordinate system based on orthogonal x, y, and z
axes and roll, pitch, and yaw rotations about the x, y, and z
axes, respectively.
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9. The system of claim 1, wherein the 1nstructions further
include instructions to determine update poses for respective
cameras based on a reprojection error in the stitched image.
10. The system of claim 1, wherein the 3D reference plane
1s defined by one of a ground surface or a surface of an
object.
11. The system of claim 1, wherein the images are
time-synchronized.
12. The system of claim 1, wherein the plurality of
cameras are red-green-blue-depth (RGB-D) cameras.
13. A method, comprising:
randomly selecting a plurality of virtual three-dimen-
stonal (3D) points distributed on a 3D reference plane
for a camera array including a plurality of cameras, the
plurality of cameras including a host camera and one or
more additional cameras;
determining respective two-dimensional (2D) projections
of the plurality of virtual 3D points for the plurality of
cameras based on respective poses of the cameras;

determining, for the respective one or more additional
cameras, respective homography matrices based on the
2D projections for the respective camera and the 2D
projections for the host camera, wherein the respective
homography matrices map the 2D projections for the
respective camera to the 2D projections for the host
camera; and

generating a stitched 1image based on respective 1mages

captured by the plurality of cameras and the respective
homography matrices.

14. The method of claim 13, further comprising inputting
the stitched 1mage into a neural network that outputs a pose
of an object included 1n the stitched 1image.

15. The method of claim 14, wherein the pose of the
object 1s determined in coordinates of a real-world coordi-
nate system based on orthogonal X, vy, and z axes and a yaw
rotation about the z axis.

16. The method of claim 14, wherein the object 1s a
vehicle, and further comprising:

generating a path for the vehicle based on the determined

pose; and

operating the vehicle along the generated path.

17. The method of claim 14, further comprising:

determiming a first 2D silhouette of the object based on

inputting the pose of the object and a 3D model of the
object to a silhouette rendering program;

determiming a second 2D silhouette of the object based on

the stitched 1mage; and

training the neural network based on a difference between

the first 2D silhouette and the second 2D silhouette.

18. The method of claim 13, further comprising deter-
mining respective poses of the plurality of cameras based on
calibration 1mages captured by the respective cameras and
including a fiducial marker.

19. The method of claim 13, wherein the poses of the
respective cameras are determined 1n coordinates of a real-
world coordinate system based on orthogonal x, y, and z
axes and roll, pitch, and yaw rotations about the x, y, and z
axes, respectively.

20. The method of claim 13, further comprising deter-
mining updated poses for respective cameras based on a
reprojection error in the stitched image.
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