(19)

AR A A AR AR

United States

US 20230267640A1

a2 Patent Application Publication o) Pub. No.: US 2023/0267640 A1l

Chakravarty et al. (43) Pub. Date: Aug. 24, 2023
(54) POSE ESTIMATION (52) U.S. CL
_ CPC ............ GO6T 7/73 (2017.01); B6OW 60/0027
(71) Applicant: Ford Global Technologies, LLC, ( );

(72)

(73)

Dearborn, MI (US)

Inventors: Punarjay Chakravarty, Campbell, CA
(US); Subodh Mishra, Bryan, 1X (US);
Mostafa Parchami, Ann Arbor, MI
(US); Gaurav Pandey, College Station,
1X (US); Shubham Shrivastava, Santa
Clara, CA (US)

Assignee: Ford Global Technologies, LLC,
Dearborn, MI (US)

(21) Appl. No.: 17/676,432
(22) Filed: Feb. 21, 2022
Publication Classification

(51) Int. CL.

Gooel 7/73 2006.01

BoeOoW 60/00 2006.01

202
200 210

1-11-

||||||
iiiiii
4 + 1 -

T
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
----------
1111111111
rrrrrrrrr
rrrrrrrrr
----------
---------
llllll

P

204

(2020.02); B6OW 10/04 (2013.01); GO6T
2207720084 (2013.01);
G061 2207/30236 (2013.01)

(57) ABSTRACT

A two-dimensional image segment that includes an outline
of an object can be determined 1 a top-down fisheye 1mage.
A s1x degree of freedom (DoF) pose for the object can be
determmned based on determining a three-dimensional
bounding box determined by one or more of (1) an axis of
the two-dimensional 1mage segment m a ground plane
included 1 the top-down fisheye 1mage and a three-dimen-
sional model of the object and (2) mputting the two-dimen-
sional 1mage segment to a deep neural network tramed to
determine a three-dimensional bounding box for the object.
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POSE ESTIMATION

BACKGROUND

[0001] Images can be acquired by sensors and processed
using a computer to determine data regarding objects 1n an
environment around a system. Operation of a sensing sys-
tem can mclude acquiring accurate and timely data regard-
ing objects 1n the system’s environment. A computer can
acquire mmages from one or more 1mages sensors that can
be processed to determine locations of objects. Object loca-
tion data extracted from mmages can be used by a computer
to operate systems mcluding vehicles, robots, security, and
object tracking systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 1s a block diagram of an example traffic
infrastructure system.

[0003] FIG. 2 1s a diagram of an example 1mage of a traffic
scene including a fisheye camera.

[0004] FIG. 3 1s a diagram of an example 1mage of a tratfic
scene acquired with a fisheye camera.

[0005] FIG. 4 1s a diagram of an ¢xample segmented

image of a tratfic scene.
[0006] FIG. 5 1s a diagram of example three-dimensional

bounding box construction.

[0007] FIG. 6 1s a diagram of example three-dimensional
model matching.

[0008] FIG. 7 1s a diagram of an example convolutional
neural network.

[0009] FIG. 8 1s a flowchart diagram of an example pro-
cess to determine a s1x degree-of-freedom pose for an object
1n a fisheye 1mmage.

[0010] FIG. 9 1s a flowchart diagram of an example pro-
cess to operate a vehicle based on a six degree-of-freedom
object pose.

DETAILED DESCRIPTION

[0011] A sensing system can acquire data, for example
image data, regarding an environment around the system
and process the data to determine 1dentities and/or locations
of objects. For example, a deep neural network (DNN) can
be trained and then used to determine objects 1n 1mage data
acquired by sensors 1 systems including vehicle guidance,
robot operation, security, manufacturing, and product track-
ing. Vehicle guidance can mclude operation of vehicles m
autonomous or semi-autonomous modes 1 environments
that include a plurality of objects. Robot guidance can
include guiding a robot end effector, for example a gripper,
to pick up a part and orient the part for assembly 1n an envir-
onment that mcludes a plurality of parts. Security systems
include features where a computer acquires video data from
a camera observing a secure area to provide access to
authorized users and detect unauthorized entry in an envir-
onment that includes a plurality of users. In a manutacturing
system, a DNN can determine the location and orientation of
one or more parts 1 an environment that includes a plurality
of parts. In a product tracking system, a deep neural network
can determine a location and orientation of one or more
packages 1n an environment that includes a plurality of
packages.

[0012] Vehicle guidance will be described herein as a non-
Immiting example of using a computer to detect objects, for
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example vehicles and pedestrians, mn a tratfic scene and
determine a vehicle path for operating a vehicle based on
the detected objects. A traffic scene 1s an environment
around a traffic infrastructure system or a vehicle that can
include a portion of a roadway and objects including vehi-
cles and pedestrians, etc. For example, a computing device
in a vehicle or traflic infrastructure system can be pro-
orammed to acquire one or more 1mages from one or more
sensors 1ncluded 1n the vehicle or the tratfic infrastructure
system, detect objects 1 the images and communicate labels
that 1dentify the objects along with locations of the objects.
[0013] The sensors can mclude video or still image cam-
eras that acquire images corresponding to visible or infrared
wavelengths of light. The sensors can be included n the
vehicle or can be stationary and can be mounted on poles,
buildings, or other structures to give the sensors a view of
the traffic scene including objects 1n the traflic scene. Sen-
sors can also iclude hidar sensors, which typically emat
infrared wavelengths of light, radar sensors which emut
radio waves, and ultrasound sensors which emit sound
waves. Lidar, radar, and ultrasound sensors all measure dis-
tances to points 1 the environment. In some examples sen-
sors 1ncluded 1 a vehicle can acquire one or more 1mages of
a tratfic scene and process the 1mages to determine locations
of objects included 1n the 1mages. The location of the objects
can permit a computing device 1n the vehicle to determine a
vehicle path upon which to operate the vehicle. Stationary
sensors mcluded 1n a tratfic infrastructure system can pro-
vide data regarding objects 1n a traffic scene to augment data
acquired by sensors mcluded m the vehicle. In examples
discussed herein, a fisheye camera included 1 a tratfic mira-
structure system can acquire data regarding objects included
1n a tratfic scene and communicate the data to a vehicle.
[0014] Advantageously, techniques described herein can
improve the ability of a computing device m a traffic infra-
structure system to determine a six degree-of-freedom
(DokF) pose of an object 1n an environment around the vehi-
cle acquired using a camera that includes a fisheye lens. A
fisheye lens 1s an extremely wide-angle lens that provides a
panoramic or hemispherical field of view while imtroducing
convex distortion that causes straight lines to appear curved.
An advantage of a fisheye lens 1s that 1t permits a smgle
camera to view an entire scene. A disadvantage of a fisheye
lens 1s that additional processing can be required to extract
quantitative data from 1mage data acquired with a fisheye
lens due to the convex distortion. A fisheye camera herein
means a camera that includes a fisheye lens.

[0015] Disclosed hereimn 1s a method, including determin-
ing a two-dimensional 1image segment that includes an out-
line of an object 1n a top-down fisheye image and determin-
ing a s1x degree of freedom (DoF) pose for the object based
on determining a three-dimensional bounding box deter-
mined by one or more of (1) an axis of the two-dimensional
image segment 1n a ground plane mcluded 1n the top-down
fisheye 1mage and a three-dimensional model of the object,
and (2) mputting the two-dimensional 1mage segment to a
deep neural network tramned to determine the three-dimen-
sional bounding box for the object. The six Dok pose can be
transmitted to a second computer icluded m a vehicle. The
second computer can determine a vehicle path based on the
s1X DoF pose of the object. The second computer can opet-
ate the vehicle on the vehicle path by controlling one or
more of vehicle powertrain, vehicle steermng, and vehicle
brakes. The object can be a second vehicle.




US 2023/0267640 Al

[0016] The top-down fisheye image can be acquired by a
camera including a fisheye lens included 1n a traffic infra-
structure system. The two-dimensional 1mage segment can
be determined by a deep neural network. The axis of the
two-dimensional i1mage segment can be determined by
determining a vehicle polygon. The ground plane can be
based on a roadway included in the top-down fisheye
image. The three-dimensional model of the object can be
determined based on a size and a shape of the two-dimen-
sional 1mage segment. The three-dimensional bounding box
can be determined based on projecting the three-dimen-
sional model of the object onto a roadway plane. The road-
way plane can be defined by a plane equation ax + by + ¢z =
d and 1s coincident with a surface of a roadway. The vehicle
polygon can be a rectangle. The three-dimensional bound-
ing box can be determined based on projecting two rays
which subtend the front and back edges of the vehicle

polygon.
[0017] Further disclosed 1s a computer readable medium,

storing program 1nstructions for executing some or all of the
above method steps. Further disclosed 1s a computer pro-
orammed for executing some or all of the above method
steps, mcluding a computer apparatus, programmed to
determine a two-dimensional image segment that includes
an outline of an object 1n a top-down fisheye 1mage and
determine a s1x degree of freedom (Dok) pose for the object
based on determuning a three-dimensional bounding box
determined by one or more of (1) an axis of the two-dimen-
sional 1mage segment 1n a ground plane included 1n the top-
down fisheye 1mmage and a three-dimensional model of the
object, and (2) mputting the two-dimensional image seg-
ment to a deep neural network tramed to determine the
three-dimensional bounding box for the object. The six
DoF pose can be transmitted to a second computer mcluded
in a vehicle. The second computer can determine a vehicle
path based on the six DoF pose of the object. The second
computer can operate the vehicle on the vehicle path by con-
trolling one or more of vehicle powertrain, vehicle steering,
and vehicle brakes. The object can be a second vehicle.
[0018] The mnstructions can include further mstructions to
acquire the top-down fisheye image by a camera including a
fisheye lens included 1n a traffic mfrastructure system. The
two-dimensional 1mage segment can be determined by a
deep neural network. The axis of the two-dimensional
1mage segment can be determined by determining a vehicle
polygon. The ground plane can be based on a roadway
included 1n the top-down fisheye image. The three-dimen-
sional model of the object can be determined based on a si1ze
and a shape of the two-dimensional image segment. The
three-dimensional bounding box can be determined based
on projecting the three-dimensional model of the object
onto a roadway plane. The roadway plane can be defined
by a plane equation ax + by + ¢z = d and 15 comcident
with a surface of a roadway. The vehicle polygon can be a
rectangle. The three-dimensional bounding box can be
determined based on projecting two rays which subtend
the front and back edges of the vehicle polygon.

[0019] FIG. 1 1s a diagram of a sensing system 100 that
can mclude a tratfic infrastructure system 103 that includes a
server computer 120 and stationary sensors 122. Sensing
system 100 includes a vehicle 110, operable 1 autonomous
(“autonomous” by itself mn this disclosure means “fully
autonomous”), semi-autonomous, and occupant piloted
(also referred to as non-autonomous) mode. One or more
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vehicle 110 computing devices 115 can receive data regard-
ing the operation of the vehicle 110 from sensors 116. The
computing device 115 may operate the vehicle 110 1n an
autonomous mode, a semi-autonomous mode, or a non-
autonomous mode.

[0020] The computing device 115 includes a processor
and a memory such as are known. Further, the memory
includes one or more forms of computer-readable media,
and stores mstructions executable by the processor for per-
forming various operations, mcluding as disclosed herein.
For example, the computing device 115 may include pro-
gramming to operate one or more of vehicle brakes, propul-
sion (e.g., control of acceleration 1n the vehicle 110 by con-
trolling one or more of an internal combustion engine,
electric motor, hybrid engine, etc.), steering, climate con-
trol, mnterior and/or exterior lights, etc., as well as to deter-
mine whether and when the computing device 1135, as
opposed to a human operator, 1s to control such operations.
[0021] The computing device 115 may include or be com-
municatively coupled to, e.g., via a vehicle communications
bus as described further below, more than one computing
devices, e.g., controllers or the like included 1n the vehicle
110 for monitoring and/or controlling various vehicle com-
ponents, €.g., a powertrain controller 112, a brake controller
113, a steering controller 114, e¢tc. The computing device
115 18 generally arranged for communications on a vehicle
communication network, €.g., mcluding a bus 1n the vehicle
110 such as a controller area network (CAN) or the like; the
vehicle 110 network can additionally or alternatively
include wired or wireless communication mechanisms
such as are known, ¢.g., Ethernet or other communication
protocols.

[0022] Via the vehicle network, the computing device 115
may transmit messages to various devices 1 the vehicle and/
or recerve messages from the various devices, €.g., control-
lers, actuators, sensors, etc., including sensors 116. Alterna-
tively, or additionally, 1n cases where the computing device
115 actually comprises multiple devices, the vehicle com-
munication network may be used for communications
between devices represented as the computing device 115
1n this disclosure. Further, as mentioned below, various con-
trollers or sensing elements such as sensors 116 may provide
data to the computing device 115 via the vehicle communi-
cation network.

[0023] In addition, the computing device 115 may be con-
figured for communicating through a vehicle-to-mtrastruc-
ture (V-to-I) interface 111 with a remote server computer
120, e.g., a cloud server, via a network 130, which, as
described below, includes hardware, firmware, and software
that permits computing device 115 to communicate with a
remote server computer 120 via a network 130 such as wire-
less Internet (WI-FI®) or cellular networks. V-to-I interface
111 may accordingly include processors, memory, transcel-
vers, etc., configured to utilize various wired and/or wireless
networking technologies, ¢.g., cellular, BLUETOOTH®
and wired and/or wireless packet networks. Computing
device 115 may be configured for communicating with
other vehicles 110 through V-to-I mterface 111 using vehi-
cle-to-vehicle (V-to-V) networks, €.g., according to Dedi-
cated Short Range Communications (DSRC) and/or the
like, e.g., formed on an ad hoc basis among nearby vehicles
110 or tormed through mfrastructure-based networks. The
computing device 115 also includes nonvolatile memory
such as 1s known. Computing device 115 can log data by




US 2023/0267640 Al

storing the data 1n nonvolatile memory for later retrieval and
transmittal via the vehicle communication network and a
vehicle to infrastructure (V-to-1) interface 111 to a server
computer 120 or user mobile device 160.

[0024] As already mentioned, generally included m
instructions stored 1n the memory and executable by the pro-
cessor of the computing device 115 1s programming for
operating one or more vehicle 110 components, €.g., brak-
ing, steering, propulsion, etc., without mtervention of a
human operator. Using data received m the computing
device 115, ¢.g., the sensor data from the sensors 116, the
server computer 120, etc., the computing device 115 may
make various determinations and/or control various vehicle
110 components and/or operations without a driver to oper-
ate the vehicle 110. For example, the computing device 115
may 1nclude programming to regulate vehicle 110 opera-
tional behaviors (1.¢., physical manifestations of vehicle
110 operation) such as speed, acceleration, deceleration,
steering, ¢tc., as well as tactical behaviors (1.e., control of
operational behaviors typically in a manner intended to
achieve efficient traversal of a route) such as a distance
between vehicles and/or amount of time between vehicles,
lane-change, mimmimum gap between vehicles, left-turn-
across-path mimimum, time-to-arrival at a particular loca-
tion and intersection (without signal) minimum time-to-arri-
val to cross the mtersection.

[0025] Controllers, as that term 18 used herein, include
computing devices that typically are programmed to moni-
tor and/or control a specific vehicle subsystem. Examples
include a powertrain controller 112, a brake controller 113,
and a steering controller 114. A controller may be an elec-
tronic control unit (ECU) such as 1s known, possibly mclud-
ing additional programming as described heremn. The con-
trollers may communicatively be connected to and receive
instructions from the computing device 115 to actuate the
subsystem according to the instructions. For example, the
brake controller 113 may receive instructions from the com-
puting device 1135 to operate the brakes of the vehicle 110.
[0026] 'The one or more controllers 112, 113, 114 for the
vehicle 110 may 1nclude known electronic control units
(ECUs) or the like mcluding, as non-limiting examples,
one or more powertrain controllers 112, one or more brake
controllers 113, and one or more steering controllers 114.
Each of the controllers 112, 113, 114 may include respective
processors and memories and one or more actuators. The
controllers 112, 113, 114 may be programmed and con-
nected to a vehicle 110 communications bus, such as a con-
troller area network (CAN) bus or local mterconnect net-
work (LIN) bus, to receive nstructions from the
computing device 115 and control actuators based on the
instructions.

[0027] Sensors 116 may include a variety of devices
known to provide data via the vehicle communications
bus. For example, a radar fixed to a front bumper (not
shown) of the vehicle 110 may provide a distance from the
vehicle 110 to a next vehicle 1n front of the vehicle 110, or a
global positioning system (GPS) sensor disposed in the
vehicle 110 may provide geographical coordinates of the
vehicle 110. The distance(s) provided by the radar and/or
other sensors 116 and/or the geographical coordinates pro-
vided by the GPS sensor may be used by the computing
device 115 to operate the vehicle 110 autonomously or
semi-autonomously, for example.
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[0028] The vehicle 110 1s generally a land-based vehicle
110 capable of autonomous and/or semi-autonomous opera-
tion and having three or more wheels, e.g., a passenger car,
light truck, etc. The vehicle 110 mncludes one or more sen-
sors 116, the V-to-I intertace 111, the computing device 115
and one or more controllers 112, 113, 114. The sensors 116
may collect data related to the vehicle 110 and the environ-
ment 1n which the vehicle 110 1s operating. By way of exam-
ple, and not Iimitation, sensors 116 may mclude, ¢.g., alti-
meters, cameras, LIDAR, radar, ultrasonic sensors, mfirared
SENSOTS, pressure sensors, accelerometers, gyroscopes, tem-
perature sensors, pressure sensors, hall sensors, optical sen-
sors, voltage sensors, current sensors, mechanical sensors
such as switches, etc. The sensors 116 may be used to
sense the environment 1n which the vehicle 110 1s operating,
¢.g., sensors 116 can detect phenomena such as weather con-
ditions (precipitation, external ambient temperature, etc.),
the grade of a road, the location of a road (e.g., using road
edges, lane markings, etc.), or locations of target objects
such as neighboring vehicles 110. The sensors 116 may
further be used to collect data including dynamic vehicle
110 data related to operations of the vehicle 110 such as
velocity, yaw rate, steering angle, engine speed, brake pres-
sure, o1l pressure, the power level applied to controllers 112,
113, 114 1 the vehicle 110, connectivity between compo-
nents, and accurate and timely performance of components
of the vehicle 110.

[0029] Vehicles can be equipped to operate 1n both auton-
omous and occupant piloted mode. By a semi- or fully-
autonomous mode, we mean a mode of operation wherein
a vehicle can be piloted partly or entirely by a computing
device as part of a system having sensors and controllers.
The vehicle can be occupied or unoccupied, but 1 either
case the vehicle can be partly or completely piloted without
assistance of an occupant. For purposes of this disclosure,
an autonomous mode 1s defined as one 1n which each of
vehicle propulsion (e.g., via a powertrain mcluding an inter-
nal combustion engine and/or electric motor), braking, and
steering are controlled by one or more vehicle computers; 1n
a semi-autonomous mode the vehicle computer(s) control(s)
on¢ or more of vehicle propulsion, braking, and steering. In
a non-autonomous mode, none of these are controlled by a
computer.

[0030] FIG. 2 1s a diagram of an 1mage 200 of a tratfic
scene 202. Traffic scene 202 includes a roadway 204, and
vehicles 206. The traffic scene 202 also includes a ﬁsheye
camera 208 which can be a stationary sensor 122 mcluded 1n
a traffic infrastructure system 103. The fisheye camera 208
can be mounted on a camera mount 210, which can include
traffic signal poles, light poles, purpose-built poles or
mounts, buildings, or exasting structures such as bridges,
overpasses, or sign poles. The fisheye camera 208 can be a
video camera and acquire a plurality of frames of RGB color
images, for example. The images acquired by a fisheye cam-
cra 208, or data extracted from an 1mage acquired by a fish-
eye camera 208 can be communicated to a computing device
115 1n a vehicle 110 by a server computer 120 included 1n a

tratfic intfrastructure system 105.
[0031] FIG. 3 1s a diagram of a fisheye image 300 of a

trathic scene 302 acquired by a fisheye camera 208. Fisheye
image 300 includes a roadway 308, the mounting pole upon
which the fisheye camera 208 1s mounted and a vehicle 304.
Fisheye image 300 provides a panoramic view of the tratfic
scene 302 beneath the fisheye camera 208, however, the
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convex distortion included in the fisheye mmage 300 can
cause¢ lmes that are straight in the real world to appear
curved 1n the fisheye image 300, for example edges of the
roadway 308.

[0032] Acquiring an image with a fisheye camera 208 can
be described mathematically as first projecting world coor-
dinates, 1.¢., global coordinates mcluded 1n a real-world trai-
fic scene, 1into camera coordinates, 1.e., coordinates mea-
sured relative to the camera sensor plane:

X, X, (1)
‘ZC ZW

In Equation 1, X,,, Y,,, Z,, are the three axis coordinates of a
poimnt 1n real-world coordinates, X, Y, Z are the three
ax1s coordinates of a poimnt 1n camera coordinates, € R,, 18
a 3x3 rotational matrix that rotates a point 1 three-dimen-
sional space and ¢ty 1s a 1 X3 matrix that translates a poimnt n
three-dimensional space. Imaging a point in three-dimen-
sional space with a fisheye lens can be modeled as project-
ing the point onto a unit sphere by the equation:

A @)

o JX§+K§+Z§
YC

X212+ 22
‘ZC

X2 +TE+ 72

In Equation 2, X, Y, 7Z, are the three axis coordinates of a
point projected on to the unit sphere. The point on the unait
sphere 1s then projected onto a normalized plane to yield
normalized coordmates X,,4, v, by the equation:

X, (3)
_xuﬂf—_ Lo+¢&
_ym:'-,f_ YS

RZEE

[0033] Distortion parameters related to the fisheye lens
distortion ki, ko, py, pr, can be estimated by determining
the 1ntrinsic calibration of the fisheye lens. Intrinsic calibra-
tion includes the parameters that determine the fisheye lens
distortion that occurs 1n addition to the distortion due to the
spherical lens. The fisheye lens distortion parameters are
applied to the normalized coordinates to transform the
undistorted coordmates X,,4, v,.4 to distorted coordinates

Xg> Vg 3_ ) (4)
X, [l+k1(x2 +y2)+k2(x2 +y2)2)

(x, 2P\ Xy Vg T P2 ((-3“52 +.Vz)+ 23‘32)

RLE yﬁd[lntkl(xz+y2)+k2(x2+y2)2]

2 P0X 0 Vg T P1( x” + )+ 23‘52)
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A generalized camera projection matrix that converts the
distorted, normalized fisheye coordinates into camera coor-
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dinates p=| using camera parameters for focal length {,, 1,
in x and vy, optical center c,, ¢, In X and y and skew s:
] T, 5
W [f s e X, (5)
P—_V_—_D e, J;d

Applying equations (1)-(5) to real world coordinates Xy,
Yy, Zy can yield camera coordinates p, 1.€., applying equa-
tions (1)-(5) to a real world traffic scene 202 can yield a
fisheye 1mage 300. This 1s summarized by the equation:

F(p)=TT(2) G

where F(p) 1s a fisheye immage, 11 1s the transform that
includes equations (1)-(5) and o 1s a set of data points 1n
three-dimensional real-world coordinates.

[0034] FIG. 4 1s a diagram of a segmented fisheye image
400 that has been divided mto segments by inputting fisheye
image 300 to 1mage segmentation software. An example of
1mage segmentation software 18 Mask-RCNN. Mask-RCNN
1s a neural network-based segmentation algornithm available
at the website viso.ai1 as of the filing date of this application.
Image segmentation determines regions 1n an 1mage within
edges that include pixels with similar intensity or color.
Edges 1 immages can be determined by processing the
image to determine large changes m pixel mtensity or
color values that typically imndicate object boundaries. Pixels
of each segment can be labeled with an mteger value that
can be used to separate the segment from the rest of the
image. Once segments are determined 1n an image such as
segmented fisheye mmage 400, the segments can be 1denti-
fied by location, size and shape. Segmented fisheye 1mage
400 1ncludes segments 1dentified as roadway segment 402
and vehicle segment 404. For example, vehicle segment
404 can be 1dentified because of 1its size, shape, and location
on roadway segment 402.

[0035] FIG. 5 1s a diagram illustrating a geometric
approach to determining a three-dimensional (3D) bounding
box 1n global coordinates for an object such as a vehicle 502
included m a fisheye mmage 300. The mmage segment that
includes vehicle 502 whose outline or edges form or are
used to define a shape retferred to herein as a polygon. The
polygon can be rectangle, for example, where the polygon
has two opposing long sides and two opposing short sides. A
line which defines a principal axis of the vehicle 502 poly-
oon can be transformed using data regarding the fisheye
camera S08 1ntrinsic parameters, the geometry of the road-
way plane 516 1n global coordinates 514 and a vehicle
model 518. A vehicle model 518 1s a mathematical represen-
tation of the exterior surfaces of a vehicle. A vehicle model
S18 can be a polygonal mesh based on 3D computer aided
design (CAD) drawings, for example. The transformation
that transforms immage plane coordinates 506 into global
coordimnates 514 1s based on reversing equations (1)-(5).
above by mverting the matrix operations m equations (1)-
(5). Two rays 512 (dotted lines) which subtend the front and
back edges of the vehicle 502 polygon are projected through
the fisheye camera S08 lens to mtersect the roadway plane
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516. The roadway plane 516 can be defined by a plane equa-
tion, 1.e., ax + by + ¢z =d. The parameters a, b, ¢, and d are
selected to make the roadway plane 516 coincident with the
surface of the roadway 204. The roadway plane 516 1s a can
be determined 1n global coordinates with respect to the loca-
tion of the fisheye camera 508 by measuring the roadway
204 with surveymg equipment at the time the fisheye cam-
cra 508 1s mstalled, for example.

[0036] Because vehicle 502 polygon typically will have
two sides that are longer than the other two sides an ellipse
that subtends the vehicle 502 polygon can be constructed
and the mntersections of a major axis of the ellipse with the
polygon can be determined to locate the starting ends of the
rays 512. A line 520 can be defined based on the mtersection
of the rays 512 with the roadway plane 516 that aligns an
ax1s of the vehicle model 518 that defines a yaw angle with
respect to the global coordmnates 514. A 3D bounding box
522 can be constructed based on the size of the vehicle
model 518 and the roadway plane 516 so that the center of
the 3D bounding box 522 comncides with the center of the
vehicle model 318.

[0037] Determining the 3D bounding box in this fashion
provides the location of the center of the 3D bounding box
522, the yaw angle of the 3D bounding box 522, and the size
of the 3D bounding box 522, all mn global coordmates 514.
Data regarding the location, yaw angle, and size of the 3D
bounding box 522, specified 1 global coordinates 514, can
be transterred from a server computer 120 1n a traffic infra-
structure system 103 to a computing device 115 1n a vehicle
110 and used by the computing device 115 to operate the
vehicle 110. The yaw angle determined on the roadway
plane 516 can be 180 degrees off, 1.¢., the vehicle model
518 can be assumed to be pomnting in the wrong direction.
[0038] Because the location, yaw angle, and size of the
vehicle model 518 will be determined 1 a plurality of
1mages over a series of time steps, the location of the vehicle
model 518 can be tracked and the tracked motion of the
vehicle model 518 can be used to determine the correct
orientation of the vehicle model 518. The 3D bounding
box 522 1s determined 1n six degrees of freedom (DoF).
S1x DoF 1ncludes three positional coordinates 1n orthogonal
X, y, and z axes and three rotational coordinates 1n roll, pitch,
and yaw about the x, y, and z axes, respectively. The roll and
pitch of the 3D bounding box 522 are assumed to be zero
because the roadway plane 516 around the fisheye camera
510 1s assumed to be flat. It the origimal measurement of the
roadway plane 516 determunes that the roadway 1s tilted
with respect to the fisheye camera 510, the determined roll

and pitch of the roadway plane 516 can be added to the six

DoF pose of the 3D bounding box 522.
[0039] FIG. 6 15 a diagram of 3D vehicle model 602

matching used to improve the determination of vehicle six
DoF pose. A 3D vehicle model 602 can be a mathematical
representation of the exterior surtaces of a vehicle based on
3D CAD drawings as discussed above, for example. The
dimensions of the 3D bounding box 522 can be mitialized
usmg the dimensions of the vehicle 502 polygon projected
onto the roadway plane 516 and updated using a 2D 1mage
ol the vehicle 502. However, 1f a 3D vehicle model 602 1s
available, the 3D vehicle model 602 can be used to deter-
mine the dimensions of a 3D bounding box 522. In addition,
a 3D vehicle model 602 can be projected onto the fisheye
camera S08 image plane coordinates 506 to further optimize
the pose of the vehicle 502 relative to the camera.
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[0040] A 3D vehicle model 602 can be parameterized
using a signed distance tunction (SDF). An SDF 1s a func-
tion that represents objects in image data by parameterizing
the pixels mnside the object’s boundary. The pixels are para-
meterized by giving them a value equal to their smallest
distance to the object’s boundary. Pixels further from the
boundary increase 1n value until the center of the object 1s
reached. Pixels mside the boundary are given positive
values and pixels outside the boundary are given negative
values. An SDF 3D vehicle model 602 1s projected onto the
fisheye camera 510 mmage plane coordinates 506 using the
fisheye camera 510 mtrinsic projection function discussed
above 1n equations (1)-(5). Projecting the SDF version of
the 3D vehicle model 602 onto the fisheye camera 510
image plane coordinates 506 vyields model mask image
606. Scparately, the vehicle 608 1s converted to a segmented
polygon the 1mage using the Mask-RCNN segmentation
algorithm, as discussed above, yielding the vehicle mask
image 610. The residual image 612 1s determined by apply-
ing an 1mtersection over union (IoU) operator to determines a
difference between the model mask image 606 and the vehi-
cle mask 1mage 610. An IoU operation divides the number
of pixels 1n the mtersection between model mask 1mage 606
and vehicle mask 1mage 610 by the number of pixels n the
union between model mask 1mage 606 and vehicle mask
image 610. The residual image 612 can be used to optimize
the match between 3D vehicle model 602 pose and vehicle
608 by 1terating the process of generating a model mask
image 606 while varying the pose of the 3D vehicle model
602 for cach 1teration until the residual image 612 1s max-
immized. The 3D vehicle model 602 and vehicle 608 can be
mput to a standard non-linear Least Squares optimizer like
Ceres, which 1terates the Levenberg-Marquardt/Gauss-
Newton algorithms to determine a maxmmum residual
image 612.

[0041] FIG. 7 1s a block diagram of a convolutional neural
network (CNN) 700. A CNN 700 can be used to determine a
3D bounding box 522 for vehicle 502 polygons m fisheye
images 300. A geometric approach as discussed above 1n
relation to FIG. 6 gives good results when the vehicle 502
polygon 1s not touching another object that obscures or
alters the outline of the vehicle 502. A CNN 700 can be
trained to determine a 3D bounding box 522 despite altera-
tions or obscuring of vehicle 502 outlines. A technique that
uses both a geometric approach and a CNN 700 can yield
improved results by processing mput images with vehicles
502 1n a vanety of mput conditions mcluding examples
where the vehicle 502 1s partially obscured or the outline
1s altered by neighboring vehicles.

[0042] CNN 700 mputs an 1image 702 and outputs one or
more predictions 710 that mclude 3D bounding boxes 522
for vehicles 502 included 1n mput image 702. A CNN 700
can 1nclude convolutional layers 704 which convolve the
input 1mage 702 using a plurality of convolutional kernels
and output latent variables 706 to fully connected layers
708. Fully connected layers 708 process the latent variables
706 with a plurality of linear and/or non-linear algebraic
functions to determine one or more predictions 710 corre-
sponding to moving objects 322 mncluded in 1mnput mmage
702.

[0043] CNN 700 can be tramned using a tramming dataset
that includes a plurality of mput 1mages 702 and user deter-
mined ground truth corresponding to the mnput 1mages 702.
Ground truth includes data regarding the real-world 3D
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bounding boxes 522 of vehicles 502 included 1n the tramning
dataset. Training data can be generated using photo-realistic
image rendering software to generate simulated images of
vehicles 1n traffic scenes that realistically simulate a tratfic
scene 302 1n the environment around a fisheye camera 208.
An example photo-realistic rendering software 1s Unreal
Engine produced by Epic Games, Cary, NC, 27518. Simula-
tion software generate fisheye images 300 that simulate
image acquisition by a real-world fisheye camera 208.
Because the six DoF pose of the real-world fisheye camera
208 and the fisheye camera 208 parameters have been deter-
mined, the sitmulation software can use equations (1)-(5) to
oenerate fisheye images 300 based on the simulated images
that appear as if they were acquired from real-world traffic
scenes. Because the photo-realistic rendering software uses
as mput the 3D location and a 3D model of the vehicle 502,
ground truth regarding the 3D bounding box 522 to be out-
put by the CNN 700 are readily available for all simulated
1mages.

[0044] During training, parameters corresponding to the
convolution kernels and algebraic functions can be ran-
domly or pseudo-randomly selected and an mmput 1mage
702 15 processed to determine one or more 3D bounding
box predictions 710. The 3D bounding box predictions 710
can be compared to the ground truth corresponding to the
input image 702 and loss tunctions can be determined. The
loss function 1s 1mput to the convolutional layers 704 and
tully connected layers 708 to select parameters for the con-
volution kernels and algebraic functions that result i the
best correspondence between 3D bounding box predictions
710 and ground truth, thus training the CNN 700.

[0045] An advantage of usmng the vehicle segment 404
mask for training and operating a CNN 700 1s that 1t 15 mnde-
pendent of the fidelity of the simulation. Fidelity of the
simulation 1s the extent to which a simulated 1mage matches
an 1mage acquired by a real-world camera of a real-world
scene. Matching refers to comparing pixel values in the
simulated image and the real-world 1image. Using simulation
data for tramning a CNN 700 can be diflicult because, while
the visual appearance simulated 1mages 1s getting more and
more realistic over time, stmulated 1images still typically do
not match real-world 1mage perfectly or undetectably to the
human eye. A simulated 1mage 1s typically slightly different
than real image data. This means that a CNN 700 tramed on
simulated 1mages does not always produce results as
expected on the real-world mmages. This 1s referred to as
the domain gap problem between simulated data and real-
world data. Usmg vehicle segment 404 masks from simu-
lated data and training the CNN 700 using vehicle segment
404 masks avoids the domain gap problem because vehicle
segment 404 masks from real-world data and simulated data
are 1dentical. Once the CNN 700 1s tramed to generate 3D
bounding boxes 522 using vehicle segment 404 masks from
simulated data, the CNN 700 can generate 3D bounding
boxes 522 based on vehicle segment 404 masks generated
from real-world data with no domain gap problems.

[0046] Generating training datasets including ground truth
can be a problem 1n traiming a CNN 700. Acquiring accurate
3D bounding box data for vehicles in real-world tratfic
scenes can require acquiring lidar data and processing the
lidar data usmng computing resources. Annotating the
acquired fisheye mmages can include employing expensive
computer resources to acquire and process the data. Using
simulated data addresses the need for acquiring and annotat-
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ing large datasets. Using simulated data to generate training
datasets improves tramning a CNN 700 by eliminating the
need for human and computer resources to acquire and

annotate the tramning dataset.
[0047] Both a geometric approach as discussed 1n relation

to FIG. §, and a CNN 700 based approach as discussed 1n
relation to FIG. 7, have strengths and weaknesses 1 deter-
mining a 3D bounding box 522 based on a fisheye mmage
300. A geometric approach 1s very accurate and very effl-
cient m using computer resources to determine 3D bounding
boxes 522 from fisheye mmages 300 when a distinct outline
for a vehicle 304 1s visible i the fisheye image 300. A CNN
700 can require more computer resources to operate. How-
ever, the CNN 700 can determine accurate 3D bounding
boxes 522 even when an incomplete or partially obscured
vehicle 304 outline 1s visible 1n the fisheye image 300.
Advantageously, techniques described herein use both a
geometric approach and a CNN 700 approach to determine
3D bounding boxes 522, thereby addressing the afore-said
weaknesses while gaining the afore-said strengths. For
example, a vehicle segment 404 from a segmented fisheye
image 400 can be mput to 1mage processing software to
determine whether the vehicle segment 404 has size and
shape parameters that would permit a geometric approach
to determine an accurate 3D bounding box 522. When the
size and shape parameters of vehicle segment 404 are out-
side of user-determined acceptable ranges, a CNN 700 can
be used to determine the 3D bounding box 522. In this fash-
1on, techmques described herein can mimimize the use of
computer resources while guaranteemg accurate results
when determining global coordinates for a 3D bounding
box 522 tor a vehicle 304 1n a fisheye image 300.

[0048] An example of image processing software that can
determine size and shape parameters from a segmented
image are the “contourArea” and “moments” routines from
the OpenCV library discussed above. The contourArea rou-
tine finds measures the number of pixels within a segmented
image portion. The moments routine determines parameters
of a smallest enclosing rectangle or ellipse around a segmen-
ted 1mage portion. Parameters returned from the contour-
Arca and moments routines can be used to determine
whether a vehicle segment 404 portion of a segmented fish-
cye 1mage 400 should be processed usmg a geometric

approach or a CNN 700 approach.
[0049] FIG. 8 1s a flowchart, described 1n relation to FIGS.

1-7, of a process 800 for determiming a 3D bounding box
522 for a vehicle 304 included m a fisheye image 300. Pro-
cess 800 can be implemented by a processor of a computing
device 115 or server computer 120, taking as mput 1mage
data from sensors 116, 122, executing commands, and out-
putting a 3D bounding box 522 for a vehicle 304 included 1n
a fisheye 1mage 300. Process 800 includes multiple blocks
that can be executed 1n the illustrated order. Process 800
could alternatively or additionally include fewer blocks or
can include the blocks executed 1n different orders.

[0050] Process 800 begins at block 802, where a server
computer 120 acquires a fisheye image 300 including a
vehicle 304. The fisheye image 1s processed by 1mage pro-
cessing software as described above 1n relation to FIG. 4 to
determine a vehicle segment 404.

[0051] At block 804 server computer 120 processes the
vehicle segment 404 to determuine whether a geometric
approach or a CNN 700 approach should be used to deter-
mine a s1x DoF pose for a 3D bounding box 522 determined
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based on the vehicle segment 404 by processing the vehicle
segment 404 with image processing software as discussed
above 1 relation to FIG. 7. When the parameters output
from the 1mage processing software are within the value
ranges that are consistent with the geometric approach, pro-
cess 800 passes to block 806. When the parameters output
from the mmage processing software are outside the ranges
that are consistent with the geometric approach, process 800
passes to block 808.

[0052] At block 806 server computer 120 determines a six
DoF pose for a 3D bounding box 522 based on the vehicle
segment 404 using a geometric approach as discussed above
in relation to FIGS. 5 and 6.

[0053] At block 808 server computer 120 determines a si1x
DoF pose for a 3D bounding box 522 based on the vehicle
segment 404 usimg a CNN 700 approach as discussed above
in relation to FIG. 7.

[0054] At block 810 server computer 120 outputs a six
DoF pose for a 3D bounding box 522 based on the vehicle
segment 404 to a computing device 115 1 a vehicle 110.
Following block 810 process 800 ends.

[0055] FIG. 9 15 a diagram of a flowchart, described
relation to FIGS. 1-8, of a process for operating a vehicle
110 based on a six DoF pose for a 3D bounding box 522
based on the vehicle segment 404. Process 900 can be
implemented by a processor of a computing device 1135, tak-
ing as mput data from server computer 120 and sensors 116,
executing commands, and operating vehicle 110. Process
900 includes multiple blocks that can be executed in the
illustrated order. Process 900 could alternatively or addi-
tionally include fewer blocks or can include the blocks exe-
cuted 1in different orders.

[0056] Process 900 begins at block 902, where a comput-
ing device 115 1n a vehicle 110 downloads a s1x DoF pose
for a 3D bounding box 522 based on a vehicle segment 404
included 1n a fisheye image 300 acquired by a fisheye cam-
cra 208 mcluded 1 a traffic infrastructure system 103, for
example.

[0057] At block 904 computing device 115 determines a
vehicle path based on the six DoF pose for a 3D bounding
box 522. A vehicle path 1s a polynomial function that
includes maxmmum and minimum lateral and longitudinal
accelerations to be applied to vehicle motion as 1t travels
along the vehicle path. Because 3D bounding box 3522 1s
supplied to computing device 115, computing device 113
does not have to determine location and si1ze data regarding
vehicle 304 1n the environment around vehicle 110, thereby
reducing the computing resources required to operate vehi-
cle 110.

[0058] At block 906 computing device 115 outputs com-
mands to controllers 112, 113, 114 to control vehicle power-
train, vehicle steering, and vehicle brakes to control vehicle
motion to operate vehicle 110 along the vehicle path deter-
mined at block 904. Following block 906 process 900 ends.
[0059] Computing devices such as those discussed heremn
oenerally each includes commands executable by one or
more computing devices such as those identified above,
and for carrying out blocks or steps of processes described
above. For example, process blocks discussed above may be
embodied as computer-executable commands.

[0060] Computer-executable commands may be compiled
or interpreted from computer programs created using a vari-
ety of programming languages and/or technologies, mclud-
ing, without limitation, and either alone or 1n combination,
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Java™ (. C++, Python, Julia, SCALA, Visual Basic, Java
Script, Perl, HIML, etc. In general, a processor (e.g., a
mMICTOProcessor) receives commands, €.g., from a memory,
a computer-readable medium, etc., and executes these com-
mands, thereby performing one or more processes, mclud-
ing one or more of the processes described herem. Such
commands and other data may be stored 1n files and trans-
mitted using a variety of computer-readable media. A file 1n
a computing device 1s generally a collection of data stored
on a computer readable medium, such as a storage medium,
a random access memory, etc.

[0061] A computer-readable medium (also referred to as a
processor-readable medium) includes any non-transitory
(e.g., tangible) medium that participates 1in providing data
(e.g., mnstructions) that may be read by a computer (e.g.,
by a processor of a computer). Such a medium may take
many forms, including, but not limited to, non-volatile
media and volatile media. Instructions may be transmitted
by one or more transmission media, including fiber optics,
wires, wireless communication, mcluding the mternals that
comprise a system bus coupled to a processor of a computer.
Common forms of computer-readable media include, for
example, RAM, a PROM, an EPROM, a FLASH-
EEPROM, any other memory chip or cartridge, or any
other medium from which a computer can read.

[0062] All terms used in the claims are intended to be
orven their plain and ordmary meanings as understood by
those skilled 1n the art unless an explicit mdication to the
contrary in made herein. In particular, use of the smgular
articles such as “a,” “the,” “said,” etc. should be read to
recite one or more of the mdicated elements unless a claim
recites an explicit limitation to the contrary.

[0063] The term “exemplary” 1s used herein n the sense of
signifymg an example, e.g., a reference to an “exemplary
widget” should be read as simply referring to an example
of a widget.

[0064] The adverb “approximately” modifymg a value or
result means that a shape, structure, measurement, value,
determination, calculation, etc. may deviate from an exactly
described geometry, distance, measurement, value, determi-
nation, calculation, etc., because of impertections 1n materi-
als, machming, manufacturing, sensor measurements, com-
putations, processing time, communications time, etc.
[0065] In the drawings, the same reference numbers 1ndi-
cate the same elements. Further, some or all of these ele-
ments could be changed. With regard to the media, pro-
cesses, systems, methods, etc. described herein, 1t should
be understood that, although the steps or blocks of such pro-
cesses, ete. have been described as occurring according to a
certain ordered sequence, such processes could be practiced
with the described steps performed 1n an order other than the
order described herem. It further should be understood that
certain steps could be performed simultaneously, that other
steps could be added, or that certain steps described herein
could be omitted. In other words, the descriptions of pro-
cesses herein are provided for the purpose of illustrating
certain embodiments, and should 1 no way be construed
sO as to limat the claimed mvention.

1. A system, comprising a first computer that includes a
processor; and a memory, the memory mcluding instructions
executable by the processor to:

determine a two-dimensional image segment that includes

an outline of an object 1n a top-down fisheye 1mage; and
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determine a s1x degree of freedom (DoF) pose for the object
based on determining a three-dimensional bounding box
determined by one or more of (1) an axas of the two-
dimensional 1mage segment 1n a ground plane included
in the top-down fisheye image and a three-dimensional
model of the object, and (2) mputting the two-dimen-
sional 1mage segment to a deep neural network trained
to determine the three-dimensional bounding box for
the object.

2. The computer of claim 1, the mstructions ncluding
further 1nstructions to output the six Dol pose to a second
computer included 1n a vehicle.

3. The computer of claim 1, wherein instructions 1n the sec-
ond computer include mstructions to determine a vehicle path
based on the six DoF pose of the object.

4. The computer of claim 2, wherein instructions 1n the sec-
ond computer include mstructions to operate the vehicle on
the vehicle path by controlling one or more of vehicle power-
train, vehicle steering, and vehicle brakes.

S. The computer of claim 1, wherein the object 1s a second
vehicle.

6. The computer of claim 1, wherein the top-down fisheye
image 18 acquired by a camera including a fisheye lens
included 1n a traffic infrastructure system.

7. The computer of claim 1, wherein the two-dimensional
1mage segment 1s determined by a deep neural network.

8. The computer of claim 1, wherein the axis of the two-
dimensional 1mage segment 1s determined by vehicle
polygon.

9. The computer of claim 1, wherein the ground plane 1s
based on a roadway included 1n the top-down fisheye 1mage.

10. The computer of claim 1, wheremn the three-dimen-
stional model of the object 1s determined based on a size and
a shape of the two-dimensional 1mage segment.

11. The computer of claim 1, wherein the three-dimensional
bounding box 1s determined based on projecting the three-
dimensional model of the object onto a roadway plane.
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12. A method, comprising:

determinming a two-dimensional image segment that
includes an outhine of an object 1n a top-down fisheye
1mage; and

determinming a six degree of freedom (DokF) pose for the

object based on determining a three-dimensional bound-
ing box determined by one or more of (1) an axis of the

two-dimensional 1mage segment 1n a ground plane
included 1n the top-down fisheye image and a three-
dimensional model of the object, and (2) inputting the
two-dimensional 1mage segment to a deep neural net-
work trained to determine the three-dimensional bound-
ing box for the object.

13. The method of claim 12, further comprising transmat-
ting the six DoF pose to a second computer included 1n a
vehicle.

14. The method of claim 13, wherein the second computer
determines a vehicle path based on the six DoF pose of the
object.

15. The method of claim 14, wherein the second computer
operates the vehicle on the vehicle path by controlling one or
more of vehicle powertrain, vehicle steering, and vehicle
brakes.

16. The method of claim 12, wherem the object1s a second
vehicle.

17. The method of claim 12, wherein the top-down fisheye
image 1s acquired by a camera including a fisheye lens
included 1n a traffic infrastructure system.

18. The method of claim 12, wherein the two-dimensional
1mage segment 1s determined by a deep neural network.

19. The method of claim 12, wherein the axis of the two-
dimensional 1mage segment 1s determined by determining a
vehicle polygon.

20. The method of claim 12, wherein the ground plane 18
based on a roadway included mn the top-down fisheye 1mage.
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