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THREE-DIMENSIONAL OBJECT
DETECTION

BACKGROUND

[0001] Images can be acquired by sensors and processed
using a computer to determine data regarding objects 1n an
environment around a system. Operation of a sensing sys-
tem can nclude acquiring accurate and timely data regard-
ing objects 1n the system’s environment. A computer can
acquire 1mmages from one or more 1mages sensors that can
be processed to determine locations of objects. Object loca-
tion data extracted from mmages can be used by a computer
to operate systems mcluding vehicles, robots, security, and
object tracking systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 1s a block diagram of an example traffic
infrastructure system.

[0003] FIG. 2 1s a diagram of an example 1mage of a traffic
scene.

[0004] FIG. 3 1s a diagram of another example 1mage of a
tratfic scene.

[0005] FIG. 4 1s a diagram of an example image of two-
dimensional object bounding boxes and object vectors.
[0006] FIG. 515 a diagram of an example object vector.
[0007] FIG. 6 1s a diagram of an example convolutional
neural network.

[0008] FIG. 7 1s a diagram of another example 1mage of a
tratfic scene.

[0009] FIG. 8 1s diagram of an example mmage of two-
dimensional object bounding boxes.

[0010] FIG. 9 1s a flowchart diagram of an example pro-
cess to predict future locations of objects mm 1mage data
using object vectors.

[0011] FIG. 10 1s a flowchart diagram of an example pro-
cess to operate a vehicle based on predicted future locations
of objects.

DETAILED DESCRIPTION

[0012] A sensing system can acquire data, for example
image data, regarding an environment around the system
and process the data to determine 1dentities and/or locations
of objects. For example, a deep neural network (DNN) can
be trained and then used to determine objects 1n 1mage data
acquired by sensors 1 systems including vehicle guidance,
robot operation, security, manufacturing, and product track-
ing. Vehicle guidance can include operation of vehicles m
autonomous or semi-autonomous modes 1 environments
that include a plurality of objects. Robot guidance can
include guiding a robot end effector, for example a gripper,
to pick up a part and orient the part for assembly 1 an envir-
onment that icludes a plurality of parts. Security systems
include features where a computer acquires video data from
a camera observing a secure area to provide access to
authorized users and detect unauthorized entry m an envir-
onment that mmcludes a plurality of users. In a manufacturing
system, a DNN can determine the location and orientation of
one or more parts 1 an environment that includes a plurality
of parts. In a product tracking system, a deep neural network
can determine a location and orientation of one or more
packages 1 an environment that icludes a plurality of
packages.
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[0013] Vehicle guaidance will be described herein as a non-
limiting example of using a computer to detect objects, for
example vehicles and pedestrians, 1 a tratfic scene and
determine a vehicle path for operating a vehicle based on
the detected objects. A traffic scene 1s an environment
around a traflic mnfrastructure system or a vehicle that can
include a portion of a roadway and objects including vehi-
cles and pedestnians, etc. For example, a computing device
in a vehicle or traflic infrastructure system can be pro-
orammed to acquire one or more 1mages from one or more
sensors 1ncluded 1n the vehicle or the tratfic infrastructure
system, detect objects m the images and communicate labels
that 1dentity the objects along with locations of the objects.
[0014] The sensors can mclude video or still image cam-
eras that acquire images corresponding to visible or infrared
wavelengths of light. The sensors can be included 1 the
vehicle or can be stationary and can be mounted on poles,
buildigs, or other structures to give the sensors a view of
the traffic scene including objects 1n the traflic scene. Sen-
sors can also iclude hidar sensors, which typically emat
infrared wavelengths of light, radar sensors which emut
radio waves, and ultrasound sensors which emit sound
waves. Lidar, radar, and ultrasound sensors all measure dis-
tances to points 1n the environment. In some examples sen-
sors 1ncluded 1 a vehicle can acquire one or more 1mages of
a tratfic scene and process the 1mages to determine locations
of objects included 1n the 1mages. The location of the objects
can permit a computing device 1n the vehicle to determine a
vehicle path upon which to operate the vehicle. In some
examples, stationary sensors mcluded 1n a traffic infrastruc-
ture system can provide data regarding objects 1n a tratfic
scene to augment data acquired by sensors included 1n the
vehicle, for example.

[0015] Advantageously, techniques described herem can
improve the ability of a computing device 1n a vehicle to
predict future locations of objects 1 an environment around
the vehicle using a monocular RGB camera. A monocular
camera 1includes a single lens assembly having a smgle opti-
cal axis that forms 1mages on a single sensor or sensor
assembly. An RGB camera 1s a camera that acquires color
image data that includes separate red, green and blue pixels.
Images acquired by a monocular RGB camera can be pro-
cessed using a deep neural network (DNN) to determine
three-dimensional (3D) object data from monocular RGB
image data. Determuning 3D object data from monocular
RGB 1mmage data based on DNN processing requires less
expensive sensors and fewer computing resources to deter-
mine 3D object data compared to stereo RGB cameras or
lidar sensors, for example.

[0016] A method 1s disclosed herem, including mputting
an 1mage to a deep neural network to determine a point 1n
the 1mage based on a center of a Gaussian heatmap corre-
sponding to an object mncluded 1n the 1mage, determine an
object descriptor corresponding to the object and include the
object descriptor 1n an object vector attached to the point
and determine object parameters including a three-dimen-
sional location of the object m global coordinates and pre-
dicted pixel offsets of the object. The object parameters can
be 1included 1n the object vector; and a tuture location of the
object 1n the global coordinates can be predicted based on
the point and the object vector. A vehicle can be operated by
determining a vehicle path based on the future location of
the object. Operating the vehicle on the vehicle path can
include controlling one or more of vehicle powertrain, vehi-
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cle steering, and vehicle brakes. The object can be a moving
object. The deep neural network can track the object in one
or more frames of 1image data based on the object descriptor.
[0017] 'The deep neural network can determine the three-
dimensional location of the object 1 the global coordinates
based on an estimated distance from a camera and the point
corresponding to the center of the Gaussian heatmap. A yaw
of the object can be determined 1 the global coordinates
based on the yaw of the object 1n pixel coordinates and the
three-dimensional location of the object 1n the global coor-
dinates. The future location of the object n the global coor-
dinates can be determined based on the predicted pixel ofi-
sets of the object and the three-dimensional location of the
object. The deep neural network can be tramed based on
unsupervised learning. The deep neural network can be
tramned based on ground truth determined based on one or
more pairs of stereo 1images. The deep neural network can be
tramned based on object class prediction loss functions, depth
perception loss functions, three-dimensional prediction loss
functions, push object descriptor loss functions, and pull
object descriptor loss functions. The Gaussian heatmap can
correspond to a two-dimensional probability distribution of
locations of a center of the object. The center of the object
can be based on a two-dimensional bounding box corre-
sponding to a face of a three-dimensional bounding box.
The three-dimensional bounding box can be determined by
the deep neural network.

[0018] Further disclosed 1s a computer readable medium,
storing program instructions for executing some or all of the
above method steps. Further disclosed 1s a computer pro-
orammed for executing some or all of the above method
steps, mcluding a computer apparatus, programmed to
inputting an 1mage to a deep neural network to determine a
point 1n the 1mage based on a center of a Gaussian heatmap
corresponding to an object mmcluded 1n the 1mage, determine
an object descriptor corresponding to the object and include
the object descriptor 1n an object vector attached to the point
and determine object parameters including a three-dimen-
sional location of the object 1n global coordinates and pre-
dicted pixel offsets of the object. The object parameters can
be included 1n the object vector; and a future location of the
object 1n the global coordinates can be predicted based on
the point and the object vector. A vehicle can be operated by
determinming a vehicle path based on the future location of
the object. Operating the vehicle on the vehicle path can
include controlling one or more of vehicle powertrain, vehi-
cle steering, and vehicle brakes. The object can be a moving
object.

[0019] The instructions can include further mstructions to
instruct the deep neural network to track the object 1n one or
more frames of image data based on the object descriptor.
The deep neural network can determine the three-dimen-
sional location of the object in the global coordinates
based on an estimated distance from a camera and the
point corresponding to the center of the Gaussian heatmap.
A yaw of the object can be determined 1n the global coordi-
nates based on the yaw of the object in pixel coordinates and
the three-dimensional location of the object in the global
coordinates. The future location of the object 1 the global
coordinates can be determined based on the predicted pixel
offsets of the object and the three-dimensional location of
the object. The deep neural network can be trained based on
unsupervised learning. The deep neural network can be
tramned based on ground truth determined based on one or
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more pairs of stereo 1images. The deep neural network can be
trained based on object class prediction loss functions, depth
perception loss functions, three-dimensional prediction loss
functions, push object descriptor loss tunctions, and pull
object descriptor loss functions. The Gaussian heatmap can
correspond to a two-dimensional probability distribution of
locations of a center of the object. The center of the object
can be based on a two-dimensional bounding box corre-
sponding to a face of a three-dimensional bounding box.
The three-dimensional bounding box can be determined by
the deep neural network.

[0020] FIG. 1 1s a diagram of a sensmg system 100 that
can include a traffic infrastructure system 103 that includes a
server computer 120 and stationary sensors 122. Sensing
system 100 includes a vehicle 110, operable 1n autonomous
(“autonomous” by 1tself m this disclosure means “tully
autonomous”), semi-autonomous, and occupant piloted
(also referred to as non-autonomous) mode. One or more
vehicle 110 computing devices 115 can recerve data regard-
ing the operation of the vehicle 110 from sensors 116. The
computing device 115 may operate the vehicle 110 1n an
autonomous mode, a semi-autonomous mode, or a non-
autonomous mode.

[0021] The computing device 115 includes a processor
and a memory such as are known. Further, the memory
includes one or more forms of computer-readable media,
and stores mstructions executable by the processor for per-
forming various operations, mncluding as disclosed herein.
For example, the computing device 115 may include pro-
oramming to operate one or more of vehicle brakes, propul-
sion (e.g., control of acceleration 1n the vehicle 110 by con-
trolling one or more of an internal combustion engine,
electric motor, hybrid engine, etc.), steering, climate con-
trol, interior and/or exterior lights, etc., as well as to deter-
mine whether and when the computing device 1185, as
opposed to a human operator, 1s to control such operations.
[0022] The computing device 115 may include or be com-
municatively coupled to, e.g., via a vehicle communications
bus as described further below, more than one computing
devices, e.g., controllers or the like included 1n the vehicle
110 for momtoring and/or controlling various vehicle com-
ponents, €.g., a powertrain controller 112, a brake controller
113, a steering controller 114, etc. The computing device
115 1s generally arranged for communications on a vehicle
communication network, €.g., mcluding a bus 1n the vehicle
110 such as a controller area network (CAN) or the like; the
vehicle 110 network can additionally or alternatively
include wired or wireless communication mechanisms
such as are known, ¢.g., Ethernet or other communication
protocols.

[0023] Via the vehicle network, the computing device 115
may transmit messages to various devices 1n the vehicle and/
or rece1ve messages from the various devices, e.g., control-
lers, actuators, sensors, etc., including sensors 116. Alterna-
tively, or additionally, 1n cases where the computing device
115 actually comprises multiple devices, the vehicle com-
munication network may be used for communications
between devices represented as the computing device 115
1n this disclosure. Further, as mentioned below, various con-
trollers or sensing elements such as sensors 116 may provide
data to the computing device 115 via the vehicle communi-
cation network.

[0024] In addition, the computing device 115 may be con-
figured for communicating through a vehicle-to-mfrastruc-
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ture (V-to-I) mterface 111 with a remote server computer
120, e.g., a cloud server, via a network 130, which, as
described below, includes hardware, firmware, and solftware
that permits computing device 115 to communicate with a
remote server computer 120 via a network 130 such as wire-
less Internet (WI-FI®) or cellular networks. V-to-I interface
111 may accordingly include processors, memory, transcei-
vers, etc., configured to utilize various wired and/or wireless
networking technologies, ¢.g., cellular, BLUETOOTH®
and wired and/or wireless packet networks. Computing
device 115 may be configured for communicating with
other vehicles 110 through V-to-I mterface 111 using vehi-
cle-to-vehicle (V-to-V) networks, ¢.g., according to Dedi-
cated Short Range Communications (DSRC) and/or the
like, e.g., formed on an ad hoc basis among nearby vehicles
110 or formed through infrastructure-based networks. The
computing device 115 also includes nonvolatile memory
such as 1s known. Computing device 115 can log data by
storing the data in nonvolatile memory for later retrieval
and transmittal via the vehicle communication network
and a vehicle to mirastructure (V-to-I) mterface 111 to a
server computer 120 or user mobile device 160.

[0025] As already mentioned, generally included m
instructions stored 1n the memory and executable by the pro-
cessor of the computing device 115 1s programming for
operating one or more vehicle 110 components, €.g., brak-
ing, steering, propulsion, etc., without mtervention of a
human operator. Using data received m the computing
device 115, e.g.. the sensor data from the sensors 116, the
server computer 120, etc., the computing device 115 may
make various determinations and/or control various vehicle
110 components and/or operations without a driver to oper-
ate the vehicle 110. For example, the computing device 115
may include programming to regulate vehicle 110 opera-
tional behaviors (1.¢., physical manifestations of vehicle
110 operation) such as speed, acceleration, deceleration,
steering, etc., as well as tactical behaviors (1.e., control of
operational behaviors typically mn a manner intended to
achieve efficient traversal of a route) such as a distance
between vehicles and/or amount of time between vehicles,
lane-change, mimmimum gap between vehicles, left-turn-
across-path mimmum, time-to-arrival at a particular loca-
tion and 1ntersection (without signal) mimimum time-to-arri-
val to cross the mtersection.

[0026] Controllers, as that term 18 used herein, include
computing devices that typically are programmed to moni-
tor and/or control a specific vehicle subsystem. Examples
include a powertrain controller 112, a brake controller 113,
and a steering controller 114. A controller may be an elec-
tronic control unit (ECU) such as 1s known, possibly mclud-
ing additional programming as described heremn. The con-
trollers may communicatively be connected to and receive
instructions from the computing device 1135 to actuate the
subsystem according to the instructions. For example, the
brake controller 113 may receive instructions from the com-
puting device 115 to operate the brakes of the vehicle 110.
[0027] The one or more controllers 112, 113, 114 for the
vehicle 110 may include known electronic control units
(ECUs) or the like including, as non-limiting examples,
one or more powertrain controllers 112, one or more brake
controllers 113, and one or more steering controllers 114.
Each of the controllers 112, 113, 114 may include respective
processors and memories and one or more actuators. The
controllers 112, 113, 114 may be programmed and con-
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nected to a vehicle 110 communications bus, such as a con-
troller area network (CAN) bus or local mterconnect net-
work (LIN) bus, to receiwve instructions from the
computing device 115 and control actuators based on the
instructions.

[0028] Sensors 116 may include a variety of devices
known to provide data via the vehicle communications
bus. For example, a radar fixed to a front bumper (not
shown) of the vehicle 110 may provide a distance from the
vehicle 110 to a next vehicle 1n front of the vehicle 110, or a
global positioning system (GPS) sensor disposed m the
vehicle 110 may provide geographical coordinates of the
vehicle 110. The distance(s) provided by the radar and/or
other sensors 116 and/or the geographical coordinates pro-
vided by the GPS sensor may be used by the computing
device 115 to operate the vehicle 110 autonomously or
semi-autonomously, for example.

[0029] The vehicle 110 1s generally a land-based vehicle
110 capable of autonomous and/or semi-autonomous opera-
tion and having three or more wheels, €.g., a passenger car,
light truck, etc. The vehicle 110 includes one or more sen-
sors 116, the V-to-I interface 111, the computing device 115
and one or more controllers 112, 113, 114. The sensors 116
may collect data related to the vehicle 110 and the environ-
ment 1n which the vehicle 110 1s operating. By way of exam-
ple, and not limitation, sensors 116 may include, e.g., alti-
meters, cameras, LIDAR, radar, ultrasonic sensors, mfrared
SeNSOTs, pressure sensors, accelerometers, gyroscopes, tem-
perature sensors, pressure sensors, hall sensors, optical sen-
sors, voltage sensors, current sensors, mechanical sensors
such as switches, etc. The sensors 116 may be used to
sense the environment 1n which the vehicle 110 1s operating,
¢.g., sensors 116 can detect phenomena such as weather con-
ditions (precipitation, external ambient temperature, etc.),
the grade of a road, the location of a road (e.g., using road
edges, lane markings, etc.), or locations of target objects
such as neighboring vehicles 110. The sensors 116 may
turther be used to collect data including dynamic vehicle
110 data related to operations of the vehicle 110 such as
velocity, yaw rate, steering angle, engine speed, brake pres-
sure, o1l pressure, the power level applied to controllers 112,
113, 114 1n the vehicle 110, connectivity between compo-
nents, and accurate and timely performance of components
of the vehicle 110.

[0030] Vehicles can be equipped to operate 1 both auton-
omous and occupant piloted mode. By a semi- or fully-
autonomous mode, we mean a mode of operation wherein
a vehicle can be piloted partly or entirely by a computing
device as part of a system having sensors and controllers.
The vehicle can be occupied or unoccupied, but m either
case the vehicle can be partly or completely piloted without
assistance of an occupant. For purposes of this disclosure,
an autonomous mode 1s defined as one 1n which each of
vehicle propulsion (e.g., via a powertrain mcluding an mnter-
nal combustion engine and/or electric motor), braking, and
steering are controlled by one or more vehicle computers; 1n
a semi-autonomous mode the vehicle computer(s) control(s)
one or more of vehicle propulsion, braking, and steering. In
a non-autonomous mode, none of these are controlled by a
computer.

[0031] FIG. 2 1s a diagram of an mmage 200 of a tratfic
scene 202. Traffic scene 202 includes a roadway 204, and
pedestrians 206, 208 and a bicyclist 210. Pedestrians 206,
208 and bicyclist 210 can be referred to collectively as mov-
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ing objects 212. The 1mage 200 of tratfic scene 202 can be
acquired by a sensor 116 included 1n a vehicle 110. Image
200 can be acquired by a monocular RGB camera. The
monocular RGB camera can be a video camera that can
acquire a plurality of images 200 as frames of RGB 1mage
data at frame rates of up to 60 frames per second, for exam-
ple. The mmage 200 can also be acquired by a stationary
sensor 122 included 1n a traffic mirastructure system 105.
The stationary sensor 122 can be mounted on a camera
mount, which can include traffic signal poles, light poles,
purpose-built poles or mounts, buildings, or existing struc-
tures such as bridges, overpasses, or sign poles. The station-
ary sensor 122 can be a video camera and acquire a plurality
of frames of RGB color images. The images 200 acquire by
a stationary sensor 122 can be communicated to a comput-
ing device 115 m a vehicle 110 by a server computer 120
included 1n a traffic infrastructure system 105.

[0032] FIG. 3 1s a diagram of an image 300 of a traffic

scene 302. The mage 300 includes two-dimensional (2D)
bounding boxes 304, 306, 308 surrounding pedestrians
310, 312 and a bicyclist 314, respectively. Pedestrians 310,
312 and bicyclist 314 can be referred to collectively as mov-
ing objects 322. Centers 316, 318, 320 of the pedestrians
310, 312 and the bicyclist 314, respectively are encoded as
Gaussian heatmaps 324, 326, 328 on the 2D mmage 300 cor-
responding to the 2D bounding boxes 304, 306, 308, respec-
tively. A Gaussian heatmap 324, 326, 328 1s a data visuali-
zation technique that illustrates the magnitude of a variable
by encoding it as colors. For example, the value of a variable
can be encoded as colors corresponding to blackbody radia-
tion, where increasing values are encoded as colors ranging
from black through red, orange, and yellow, to white. A
Gaussian heatmap 324, 326, 328 1s a 2D Gaussian function
corresponding to probability distribution of locations of the
center of an object encoded as a heatmap. 2D bounding
boxes 304, 306, 308 can be¢ determined by mputting an
image 300 to a DNN. DNNs are described 1 relation to
FIG. 6, below. The DNN 1identifies objects 1n the image
300 and constructs three-dimensional (3D) bounding boxes
corresponding to the moving objects 322. A face of the 3D
bounding box corresponding to a 2D bounding box 304,
306, 308 parallel to the 1mage plane 1s selected for the mov-
ing objects 322 and a center of the 3D bounding box corre-
sponding to the center of a Gaussian heatmap 324, 326, 328
1s projected onto the 2D bounding box 304, 306, 308 to cor-
respond to the centers 316, 318, 320 of the pedestrians 310,
312 and the bicyclist 314, respectively.

[0033] FIG. 415 a diagram of an 1mage 400 following pro-
cessimng with a DNN. Image 400 includes 2D bounding
boxes 402, 404, 406 and centers 416, 418, 420 correspond-
ing to moving objects 322 from mmage 300 1n FIG. 3. Image
400 1includes object vectors 422, 424, 426 which encode data
regarding the moving objects 322. The object vectors 422,
424, 426 are located at the centers 416, 418, 420 of moving
objects 322, respectively and extend into a third dimension
perpendicular to the plane of image 400.

[0034] FIG. 5 1s a diagram of an object vector S00. Object
vector 500 includes object parameters 502 and an object
descriptor S04. Object parameters 502 and object descriptor
S04 ar¢ determined by the DNN. An object descriptor 1s an
n-dimensional vector that describes each instance of the
objects 1 an mmage 400. Object parameters 502 are data
regarding the object specified by the object descriptor 504.
Object parameters 502 include a k-dimensional one-hot vec-
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tor that identifies an object class. A k-dimensional one-hot
vector 18 a binary vector (1.¢., includes only elements having
values of either 0 or 1) with k elements where only ong ele-
ment 15 equal to “1” and the rest are equal to “0”. The posi-
tion of the “1”” element corresponds to the class of the object,
such as “pedestrian”, “bicyclist”, or “vehicle”, for example.
[0035] Object parameters 502 also include an estimated
distance from the camera lens to the moving object 314
described by the object vector 500, the length of the object,
the width of the object, and the height of the object. Object
parameters also include cos(0) and smn(0), where 0 1s the
local yaw of the object. Local yaw 1s the angle of the object
with respect to a plane Gaussian heatmap and the object’s
distance trom the camera lens. A 3D bounding box for an
object can be determined by combining a determined object
class label with a determined 2D yaw of the object 1n pixels
and a distance to the object. A library of 3D bounding boxes
for the object classes can be determined at training time and
included 1in the DNN. For example, pedestrians, bicycles,
and vehicles can have 3D bounding boxes that can be re-
sized and rotated based on the determined distance and
pixel yaw. Based on the re-sized and rotated 3D bounding
box, a 3D center 1n pixel coordinates can be determined. The
2D coordinates of the heatmap center can be determined by
projecting the 3D center of the 3D bounding box onto the
image plane. A 3D center of the heatmap 1n global coordi-
nates Xsz, Vsg can be computed as shown 1n equations (1)
and (2), where X, and y,; are 2D coordinates of the heat-
map center, z 18 the estimated distance of object from cam-
era 1n meters, i, and 1, are x and y focal lengths ot the cam-
cra lens 1 the x and y directions, respectively.

d (1)

X3g = Xay ’*‘?

X

‘ (2)

X3g = Xoy *—
7y

[0036] Appearance of the object m a monocular RGB
image 300 only depends on the local onentation of the
object 1.e., the 2D yaw of the object. 3D object detection
based on a monocular RGB mmage can mclude the DNN
regressing the local yaw 1nstead of global yaw. Regressing
local yaw enables the DNN to better determine object orien-
tation. In this context, regressing means the processing per-
formed by the DNN on the mput data to obtain the output
data. Obtaining global yaw then requires computing a ray
angle using equation (4), which can then be used to compute
object global yaw.

Ty ] (3)

o -1
rﬂyr:mgﬁe — tan [ -

J ﬂwgﬁ.ﬂhaﬁ = YW + r@aﬂgﬁg (4)

[0037] The DNN can also predict future positions of the
object. Because the model mput 1s i pixel coordmates, 1t
typically requires less computation and provides more accu-
rate results for the DNN to predict object pixel otfsets, X,
ofser AN Y 0 o, I the pixel coordinates as well. For
obtaiming the complete real world pose of the object, the
offset 1n object distance from camera center, Z0z,, can be
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predicted. The object 1s assumed to have same yaw 1n both
pixel coordinates and real world coordinates for simplicity.
Alternatively, yaw offset, Yaw, 4., the difference between
pixel coordinate yaw and real-world coordinate yaw, can be
predicted. Given the current object 2D center 416, 418, 420
and the next frame offsets, the future pose of the objects
the real world can be determined.

[0038] The object vector 500 also mmcludes an object
descriptor. An object descriptor 1s an n-dimensional vectors
which defines a specific object, and that can be used to track
the object through frames of 1mage data by finding the clo-
sest match 1n the n-dimensional manifold. The n-dimen-
stonal manifold 1s an n-dimensional surface 1n the n-dimen-
sional space that includes the n-dimensional vectors being
matched. The DNN can be trained determine the closest
match between an object descriptor m a current 1mage 300
and an object descriptor 1n a previous 1mage using unsuper-
vised learning by pulling together the descriptors corre-
sponding to the same object through frames while pushing
apart the descriptors for every other object.

[0039] Pulling matching descriptors together refers to
traimning the DNN to generate similar descriptors when the
similar objects are repeatedly input. Pushing apart non-
matching descriptors refers to traming the DNN to generate
different descriptors when different objects are mput. Simi-
lar objects have similar appearances and are at similar loca-
tions 1 the 1mage. Different objects have ditferent appear-
ances and are at different locations i the mmage. For
example, a pedestrian walking 1n a cross walk will have
stmilar enough appearances and locations 1n sequential
frames of 1mage data to have matching descriptors pulled
together during traiming. Two different pedestrians mn the
same crosswalk at the same time will be different enough
in appearance and location 1n sequential frames of 1mage
data to have non-matching descriptors pulled apart during
tramming. Pulling together matching descriptors permits
moving objects to be tracked 1n a sequence of frames of
image data. A DNN can be trained to pull together matching
descriptors and push apart non-matching descriptors using
loss functions as described below 1n relation to FIG. 6.
[0040] FIG. 6 1s a block diagram of a DNN 600. DNN 600
inputs an 1mage 602 and outputs one or more object vectors
610 corresponding to moving objects 322 mcluded 1 mput
1mage 602. DNN 600 can be a convolutional neural network
(CNN). A CNN includes convolutional layers 604 which
convolve the mput image 602 using a plurality of convolu-
tional kernels and output latent variables 606 to fully con-
nected layers 608. Fully connected layers 608 process the
latent variables 606 with a plurality of linear and/or non-
linear algebraic functions to determine one or more object
vectors 610 corresponding to moving objects 322 included
in mnput image 602.

[0041] DNN 600 can be trained using a training dataset
that includes a plurality of input 1mages 602 and user deter-
mined ground truth corresponding to the mnput images 602.
Ground truth includes data regarding the-real world loca-
tions of objects included 1n the training dataset. Data regard-
ing the real-world locations of objects 1n the traimning dataset
can be determined by any suitable technique, such as by
acquiring pairs of stereo mmages corresponding to 1mages
602 ncluded 1n the traming dataset. The pairs of stereo
images can be processed by determining stereo disparity
between 1mage data points corresponding to the same real-
world location. Stereo disparity measures the displacement
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of image data points 1n the two stereo mmages and can be
combined with the distance between the two stereo cameras
to determine the distance from the stereo cameras to a point
in the real-world coordmates.

[0042] Durning tramning, parameters corresponding to the
convolution kernels and algebraic functions can be ran-
domly selected and an input 1mage 602 1s processed to deter-
mine one or more object vectors 610. The object vectors 610
can be compared to the ground truth corresponding to the
mnput image 602 and loss functions can be determined. The
loss function 18 mput to the convolutional layers 604 and
tully connected layers 608 to select parameters for the con-
volution kemels and algebraic functions that result 1n the
best correspondence between the binary object vectors 610
and ground truth, thus training the second DNN 600. Loss
functions can be determined for object class prediction loss,
object depth prediction loss, object dimension loss, where
object dimensions include width, height and length, and
object descriptor push and pull loss.

[0043] An object class prediction loss function measures
how closely an object class prediction parameter 1n an object
vector 500 compares with user-determined ground truth
object class. Object class prediction loss L. can be deter-
mined by the equation:

| LE2xo())e (o(5.) o

m
1

{MZ(I —o(.))e’ log(1-o(3, ))}

Where vy, 1s the ground truth object class, y. 1s the object
class prediction, 6( ) 1s a Sigmoid function, M 1s the number
of object vectors 610 and the class prediction loss 1s
summed over the one or more object vectors 610. y 1s a
user-selected odd integer used to weight the Gaussian heat-
maps very highly because the Gaussian heatmaps occupy a
small proportion of the image 602.

[0044] A depth prediction loss function measures how clo-
sely the object depth parameter 1 an output object vector
610 corresponds to the ground truth object depth determined
by processing a pair of stereo 1mages corresponding to an
iput image 602. Depth prediction loss L, can be determined
by the equation:

17 (6)

.

T
Z+e] [o(5)+e]

1
L:— <,
v

Where M 1s the number of object vectors 610 and the depth
prediction loss function 1s summed over M. Z 1s the ground
truth depth or distance to the object, o(y,) 1s a S1igmoid func-
tion applhied to the predicted depth and € 1s a user-selected
small number to avoid divide-by-zero errors. The depth Z 1s
normalized to the mterval [0,1] to be comparable to the out-
put from the Sigmoid function.

[0045] Three dimension prediction loss functions, one
cach for lengths, widths, and heights of the one or more
moving objects 322 measure how closely the predicted
dimensions of the moving objects 322 compare to user-
determined ground truth lengths, widths and heights of the
moving objects 322. For example, length prediction loss L;
can be determined by the equation:
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and where 7,.,, 1s the mean object length corresponding to
object class n. Object width and object height prediction loss
functions L,, and L, are determined according to similar
equations.

[0046] DNN 600 1s tramned to predict object descriptors
504 1 an unsupervised fashion by determining an object
descriptor pull loss function L,,; and an mmage descriptor
pull loss function L, ;. Object descriptor pull and push
loss functions can be determined based on comparing a plur-
ality of object descriptors from pairs of right and left stereo
1mages 4°.4d". Object descriptor pull loss can be determined
by the equation:

L= %ZL(&E ~ar) (9)

[0047] Object descriptor pull loss function provides low
loss values for smmilar object descriptors determined for
instances of the same objects, 1.e., “pulling” the object
descriptors closer together. Object descriptor push loss func-
tions can be determined by the equation:

| N ~— N
LF“S&:N(N—UZH 1

=]

max([):,‘?— d; _dﬂ) (10)

Where V 1s a user-determined small constant, for example =
1. The object descriptor push loss function provides a low
loss function when object descriptors 504 for ditferent
instances of objects to “push” the object descriptors to be
different. The object descriptor push loss function does
this by maximizing the term |¢" -d} while maintaining a
lmmat, V, to provide numerical stability, otherwise the object
descriptor push loss function can dominate the loss function
and prevent the other loss functions from mmfluencing train-
ing. An object descriptor matching function L,,,4sc5ime Can be
determined by combining the object descriptor pull loss
function L,,;; and the 1mage descriptor pull loss function
L sush-

P

L =L

matching —  pull

+Lpa¢3ﬁ1 (11)

[0048] An object offset prediction loss function can be
determined based on how well predicted image domain ofi-
sets X v omer aDAd Y, 4., match ground truth offsets.
Ground truth offsets can be determined based on comparing
object locations from a frame of image data acquired at a
time t with object location data determined based on frames
of video data acquired at times t-1, t-2, etc. The object oftset
prediction loss L, ., can be determined 1n a similar fashion
to the three dimension prediction loss functions described
equations (7) and (8), above. An overall loss function L.,
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+11 €an be determined as the sum of the previously described
loss functions:

L

overall

— Lf: ™ Lz T Lﬁ ™ Lw ™ Lﬁz ™ mezfcfzmg T Lﬂﬁer (12)

[0049] FIG. 7 1s a diagram of an image 700 of a tratfic
scene 702 illustrating results of processing the 1mage 700
with DNN 600 tramed as discussed 1n relation to FIG. 6 to
determine bounding boxes 704, 706, 708, 710, 712, Gaus-
sian heat maps 714, 716, 718, 720, 722 and labels 724, 726,
728, 730, 732 corresponding to pedestrians 734, 736, 738
and vehicles 740, 742. pedestrians 734, 736, 738 and vehi-
cles 740, 742 can be referred to collectively as moving
objects 744. DNN 600 can detect and track moving object
744 1n six degree of freedom (Dok) poses. A six Dok pose
include an object’s location 1n three global coordinates with
respect to three orthogonal X, y. and z axes and three rota-
tional coordinates (roll, pitch, and yaw) measured with
respect to the x, y. and z axes, respectively. The object vec-
tors 610 output from the DNN 600 also predict future poses
for the moving objects 744 based on the predicted object
offsets, X, opser ANA Y,y offer-

[0050] FIG. 8 1s a diagram of an 1mmage 800 of a tratfic
scene 802 illustrating how the DNN 600 discussed 1n rela-
tion to FIG. 6, above can be extended to 1dentify and locate
objects 1n an environment around a vehicle 110 mn addition

to moving objects 744. Image 800 includes tratfic lane mar-
kers 804, 806, 808, 810 and traffic signals 812, 814, 816
detected by DNN 600. Tratfic lane markers 804, 806, 808,
810 and traffic signals 812, 814, 816 can be collectively
described as static objects 828. FIG. 8 illustrates occlu-
sion-aware lane segmentation and stance descriptor
regression. Occlusion-aware lane segmentation 1s the ability
to extrapolate the location of traffic lane markers 804, 806,
808, 810 i1n the presence of occluding objects including
pedestrians 818, 820, 822 and vehicles 824, 826. Instance
descriptors are 1-dimensional vectors similar to an object
descriptor 504, but 1n the context of a traffic lane marker
instance, for example, 1t describes which traffic lane marker
instance each pixel corresponding to a traffic lane marker
line belongs to. From the 1mage 800, DNN 600 predicts
the traffic lane markers 804, 806, 808, 810 line segmenta-
tion, and then depth for each of the pixels corresponding to
lane lines are regressed as a part of the third dimensional
object vector 500 as described 1 relation to FIG. 5, above.
This can be done 1n an unsupervised fashion as discussed 1n
relation to FIG. 6, above. An object descriptor correspond-
ing to each tratfic lane marker 804, 806, 808, 810 instance
can be regressed using push and pull loss functions as
described above 1 relation to FIG. 6. Push and pull loss
functions can train DNN 600 to determine object descriptors
S04 lane instances that permit pixel points on the same lane
instance to be pulled as close to each other as possible and

be pushed away from different lane instances.
[0051] Other static objects 828 such as traflic signals 812,

814, 816 arc also represented as points and their 2D center
are encoded as Gaussian heatmaps. Additional information
such as distance from camera, traffic signal color, etc. can be
encoded 1n a third dimensional object vector as described
above 1n relation to FIG. 5. Static object data as 1llustrated
in FIG. 8 can be combined with moving objects 744 1llu-
strated 1 FIG. 7 to yield a complete tratfic scene 702, 802
representation from the point of view of a vehicle 110 or
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tratfic infrastructure system 105. Computing device 115 can
use offset predictions from the object descriptors to track
moving objects 744. A computing device 115 or server com-
puter 120 can take tracking data based on moving objects
744 and location data regarding static objects 828 as 1nputs
and determine a vehicle path for a vehicle 110 to travel
while avoiding objects and following tratfic rules.

[0052] FIG. 9 1s a flowchart, described 1n relation to FIGS.
1-8, of a process 900 for determining moving and static
objects 744, 828 1n 1mage data acquired by sensors 116
included 1n a vehicle 110 or sensors 122 included 1n a tratfic
infrastructure system 103. Process 900 can be implemented
by a processor of a computing device 1135 or server compu-
ter 120, taking as mput image data from sensors 116, 122,
executing commands, and outputting object vectors 610 cor-
responding to moving and static objects 744, 828. Process
900 includes multiple blocks that can be executed 1n the
1llustrated order. Process 900 could alternatively or addi-
tionally include fewer blocks or can include the blocks exe-
cuted 1n different orders.

[0053] Process 900 begins at block 902, where a comput-
ing device 115 mputs a monocular RGB mmage 700 to a
DNN 600. The monocular RGB 1mage 200 can be acquired
by a camera included 1 a vehicle 110 or a camera mcluded
in a traffic infrastructure system 105.

[0054] At block 904 DNN 600 determines a Gaussian
heatmap corresponding to the center of a 3D object pro-
jected onto a 2D bounding box corresponding to an 1mage
plane the mmage 700 as discussed in relation to FIG. 3,
above.

[0055] Atblock 906 DNN 600 determines an object vector
S00 corresponding to the static and moving objects 744, 828
included 1n an image 700 as discussed 1n relation to FIGS. 4

and 5, above.
[0056] At block 908 DNN 600 outputs an object vector

S00 that includes object parameters 502 and an object
descriptor 504 for the objects 744, 828 imcluded mn the

image 700 as described above 1n relation to FIG. 6, above.
[0057] At block 910 the object vector 500 1s used to pre-

dict future locations of moving objects 744 icluded n

image 700 as discussed 1n relation to FIG. 6, above. After

block 910 process 900 ends.

[0058] FIG. 10 1s a diagram of a flowchart, described
relation to FIGS. 1-9, of a process for operating a vehicle
110 based on future locations of moving objects 744 deter-
mined by DNN 600 described m process 900 m FIG. 9,
above. Process 1000 can be implemented by a processor of
a computing device 115, taking as mput data from sensors
116, and executing commands, and operating vehicle 110.
Process 1000 includes multiple blocks that can be executed
in the illustrated order. Process 1000 could alternatively or
additionally 1include fewer blocks or can include the blocks
executed 1n different orders.

[0059] Process 1000 begins at block 1002, where a com-
puting device 115 1n a vehicle 110 downloads future loca-
tions corresponding to moving objects 744 included 1n an
image 700 acquired by a camera included 1n a vehicle 110,
for example.

[0060] At block 1004 computing device 115 determines a
vehicle path based on the future locations of corresponding
to moving objects 744 mcluded 1n an mmage 700. A vehicle
path 1s a polynomial function that includes maximum and
minimum lateral and longitudinal accelerations to be
applied to vehicle motion as 1t travels along the vehicle
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path. Because static and moving objects 744, 828 are deter-
mined by a single DNN 600 using a monocular RGB 1mage
700, a vehicle path can be determined more quickly using
less expensive sensor and fewer computing resources than
would be required 11 stereo pairs of 1mages or lidar or radar
range 1maging were employed.

[0061] At block 1006 computing device 1135 outputs com-
mands to controllers 112, 113, 114 to control vehicle power-
train, vehicle steering, and vehicle brakes to control vehicle
motion to operate vehicle 110 along the vehicle path deter-
mined at block 1004. Following block 1006 process 1000

ends.

[0062] Computing devices such as those discussed herein
oenerally each includes commands executable by one or
more computing devices such as those identified above,
and for carrymg out blocks or steps of processes described
above. For example, process blocks discussed above may be
embodied as computer-executable commands.

[0063] Computer-executable commands may be compiled
or mterpreted from computer programs created using a vari-
ety of programming languages and/or technologies, mclud-
ing, without limitation, and either alone or 1 combination,
Java™ (., C++, Python, Julia, SCALA, Visual Basic, Java
Script, Perl, HIML, etc. In general, a processor (e.g., a
mMICTOProcessor) receives commands, €.g., from a memory,
a computer-readable medium, etc., and executes these com-
mands, thereby performing one or more processes, mclud-
ing one or more of the processes described heremn. Such
commands and other data may be stored 1n files and trans-
mitted using a variety of computer-readable media. A file 1n
a computing device 1s generally a collection of data stored
on a computer readable medium, such as a storage medium,
a random access memory, etc.

[0064] A computer-readable medium (also referred to as a
processor-readable medium) includes any non-transitory
(e.g., tangible) medium that participates i providing data
(e.g., mstructions) that may be read by a computer (e.g.,
by a processor of a computer). Such a medium may take
many forms, including, but not limited to, non-volatile
media and volatile media. Instructions may be transmitted
by one or more transmission media, including fiber optics,
wires, wireless communication, mcluding the internals that
comprise a system bus coupled to a processor of a computer.
Common forms of computer-readable media include, for
example, RAM, a PROM, an EPROM, a FLASH-
EEPROM, any other memory chip or cartridge, or any
other medium from which a computer can read.

[0065] All terms used mn the claims are intended to be
oiven their plamn and ordinary meanings as understood by
those skilled 1n the art unless an explicit indication to the
contrary in made herein. In particular, use of the singular
articles such as “a,” “the,” “said,” etc. should be read to
recite one or more of the mdicated elements unless a claim
recites an explicit limitation to the contrary.

[0066] The term “exemplary” 1s used herein 1n the sense of
signifymg an example, e.g., a reference to an “exemplary
widget” should be read as simply referring to an example
of a widget.

[0067] The adverb “approximately” modifying a value or
result means that a shape, structure, measurement, value,
determunation, calculation, etc. may deviate from an exactly
described geometry, distance, measurement, value, determi-
nation, calculation, etc., because of imperfections 1 materi-
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als, machining, manufacturing, sensor measurements, com-
putations, processing time, communications time, etc.
[0068] In the drawings, the same reference numbers ndi-
cate the same elements. Further, some or all of these ¢le-
ments could be changed. With regard to the media, pro-
cesses, systems, methods, etc. described herein, 1t should
be understood that, although the steps or blocks of such pro-
cesses, etc. have been described as occurring according to a
certamn ordered sequence, such processes could be practiced
with the described steps performed 1n an order other than the
order described herem. It turther should be understood that
certamn steps could be performed simultaneously, that other
steps could be added, or that certain steps described herein
could be omitted. In other words, the descriptions of pro-
cesses herem are provided for the purpose of illustrating
certam embodiments, and should m no way be construed
so as to limit the claimed invention.

1. A computer, comprising:

a processor; and

a memory, the memory mcluding mstructions executable

by the processor to:
mput an 1mage to a deep neural network to:
determine a point in the image based on a center of a
Gaussian heatmap corresponding to an object
included 1n the 1mage;
determine an object descriptor corresponding to the
object and include the object descriptor 1n an object
vector attached to the pont;
determine object parameters including a three-dimen-
sional location of the object mn global coordinates
and predicted pixel offsets of the object;
include the object parameters 1n the object vector; and
predict a future location of the object 1in the global
coordinates based on the point and the object vector.

2. The computer of claim 1, the mstructions including
further instructions to operate a vehicle by determiming a vehi-
cle path based on the future location of the object.

3. The computer of claim 2, wherein operating the vehicle
on the vehicle path includes controlling one or more of vehicle
powertrain, vehicle steering, and vehicle brakes.

4. The computer of claim 1, wherein the object1s amoving
object.

S. The computer of claim 1, wherein the deep neural net-
work tracks the object 1n one or more frames of image data
based on the object descriptor.

6. The computer of claim 1, wherein the deep neural net-
work determines the three-dimensional location of the object
1n the global coordinates based on an estimated distance from
a camera and the pomt corresponding to the center of the
(Gaussian heatmap.

7. The computer of claim 6, wherein a yaw of the object 1s
determined 1n the global coordinates based on the yaw of the
objectin pixel coordinates and the three-dimensional location

of the object 1n the global coordinates.
8. The computer of claim 7, wherein the future location of

the object in the global coordmates 1s determined based on the
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predicted pixel offsets of the object and the three-dimensional
location of the object.

9. The computer of claim 1, wherem the deep neural net-
work 1s trained based on unsupervised learning.

10. The computer of claim 1, wherein the deep neural net-
work 1s trained based on ground truth determined based on
one or more pairs of stereo mmages.

11. The computer of claim 1, wherein the deep neural net-
work 1s trained based on object class prediction loss functions,
depth perception loss functions, three-dimensional prediction
loss functions, push object descriptor loss functions, and pull
object descriptor loss functions.

12. A method, comprising:

inputting an image to a deep neural network to:

determine a point 1 the 1mage based on a center of a
Gaussian heatmap corresponding to an object
included 1n the 1mage;

determine an object descriptor corresponding to the
object and include the object descriptor 1n an object
vector attached to the pomt;

determine object parameters mcluding a three-dimen-
sional location of the object in global coordinates and
predicted pixel otfsets of the object;

include the object parameters 1n the object vector; and

predict a future location of the object 1n the global coor-
dinates based on the point and the object vector.

13. The method of claim 12, further comprising operate a
vehicle by determinming a vehicle path based on the future loca-
tion of the object.

14. The method of claim 13, wherein operating the vehicle
on the vehicle path includes controlling one or more of vehicle
powertrain, vehicle steering, and vehicle brakes.

15. The method of claim 12, wherein the object 1s a moving
object.
16. The method of claim 12, wherein the deep neural net-

work tracks the object 1n one or more frames of 1mage data
based on the object descriptor.

17. The method of claim 12, wherein the deep neural net-
work determines the three-dimensional location of the object
in the global coordinates based on an estimated distance from
a camera and the pomt corresponding to the center of the
(Gaussian heatmap.

18. The method of claim 17, wherein a yaw of the object 1s
determined 1n the global coordinates based on the yaw of the
objectin pixel coordinates and the three-dimensional location
of the object in the global coordinates.

19. The method of claim 18, wherein the future location of
the object in the global coordinates 1s determined based on the
predicted pixel offsets of the object and the three-dimensional
location of the object.

20. The method of claim 12, wherein the deep neural net-
work 1s trained based on unsupervised learning.
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