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VEHICLE LOCALIZATION

BACKGROUND

[0001] Images can be acquired by sensors and processed
using a computer to determine data regarding objects 1n an
environment around a system. Operation of a sensing sys-
tem can mnclude acquiring accurate and timely data regard-
ing objects 1n the system’s environment. A computer can
acquire 1mmages from one or more 1mages sensors that can
be processed to determine locations of objects. Object loca-
tion data extracted from mmages can be used by a computer
to operate systems mcluding vehicles, robots, security, and
object tracking systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 1s a block diagram of an example traffic
infrastructure system.

[0003] FIG. 2 1s a diagram of an example tratfic scene.
[0004] FIG. 315 a diagram of an example 1mage of a trathic
scene including feature points.

[0005] FIG. 4 1s a diagram of an example structure from
motion (StM) map

[0006] FIG. S 1s a diagram of an example route system.
[0007] FIG. 6 1s a diagram of an example six degree of
freedom camera pose system.

[0008] FIG. 7 1s a flowchart diagram of an example pro-
cess to determine a s1x degree of freedom vehicle pose.

DETAILED DESCRIPTION

[0009] A sensing system can acquire data, for example
image data, regarding an environment around the system
and process the data to determine locations of objects. For
example, computers can be programmed to determine loca-
tions of objects 1n 1mage data acquired by sensors 1 systems
including vehicle guidance, robot operation, security, man-
ufacturing, and product tracking. Vehicle guidance can
include operation of vehicles 1 autonomous or semi-auton-
omous modes 1 environments that mclude a plurality of
objects. Robot guidance can include guiding a robot end
etfector, for example a gripper, to pick up a part and orient
the part for assembly 1 an environment that includes a plur-
ality of parts. Security systems include features where a
computer acquires video data from a camera observing a
secure area to provide access to authorized users and detect
unauthorized entry in an environment that includes a plur-
ality of users. In a manufacturing system, a DNN can deter-
mine the location and orientation of one or more parts 1n an
environment that includes a plurality of parts. In a product
tracking system, a deep neural network can determine a
location and orientation of one or more packages m an
environment that mcludes a plurality of packages.

[0010] Vehicle guidance will be described heremn as a non-
lmmiting example of using a computer to determine the loca-
tion of an object, for example a vehicle, 1n a trafhic scene and
determine a vehicle path for operating a vehicle based on the
determined location. A traffic scene 18 an environment
around a tratfic infrastructure system or a vehicle that can
include a portion of a roadway and objects including build-
ings, bridges, vehicles and pedestrians, etc. For example, a
computing device mn a vehicle can be programmed to
acquire one or more 1mages from one or more sensors
included 1n the vehicle, determine locations of objects
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the 1mages and determine the location of the vehicle with
respect to the determined locations of the objects. Determin-
ing the location of a vehicle based on processing images of
an environment around the vehicle can be reterred to as
vehicle localization or six degree of freedom (DoF) camera
pose estimation.

[0011] Operating a vehicle based on vehicle localization
can mclude determining a six degree-of-freedom (DoF)
pose for the vehicle. A six Dok pose includes three position
measurements with respect to X, y, and z orthogonal axes
and three rotational measurements (roll, pitch, and yaw)
about the three orthogonal axes, respectively. Six DoF
pose 1s typically measured with respect to a global coordi-
nate system, for example latitude, longitude, and altitude.
Operating a vehicle based on vehicle localization can
include determining a s1x DoF pose of the vehicle to within
+/- 10 centimeters (cm) 1n X, y, and z coordinates and +/- one
degree 1n each of the three rotations. Determining vehicle
s1ix DoF pose withing +/- 10 ¢m 1n positions and +/- one
degree 1n rotations can permit operation of a vehicle moving
at legal speed limits on a roadway 1n traffic, for example.
[0012] Techmques for vehicle localization include a glo-
bal positioning system (GPS) receiver that determines vehi-
cle location using satellite signals. GPS location data can be
improved to approach 10 cm (centimeters) in precision
using real time kmematics (RTK) signals which augment
satellite data with terrestrial signals. GPS-RTK suffers
from problems due to blockages and multiple signal reflec-
tions caused by structures such as tunnels, bridges, and tall
buildings. An inertial measurement unit (IMU) employs
accelerometers to determine relative motion. IMUSs require
additional hardware and software for mitialization and cali-
bration to determine locations with regard to global coordi-
nates and IMUs with accuracy and rehability required to
provide vehicle localization are too prohibitively expensive
to mclude mn vehicles. Vehicle localization based on image
data as described herein can provide six DoF vehicle pose
data within +/- 10 ¢m 1 positions and +/- 1 rotations with-
out requiring additional sensor and computing resources
beyond typical sensors and computing resources already
included 1 autonomous vehicles without problems caused
by signal blockage or multiple signal reflections.

[0013] Advantageously, vehicle localization by six DoF
camera pose estimation as described herem can improve
the ability of a computing device 1n a vehicle to determine
s1X DoF vehicle poses 1n an environment around the vehicle
using a monocular RGB camera. A monocular camera
includes a single lens assembly having a single optical axis
that forms 1mages on a single sensor or sensor assembly. An
RGB camera 1s a camera that acquires color image data that
includes separate red, green and blue pixels. Six Dol cam-
cra pose estimation as discussed herein uses 1mages
acquired by a monocular RGB camera and a computing
device included 1 a vehicle to determine a six DoF vehicle
pos¢ based on a previously acquired structure from motion
(SIM) map. An SIM map includes three-dimensional (3D)
data regarding an environment around a vehicle route,
where a route 1s a connected series of locations including a
starting point and an end poimnt determined 1n global coordi-
nates with respect to a map that can be traveled along by a
vehicle. S1x DoF camera pose estimation as described herein
can be used for vehicle localization on a stand-alone basis or
combined with GPS-RTK vehicle localization to improve
reliability and accuracy of vehicle localization.
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[0014] Six DoF camera pose estimation using a previously
acquired SIM map can be referred to as a type of simulta-
neous localization and mapping (SLAM). SLAM can be
described as determining or updating a map of an unknown
environment while determining the location of an agent,
such as a vehicle, within the map. Techniques discussed
heremn improve basic SLAM techniques by acquiring a
map of a route by traversing the route and then adjusting
parameters which control six DoF camera pose estimation
based on 1mage data acquired on subsequent traverses of the
route. Parameters such as camera selection, 1mage region
selection, local feature matcher selection, a reprojection
error selection, and RANSAC scoring function selection
can be selected to improve six DoF camera pose estimation.
These parameters will be discussed n relation to FIG. 6,
below. Selecting parameters m this fashion can increase
accuracy and rehiability of six DoF camera pose estimation
based on an SIM map and permits s1x DoF camera pose to
be estimated over longer time periods without requiring
updates to the SIM map, 1.€., despite seasonal changes to
the environment and changes to buildings and structures
included m the SIM map.

[0015] A method 15 disclosed heremn mcluding determin-
1ng an approximate camera location on a route by inputting a
first image acquired by a camera to a convolutional neural
network, extracting first image feature points from the first
1mage, selecting pose estimation parameters for a pose esti-
mation algorithm based on the approximate camera loca-
tion, determining a six degree-of-freedom (DoF) camera
pose by imputting the first image feature points and second
teature points included n a structure-trom-motion (StM)
map based on the route to the pose estimation algorithm
which 1s controlled by the pose estimation parameters, and
determuning a six DoF vehicle pose based on the six DoF
camera pose. A vehicle can be operated by determining a
vehicle path based on the six DoF vehicle pose. A dataset
of reference 1mages can be acquired by a camera included m
a vehicle as it travels the route. The convolutional neural
network can be tramned based on a generic dataset of refer-
ence 1mages. The SIM map can include a collection of three-
dimensional pomts visible from the route generated by
determinming three-dimensional locations of 1mmage feature
points 1n global coordinates from the dataset of reference
images and combining them using a 3D mapping software

program.
[0016] The pose estimation algorithm can include a Per-

spective-n-Point (P-n-P) algorithm 1 a Random Sample
Consensus (RANSAC) loop. The pose estimation para-
meters can include one or more of camera selection, 1mage
region selection, a feature matcher, a reprojection error, and
a RANSAC scoring tunction. The pose estimation para-
meters can be selected based on the approximate camera
location with respect to overlapping portions of the route
having approxmmately equal length. Extracting the first
image feature points from the first image can include using
a feature extraction algorithm which includes one or more of
Superpoint, Reliable and Repeatable Detector and Descrip-
tor, and Scale Invariant Feature Transform. The six DoF
vehicle pose can be determined based on the s1x DoF camera
pose by determining a si1x DoF offset between the vehicle
and the camera. The s1x DoF camera pose and the six DoF
vehicle pose can be determined 1n global coordinates with
respect to three orthogonal position axes and three rotations
about the three orthogonal position axes, respectively. The
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3D mapping software program can include one or more of
COLMAP, AgiSoft Metashape, and VisualSFM. The pose
estimation software can be run for n trials with different
configuration parameters and different random seeds. A
paired two sample t-test for statistical significance can be
used to compare results from a trial with the baseline
configuration.

[0017] Further disclosed 1s a computer readable medium,
storing program instructions for executing some or all of the
above method steps. Further disclosed 1s a computer pro-
ogrammed for executing some or all of the above method
steps, including a computer apparatus, programmed to
determine an approximate camera location on a route by
mputting a first image acquired by a camera to a convolu-
tional neural network, extract first image feature points from
the first image, select pose estimation parameters for a pose
estimation algorithm based on the approximate camera loca-
tion, determine a si1x degree-of-freedom (DoF) camera pose
by mputting the first image feature points and second feature
pomts mcluded 1n a structure-from-motion (SIM) map based
on the route to the pose estimation algorithm which 1s con-
trolled by the pose estimation parameters, and determine a
s1X DoF vehicle pose based on the six DoF camera pose. A
vehicle can be operated by determining a vehicle path based
on the s1x DoF vehicle pose. A dataset of reference images
can be acquired by a camera included 1n a vehicle as 1t tra-
vels the route. The convolutional neural network can be
trained based on a generic dataset of reference mmages. The
SIM map can mclude a collection of three-dimensional
poimts visible from the route generated by determining
three-dimensional locations of 1mage feature points 1 glo-
bal coordinates from the dataset of reference 1mages and
combining them using a 3D mapping software program.
[0018] The nstructions can include further instructions
wherein the pose estimation algorithm can mclude a Per-
spective-n-Pomnt (P-n-P) algorithm m a Random Sample
Consensus (RANSAC) loop. The pose estimation para-
meters can mclude one or more of camera selection, 1mage
region selection, a feature matcher, a reprojection error, and
a RANSAC scoring function. The pose estimation para-
meters can be selected based on the approximate camera
location with respect to overlapping portions of the route
having approximately equal length. Extracting the first
image feature poimnts from the first 1mage can include using
a feature extraction algorithm which includes one or more of
Superpomt, Reliable and Repeatable Detector and Descrip-
tor, and Scale Invanant Feature Transform. The six DoF
vehicle pose can be determined based on the six Dol camera
pose by determining a si1x DoF offset between the vehicle
and the camera. The s1x Dol camera pose and the six Dok
vehicle pose can be determined 1n global coordinates with
respect to three orthogonal position axes and three rotations
about the three orthogonal position axes, respectively. The
3D mapping software program can include one or more of
COLMAP, AgiSoft Metashape, and VisualSFM. The pose
estimation software can be run for n trials with different
configuration parameters and different random seeds. A
paired two sample t-test for statistical sigmificance can be
used to compare results from a trial with the baseline
configuration.

[0019] FIG. 1 1s a diagram of a sensing system 100 that
can include a traffic infrastructure system 103 that includes a
server computer 120 and stationary sensors 122. Sensing
system 100 includes a vehicle 110, operable 1n autonomous
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(“autonomous” by itseltf 1 this disclosure means “fully
autonomous”), semi-autonomous, and occupant piloted
(also referred to as non-autonomous) mode. One or more
vehicle 110 computing devices 115 can receive data regard-
ing the operation of the vehicle 110 from sensors 116. The
computing device 115 may operate the vehicle 110 1 an
autonomous mode, a semi-autonomous mode, or a non-
autonomous mode.

[0020] The computing device 115 mcludes a processor
and a memory such as are known. Further, the memory
includes one or more forms of computer-readable media,
and stores 1nstructions executable by the processor for per-
forming various operations, mncluding as disclosed herein.
For example, the computing device 115 may nclude pro-
gramming to operate one or more of vehicle brakes, propul-
sion (e.g., control of acceleration 1 the vehicle 110 by con-
trolling one or more of an internal combustion engine,
electric motor, hybrid engine, etc.), steering, climate con-
trol, interior and/or exterior lights, etc., as well as to deter-
mine whether and when the computing device 115, as
opposed to a human operator, 1s to control such operations.
[0021] The computing device 115 may include or be com-
municatively coupled to, e.g., via a vehicle communications
bus as described turther below, more than one computing
devices, e.g., controllers or the like included m the vehicle
110 for monitoring and/or controlling various vehicle com-
ponents, €.g., a powertrain controller 112, a brake controller
113, a steering controller 114, etc. The computing device
115 1s generally arranged for communications on a vehicle
communication network, €.g.. including a bus 1 the vehicle
110 such as a controller area network (CAN) or the like; the
vehicle 110 network can additionally or alternatively
include wired or wireless communication mechanisms
such as are known, e.g., Ethernet or other communication
protocols.

[0022] Via the vehicle network, the computing device 115
may transmit messages to various devices 1n the vehicle and/
or recerve messages from the various devices, €.g., control-
lers, actuators, sensors, ¢tc., mcluding sensors 116. Alterna-
tively, or additionally, 1n cases where the computing device
115 actually comprises multiple devices, the vehicle com-
munication network may be used for communications
between devices represented as the computing device 115
1n this disclosure. Further, as mentioned below, various con-
trollers or sensing elements such as sensors 116 may provide
data to the computing device 115 via the vehicle communi-
cation network.

[0023] In addition, the computing device 115 may be con-
figured for communicating through a vehicle-to-intrastruc-
ture (V-to-I) mterface 111 with a remote server computer
120, ¢.g., a cloud server, via a network 130, which, as
described below, includes hardware, firmware, and soitware
that permits computing device 115 to communicate with a
remote server computer 120 via a network 130 such as wire-
less Internet (WI-FI®) or cellular networks. V-to-I mterface
111 may accordingly include processors, memory, transcel-
vers, etc., configured to utilize various wired and/or wireless
networking technologies, ¢.g., cellular, BLUETOOTH®
and wired and/or wireless packet networks. Computing
device 115 may be configured for communicating with
other vehicles 110 through V-to-I mterface 111 using vehi-
cle-to-vehicle (V-to-V) networks, €.g., according to Dedi-
cated Short Range Communications (DSRC) and/or the
like, e.g., formed on an ad hoc basis among nearby vehicles
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110 or tormed through mfrastructure-based networks. The
computing device 115 also includes nonvolatile memory
such as 1s known. Computing device 115 can log data by
storing the data in nonvolatile memory for later retrieval
and transmittal via the vehicle communication network
and a vehicle to infrastructure (V-to-I) intertace 111 to a
server computer 120 or user mobile device 160.

[0024] As already mentioned, generally mcluded 1n
instructions stored 1n the memory and executable by the pro-
cessor of the computing device 115 18 programming for
operating one or more vehicle 110 components, €.g., brak-
Ing, steering, propulsion, etc., without intervention of a
human operator. Using data received in the computing
device 115, ¢.g., the sensor data from the sensors 116, the
server computer 120, etc., the computing device 115 may
make various determinations and/or control various vehicle
110 components and/or operations without a driver to oper-
ate the vehicle 110. For example, the computing device 115
may mclude programming to regulate vehicle 110 opera-
tional behaviors (1.¢., physical manifestations of vehicle
110 operation) such as speed, acceleration, deceleration,
steering, etc., as well as tactical behaviors (1.€., control of
operational behaviors typically 1n a manner mtended to
achieve eflicient traversal of a route) such as a distance
between vehicles and/or amount of time between vehicles,
lane-change, mumimum gap between vehicles, left-turn-
across-path mimimum, time-to-arrival at a particular loca-
tion and mntersection (without signal) mimimum time-to-arri-
val to cross the intersection.

[0025] Controllers, as that term 1s used herein, include
computing devices that typically are programmed to moni-
tor and/or control a specific vehicle subsystem. Examples
include a powertrain controller 112, a brake controller 113,
and a steering controller 114. A controller may be an elec-
tronic control unit (ECU) such as 1s known, possibly mclud-
ing additional programming as described herein. The con-
trollers may communicatively be connected to and receive
instructions from the computing device 115 to actuate the
subsystem according to the mstructions. For example, the
brake controller 113 may receive mstructions from the com-
puting device 115 to operate the brakes of the vehicle 110.

[0026] The one or more controllers 112, 113, 114 for the
vehicle 110 may mclude known electronic control units
(ECUs) or the like mcluding, as non-limiting examples,
one or more powertrain controllers 112, one or more brake
controllers 113, and one or more steering controllers 114.
Each of the controllers 112, 113, 114 may include respective
processors and memories and one or more actuators. The
controllers 112, 113, 114 may be programmed and con-
nected to a vehicle 110 communications bus, such as a con-
troller area network (CAN) bus or local mterconnect net-
work (LIN) bus, to receive nstructions from the
computing device 115 and control actuators based on the
instructions.

[0027] Sensors 116 may mclude a variety of devices
known to provide data via the vehicle communications
bus. For example, a radar fixed to a front bumper (not
shown) of the vehicle 110 may provide a distance from the
vehicle 110 to a next vehicle 1n front of the vehicle 110, or a
global positioning system (GPS) sensor disposed m the
vehicle 110 may provide geographical coordmates of the
vehicle 110. The distance(s) provided by the radar and/or
other sensors 116 and/or the geographical coordinates pro-
vided by the GPS sensor may be used by the computing
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device 1135 to operate the vehicle 110 autonomously or semi-
autonomously, for example.

[0028] 'The vehicle 110 1s generally a land-based vehicle
110 capable of autonomous and/or semi-autonomous opera-
tion and having three or more wheels, €.g., a passenger car,
light truck, etc. The vehicle 110 includes one or more sen-
sors 116, the V-to-I mterface 111, the computing device 115
and one or more controllers 112, 113, 114. The sensors 116
may collect data related to the vehicle 110 and the environ-
ment 1n which the vehicle 110 1s operating. By way of exam-
ple, and not linmitation, sensors 116 may include, e.g., alti-
meters, cameras, LIDAR, radar, ultrasonic sensors, infrared
SENSOrs, pressure sensors, accelerometers, gyroscopes, tem-
perature sensors, pressure sensors, hall sensors, optical sen-
sors, voltage sensors, current sensors, mechanical sensors
such as switches, etc. The sensors 116 may be used to
sense the environment 1 which the vehicle 110 1s operating,
¢.g., sensors 116 can detect phenomena such as weather con-
ditions (precipitation, external ambient temperature, etc.),
the grade of a road, the location of a road (¢.g., using road
edges, lane markings, etc.), or locations of target objects
such as neighboring vehicles 110. The sensors 116 may
further be used to collect data including dynamic vehicle
110 data related to operations of the vehicle 110 such as
velocity, yaw rate, steering angle, engine speed, brake pres-
sure, o1l pressure, the power level applied to controllers 112,
113, 114 1n the vehicle 110, connectivity between compo-
nents, and accurate and timely performance of components
of the vehicle 110.

[0029] Vehicles can be equipped to operate 1n both auton-
omous and occupant piloted mode. By a semi- or fully-
autonomous mode, we mean a mode of operation wherein
a vehicle can be piloted partly or entirely by a computing
device as part of a system having sensors and controllers.
The vehicle can be occupied or unoccupied, but mn either
case the vehicle can be partly or completely piloted without
assistance of an occupant. For purposes of this disclosure,
an autonomous mode 1s defined as one 1 which each of
vehicle propulsion (e.g., via a powertrain including an nter-
nal combustion engine and/or electric motor), braking, and
steering are controlled by one or more vehicle computers; n
a semi-autonomous mode the vehicle computer(s) control(s)
one or more of vehicle propulsion, braking, and steering. In
a non-autonomous mode, none of these are controlled by a
computer.

[0030] FIG. 2 1s a diagram of a traffic scene 200. Traffic
scene 200 includes a roadway 202 and a vehicle 110. Vehi-
cle 110 travels on the roadway 202 along a route 204. A
camera 206, which can be a monocular RGB camera,
acquires (indicated by dotted lines) images 208, 210, 212,
214, 216, 218 (collectively 1mages 222) as the vehicle 110
travels on roadway 202 along route 204. Images 222 can be
stored 1n a computing device 115 mcluded in vehicle 110
along with six Dok pose data regarding the location of veha-
cle 110 at the time each image 208, 210, 212, 214, 216, 218
1s acquired. The s1x DoF pose data can be determined by one
or more of GPS-RTK data, IMU data, and lidar sensor 220
data. The GPS-RTK data, the IMU data and the lidar sensor
220 data can be combined with high-resolution map data
downloaded from a server computer 120, for example, to
determine s1x DoF vehicle pose data 1in global coordinates.

[0031] The mmages 222 and six DoF vehicle pose data

indicating the location of the vehicle at the time each
image 208, 210, 212, 214, 216, 218 was acquired can be
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processed to determine an 1mage database and SiIM map
for the route 204. The mmage database and SIM map can
be stored 1n a memory mcluded 1n a computing device 115
1in vehicle 110 or transmitted to a server computer 120. At a
later time, a vehicle traveling on route 204 can recall the
image database and SIM map from computing device 113
memory or rece1ve the image database and SIM map from a
server computer 120 and use the image database and SIM
map to determine a vehicle six DoF pose using six DoF
camera pose estimation. Prior to bemng entered mto an
image database, the images 222 are processed by computing
device 115 or server computer 120 to determine 1mage fea-
ture points. An 1mage feature point 1s a location 1n an 1mage
determined by mmage processing software that determines
image locations based on arrangements of pixel values.
For example, pixel values that form edges, corners, 1ntersec-
tions of lines, etc. can be used to determine feature points.

[0032] FIG. 3 1s a diagram of an image 300 of an environ-
ment around a vehicle 110 acquired while the vehicle 110
traveled on a route 204. The image 300 includes objects that
occur 1n the environment around the vehicle, which can
include foliage, or in this example, buildings 302. Image
300 can be processed using 1mage processing software to
determine feature points 304, indicated 1n 1mage 300 as cir-
cles. Examples of image processing software that can deter-
mine feature points 304 1n an 1image 300 include Superpoint,
Reliable and Repeatable Detector and Descriptor (R2D2),
and Scale Invanant Feature Transtorm (SIFT). Superpoint,
R2D2, and SIFT are software programs that input image
data and output feature points. Superpoint, R2D2, and
SIFT all determine feature points by processing pixel neigh-
borhoods to determine locations of arrangements of pixel
values that can be rehably and repeatably determined 1n a
plurality of images that include the same object despite dif-
ferences m illumination, scale, and viewpoint. Superpoint,
R2D?2, and SIFT can determine feature points that are mvar-
1ant with respect to ditferences in conditions under which
images are acquired. For example, Superpomt, R2D2, and
SIFT can determine the same feature points on similar
objects despite bemg acquired at ditferent times of day
with different lighting conditions from difterent viewpoints.
[0033] Six degree of freedom camera pose estimation as
described herein processes acquired 1mages 222 with one or
more of Superpoint, R2D2, and SIFT to determine feature
pomts 304. The mmages 222, the feature points for each
image 300 and the six DoF pose of the camera at the time
the images 222 were acquired can be mput to an 1mage data-
base for a route 204. The si1x DoF camera pose can be deter-
mined by adding a six DoF camera offset to a six DoF vehi-
cle pose. A s1x DoF camera offset 1s the difference n
location and orientation of a camera with respect to the loca-
tion and orientation of the vehicle. Because the camera 1s 1n
a fixed relationship with the vehicle, the six DoF camera
offset can be measured at the time the camera 1s installed
in the vehicle, typically at the time of manufacturing. The
image database can be constructed by traveling the route
204 once and acquiring overlapping 1mages 222 or the
route 204 can be traveled a plurality of times and the 1mages
222 from the plurality of traverses of the route 204 pro-
cessed and mput to the image database. The feature points
304 included 1 the image database are 2D feature points
304, meaning that the feature points are determined with
respect to therr x, y pixel location 1n a 2D mmage array.
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The 1mage database can then be used to create an SIM map

based on a route 204.
[0034] FIG. 4 1s a diagram of an SIM map 400. An SIM

map mcludes a route 402 that has been traveled one or more
times by a camera included 1n a vehicle 110 as 1t travels the
route, acquiring images 404, 406 and building an 1mage
database that includes mmages 404, 406, six DoF camera
poses for each mmage and feature pomts 408, 410 for each
image. The mmages 404, 406 overlap meaning that various
teature pomnts 408, 410 can each occur in more than one
1mage 404, 406. Because the images 404, 406 were acquired
while the vehicle 110 was traveling along route 402, feature
points 408, 410 are typically viewed 1n six degrees of free-
dom from more than one location. This permits the location
of a single 2D feature point 408, 410 to be tnnangulated from
two or more different points of view and a three-dimen-
sional 3D location of the feature point 408, 410 determined
with respect to the route 402. SIM map 400 illustrates a
plurality of images 404, 406 combined in relation to a
route 402 based on feature points 408, 410. Images 404,
406 can be combined mto an SIM map 400 using mapping
software that generates 3D point cloud maps such as an SIM

map from 1mage data.
[0035] An example of mapping software that generates a

3D point cloud map from 1mage data 1s the COLMAP soft-
ware program (https://colmap.github.10, available as of the
filing date of this application). COLMAP 1s described 1n J.
L. Schonberger and J. Frahm, “Structure-tfrom-Motion
Revisited,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 4104-4113.
Other 3D mapping software programs include AgiSoft
Metashape, available as of the filing date of this application
from https://www.agisoft.com/ and VisualSFM, available
from http://ccwu.me/vsim/. AgiSoft Metashape 15 also
referred to photogrammetry software, photogrammetry
being a term that refers to determining measurements from
photographs.

[0036] FIG. 5 1s a diagram of a route system 500 that can
output an SIM map 510. Route system 500 can receive as
input a plurality of mmages 502 including six DoF camera
poses acquired as a vehicle traverses a route 204, 402. The
images 502 including six DoF camera poses are mput to a
feature point extraction block 504 to determine 2D feature
pomts included 1n the 1mages 502. Feature point extraction
can include one or more of Superpoimnt, R2D2, or SIFT. In an
alternative implementation, a convolutional neural network
can be tramned based on a dataset of acquired reference
1mages to extract 2D feature points from mmages 502 1n the
feature point extraction block 504. The images 502, six DoF
camera poses and extracted 2D feature poimnts can be output
to 1image database 506 and passed to StM construction block
S508. The SIM map includes a collection of three-dimen-
stonal points that can be captured from the route with optical
sensors and generated by determining three-dimensional
locations of mmage feature points mm global coordinates
from the dataset of reference images and combining them
using a COLMAP algorithm, for example. At SIM construc-
tion block S08, COLMAP software can construct a 3D SiM
map from the images 502, six Dok poses, and 2D feature
points as discussed above 1n relation to FIG. 4. A completed
SIM map 510 can be output from SIM construction block
S08.

[0037] FIG. 6 1s a diagram of a s1x DoF camera pose sys-
tem 600. Six DoF camera pose system 600 can receive as
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input an image 602 acquired by a vehicle camera 206 as the
vehicle 110 travels on a route 204, 402, and outputs a six
DoF vehicle pose. The six DoF vehicle pose 1s determined
in global coordinates with respect to the three orthogonal x,
y, Z axes and the three rotations about the orthogonal posi-
tion axes. The six DoF vehicle pose can be determined
based on one or more six DoF camera poses and one or
more of the six DoF offsets between the cameras and the
vehicle. The six DoF camera poses can be determined
based on acquired camera data combined mto an SIM
map. The route 204, 402 has been previously traveled one
or more times by vehicle 110 or another vehicle equipped
with sensors to acquire 1mage data and s1x DoF camera pose
data. An 1mage database 506 and an SIM map 510 have been
generated by a route system 500 and recalled from memory
included m a computing device 115 included 1n vehicle 110
or downloaded from server computer 120. In addition to
image database 506 and SIM map 510, six DoF camera
pose system 600 has been used to process 1mages from
image database 506 to determine optimal 1mage parameters
for determining six DoF camera poses from SIM map 510.
[0038] As will be discussed further below, at s1x Dok cam-
era pose determination block 608 a perspective-n-point (P-
n-P) algorithm n a random sample consensus (RANSAC)
loop determines a six DoF camera pose by comparing 2D
feature points extracted from an image 602 to 3D points
included 1n an SIM map 510. At the time the SIM map
510 1s generated as discussed above 1n relation to FIG. 4,
the route 1s divided mto potentially overlapping segments,
which can be approximately equal length and about
100 meters 1n length, for example. The segments can be
determined to overlap from 0 to 75%, for example. The seg-
ments and overlaps can be determined by similarities 1n the
contents of the mages acquired along the segment. For
example, a route segment can include 1mages that include
mainly foliage. Another segment can mclude 1mages that
include mainly buildings. Dividing the route mto segments
in this fashion can permit the P-n-P/RANSAC loop to be
optimized for the contents of the mmage data being
processed.

[0039] At the time the SIM map 1s determined, images
from the 1mage database can be mput to the six DoF camera
pose system 600 a plurality of times, each time varying the
camera selection, 1mage region selection and pose estima-
tions parameters that control the P-n-P/RANSAC loop.
Camera selection refers to selecting which of a possible
plurality of cameras mcluding 1 a vehicle 110 from which
to acquire an 1mage. Each camera included 1 a vehicle 110
can have a different field of view with respect to the envir-
onment around the vehicle 110 and as a result, 1mages from
different cameras can match 1mages mcluded 1n the image
database differently. Images from the different cameras can
be compared to 1images 1 the image database using a con-
volutional neural network to determine which 1mage
matches the 1mage database most closely. A convolutional
neural network that compares 1mages can be tramned on a
generic dataset that mcludes random mmages acquired of

environments around vehicles.
[0040] Once the camera 1mage that most closely matches

the 1mage database 1s selected, a subset of feature pomts
included 1n the SIM map included 1n the matching 1mages
from the 1mage database are selected. During tramming, the
output s1x Dok camera pose can be compared to the ground
truth si1x DoF camera pose included 1n the 1mage database to
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determine the accuracy of the output six Dol camera pose
based on the selected image, the selected 1mage region, 1.€.,
subset of feature points from one or more reference 1mages,
and the selected pose estimation parameters. The image,
1mage region and pose estimation parameters that determine
the most accurate six Dol camera pose can be selected for
the route segment that includes the six DoF camera pose.
[0041] A single configuration of 1mage, image region and
pose estimation parameters 18 given by a combination of
values for these variables (e.g., MNN matcher, Spx reprojec-
tion error, 5000 RANSAC iterations, MAGSAC scoring, 10
retrieved reference mmages). Our method amms to select the
best configuration from a set of N possible configurations
(C1, ..., CN) for each location in each segment of the
route. One of these configurations, say C1, will be a baseline
configuration. These can be default parameters within the
software packages which implement PnP + RANSAC (e.g.
OpenCV), or they can be the optimal set of parameters with
respect to pose estimation performance for the entire route
across all possible configurations. By default, for each loca-
tion along the route, the baseline C1 can be selected. How-
ever, 1f any of the remaiming configurations yields superior
s1x Dok camera pose estimation performance based on com-
paring the x, y location of the vehicle 110 for the associated
traming 1mages with ground truth, 1t will be preferable to
use one of those configurations mstead.
[0042] For cach training image associated with a location
for a given configuration C1, we run n trials with a ditferent
random seed passed to PnP + RANSAC for each trial along
with the given configuration parameters. This yields a set of
values for translation error t 1, 1s mcluded mn 1, ..., t 1,n,
where t 1,] 15 the translation error for configuration 1 trial j.
Random seed values are 1identical for the same trial number
between all configurations. This procedure 1s also per-
formed for the baseline C1. For C2, ..., CN, we use a paired
two sample t-test for statistical significance for means to
compare samples t 1,1, ..., t 1,n to the baselme t 1.1, ...,
t 1.n. We want to test 1f for configuration Ci that the true
mean translation error 1s lower than the baseline (in other
words, that Ci1 1s better than C1 accounting for the mherent
randomness present n RANSAC).
[0043] We select a paired two-sample t-test compared to
the standard two-sample t-test since samples between con-
figurations for the same trnial share the same random seed.
The paired t-test will yield a p-value for configuration Ci,
denoted p 1, and by comparing this p 1 to a user-selected
critical value (e.g., 0.05 or 0.1) we can determine 1f config-
uration Ci11s superior to the baseline C1. For each configura-
tion C2, ..., CN we have a set of associated p-valuesp 1, ...,
- N determined by performing the paired two-sample t-test.
If none of these p-values 1s less than the critical value, none
of the other configurations are better 1n a statistically signif-
1cant sense compared to the baseline and we select C1 as the
place configuration. Otherwise, we select the configuration
with the lowest p-value, which 1s a proxy for determining
the strongest configuration.
[0044] Continuing with FIG. 6, an image 602 acquired by
a camera 206 1n a vehicle 110 1s mput to 2D feature point
extraction block 604 to extract 2D feature points as dis-
cussed above 1 relation to FIGS. 4 and 5. Image retrieval
1s performed first, using techniques such as APGeM, Den-
seVLAD, NetVLAD, etc. This step determines the set of
images from the 1mage database to perform 2D-2D match-
ing between 2D feature points. APGeM 1s Average Preci-
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sion Generalized Mean Pooling and 1s described 1 “Learn-
ing with Average Precision: Traming Image Retrieval with a
Listwise Loss” by Jérdme Revaud, Jon A. Almazan, Rafael
S. Rezende, Cesar De Souza, ICCV 2019. Dense VLAD 15
another techmque for retrieving matching images from and
image database and 1s described 1n “Large-scale Localiza-
tion Datasets in Crowded Indoor Spaces” by Donghwan
Lee, Soohyun Ryu, Suyong Yeon, Yonghan Lee, Deokhwa
Kim, Cheolho Han, Yohann Cabon, Philippe Weinzaepiel,
Nicolas Guérin, Gabriela Csurka, Martin Humenberger,
CVPR 2021. NetVLAD 1s another technique for determin-
Ing matching images from an image database and 1s
described 1 “NetVLAD: CNN architecture for weakly
supervised place recognition” by Relja Arandjelovi€, Petr
Gronat, Akihiko Toru, Tomas Pajdla, Josef Sivic, CVPR
2016. These technmiques compare 2D feature pomnts from
the mput image 602 to 2D feature points mcluded n the
image database 506 to determine a set of 1mages from the
image database that mclude one or more of the extracted 2D
feature points.

[0045] The extracted 2D feature points are mput to 2D-2D
matching 606 where the extracted 2D-2D matching can be
performed by iteratively matching the locations of the
extracted 2D feature points to locations of feature points 1n
the 1mage database to mimimize the summed Euclidian dis-
tance between the two sets. For example, matches can be
determined using mutual nearest neighbors. For an image
pair, two features are considered to satisty mutual nearest
neighbors 1f the minimum Euclidean feature distance point
matched 1 the second 1image by the first feature has the first
feature as 1t’s corresponding minimum distance point. Geo-
metric verification can be used to filter the set of 1mages
from the 1mage database to ensure that the set of images
from the 1mage database were acquired from the same 3D
location that was acquired by the mnput image 602. After
mutual nearest neighbors matching to determine the 2D-
2D matches, further geometric verification can be applied
by verifying consistency of matches to pose estimation.
Geometric matching can compare the 3D locations deter-
mined for the set of mmages from 1mage database as
described above with projected rays from the six Dok pose
of the camera to ensure that they intersect.

[0046] The 2D-2D matches from each vehicle 1mage/data-
base pair are aggregated and turned mto 2D-3D matches to
the SIM map. PnP + RANSAC 1s then applied to the set of
2D-3D matches.. Based on the selected route segment, a
previously selected camera, and a determined set of pose
estimation parameters that control the P-n-P/RANSAC
loop can be selected that have been determined to optimize
the accuracy of the six DoF camera pose determined by the
P-n-P /RANSAC loop. Following determination of the pose
estimation parameters, the 2D feature points from the
acquired mput 1image 602 and the set of 2D feature points
from the set of 1mages from the 1images database are 1input to
s1X DoF camera pose determination 608. Starting the P-n-P
/RANSAC loop with the approximate camera locations can
speed the process of determining the si1x Dol camera pose
considerably.

[0047] At six DoF camera pose determination block 608
the 2D feature points from the acquired image 602 and 2D
feature pomts mcluded m the set of 1mages from the image
database selected at 2D-2D matching are mput to the P-n-P/
RANSAC loop to determine a six DoF camera pose. The P-
n-P algorithm determines a six DoF camera pose based on




US 2023/0252667 Al

matching the 2D feature points from the mput image 602
with 3D teature points included 1n the SIM map by minimaiz-
ing the equation:

argmin

R,t Z;H”f—H(RXJH)HZ (1)

Where R.t are the rotation and translation of the six DoF
camera pose relative to the SIM map, u; are the {1, ..., ],
...N} 2D feature points and X; are {1, ..., 7, ...N} 3D feature
points from the SIM. Equation (1) 1s iteratively evaluated
within a RANSAC loop to determine a minimal value, 1.¢.,
the best match between the 2D feature points from the mput
image 602 and a set of 3D feature points from the SIM map
usmg a Gauss-Newton non-linear gradient descent algo-
rithm. A RANSAC loop refers to a technique for system-
atically disregarding outlier data points 1.¢., poorly matching
individual pairs of 2D/3D feature points to help the algo-
rithm converge more quickly.

[0048] Pose¢ estimation parameters that control the P-n-P/
RANSAC loop include camera selection, image portion
selection, local feature matcher, reprojection error, and a
RANSAC scormng function. An example vehicle 110 can
have six cameras, each facing a different direction with
respect to the vehicle, 1.e., front, side left, side right, rear,
etc. Hach camera can have an SIM reconstruction, and
cach route segment can have a camera mdicator that mndi-
cates which camera images to use 1n as part of 1ts configura-
tion. The local feature matcher parameter selects between
mutual nearest neighbor (MNN) matching and MNN + geo-
metric verification matching. MNN matching requires that
both the 2D teature point and the 3D feature point are each
other’s nearest neighbor 1n both sets of feature points. Geo-
metric verification determines that the projection of the 2D
teature point from the current six DoF camera pose mter-
sects the SIM 3D map at the appropnate location as dis-
cussed above. The reprojection error parameter determines
whether the P-n-P/RANSAC loop converges to a 5 pixel
error, a 10 pixel error or a 15 pixel error. The RANSAC
scoring parameter modifies the RANSAC algorithm to
replace the o parameter which guides the selection of outlier
results 1n the RANSAC algorithm with a MAGSAC scoring
function that mcludes a fixed, upper limit to guide the selec-
tion of outhiers. MAGSAC can delay convergence of the P-
n-P/RANSAC loop but can yield more stable results. The
two choices for local feature matcher, three choices for
reprojection error, and two choices for RANSAC scoring
parameter yields 12 different possibilities for pose estima-
tion parameters. Each route segment will have a set of pose
estimation parameters of the 12 different possible pose esti-
mation parameter combinations selected that yielded the
most accurate results on the test dataset.

[0049] The six DoF camera pose determined i global
coordinates with respect to three orthogonal position axes
(X, v, z, coordinate axes) and three rotational axes (defining
respective rotations about the position axes) 1s output as a
s1x DoF vehicle pose determination 610 where the six DoF
camera pose 18 converted to a six DoF vehicle pose based on
the s1x DoF offset between the six DoF camera pose and the
s1x DoF vehicle pose. The six DoF offset between the six
DoF camera pose and the s1x DoF vehicle pose can be deter-
mined at the time the camera 1s 1nstalled 1n the vehicle 110.
The six DoF vehicle pose can be output to computing device
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115 included 1n vehicle 110 to be used to operate the vehicle
110. Because the six DoF vehicle pose 1s determined with
respect to a high-resolution map, the six DoF vehicle pose
can be used to operate a vehicle 110. A computing device
115 1n a vehicle can determine a vehicle path with respect to
the high-resolution map upon which the vehicle 110 1s
intended to travel. The six DoF vehicle pose can also be
used to maintain the vehicle’s position with respect to the
vehicle path by controlling one or more of vehicle power-
train, vehicle steering and vehicle brakes. Updating the six
DoF wvehicle pose can provide feedback to the computing
device 115 to permut the computing device 115 to direct
the vehicle 110 to operate on the vehicle path.

[0050] FIG. 7 1s a flowchart, described 1n relation to FIGS.
1-6, of a process 700 for determining a s1x DoF vehicle pose
based on an 1mage acquired by a vehicle sensor 116. Process
700 can be mmplemented by a processor of a computing
device 115 or server computer 120, taking as mput image
data from a sensor 116, executing commands on a comput-
ing device 115, and outputting a six DoF vehicle pose. Pro-
cess 700 includes multiple blocks that can be executed 1n the
llustrated order. Process 700 could alternatively or addi-
tionally include fewer blocks or can include the blocks exe-

cuted 1n different orders.
[0051] Process 700 begins at block 702, where a comput-

ing device 115 mputs a query immage 602 to a six Dol cam-
era pose system 600. The query image 602 can be a mono-
cular RGB 1mage can be acquired by a camera included 1n a
vehicle 110.

[0052] At block 704 six DoF camera pose system 600
determines 2D 1mage features as discussed in relation to

FIGS. 3 and 5, above.
[0053] At block 706 six DoF camera pose system 60

determines a set of 1mages included m an mmage database
based on the 2D 1mage features and determines an approx-
imate location of the camera with respect to a route 402.

[0054] At block 708 the six DoF camera pose system 600
determines a six DoF camera pose based on the 2D mmage
features, the set of 1mages from the 1mage database and pose
estimation parameters based on the approximate location of
the camera using a P-n-P/RANSAC algorithm and an SIM

map as described above 1n relation to FIG. 6, above.
[0055] At block 710 the six Dol camera pose system 600

determines a six DoF vehicle pose based on the six Dok
camera pose as discussed i relation to FIG. 6, above.
After block 710 process 700 ends.

[0056] Computing devices such as those discussed herein
oenerally each mcludes commands executable by one or
more computing devices such as those identified above,
and for carrymg out blocks or steps of processes described
above. For example, process blocks discussed above may be
embodied as computer-executable commands.

[0057] Computer-executable commands may be compiled
or interpreted from computer programs created using a vari-
ety of programming languages and/or technologies, mclud-
ing, without limitation, and either alone or in combination,
Java™ (C, C++, Python, Julia, SCALA, Visual Basic, Java
Script, Perl, HITML, etc. In general, a processor (¢.g., a
mMICTOProcessor) receives commands, €.g., from a memory,
a computer-readable medium, etc., and executes these com-
mands, thereby performing one or more processes, mclud-
ing one or more of the processes described heremn. Such
commands and other data may be stored 1n files and trans-
mitted using a variety of computer-readable media. A file 1n
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a computing device 1s generally a collection of data stored
on a computer readable medium, such as a storage medium,
a random access memory, etc.
[0058] A computer-readable medium (also referred to as a
processor-readable medium) includes any non-transitory
(¢.g., tangible) medium that participates n providing data
(¢.g., mstructions) that may be read by a computer (€.g.,
by a processor of a computer). Such a medium may take
many forms, mcluding, but not limited to, non-volatile
media and volatile media. Instructions may be transmitted
by one or more transmission media, mcluding fiber optics,
wires, wireless communication, mncluding the internals that
comprise a system bus coupled to a processor of a computer.
Common forms of computer-readable media include, for
example, RAM, a PROM, an EPROM, a FLASH-
EEPROM, any other memory chip or cartridge, or any
other medium from which a computer can read.
[0059] All terms used 1n the claims are mtended to be
oiven their plain and ordmmary meanings as understood by
those skilled 1n the art unless an explicit indication to the
contrary 1n made herein. In particular, use of the singular
articles such as “a,” “the.” “said,” etc. should be read to
recite one or more of the indicated elements unless a claim
recites an explicit limitation to the contrary:.
[0060] The term “exemplary’ 1s used herein 1n the sense of
signifying an example, €.g., a reference to an “exemplary
widget” should be read as simply referring to an example
of a widget.
[0061] The adverb “approxmmately” modifying a value or
result means that a shape, structure, measurement, value,
determination, calculation, etc. may deviate from an exactly
described geometry, distance, measurement, value, determa-
nation, calculation, etc., because of imperfections 1n materi-
als, machining, manufacturing, sensor measurements, com-
putations, processing time, communications time, etc.
[0062] In the drawings, the same reference numbers mndi-
cate the same elements. Further, some or all of these ele-
ments could be changed. With regard to the media, pro-
cesses, systems, methods, etc. described herein, 1t should
be understood that, although the steps or blocks of such pro-
cesses, etc. have been described as occurring according to a
certamn ordered sequence, such processes could be practiced
with the described steps performed 1n an order other than the
order described heren. It further should be understood that
certain steps could be performed simultaneously, that other
steps could be added, or that certain steps described herein
could be omitted. In other words, the descriptions of pro-
cesses herem are provided for the purpose of illustrating
certamm embodiments, and should 1n no way be construed
so as to limit the claimed imnvention.
1. A computer, comprising:
a processor; and
a memory, the memory mcluding mstructions executable
by the processor to:
determine an approximate camera location on a route by
inputting a first image acquired by a camera to a con-
volutional neural network;
extract first image feature points from the first image:;
select pose estimation parameters for a pose estimation
algorithm based on the approximate camera location;
determine a s1x degree-of-freedom (DoF) camera pose
by mputting the first image feature points and second
feature points mncluded m a structure-from-motion
(SIM) map based on the route to the pose estimation
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algorithm which 1s controlled by the pose estimation
parameters; and

determine a s1x DoF vehicle pose based on the six Dok
camera pose.

2. The computer of claim 1, the instructions including
further mstructions to operate a vehicle by determining a vehi-
cle path based on the six DoF vehicle pose.

3. The computer of claim 1, wherein a dataset of reference
1mages 1s acquired by a camera included 1n a vehicle as 1t tra-
vels the route.

4. The computer of claim 3, wherein the convolutional
neural network 1s tramned based on a generic dataset of refer-
€Nce 1mages.

S. The computer of claim 4, wherein the StM map includes a
collection of three-dimensional points visible from the route
oenerated by determiming three-dimensional locations of
image feature points 1n global coordinates from the dataset
of reference images and combining them using a 3D mapping
software program.

6. The computer of claim 1, wherein the pose estimation
algorithm includes a Perspective-n-Point (P-n-P) algorithm
in a Random Sample Consensus (RANSAC) loop.

7. The computer of claim 1, wherein the pose estimation
parameters mclude one or more of camera selection, image
region selection, a local feature matcher, a reprojection
error, and a RANSAC scoring function.

8. The computer of claim 1, wherein the pose estimation
parameters are selected based on the approximate camera
location with respect to overlapping portions of the route hav-
ing approximately equal length.

9. The computer of claim 1, wherein the instructions mclud-
ing further mstructions to extract the first image feature points
from the first 1mage using a feature extraction algorithm
which includes one or more of Superpoimt, Reliable and
Repeatable Detector and Descriptor, and Scale Invariant Fea-
ture Transiorm.

10. The computer of claim 1, wherein the six DoF vehicle
pose1s determined based on the six DoF camera pose by deter-
mining a six DoF offset between the vehicle and the camera.

11. The computer of claim 1, wheremn the six DoF camera
pose and the s1x DoF vehicle pose 1s determined 1 global
coordinates with respect to three orthogonal position axes
and three rotations about the three orthogonal position axes,
respectively.

12. A method, comprising:

determining an approximate camera location on a route by

inputting a first image acquired by a camera to a convolu-
tional neural network;
extracting first image feature points from the first image:;
selecting pose estimation parameters for a pose estimation
algorithm based on the approximate camera location;

determining a six degree-of-freedom (Dok) camerapose by
inputting the first image feature points and second feature
points included 1n a structure-from-motion (SfM) map
based on the route to the pose estimation algorithm
which 1s controlled by the pose estimation parameters;
and

determinming a s1x DoF vehicle pose based on the six DoF

camera pose.

13. The method of claim 12, further comprising operating a
vehicle by determining a vehicle path based on the six DoF
vehicle pose.

14. The method of claim 12, wherein a dataset of reference
images 1s acquired by a camera included 1n a vehicle as 1t tra-
vels the route.
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15. The method of claim 14, wherem the convolutional
neural network 1s trained based on a generic dataset of refer-
ence 1mages.

16. The method of claim 15, wherein the STM map includes
a collection of three-dimensional points visible from the route
generated by determining three-dimensional locations of
1mage feature points 1 global coordinates from the dataset
of reference 1mages and combining them using a 3D mapping
software program.

17. The method of claim 12, wherein the pose estimation
algorithm includes a Perspective-n-Point (P-n-P) algorithm in
a Random Sample Consensus (RANSAC) loop.

18. The method of claim 12, wherein the pose estimation
parameters include one or more of camera selection, 1mage
region selection, a feature matcher, a reprojection error, and
a RANSAC scoring function.

19. The method of claim 12, wherein the pose estimation
parameters are selected based on the approximate camera
location with respect to overlapping portions of the route hav-
ing approximately equal length.

20. The method of claim 12, wherein extracting the first
1mage feature pots from the first image includes using a fea-
ture extraction algorithm which mcludes one or more of
Superpoint, Reliable and Repeatable Detector and Descriptor,
and Scale Invariant Feature Transform.
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