a9y United States
12y Patent Application Publication o) Pub. No.: US 2023/0342285 Al

Angert et al.

US 20230342285A1

43) Pub. Date: Oct. 26, 2023

(54)

(71)
(72)

(21)

(22)

(60)

MULTIPLAYER DEBUGGER
Applicant: Replit, Inc., San Francisco, CA (US)

Inventors: Tyler Jacob Angert, New York, NY
(US); Luis Hector Chavez Freire,
Mountain View, CA (US); Oleksandr
Kotliarskyi, Seattle, WA (US)

Appl. No.: 18/150,049

Filed: Jan. 4, 2023

Related U.S. Application Data

Provisional application No. 63/363,453, filed on Apr.
22, 2022.

200
\“‘\

Publication Classification
(51) Int. CL

GO6F 11/36 (2006.01)
(52) U.S. CL
CPC ... GO6F 11/3664 (2013.01); GO6F 11/3696
(2013.01)
(57) ABSTRACT

A system for a multiplayer debugger includes a computer
program, a debugger module, and a debugger multiplexer.

The debugger multiplexer initiates a multiplayer debugger
session for the computer program, wherein the multiplayer

debugger session supports a plurality of client devices,
receives from a first client device of the plurality of client

devices, a debugger operation, and transmits the debugger
operation to the debugger module. An updated debugger
state 1s determined 1n accordance with the debugger opera-
tion, and the updated debugger state 1s transmitted to a
remainder of the plurality of client devices.

RECEIVE CLIENT REQUEST TO JOIN DEBUG SESSION

OBTAIN MOST RECENTLY QUITPUT LINES

l ___ L AL

OBTAIN PROGRAM STATE INFORMATION

] 220

| SYNCHRONIZE NEW |
| STATE INFORMATION TO |
| CLENTS IN DEBUG |
| SESSION BASED ON |
| DEBUGGER OPERATION |

ttt

RECEIVE DEBUGGER OPERATION FROM THE CLIENT

tt

P 23>

WPDATE DEBUGGER VIEW
AT DEBUGGER USER
INTERFACE AT CLIENT

Patent Application Publication Oct. 26, 2023 Sheet 1 of 6 US 2023/0342285 Al

CUENTA

CLIENT B CLIENT C
1024 3 A

1028 102A

ol e e

IDE INTERFACE

{OE INTERFACF
1048

D8 INTERFALE
104

 DEBUG SESSION A

1068 106C

NETWORK
410
NETWORK SYSTEM|
1201
INTEGRATED DEVELOPMENT
ENVIRGNMENT
124

COMPUTER PROGRANM

130

Patent Application Publication Oct. 26, 2023 Sheet 2 of 6 US 2023/0342285 Al

200
AN

| STATE INFORMATION TO
- CLIENTS IN DEBUG

| SESSION BASED ON
- DEBUGGER QPERATION

 RECFIVE CLIENT REQUEST TO IOIN DEBUG SESSION

OBTAIN MOST RECENTLY OUTPUT LINES

215

OBTAIN PROGRAM STATE INFORMATION

* RECEIVE DEBUGGER OPERATION FROM THE CLIENT

225

" SHOULD DEBUGGER ™_
_ OPERATION BE SHARED? >

P 235

EW
UPDATE DEBUGGER VIEW
- AT DEBUGGER USER

INTERFACE AT CLIENT

Patent Application Publication Oct. 26, 2023 Sheet 3 of 6 US 2023/0342285 Al

CLIENT 8 CLIENT C
3028 302C

CLIENT A
302A
BEBUG SESSION A

044

N

DEBUG SESSION A
3048

DERUG SESSION B
306C

DEBUG SESSION B

3065

NETWORK

NETWORK SYSTEM{(S)
INTEGRATED DEVELOPMENT ENVIRONMENT 320

DEBUGGER SESSION MANAGER
322

SESSION A SESSHON B
3304 g 3308

?mmm#m#ﬂ

COMPUTER
EXECUTABLE

DEBUGGER MULTIPLEXER
INSTANCE A
3328

INSTANCE A
332A

DEBUGGER ADAPTER | | || DEBUGGER ADAPTER
INSTANCE A INSTANCE A
334A P 3348

DEBUGGER
248

: "

NEBUGGER | | DEBUGGER INSTANCEA || || DEBUGGER INSTANCE A
ADAPTER 336A 3368

340

PROGRAM INSTANCE A

PROGRARM INSTANCE A
38 3388

2385

Patent Application Publication Oct. 26, 2023 Sheet 4 of 6 US 2023/0342285 Al

40@\
405
INITIATE PRIMARY COLLABORATIVE DEBUGGING
SESSION
410
RECEIVE CLIENT REQUEST TO BEGIN NEW
DEBUGGING SESSION
415
CLONE PRIMARY COLLABORATIVE DEBUGGING
SESSION
420
INITIALIZE SECONDARY DEBUG PROXY INSTANCE
475

SYNCHRONIZE SECONDARY DEBUGGING SESSIO
STATE INFORMATION TO CLIENTS IN SECONDARY
DEBUGGING 5E55I0N

FIG. 4

US 2023/0342285 Al

Oct. 26, 2023 Sheet Sof 6

Patent Application Publication

{1 Furagiues wepn
“" HOEs iR

T A ATty - MR o ﬂmﬁ 438 < i

ofisH,) vimadgno wasAs
] CARTUIRI £

pron dyess ongnd . k7

B R I R S L S L S R U L N U R A ag w il e e PR S RPR RSP SRR R SR S
T T o o T Tl T Tl Tl T

(sdae 13unngiuiew spnadnesig |

| BUGM OO < wewssepa.r | K ¥ K B

oS
LN GNGDES
\.\ . .

AEASN HIIBuing el yeing

ey,
un

¥ {13uing s8ie

...
...

..umm_,mmm_,mmm_,mmm_,mmm_,mmm_.mmm_,mmm_,mmm_,mmm_,mmm_,m”m_.m”m_mmm_,mmm_.mmm_,m”m_,m”m_.mmm_,mmm_,mmm_,mmm_,mu._mm_,mmm_,mmm_,mmm_. BARTUIEIN £

A AR

DICA Jj3RIs dugnd »7

Jwey 55¢0 # 2SS < B

SHs I ing gARi LN

210507 eAR B | pEEngeq |

A3VIS HED 4
e ssjgeEn |

{s8ae Tj2usiutew silodyeug

WREEngag |

2205
LN L5

8019
N

HRHOM OlaK <

R R R R N e g age a

10110
Offait, } Uil 1IN0 wBysAg
«f

{s2ae {J3uasiueul
ploA e ogand w7
FEIAL SSBID x T

11111

HOSUOD

AR UIBA)

{{BuiSiuUIuEN
ADEY5 8

: {18uing sie

SHUELIEA

PARI UIRIAL €
SiogRealg

iaf8ngeg

vLUS
AN 1SN

YI{ig

jduingiumw uinng

YEOG, [(1Bumsjuew y;
N N oers e
{

...”....”.., .. n ,.,...,.,...,.,...,”,”..,...,......,..”.-..”h....,_..”.._.,”,”..”””.,”””.,”,
Aioe s _”._."..,.,. s ~ .“.._._.... _.w, ,M.ﬂ R S-SR

Hjduigs sdie
SRJGELIR S

RARY UIBIA £
m, {sdie {ldwasiuvieu SHHOUNEBAE
N CIOA HIBIS N a7
vOLS RSN SEEID o T < ¥ LB
DOSUND eAi U N 193304930}

Patent Application Publication Oct. 26, 2023 Sheet 6 of 6 US 2023/0342285 Al

60
//

CLIENT DEVICE(S) |

PROCESSOR(S) 2y
604 5

llllllllllllllllllllllllll

NETWORK
INTERFACE |
512 |

/0
DEVICES
614

MEMORY
600

NETWORK
618

NETWORK DEVICE(S]

520
PROCESSOR(S) MEMORY f\;%?;fgé{

626

FiG. 6

US 2023/0342285 Al

MULTIPLAYER DEBUGGER

BACKGROUND

[0001] Software development often requires developing or
creating software programs in the form of computer code
that can be very lengthy and complex. As such, understand-
ing a computer program when viewing the code can be
dificult, particularly for novice programmers. The difliculty
in understanding computer programs is particularly prob-
lematic when trying to identify discrepancies or errors that
allect operation of the computer program, such as debugging
the code. Current technology allows a user to run a debugger
soltware tool to enable a programmer to monitor the execu-
tion of a program, stop the program, start the program, set
breakpoints, set and read values, and the like. However,
debugging tools are limited to a singular instance of a
program on a singular machine.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] For a detailled description of various examples,
reference will now be made to the accompanying drawings
in which:

[0003] FIG. 1 shows a network diagram of an environment
in which various embodiments described herein may be
practiced;

[0004] FIG. 2 shows a flowchart of a technique for a
multiplayer debugger, according to one or more embodi-
ments;

[0005] FIG. 3 shows a network diagram of an environment
in which multiple sessions of a multiplayer debugger may be
deployed, according to one or more embodiments;

[0006] FIG. 4 shows a flowchart of a technique for a
multiplayer debugger, according to one or more embodi-
ments;

[0007] FIG. 5 shows an example diagram of screenshots
of clients utilizing a multiplayer debugger according to one
or more embodiments; and

[0008] FIG. 6 shows an example of a hardware system for
implementation of the multiplayer debugger in accordance
with the disclosed embodiments.

DETAILED DESCRIPTION

[0009] The following description relates to techmnical
improvements to the debugging experience to provide a
technique and system for understanding what and why
computer code 1s performing across space and/or time. In
particular, the following description relates to a system and
technique for an improved computer code debugger and
debugging experience to provide collaborative debugging
across multiple devices. In some embodiments, techniques
described herein provide a collaborative technique to debug-
ging so that users can better understand what their code 1s
doing while an associated program 1s running. The debug-
ging process may be provided 1n an interactive fashion and
within a collaborative workspace. As such, the debugging
process may be a multiplayer debugger 1n which users can
collaboratively better understand what computer code 1is
doing while running, and be able to debug the program 1n a
collaborative fashion.

[0010] Techniques described hereimn improve traditional
program debugging techmques by enabling multiple users
on different devices to collaboratively debug a computer
program 1n real time. As such, in some embodiments, users

Oct. 26, 2023

on different devices can both perform debugging operations
on a single program such that the debugging operations are
visible on all devices in the session. Improvements to the
debugging process allow for multiple debugging sessions to
run 1 which various devices can subscribe to each session.

[0011] In the following description, numerous speciiic
details are set forth to provide a thorough understanding of
the various techniques. As part of this description, some of
the drawings represent structures and devices 1n block
diagram form. In this context, it should be understood that
references to numbered drawing elements without associ-
ated 1dentifiers (e.g., 100) refer to all instances of the
drawing element with i1dentifiers (e.g., 100a and 100b).
Further, as part of this description, some of this disclosure’s
drawings may be provided in the form of a flow diagram.
The boxes 1n any particular flow diagram may be presented
in a particular order. However, 1t should be understood that
the particular tlow of any flow diagram 1s used only to
exemplily one embodiment. In other embodiments, any of
the various components depicted in the flow diagram may be
omitted, or the components may be performed 1n a difierent
order, or even concurrently. In addition, other embodiments
may include additional steps not depicted as part of the flow
diagram. Further, the various steps may be described as
being performed by particular modules or components. It
should be understood that the language used 1n this disclo-
sure has been principally selected for readability and instruc-
tional purposes, and may not have been selected to delineate
or circumscribe the disclosed subject matter. As such, the
various processes may be performed by alternate compo-
nents than the ones described.

[0012] Relerence 1n this disclosure to “one embodiment™
or to “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment 1s included in at least one embodiment, and
multiple references to “one embodiment” or to “an embodi-
ment” should not be understood as necessarily all referring
to the same embodiment or to different embodiments.

[0013] FIG. 1 shows a network diagram of an environment
in which various embodiments described herein may be
practiced. Techniques described herein provide a system and
method for a multiplayer debugger. The network diagram
includes multiple client devices, such as client A 102A,
client B 102B, and client C 102C, communicably connected
to a network system 120 across a network 110. Although a
particular representation of components and modules 1s
presented, 1t should be understood that in some embodi-
ments, the various components and modules may be differ-
ently distributed among the devices picture, or across addi-
tional devices not shown.

[0014] Clients 102A, 102B, and 102C may e¢ach be com-
puting devices from which an integrated development envi-
ronment (IDE) 1s accessed. An IDE 1s computer software
that provides tools used by programmers to develop soft-
ware. The IDE may include, for example, a source code
editor, debugger, and other programming tools. The IDE 124
may be hosted on one or more network devices of network
system 120. The IDE 124 may be accessed across the
network 110 via an IDE interface from each client, such as
IDE 1interface 104 A, IDFE interface 104B, and IDFE interface
104C. The IDE interface may be an application running on
the corresponding client device, or may be accessed from a
remote device such as a network device via a web browser,
or the like. The IDE interface of each client device may

US 2023/0342285 Al

provide access to a common debug session, as shown by the
instance of debug session A 106 A on client device 102A, the
instance of debug session A 106B on client device 102B, and
by the instance of debug session A 106C on client device

102C.

[0015] The IDE 124 hosted on network system 120 may
include a computer program 126, which may be the focus of
a development session by one or more programmers on the
client devices 102A, 102B, and 102C. The IDE 124 may
additionally include a debugger 128. Debugger 128 1s a
program that facilitates with the detection and correction of
errors 1n other computer programs. In addition, the debugger
can be used as a tool to track the operation of other computer
programs. To that end, the debugger 128 may be a program
which provides a capability to monitor the execution of a
program, stop the program, start the program, set break-
points, set and read values, and the like. The debugger 128
includes logic such that it 1s capable ol communicating with
the operation system to cause the program to perform
debugging actions, such as pause, continue, modily, inspect
memory, and the like.

[0016] According to some embodiments, the IDE 124 may
include a debugger multiplexer 130. The debugger multi-
plexer may be configured to start a computer program, such
as computer program 126 under a debugger, such as debug-
ger 128. In some embodiments, the IDE 124 may support
multiple programming languages. As such, the debugger
multiplexer may determine program characteristics required
to 1itialize and support the program 126 and the debugger
128, such as communication architecture, program interface,
and the like. For example, some debugger implementations
expect the TTY to be allocated in a different window. As
another example, some debugger implementations require a
TCP socket for communication. The debugger multiplexer
130 can communicate directly with the debugger 128 and
can handle an arbitrary number of devices communicably
connected to 1t. As such, the debugger multiplexer 130 acts
as an abstraction layer between the debugger and the mul-
tiple devices. In some embodiments, the debugger multi-
plexer 130 includes a session manager that 1s configured to
create and terminate debugger multiplexer sessions, route
messages to and from clients to the correct sessions. The
debugger multiplexer 130 receives messages from the cli-
ents and negotiates with the debugger adapter 132 about the
current state of the program. The debugger adapter 132
performs a language-independent and/or debugger imple-
mentation abstraction. Each instance of the debugger mul-
tiplexer 130 may act as a debugger proxy. The debugger
multiplexer 130 may forward program status data, for
example 1n the form of the stdio of the computer program,
to the debugger. The IDE may include an adapter program
132 configured to provide multilanguage functionality by
abstracting debugger operations. The debugger multiplexer
130 may transmit the program status data of the adapter
program to the debugger, for example over a localhost TCP
socket.

[0017] According to some embodiments, messages may
be transmitted between the adapter and the multiplexer
indicating a current state of the program. The multiplexer
processes those messages, and has a logic to confirm that
cach client has a consistent view of the program being
debugged. As such, the messages from the adapter program
may or may not be sent to the clients depending on internal
logic and decisions by the multiplexer. Similarly, 1f a mul-

Oct. 26, 2023

tiplexer receives a debugger operation from a client within
a debugger session, then the multiplexer manages commu-
nication of those messages.

[0018] The debugger multiplexer 130 also manages state
information for a debugging session in order to synchronize
the debugging session for multiple users. Thus, two users on
different client devices can view the same state of the
console at the same time. Further, two users on different
client devices can each drive the debugger in a single
session, while maintaining a consistent view across devices.
Accordingly, a live mteractive multiplayer debugger 1s pro-
vided which supports multiple users collaborating 1n a single
debugger session.

[0019] FIG. 2 shows a flowchart of a technique for a

multiplayer debugger, according to one or more embodi-
ments. It should be understood that the particular flow of the
flow diagram 1s used only to exemplily one embodiment. In
other embodiments, any of the various components depicted
in the flow diagram may be omitted, or the components may
be performed 1n a different order, or even concurrently. In
addition, other embodiments may include additional steps
not depicted as part of the flow diagram. Further, the various
steps may be described as being performed by particular
modules or components for purposes of explanation, but
should not be considered limited to those components.

[0020] The flowchart 200 begins at block 205 where a

client request 1s received to join the debug session. In some
embodiments, the client request may be received via the IDE
interface 104. In some embodiment, a user may choose to
run their program normally, with a multiplayer debugger
attached. When the multiplayer debugger 1s enabled, the
interface will show the debugging tools available.

[0021] At block 210, most recently output lines from the
debugger are obtained. By receiving the most recent output
lines, the client device can provide a current view of the
debugging session. In addition, at block 215, program state
information 1s obtained. The state information may include,
for example, breakpoints, watched wvanables, running/
stopped state, and the like. In some embodiments, this initial
handshake may include the client receiving, from the server,
the totality of the current state of execution so that the client
can catch up to the current state of the session.

[0022] The flowchart 200 continues at block 220 where a
debugger operation 1s received from one of the clients.
Debugger operations may include, for example, set break-
points, set and read values, and the like. In some embodi-
ments, a user can operate an instance of the debugger on a
local client, for example through a local user interface. The
local user interface may be used to receive mput by a user
for debugger operations. At block 2235 a determination 1s
made regarding whether the debugger operation should be
shared with other clients in the session. In some embodi-
ments, certain interactions with the debugger interface may
or may not be broadcast. For example, if an operation does
not aflect a state of the program, the operation may only be
performed on the local instance. Examples of such opera-
tions include pure inspection queries, such as obtaining the
list of executing threads and the stack trace. Thus, a deter-
mination may be made as to whether the debugger operation
satisfles a share criterion.

[0023] If at block 225 a determination 1s made that the
debugger operation should be shared with other clients in the
debugger session, then the flowchart concludes at block 23

and the new state information 1s synchronized to other

US 2023/0342285 Al

clients 1 the debug session. According to some embodi-
ments, the debugger interface on the client devices may
maintain a synchronized view, such that any action taken by
any user will be visible to all other er users. As such, replies
and events from the debugger will be broadcast to all
members of the session. Further, any user can mutate an
execution state. According to some embodiments, the syn-
chronization 1s performed by the debugger multiplexer act-
ing as a proxy for the session, which may provide the
broadcasts, maintain state information, and the like.

[0024] Returning to block 225, 11 a determination 1s made
that the debugger operation should not be shared, then the
flowchart concludes at block 235 and the debugger view 1s
updated at the local client from which the debugger opera-
tion was received. As described above, the debugger opera-
tion may not be shared in accordance with a determination
that the debugger operation does not satisiy a share criterion.
The debugger operation may not satisty the share criterion,
for example, 11 the debugger operation does not augment the
state of the program, or includes pure mspection queries.

[0025] According to one or more embodiments, the IDE
may be provided for particular communities and contexts,
such as educational settings, work groups, smaller program-
ming communities and the like. As an example, teachers
may be able to enter a debugging session with students and
direct the students to find a bug. As another example,
students can ask for help from a teacher using the multi-
player debugger. As yet another example, hobbyists that are
collaborating 1 a project can diagnose an error in their
program and collaboratively understand what the error 1s
and how to {ix 1t. Further, a development team can record an
execution of a program and help onboard new members
regarding how the program works by collaboratively view-
ing and walking through the replay of execution.

[0026] In some embodiments, multiple debug sessions
may be created per program. As an example, a set of users
may be participating 1n a primary debug session through the
debug multiplexer. According to one or more embodiments,
a second session may be initiated by any one of the users.
FIG. 3 shows a network diagram of an environment in which
multiple sessions of a multiplayer debugger may be
deployed, according to one or more embodiments. Similar to
FIG. 1 described above, the network diagram 300 includes
multiple client devices, such as client A 302A, client B
302B, and client C 302C, communicably connected to a
network system 320 across a network 310. Although a
particular representation of components and modules 1s
presented, i1t should be understood that in some embodi-
ments, the various components and modules may be differ-
ently distributed.

[0027] Clients 302A, 302B, and 302C may each be com-
puting devices from which an IDE 1s accessed. The IDE 324
may be hosted on one or more network devices of network
system 320. The IDE 324 may be accessed across the
network 310 via an IDE interface from each client. The IDE
interface may be an application running on the correspond-
ing client device, may be accessed via a web browser, or the
like. The IDE interface of each client device may provide
access to one or more common debug sessions. As shown,
client A 302A 1s active 1n a Debug Session A 304A. Client
B 302B 1s also active 1n Debug Session A as shown by
instance 304B, and 1s also active in Debug Session B as
shown by instance 306B. Further, client device 302C 1s also

active 1 Debug Session B as shown by instance 306C.

Oct. 26, 2023

[0028] The IDE 324 hosted on network system 320 may
include an executable for a computer program 326, which
may be the focus of a development session by one or more
programmers on the client devices 302A, 3028, and 302C.
That 1s, the Debug Session A and Debug Session B may both
be directed to the computer program executable 326. Nota-
bly, each session includes multiple client devices participat-
ing in the session. The IDE 324 may additionally include a
debugger 328. The debugger 128 may be a program which
provides a capability to monitor the execution of a program,
stop the program, start the program, set breakpoints, set and
read values, and the like. The IDE 324 may additionally
include a debugger adapter 340, which may be configured to
provide an abstraction for the debugger 328 such that each
user may perform debugging operations on an instance of
the computer executable 326.

[0029] According to some embodiments, the IDE 324 may
include a debugger session manager 322, which may be
configured to create and terminate debugger multiplexer
sessions, such as session A 330A and session B 330B. Fach
session may be associated with an instance of the debugger
multiplexer, debugger adapter, debugger, and an instance of
the computer executable. The debugger multiplexer, such as
debugger multiplexer instance A 332A and debugger mul-
tiplexer istance B 332B may be configured to start a
computer program, such as program instance A 334A and
program instance B 334B, respectively. The debugger mul-
tiplexer 332A and 332B also manages state information for
cach of the debugging session i order to synchronize the
debugging session for multiple users in each session. In
addition, the debugger adapter instances 334A and 334B are
configured to provide an abstraction for the istances of the
debugger 336 A and 3368 such that each user may perform
debugging operations using the debugger 336A and 336B on
the corresponding program instance 338A or 338B. Thus,
two users on different client devices can view the same state
of the console at the same time. Further, two users on
different client devices can each drive the debugger 1n a
single session, while maintaiming a consistent view across
devices. Accordingly, a live iteractive multiplayer debug-
ger 1s provided which supports multiple users collaborating
in a single debugger session, and the technique 1s capable of
supporting multiple collaborative debugger sessions for a
single program.

[0030] FIG. 4 shows a flowchart of a technique for a
multiplayer debugger, according to one or more embodi-
ments. In particular, FIG. 4 depicts a flowchart of a tech-
nique for mitializing a second collaborative session for a
single program. It should be understood that the particular
flow of the flow diagram 1s used only to exemplily one
embodiment. In other embodiments, any of the various
components depicted in the flow diagram may be omitted, or
the components may be performed 1n a different order, or
even concurrently. In addition, other embodiments may
include additional steps not depicted as part of the tlow
diagram. Further, the various steps may be described as
being performed by particular modules or components for
purposes of explanation, but should not be considered lim-
ited to those components.

[0031] The flowchart 400 begins at block 405 where a
client request 1s received to join the debug session. In some
embodiments, the client request may be received via the IDE
interface 304. In some embodiment, a user may choose to
run their program normally, with a multiplayer debugger

US 2023/0342285 Al

attached. When the multiplayer debugger 1s enabled, the
interface will show the debugging tools available.

[0032] At block 410, a client request 1s received to begin
a new debug session for the same computer program as the
primary collaborative debugging session. The client request
may be receirved through the IDE interface of the client
device.

[0033] The flowchart continues at block 415, where the
primary collaborative debugging session 1s cloned. For
example, by cloning the primary debug session from a
current state such that future debug operations may differ
between the primary debug session and the secondary debug,
session. Further, in some embodiments, both debug sessions
may be made available to programmers such that a user can
subscribe to a particular session. As such, a user can coop-
cratively debug the program within whichever session the
user 1s subscribed to. In some embodiments, each session 1s
associated with a unique debug proxy. As such, at block 420,
a proxy instance is 1nitialized for the secondary session.

[0034] The flowchart concludes at block 425 where the
secondary debug session state information i1s synchronized
to clients 1n the secondary debug session. According to some
embodiments, the synchronization 1s performed by a proxy
for the session, which may provide the broadcasts, maintain
state information, and the like. According to some embodi-
ments, the debugger interface on the client devices may
maintain a synchronized view, such that any action taken by
any user will be visible to all other users. As such, replies
and events from the debugger will be broadcast to all
members of the session.

[0035] Turning to FIG. §, an example set of user interfaces
are depicted. The example user interfaces includes, at a first
time, a first client 502A, and a second client 504A 1n a
common collaborative debugging session. As shown, at the
first time, the debugging session 1s 1n a first state, shown by
line 3 of the program being the currently active line 1n the
program at 512A and 516A. In addition, the console 510A
and 514A are shown as blank. For purposes of this example,
a cursor 1s 1n a neutral position on the first client 502A.
However, in the second client 504 A, the cursor 1s selecting
a next step 1n the program, as shown at 506.

[0036] According to one or more embodiments, the user
interface of the debug session at a particular environment 1s
enhanced for multiplayer debugging by including compo-
nents to support usability across users. In some embodi-
ments, a visual indication may be presented 1n a consistent
manner on each client 1n the session to indicate a processing,
state of the program. The visual indication may be presented
in a consistent manner to indicate state information for the
program. For example, as shown by 512A and 516 A, line 3
1s highlighted on each client to indicate that line 3 is the
currently active line. In other embodiments, a cursor, such as
a blinking cursor, may be presented at a current point of
execution in the program. According to one or more embodi-
ments, the debugger multiplexer may track such state infor-
mation and share state information across clients in the
session. Further, the clients can present consistent views of
the program 1n accordance with the state information. As
another example, lines that have been run may be demar-
cated or otherwise presented in association with a visual
indication, as shown by the notation in front of lines 1-3.

[0037] As another example, usability of the user interface
can be enhanced for a multiplayer session by selectively
presenting data in an information panel, such as information

Oct. 26, 2023

panel 508A and 518A. According to one or more embodi-
ments, the multiplexer debugger may include logic to select
and display the most relevant data in the information panel.
As an example, the mformation panel may be configured to
display a hierarchy of variable values. A portion of the
hierarchy may be displayed based on a selection by the
multiplexer debugger. The multiplexer debugger may deter-
mine most relevant variables or other data and present the
information 1n the information panel. According to one or
more embodiments, relevance of the information may be
determined based on one or more parameters, such as most
recently updated varnables, most recently used variables, and

the like.

[0038] In response to a user with a client device selecting
the next step 1n the program, a change 1n presentation in the
UT occurs. As such, at 502B, the first client shows, without
turther user mput, the current line of the program 1s now line
4, as shown at 512B. Further, the Console now reads, “Hello
world!” Similarly, because the operation was received at the
second client 504, 1n the user interface of the second client
504B, the current line of the program 1s also shown as line

4 at 516B, and the console reads “Hello world!” as shown
at 514B.

[0039] Although not shown, 1t 1s notable that both the first
client and the second client are able to interact with the
debugger. As such, the view of the debugger at the first client
502 1s a live debugger, and not simply a mirrored display of
the second client. Moreover, an operation received through
the first client may also be mirrored at the second client, in
some embodiments.

[0040] FIG. 6 shows an example of a hardware system for
implementation of the multiplayer debugger 1n accordance
with the disclosed embodiments. FIG. 6 depicts a network
diagram 600 including a client computing device 602 con-
nected to one or more network devices 620 over a network
618. Client device 602 may comprise a personal computer,
a tablet device, a smart phone, network device, or any other
clectronic device which may be used to perform debugging
operations on a computer program. The network 618 may
comprise one or more wired or wireless networks, wide area
networks, local area networks, enterprise networks, short
range networks, and the like. The client computing device
602 can communicate with the one or more network devices
620 using various communication-based technologies, such

as Wi-Fi1, Bluetooth, cable connections, satellite, and the
like. Users of the client devices 602 can interact with the

network devices 620 to access services controlled and/or
provided by the network devices 620.

[0041] Client devices 602 may include one or more pro-
cessors 604. Processor 604 may include multiple processors
of the same or different type, and may be configured to
execute computer code or computer instructions, for
example computer readable code stored within memory 606.
For example, the one or more processors 604 may include
one or more of a central processing unit (CPU), graphics
processing unit (GPU), or other specialized processing hard-
ware. In addition, each of the one or more processors may
include one or more processing cores. Client devices 602
may also include a memory 606. Memory 606 may ecach
include one or more different types of memory, which may
be used for performing functions 1n conjunction with pro-
cessor 604. In addition, memory 606 can include one or
more of transitory and/or non-transitory computer readable
media. For example, memory 606 may include cache, ROM,

US 2023/0342285 Al

RAM, or any kind of computer readable storage device
capable of storing computer readable code. Memory 606
may store various programming modules and applications
608 for execution by processor 604. Examples of memory
606 include magnetic disks, optical media such as CD-
ROMs and digital video disks (DVDs), or semiconductor

memory devices.

[0042] Computing device 602 also includes a network
interface 612 and I/O devices 614. The network interface
612 may be configured to allow data to be exchanged
between computing devices 602 and/or other devices
coupled across the network 618. The network interface 612
may support communication via wired or wireless data
networks. Input/output devices 614 may include one or more
display devices, keyboards, keypads, touchpads, mice, scan-
ning devices, voice or optical recognition devices, or any
other devices suitable for entering or retrieving data by one
or more client devices 602.

[0043] Network devices 620 may include similar compo-
nents and functionality as those described in client devices
602. Network devices 620 may include, for example, one or
more servers, network storage devices, additional client
devices, and the like. Specifically, network device may
include a memory 624, storage 626, and/or one or more
processors 622. The one or more processors 622 can include,
for example, one or more of a central processing unit (CPU),
graphics processing unit (GPU), or other specialized pro-
cessing hardware. In addition, each of the one or more
processors may include one or more processing cores. Each
of memory 624 and storage 626 may include one or more of
transitory and/or non-transitory computer readable media,
such as magnetic disks, optical media such as CD-ROMs
and digital video disks (DVDs), or semiconductor memory
devices. While the various components are presented 1n a
particular configuration across the various systems, 1t should
be understood that the various modules and components
may be differently distributed across the network.

[0044] The above discussion 1s meant to be 1llustrative of
the principles and various embodiments of the present
disclosure. Numerous variations and modifications will
become apparent to those skilled in the art once the above
disclosure 1s fully appreciated. It 1s intended that the fol-
lowing claims be interpreted to embrace all such variations
and modifications.

What 1s claimed 1s:
1. A system comprising;:
one or more processors; and
a memory coupled to the one or more processors and
comprising:
a computer program;
a debugger module; and
a debugger multiplexer configured to:

imitiate a multiplayer debugger session for the com-
puter program, wherein the multiplayer debugger
session supports a plurality of client devices,

recerve, from a first client device of the plurality of
client devices, a debugger operation,

transmit the debugger operation to the debugger
module,

determine an updated debugger state in accordance
with the debugger operation, and

transmit the updated debugger state to a remainder of
the plurality of client devices.

Oct. 26, 2023

2. The system of claim 1, wherein the debugger multi-
plexer 1s further configured to cause a presentation of a user
interface corresponding to the debugger session to update 1n
accordance with the updated debugger state.

3. The system of claim 1, the memory further comprising:

a debugger adapter configured to abstract the debugger

operation, wherein the debugger adapter provides mul-
tilanguage functionality based on the abstraction.

4. The system of claim 1, wherein the debugger multi-
plexer 1s further configured to:

manage a plurality of debugger multiplexer sessions com-

prising the multiplayer debugger session; and
transmit the updated debugger state to the remainder of
the plurality of client devices in accordance based on an
identification of the multiplayer debugger session
among the plurality of multiplayer debugger sessions.

5. The system of claim 1, wherein the debugger multi-
plexer 1s further configured to transmit the updated debugger
state 1n accordance with a determination that the debugger
operation satisfies a share critena.

6. The system of claim 1, wherein the debugger multi-
plexer 1s further configured to:

receive, from the first client device, a second debugger

operation,

transmit the second debugger operation to the debugger

module,

determine that the second debugger operation does not

satisly a share criterion, and

in accordance with the determination that the second

debugger operation does not satisiy the share criterion,
cause a debugger view to be updated at the first client
device 1in accordance with the second debugger opera-
tion.

7. The system of claim 1, further comprising:

a debugger session manager configured to manage the
debugger multiplexer and one or more additional
debugger multiplexers, wherein each debugger multi-
plexer 1s associated with a multiplayer debugger ses-
sion for the computer program.

8. A non-transitory computer readable medium compris-
ing computer readable code executable by one or more
Processors to:

imtiate a multiplayer debugger session for a computer
program, wherein the multiplayer debugger session
supports a plurality of client devices,

receive, from a first client device of the plurality of client
devices, a debugger operation,

determine an updated debugger state in accordance with
the debugger operation, and

transmit the updated debugger state to a remainder of the
plurality of client devices 1n accordance with the
remainder of the plurality of client devices belonging to
the multiplayer debugger session.

9. The non-transitory computer readable medium of claim

8, further comprising computer readable code to:

cause a presentation of a user interface corresponding to
the debugger session to update in accordance with the
updated debugger state.

10. The non-transitory computer readable medium of

claim 8, further comprising computer readable code to:
manage a plurality of debugger multiplexer sessions com-
prising the multiplayer debugger session; and
transmit the updated debugger state to the remainder of
the plurality of client devices in accordance based on an

US 2023/0342285 Al

identification of the multiplayer debugger session
among the plurality of multiplayer debugger sessions.

11. The non-transitory computer readable medium of
claim 8, further comprising computer readable code to:

receive, from the first client device, a second debugger

operation,

transmit the second debugger operation to the debugger

module,

determine that the second debugger operation does not

satisly a share criterion, and

in accordance with the determination that the second

debugger operation does not satisiy the share criterion,
cause a debugger view to be updated at the first client
device 1n accordance with the second debugger opera-
tion.

12. The non-transitory computer readable medium of
claim 8, wherein the multiplayer debug session comprises a
primary debug session, and further comprising computer
readable code to:

receive a request to begin a new debugger session for the

program;

1n response to recerving the request, initiate a secondary

debugging session for the program.

13. The non-transitory computer readable medium of
claim 12, wherein the computer readable code to imitiate the
secondary debugging session comprises computer readable
code to:

clone the primary debugging session to generate a sec-

ondary debugging session;

initialize a secondary debugging proxy instance; and

synchronize the secondary debugging session state infor-

mation to clients 1n the second debugging session.

14. The non-transitory computer readable medium of
claim 12, further comprising computer readable code to:

provide a user selectable option to a new client device to

join the primary debugging session or the second
debugging session for the program.

15. A method comprising:

initiating a multiplayer debugger session for a computer

program, wherein the multiplayer debugger session
supports a plurality of client devices,

receiving, from a first client device of the plurality of

client devices, a debugger operation,

Oct. 26, 2023

determining an updated debugger state 1n accordance with

the debugger operation, and

transmitting the updated debugger state to a remainder of

the plurality of client devices 1n accordance with the
remainder of the plurality of client devices belonging to
the multiplayer debugger session.

16. The method of claim 15, further comprising:

causing a presentation of a user interface corresponding to

the debugger session to update in accordance with the
updated debugger state.

17. The method of claim 15, further comprising:

managing a plurality of debugger multiplexer sessions

comprising the multiplayer debugger session; and
transmitting the updated debugger state to the remainder
of the plurality of client devices 1n accordance based on
an 1dentification of the multiplayer debugger session
among the plurality of multiplayer debugger sessions.

18. The method of claim 15, further comprising:

recerving, from the first client device, a second debugger

operation,

transmitting the second debugger operation to the debug-

ger module,

determiming that the second debugger operation does not

satisly a share criterion, and

in accordance with the determination that the second

debugger operation does not satisiy the share criterion,
causing a debugger view to be updated at the first client
device 1in accordance with the second debugger opera-
tion.

19. The method of claim 135, wheremn the multiplayer
debug session comprises a primary debug session, and
further comprising computer readable code to:

recerving a request to begin a new debugger session for

the program;

in response to recerving the request, initiating a secondary

debugging session for the program.

20. The method of claim 19, wherein mitiating the sec-
ondary debugging session comprises:

cloning the primary debugging session to generate a

secondary debugging session;

imitializing a secondary debugging proxy instance; and

synchronizing the secondary debugging session state

information to clients 1n the second debugging session.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

