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(57) ABSTRACT

A system for recognizing a user of a commumnicating device
as belonging to a list of known users from an uftterance
included 1n a voice signal received from the communicating
device. The system includes applying an utterance of a
speaker to a machine learning voiceprint extraction model to
extract a voiceprint set comprising an 1-vector or a speaker
embedding based on the utterance; outputting the voiceprint
set by the machine learning voiceprint extraction model;
applying the output voiceprint set to a machine learning
model to compute an utterance match score based on the
voiceprint set, or to a machine learning hashing model to
reduce the voiceprint set to a reduced dimension voiceprint
set and apply the reduced dimension voiceprint set to the
machine learning model to compute the utterance match
score based on the reduced dimension voiceprint set; out-
putting the utterance match score by the machine learning
model; applying the output match score to a machine
learning score normalization model (NL-NORM) to cali-

Int. Cl. | brate the match score; comparing the calibrated match score
GIOL 17/12 (2006.01) to a match score threshold; and, when the calibrated match
GIOL 17/02 (2006.01) score 1s greater than the match score threshold, identifying
GI0L 25/30 (2006.01) the user as belonging to a list of known users.
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A SYSTEM AND A METHOD FOR LOW
LATENCY SPEAKER DETECTION AND
RECOGNITION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priornity to and the benefit
of provisional U.S. Patent Application No. 63/365,344, filed
May 26, 2022, which 1s hereby incorporated herein by
reference in 1ts entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure relates to a method, a sys-
tem, and a computer program for analysis of a speech signal
and low latency detection and accurate recognition of a
speaker 1n a list of known speakers. The present disclosure
turther relates to a method, a system, and a computer
program for fraud detection.

BACKGROUND OF THE DISCLOSURE

[0003] Negative list (NL) detection, commonly referred to
as open-set or multi-target speaker detection, attempts to
match a test utterance with any one of a set of known
utterances enrolled i the negative list. A number of nor-
malization techniques have been developed that use a nor-
malization cohort for similarity score calibration in order to
increase the detection accuracy. Such normalization tech-
niques can be used to mitigate statistical variations in
similarity scores that form the basis for identity inference 1n,
for example, biometric verification systems. The variations
can be caused by so-called miss-matched conditions, 1n
which the enrollment and probe samples were acquired.

[0004] An unfulfilled need exists for a method, a system,

and a computer program for analysis of a speech signal and
accurate low latency detection and recognition of a speaker.

SUMMARY OF THE DISCLOSURE

[0005] The disclosure provides a novel and non-obvious
method, system, and computer program that can analyze a
speech signal and accurately, and with low latency, detect
and recognize a speaker.

[0006] A computer-implemented method 1s provided for
recognizing a user of a communicating device as belonging,
to a list of known users from an utterance included 1n a voice
signal received from the communicating device. The method
comprises: applying an utterance of a speaker to a machine
learning voiceprint extraction model to extract a voiceprint
set comprising an 1-vector or a speaker embedding based on
the utterance; outputting the voiceprint set by the machine
learning voiceprint extraction model; applying the output
voiceprint set to a machine learning model to compute an
utterance match score based on the voiceprint set, or to a
machine learning hashing model to reduce the voiceprint set
to a reduced dimension voiceprint set and apply the reduced
dimension voiceprint set to the machine learning model to
compute the utterance match score based on the reduced
dimension voiceprint set; outputting the utterance match
score by the machine learning model; applying the output
match score to a machine learning score normalization
model (NL-NORM) to calibrate the match score; comparing,
the calibrated match score to a match score threshold; and,

Nov. 30, 2023

when the calibrated match score 1s greater than the match
score threshold, 1dentifying the user as belonging to a list of
known users.

[0007] An apparatus 1s provided for recognizing a user of
a communicating device as belonging to a list of known
users from an utterance included 1n a voice signal recerved
from the communicating device. The apparatus comprises
one or more processors, an mput device, an output device,
and a memory storing one or more programs to be executed
by the one or more processors. The one or more programs
comprise 1mstructions for: applying an utterance of a speaker
to a machine learning Voiceprint extraction model to extract
a VOlcepnnt set comprising an 1-vector or a speaker embed-
ding based on the utterance; outputting the voiceprint set by
the machine learning voiceprint extraction model; applying
the output voiceprint set to a machine learning model to
compute an utterance match score based on the voiceprint
set, or to a machine learning hashing model to reduce the
voiceprint set to a reduced dimension voiceprint set and
apply the reduced dimension voiceprint set to the machine
learning model to compute the utterance match score based
on the reduced dimension voiceprint set; outputting the
utterance match score by the machine learning model;
applying the output match score to a machine learming score
normalization model (NL-NORM) to calibrate the match
score; comparing the calibrated match score to a match score
threshold; and, when the calibrated match score 1s greater
than the match score threshold, identifying the user as
belonging to a list of known users.

[0008] A non-transitory computer readable storage
medium 1s provided for storing one or more programs, the
one or more programs comprising instructions, which, when
executed by an apparatus device with one or more proces-
sors, one or more mput devices, and one or more output
devices, cause the apparatus to perform operations for
recognizing a user of a communicating device as belonging
to a list of known users from an utterance included in a voice
signal received from the communicating device, the opera-
tions comprising: applying an utterance of a speaker to a
machine learning Voiceprint extraction model to extract a
VOlcepnnt set comprising an 1-vector or a speaker embed-
ding based on the utterance; outputting the voiceprint set by
the machine learning voiceprint extraction model; applying
the output voiceprint set to a machine learning model to
compute an utterance match score based on the voiceprint
set, or to a machine learning hashing model to reduce the
voiceprint set to a reduced dimension voiceprint set and
apply the reduced dimension voiceprint set to the machine
learning model to compute the utterance match score based
on the reduced dimension voiceprint set; outputting the
utterance match score by the machine learning model;
applying the output match score to a machine learming score
normalization model (NL-NORM) to calibrate the match
score; comparing the calibrated match score to a match score
t_lreshold and, when the calibrated match score 1s greater
than the match score threshold, identifying the user as
belonging to a list of known users.

[0009] The machine learning vector extraction model can

comprise a Gaussian Mixture Model (GMM) or a Gaussian
Mixture Model with Universal Background Model (GMM -

UBM) that extracts the 1-vector.

[0010] The machine learning voiceprint extraction model
can comprise a Deep Neural Network model (DNN) that
extracts the speaker embedding.
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[0011] The DNN can comprise a Convolutional Neural
Network (CNN), a Residual Network (ResNet), a Time
Delay Neural Network (TDNN), or a machine learning
model architecture configured for speaker recognition.
[0012] The machine learning hashing model can comprise
a Locality Sensing Hashing model (LSH).

[0013] The machine learning hashing model can be con-
figured to find a subset of negative list speakers and a subset
of a normalization cohort that are most similar to the
utterance, such that a similarity score 1s evaluated between
the utterance and the subset of negative list speakers and the
subset of the normalization cohort to reduce computation by
a processor at inference time.

[0014] The machine learning score normalization model
(NL-NORM) can be configured to analyze similarity scores
between a normalization cohort and all enrolled negative list
speakers as a single distribution to calibrate the match score.
[0015] Additional features, advantages, and embodiments
of the disclosure may be set forth or apparent from consid-
eration of the detailed description and drawings. Moreover,
it 15 to be understood that the foregoing summary of the
disclosure and the following detailed description and draw-
ings provide non-limiting examples that are intended to
provide further explanation without limiting the scope of the
disclosure as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The accompanying drawings, which are included
to provide a further understanding of the disclosure, are
incorporated in and constitute a part of this specification,
illustrate embodiments of the disclosure and together with
the detailed description serve to explain the principles of the
disclosure. No attempt 1s made to show structural details of
the disclosure in more detail than may be necessary for a
fundamental understanding of the disclosure and the various
ways 1n which it may be practiced.

[0017] FIG. 1 illustrates an example of a communication
system, constructed according to the principles of the dis-
closure.

[0018] FIG. 2 illustrates a block diagram of a voice
biometric recognition and fraud management system, con-
structed according to the principles of the disclosure.
[0019] FIG. 3 illustrates non-limiting examples of (a) a
training phase, (b) an enrollment phase, and (c) speaker
recognition phase of a VRFR system.

[0020] FIG. 4 illustrates a flow diagram of a speaker
negative list detection process, according to the principles of
the disclosure.

[0021] FIG. 5 illustrates a flow diagram of a fraud detec-
tion and remediation process, according to the principles of
the disclosure.

[0022] FIG. 6 illustrates a chart that demonstrates empiri-
cally an example of LSH depth versus EER, according to the
principles of the disclosure.

[0023] FIG. 7 illustrates an example of a methodology
flow that can be performed by the VRFR system.

[0024] The present disclosure 1s further described in the
detailed description that follows.

DETAILED DESCRIPTION OF TH.
DISCLOSURE

L1

[0025] The disclosure and 1ts various features and advan-
tageous details are explained more fully with reference to
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the non-limiting embodiments and examples that are
described or 1llustrated in the accompanying drawings and
detailed 1n the following description. It should be noted that
teatures illustrated 1n the drawings are not necessarily drawn
to scale, and features of one embodiment can be employed
with other embodiments as those skilled 1n the art would
recognize, even 11 not explicitly stated. Descriptions of
well-known components and processing techniques may be
omitted so as to not unnecessarily obscure the embodiments
of the disclosure. The examples are intended merely to
facilitate an understanding of ways 1n which the disclosure
can be practiced and to further enable those skilled in the art
to practice the embodiments of the disclosure. Accordingly,
the examples and embodiments should not be construed as
limiting the scope of the disclosure. Moreover, it 1s noted
that like reference numerals represent similar parts through-
out the several views of the drawings.

[0026] Caller fraud, including, for example, call center
fraud, bank fraud, or other types of fraud, has been growing
at an alarming rate over recent years. There are many
reasons for this growth. Some of the main reasons for this
growth include the increased use of web and mobile appli-
cations, and the introduction of chip cards by the credit card
industry, thereby causing fraudsters to seek easier opportu-
nities elsewhere. The telecom field 1s one such area, which
has historically had much weaker security awareness and
defenses.

[0027] The deregulation of the telecom industry coupled
with the rise ol voice-over-Internet-Protocol (VoIP) has
exposed the drawbacks of processes that worked well for the
traditional telephony network but do not for VoIP networks.
This includes the ability to spooft caller identifications (IDs),
launch large-scale attacks through automated telephony

applications, and to fake personal 1dentities through various
means.

[0028] The traditional authentication method used, for
example, by call center agents, 1s one of knowledge-based-
authentication (KBA), which relies on, for example, a call
center agent asking the caller to answer questions to which
they alone would know the answers. However, the easy
availability of personal information through Internet search
engines, data breaches 1 government and corporate net-
works, and various social media websites, has given fraud-
sters the ability to gather a wide variety of data, thereby
providing them with the ability to convince call recipients
that they indeed are who they are pretending to be. For
instance, call center agents being 1n the role of assisting their
customers are particularly vulnerable to the social engineer-
ing practices used by fraudsters. All these factors have
contributed to a steady and steep increase 1n caller fraud.

[0029] Many existing fraud detection systems use a fraud-
ster database (also referred to as a fraud database) containing
fraudster profiles. Whenever a new call 1s processed, a
fraudster database 1s referenced (or looked up) to verify if a
match can be found 1n the database for the current caller. The
lookup may be based on a variety of approaches, such as, for
example, a voice print or a phone print, but the overall
approach has remained relatively constant in involving the
lookup against a fraudster database.

[0030] Further, state of the art fraud detection technologies
typically sufler from prohibitively costly implementation
and high latency, for example, due to the time it takes to find
a voiceprint of a fraudster in a call center application. The
state of the art 1n call fraud detection 1s dominated mainly by
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two 1ssues: the size of the list containing the fraudster
voiceprints (known as the negative list, or NL); and, the
scoring function used to match the target voiceprint to the
list of fraudster voiceprints. For the latter issue, the Proba-
bilistic Linear Discrimination Analysis (PLDA) generative
model 1s considered by many to be the best scoring function,
leading to a low error rate; but 1ts disadvantage 1s that 1t 1s
computationally intensive and expensive.

[0031] As the size of the NL grows larger, 1t takes more
time to find a target match. In various fraud detection
applications, the detection time 1t takes to provide real-time,
or near real-time indication to a call center about a fraudster
match 1s of importance and must be bounded. This disclo-
sure provides systems and methodologies for bounding
detection time, 1n many instances resulting in significant
reduction 1n detection time, while also providing improved
accuracy. Compared to state of the art, the systems and
methodologies provided by this disclosure result 1n signifi-
cant reduction in detection time, while applying the com-
putationally expensive PLDA algorithm for scoring. The
systems and methodologies of this disclosure also provide
more accurate detection of fraudsters compared to state of
the art solutions.

[0032] Negative list detection, commonly referred as
open-set or multi-target speaker detection, attempts to match
an utterance with any one of a set of known utterances
enrolled 1n the negative list. A number of normalization
techniques, such as, for example, Z-Norm, T-Norm and
AS-Norm, have been developed that use a normalization
cohort for similarity score calibration 1n order to increase the
detection accuracy. While these normalization methods
apply to both single-target verification and multi-target
detection, the instant disclosure provides a novel NL nor-
malization methodology (NL-Norm normalization) that 1s
designed specifically for multitarget detection by consider-
ing scores between all enrolled NL utterances and the
normalization cohort as a single distribution.

[0033] The disclosure provides novel systems and meth-
ods that overcome the disadvantages discussed above, and
that satisly an unmet need for accurately, effectively and
ciiciently detecting a fraudster. In various embodiments, the
disclosure provides Locality Sensitive Hashing (LSH),
which can be applied, for example, with the NL-Norm
normalization methodology, to efliciently find a small subset
of utterances from enrolled NL utterances and the normal-
1zation cohort that are most similar to the target utterance, so
that the number of similarity score computations can be
significantly reduced. The combination of the NL-Norm
normalization methodology and LSH can be trained and
evaluated using, for example, the 1% Multi-target Speaker
Detection and Identification Challenge Evaluation (MCE)
2018 plan, dataset, or baseline system.

[0034] In various embodiments comprising NL-Norm and
LL.SH, the system and method can be configured to detect a
target (or test) utterance in a speech signal and determine
whether the utterance was spoken by one of a large number
of NL, also known as “blacklisted”, speakers. The system
can be configured to apply multi-target speaker detection
based on real-world telephone conversations. The system
can be configured to analyze data recordings generated from,
for example, call center customer-agent conversations and
determine 1f the caller 1s 1n the NL.

[0035] Applying LSH and NL-Norm, the system and
method provides significant improvements 1 both speed
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and accuracy over using, for example, PLDA alone. In at
least one test implementation of the system, applying LSH
and NL-Norm resulted in 88% reduction 1in detection time
while decreasing the equal-error rate (EER) from 6.49% to
5.48% for the MCE 2018 dataset. In at least one test
implementation, the system was configured to accurately
detect whether a test recording was spoken by an NL
speaker.

[0036] Much progress has been made 1n speaker recogni-
tion, as demonstrated by continuously improving results in
US National Institute of Standards and Technology (NIST)
Speaker Recognition Evaluation series. Meanwhile, 1n real
world applications such as call center services, NL detection
1s often a crucial component of fraud detection based on
voice biometrics. In NL detection, a call 1s flagged for
investigation 1f a target utterance 1s determined to be spoken
by one of the known fraudulent speakers that are enrolled in
the NL, without needing to identify which specific NL
speaker the caller 1s matched with.

[0037] While state of the art speaker recognition systems
focus on the single-target problem, 1n recent years there have
been eflorts to develop methods used for multi-target
speaker recognition. NL detection includes open-set or
multi-target speaker detection.

[0038] The MCE 2018 1s a challenge designed specifically
to promote methods for multi-target cohort detection and
multi-target identification. For instance, 1n the MCE 2018, a
Top-S stack detector 1s used for multi-target cohort detec-
tion, with an aim to only detect whether the mnput speech 1s
spoken by a member of the NL cohort. Meanwhile, a Top-1
stack detector not only detects membership 1n the NL cohort,
but further 1dentifies the specific speaker within the NL.

[0039] FIG. 1 shows a block diagram of a communication
system 1, constructed according to the principles of the
disclosure. The communication system 1 can include at least
one call originating (or call destination) communicating
device 10, a call center 20, a network 30, and a fraud
detection system 40. Alternatively, the fraud detection sys-
tem 40 can be included 1n the call center 20. The commu-
nicating device 10 and call center 20 each include a com-
municating device and one or more computer resources. The
call center 20 can include one or more commumnicating (CA)
devices 26 operated by, for example, call center agents.

[0040] Each of the communicating devices 10 and 26 can
be configured to mitiate and receive a call (Tor example, a
telephone call) with another communicating device. The
communicating devices 10 and 26 can include, for example,
a cellular telephone, a tablet, a computer, a Plain Old
Telephone Service (POTS) compatible communicating
device, a Public Switched Telephone Network (PSTN) com-
patible commumicating device, a voice-over-Internet Proto-
col (VoIP) compatible communicating device, or any other
communicating device configured to initiate or receive a
call, including at least an audio signal.

[0041] The call can include a call signal comprising audio,
video, data, or a computer resource. The call can include
audio containing a voice (or speech) signal of the user of the
communicating device. The call can include a video signal
containing an image ol the user of the communicating
device. The call can contain a data signal containing, for
example, an Automatic Number Identification (ANI), Inter-
net Protocol (IP) address, message (for example, Short
Messaging Service (SMS) message, Multimedia Messaging
Service (MMS) message), time stamp, location of call
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origination and destination, call origination number, and call
destination number. The computer resource can include
instruction signals that can be executed by the receiving
communicating device.

[0042] The call center 20 can include a plurality of com-
ponents, including a private automatic branch exchange
(PABX) 21, an interactive voice response unit (IVR) 22, an
automatic call distribution (ACD) unit 23, a computer tele-
phony integration (CTI) umt 24, a call data platform (CDP)
25, and one or more CA devices 26. The call center 20 can
include a bus 27, which can be connected to each component
in the call center 20 by a communication link.

[0043] The PABX 21 can be configured to connect the
components 1n the call center 20 with a public telephone
network.

[0044] The IVR 22 can be configured to manage inbound/
outbound calls. The IVR 22 can be configured to accept a
combination of voice telephone input or touch-tone keypad
selection and provide the appropriate responses 1n the form
of voice, callback, email, text, or other communication
methodology.

[0045] The ACD 23 can be configured to automatically
receive incoming calls and distribute the calls to an available
CA device 26.

[0046] The CTI 24 can be configured to integrate an
enterprise communication system (for example, an organi-
zation’s telephone system) with the components 1n the call
center 20 to facilitate control of the functionalities of the CA
devices 26 1n accordance with the instant disclosure. The
CTI 24 can include, for example, a computer telephony
integration (CTI) server.

[0047] The CDP 25 can be configured to log, record, and
manage call data, including, for example, each call conver-
sation, metadata about each call (incoming and outgoing),
caller identity data, and call quality data. The CDP 25 can
include, for example, caller (or customer) data server.
[0048] The network 30 can include, for example, a cellular
network, a public switched telephone network (PSTN), a
public land mobile network (PLMN), a local area network
(LAN), a wide area network (WAN), or the Internet.
[0049] The fraud detection system 40 can be connected to
the network 30 over one or more communication links. The
fraud detection system 40 can be connected to the commu-
nicating device 10 and call center 20 through one or more
communication links and the network 30. The fraud detec-
tion system 40 can be connected to other communicating,

devices (not shown) via a communication link, directly or
via the network 30.

[0050] The fraud detection system 40 can include a com-
munication system 42, a call record (CR) database (DB) 44,
and a voice recogmition and fraud remediation (VRFR)
apparatus 46, each of which can be connected to a bus 48 by
a communication link.

[0051] The communication system 42 can include one or
more modems (not shown) configured for one or more
cellular network standards, including, but not limited to, for
example, GSM, WiIMAX, LTE-TDD/TD-LTE, LITE
Advanced (E-UTRA), LTE Advanced Pro, HiperMAN,
Mobile WiIMAX, Flash-OFDM, 1iBurst, CDMA2000, HSPA,
UMTS, WiDEN, GPRS, CDPD, D-AMPS, NMT, AMPS, or
any other modulating/demodulating device that can facili-
tate transmission of audio (for example, voice), video, or
multimedia, including, for example, SMS messages, MMS

messages, or the like, over the PSTN, the PLMN, or the like.
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[0052] In certain embodiments, the communication sys-
tem 42 can include a file server, a web server, a mail server,
a security server (not shown), one or more switching and
distribution layers (not shown), one or more routers (not
shown), or one or more network switches (not shown), any
of which can be interconnected by a communication link.
The communication system 42 can include a firewall (not
shown) that shields 1t from cyberattacks.

[0053] The communication system 42 can include one or
more switching and distribution layers, including a core
layer and a distribution layer. The core layer can include one
or more layers of switching devices (not shown) that can
connect computer resource assets (including, for example,
one or more servers) in the communication system 42 to the
distribution layer. The distribution layer can include one or
more layers of switching devices that can connect the core
layer to the one or more routers, the one or more network
switches, a communication server, the bus 48, the CR DB
44, or the VRFR apparatus 46. The switching and distribu-
tion layers can include one or more routers.

[0054] The communication system 42 can be configured to
facilitate communication between any of the communicating
devices (for example, commumnicating devices 10, 26) 1n the
communication system 1. The communication system 42
can be configured to facilitate communication between any
communicating device or computer resource asset and the
fraud detection system 40.

[0055] The router(s) can be connected to the network 30
by a communication link. The network 30 can be located on
an intranet, behind a firewall, or on the Internet. The router
can include a firewall. The network switch can be connected
to one or more commumcating devices by one or more
communication links. The network switch can include one
or more ethernet switches (not shown). Data packets can be
securely transported between computing devices or commu-
nicating devices in the communication system 1.

[0056] The communication system 42 can include a stan-
dards-based computing system that can operate as a carrier-
grade common platform for a wide range of communications
applications and facilitate communication over, for example,
a public switched telephone network (PSTN) or a public
land mobile network (PLMN). The communication system
42 can include Internet message handling services (MHS)
that transfer electronic mail messages between communi-
cating devices 1n the communication system 1. The MHS
can include, for example, a message transfer agent or mail
transter agent (MTA), or a mail relay. The communication
system 42 can include a message delivery agent (MDA).

[0057] The communication system 42 can manage vast
amounts of data from a multitude of sources, such as, for
example, a plurality of communicating devices 10 (for
example, thousands, millions, or more communicating
devices), the call center 20, the VRFR apparatus 46, and
other computer resource assets 1n the communication system
1. This data may be received (for example, as streaming
data) and stored 1n the CR DB 44 as raw data. The raw data
can be retrieved by one or more data interfaces in the
communication system 42, cleaned, transformed, manipu-
lated, processed, compressed, or reduced through analytics.

[0058] The data stored 1 the CR DB 44 can include call
and application logs, call detail records (CDRs), CDR
events, call conversations, voice recordings, voice prints (or
other biometric data), phone prints, call miner data, call
quality metrics (such as, for example, Voice Clarity Mea-
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surement Enhancement (VCME)), Contextual User Experi-
ence (CUE) events, or voicelD data. The CR DB 44 can

include partitions, so that partitions can be moved out of the
CR DB 44 when they are no longer relevant, thereby
allowing for ethicient management of the CR DB 44. The CR
DB 44 can be configured to communicate with the VRFR
apparatus 46 and synchronize records and data therebe-
tween.

[0059] The VRFR apparatus 46 can be configured to
receive a voice signal from the communicating device 10,
analyze at least one discrete portion of the voice signal—a
test (or target) utterance—search NL data, compare the test
utterance against the NL data (for example, enrolled utter-
ances), and generate a similarity score based on the com-
parison of the target utterance against the NL records. The
target utterance can include, for example, a spoken word, a
statement, a vocal sound, or other sound. The VRFR appa-
ratus 46 can be configured to detect and 1dentily a fraudster
(or fraudulent call) based on the similarity score and com-
municate with the call center 20 (for example, a CA device
26) or another communicating device (not shown) concemn-
ing the fraudulent call. The communication can include, for
example, a fraud alert message, an instruction to terminate
the call, or a redirection of the call to another communicat-
ing device (not shown), which can include, for example, a
communicating device operated by personnel to investigate
the call, or law enforcement personnel.

[0060] FIG. 2 shows a block diagram of a voice recogni-
tion and fraud remediation (VRFR) system 100, constructed
according to the principles of the disclosure. The VRFR
system 100 can be included in the VRFR apparatus 46
(shown 1n FIG. 1). VRFR system 100 can include a proces-
sor 110, a voice recognition suite (VRS) 120, a storage 130,
an intertace suite 140, and a communication suite 150. The
VRFER system 100 can include a bus (not shown), which can
connect to each of, and facilitate communication and inter-
action between, any of the computer resource assets (or
components) in the VRFER system 100. The bus (not shown)
can include any of several types of bus structures that may
further interconnect to a memory bus (with or without a
memory controller), a peripheral bus, and a local bus using
any of a variety of commercially available bus architectures.

[0061] The processor 110 can include any of various
commercially available processors, multi-core processors,
microprocessors or multi-processor architectures.

[0062] The VRS 120 can include a processor and a plu-
rality of computer resources that are accessible and execut-
able by the processor 110. In various non-limiting i1mple-
mentations, the computer resource assets 1n the VRS 120 can
be configured to be executable by the processor 110. The
computer resources can be stored 1n and retrieved from, for
example, the storage 130.

[0063] The VRS 120 can include a plurality of machine
learning platforms, including one or more supervised
machine learning systems and one or more unsupervised
machine learning systems. The VRS 120 can include a
Gaussian Mixture Model (GMM) or a GMM with Universal
Background Model (GMM/UBM) 120A, a Deep Neural
Network (DNN) model 120B, a Locality Sensitive Hashing
(LSH) model 120C, a Probabilistic Linear Discriminant
Analysis (PLDA) model 120D, a Negative List Normaliza-
tion (NL-NORM) model 120E, and voice identification unit
(VID) 120F. The DNN 120B can include, for example, a
Convolutional Neural Network (CNN), a Residual Network
(ResNet), or a Time Delay Neural Network (TDNN).

[0064d] The VRS 120 can include a non-transitory com-
puter-readable storage medium that can hold executable or
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interpretable computer resources, mcluding computer pro-
gram code or instructions that, when executed by the pro-
cessor 110, cause the steps, processes or methods i this
disclosure to be carried out. The computer-readable storage
medium can be contained in the storage 130.

[0065] The GMM/UBM 120A can mnclude a GMM with a
UBM. The GMM/UBM 120A can be built and trained to
extract 1-vector that can be used as or 1n a voiceprint. A

voiceprint can include eirther 1-vector from the GMM/UBM
120A or speaker embedding from DNN 120B.

[0066] The GMM/UBM 120A can be configured to facili-
tate 1dentification of a speaker by classification of a target
utterance (or speaker) into one out of n enrolled negative list
utterances (or negative list speakers), where n 1s a positive
integer that can be hundreds, thousands, tens of thousands,
hundreds of thousands, or more known speakers. The GMM/
UBM 120A facilitates utterance (or speaker) identification
with high accuracy under clean recording conditions. How-
ever, the population n of enrolled utterances (or speakers) 1s
large (for examples, tens of thousands, or more) the amount
ol computation required to calculate the likelihoods of all n
GMMs for a target utterance can be overwhelming.

[0067] The DNN 120B can be built and trained to extract
speaker embedding (for example, x-vector) which can be
used as a voiceprint. In this regard, the DNN 120B can
include a TDNN configured to extract the speaker embed-
ding.

[0068] The GMM/UBM 120A and DNN 120B can be
configured to interact with the PLDA 120D to produce a
matching score between a pair of embeddings (for example,

1-vectors or x-vectors) representing the log-likelihood ration
of the two embeddings belonging to the same speaker.

[0069] In various implementations, the PLDA 120D can
be located, for example, at a back-end of the VRFR system
100. The GMM/UBM 120A and DNN 120B can be located

at a front-end of the system.

[0070] The PLDA 120D can be combined with score
normalization to create eflective backend processing of the
speaker recognition suite 120. Once a PLDA score, s(e, t),
between a test utterance t and an NL-enrolled utterance e 1s
generated, the normalization techniques i the VRS 120 can
be applied for score calibration 1n order to derive a consis-
tent matching threshold. For NL detection, t can be deter-
mined as an NL match 1f the highest normalized score
between t and all NL utterances 1s above the threshold; this
results 1n a dataset from which the EER metric can be drawn
and the accuracy of the model measured.

[0071] The LSH 120C can be configured to find a subset
of NL speakers and a subset of the normalization cohort that
are most similar to a target utterance, so that the similarity
scores can be evaluated between the target utterance and
these two subsets, which reduces the computation cost at
inference time. The advantage of LSH can be further ampli-
fied when different adaptive lengths for K are allowed.

[0072] LSH 120C can be applied for highly eflicient
searches over large numbers of records (or databases) of
utterances. The LSH 120C can enable quick retrieval of a
volice print 1n large-scale data 1n conjunction with speaker
embeddings while maintaiming accuracy. The LSH 120C can
be applied to prune or ignore (for example, for sublinear
search complexity) speaker embeddings that are unlikely to
exceed a predetermined threshold when scored. The LSH
120C can be applied to group vectors into “bins” based on
a distance metric operating on the embeddings. When
hashed, embeddings that are close to each other in the
original space can be mapped into the same bin with high
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probability. This hashing operation can eflectively cluster
input data into a large number of very small clusters.

[0073] In a non-limiting example of a search use case, the
LLSH 120C can operate to hash a query vector (or query
embedding), determine the bin 1t hashes to, and compute the
distance between the query vector (or query embedding) and
all vectors (or embeddings) previously hashed to that bin.
The LSH 120C can include hash amplification to increase
the number of bins a vector (or embedding) can be hashed
to. The amplification can be used to, for example, combine
multiple, independent, hash functions drawn from the same
family to create a new family with different probability
bounds.

[0074] The NL-NORM 120E can be configured to con-
sider similarity scores between a normalization cohort and
all enrolled NL speakers as a single distribution, which can
help to better calibrate test scores and select a consistent
threshold for NL detection. Since single-target and multi-
target speaker recognitions can share the same techniques, a
multi-target speaker recognition problem can be effectively
treated as multiple single-target recognitions. However, for
call center services, there are often thousands of fraudulent
speakers 1 the NL, which poses some unique challenges:
with the increase i1n the NL size, the detection error as
measured by equal error rate (EER) becomes higher, and the
computing cost in the form of detection latency for each test
grows as well. These challenges can impede an eflective
real-ttime NL detection implementation. Accordingly, the
NL-NORM 120E can be included (for example, at the back
end of the VRS 120) for multi-target applications with, for
example, the twin objectives of lowermg EER and achlevmg
a faster time for NL detection in the face of an increasing
number of speakers in the NL list. The EER 1s a point on a
receiver operating characteristic (ROC) curve where the
talse acceptance rate equals the fall rejection rate. In general,
lower EER maximize the accuracy.

[0075] The NL-NORM 120F can be configured to apply

NL-specific normalization to improve detection accuracy,
take advantage of different adaptive lengths for S_ and S, (in
AS-Norm (Eqg. 11)) and NL-normalization, and via LSH
120E, apply LSH in conjunction with NL-normalization to
reduce detection latency at inference time.

[0076] The VID 120F can be configured to receive a match
score S, ., -~ and compare the score against a score thresh-
old S »rerror - When the match score 1s calculated to be
greater than the score threshold (S, , 7S 272 zcr70r ), The
voice signal can be determined by the VID 120F to match a
list of known fraudsters.

[0077] The storage 130 can include a read-only memory
(ROM) 130A, a random-access memory (RAM) 130B, a

hard disk drive (HDD) 130C, and a database (DB) 130D.
The storage 130, including computer-readable media, can be
configured to provide nonvolatile storage of data, data
structures, and computer-executable instructions (or com-
puter program code). The storage 130 can accommodate the
storage ol any data 1n a suitable digital format. The storage
130 can include computing resources that can be used to
execute aspects of the architecture included in the VRFR
system 100, including, for example, a program module, an
application program, an application program interface
(API), or program data.

[0078] In a non-limiting embodiment, the storage 130 can
contain computer resources that are executable on the pro-
cessor 110 to carry out the processes and functions disclosed
herein. One or more of the computing resources can be
cached in the RAM 130B as executable sections of computer
program code or retrievable data.
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[0079] In various embodiments, the computing resources
can 1include an API such as, for example, a web API, a simple
object access protocol (SOAP) API, a remote procedure call
(RPC) API, a representation state transier (REST) API, or

any other utility or service p API.

[0080] A basic input-output system (BIOS) can be stored
in the non-volatile memory 1n the storage 130, such as, for
example, the ROM 130A. The ROM 130A can include, a
ROM, an erasable programmable read-only memory
(EPROM), or an electrically erasable programmable read-
only memory (EEPROM). The BIOS can contain the basic
routines that help to transfer information between any one or
more of the components 1n the VRFR system 100 such as
during start-up.

[0081] The RAM 130B can include a dynamic random-
access memory (DRAM), a synchronous dynamic random-
access memory (SDRAM), a static random-access memory

(SRAM), a non-volatile random-access memory (NVRAM),
or another high-speed RAM for caching data.

[0082] The HDD 130C can include, for example, an
enhanced integrated drive electronics (EIDE) drive, a serial
advanced technology attachments (SATA) drive, a solid state
drive (SSD), or any suitable hard disk drive for use with big
data. The HDD 130C can be configured for external use 1n
a suitable chassis (not shown). The HDD 130C can be
arranged to connect to the bus (not shown) via a hard disk
drive 1mterface (not shown).

[0083] The DB 130D can be arranged to be accessed by
any one or more of the components 1n the VRFER system 100.
The DB 130D can be arranged to receive a query and, in
response, retrieve specific data, data records or portions of
data records based on the query, including negative list
entries, which can include an utterance (such as, for
example, a sound, a word, a phrase, or a statement). A data
record can include, for example, a file or a log. The DB
130D can include a database management system (DBMS)
that can interact with the components 1n the VRFR system
100. The DBMS can include, for example, SQL, NoSQL,
MySQL, Oracle, Postgress, Access, or Unix. The DB 130D

can 1nclude a relational database.

[0084] The DB 130D can be configured to synchronize
with the CR DB 44 (shown in FIG. 1), including synchro-
nizing negative list records, speaker 1dentification records,
call duration, call start and end times, Internet Protocol (IP)
addresses, media access control (MAC) addresses, ANIs, or
and other call record (CR) data. The DB 130D can be
arranged to store historical call data, including queries

[0085] The interface suite 140 can include one or more
input-output (1Q) interfaces 140A and one or more network
interfaces 140B. The interface suite 140 can be configured to
receive, transmit or exchange data and command signals

with any communicating device 1n the communication sys-
tem 1 (shown in FIG. 1).

[0086] The input-output (IO) interface 140A can be
arranged to recerve instructions or data from an operator.
The 10 interface 140A can be arranged to receive and
transmit speech content, commands or data from (or to) an
operator.

[0087] The IO interface 140A can be arranged to connect
to or communicate with one or more mnput-output devices,
including, for example, a keyboard, a mouse, a pointer, a
stylus, a microphone, a speaker, an interactive voice
response (IVR) unit, a graphic user interface (GUI), or a
display device. The 10 interface 140A can include a trans-
mitter, a recerver or a transceiver. Signals, including speech
content, can be recerved from any user device 10 in the
communication system 1 via, for example, the 10 interface
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140A, and commands or data can be forwarded to any
communicating device (for example, communicating device
10 or 26) via the 10 iterface 140A or network interface
140B.

[0088] The 10O interface 140A can include one or more
audio drivers (not shown) and one or more video drivers (not
shown). In various embodiments, the audio driver can
include a sound card, a sound driver, an interactive voice
response (IVR) unit, or any other device necessary to render
a sound signal on a sound production device, such as for
example, a speaker. The video driver can include a video
card, a graphics driver, a video adaptor, or any other device
necessary to render an 1mage signal on a display device.

[0089] The network interface 140B can be arranged to
connect to one or more communicating devices via the
network 30, including the communicating devices 10 and
call center 20 (shown in FIG. 1). The network interface
140B can be arranged to connect to the Internet or any wired
and/or wireless network. The network intertace 140B can
include a modem, a transmitter, a receiver or a transceiver.
The network mterface 140B can include a wired or a
wireless communication network interface. When used 1n a
local area network (LLAN), the network interface 140B can
be arranged to include a wired or wireless communication
network interface that can connect to the LAN; and, when
used 1n a wide area network (WAN), the network interface
140B can be arranged to include a modem to connect to the
WAN network. The modem can be internal or external and
wired or wireless. The modem can be connected to the bus
via, for example, a serial port interface.

[0090] The communication suite 150 can mclude a call
session manager 150A, a fraud 1dentification (FID) logging
unit 1508, a FID alert generator 150C, and a FID commu-
nicator 150D, which can include one or more transceivers.
Each transceiver can include a transmitter and a receiver
arranged to transmit and receive commumication signals,
respectively. The communication signals can be configured
for transmission via, for example, voice-over-Internet Pro-

tocol (VoIP), public switched telephone network (PSTN),
cellular telephone network, or other communication media.

[0091] The call session manager 150A can be configured
to 1nteract with each communicating device (for example,
communicating device 10) in the communication system 1
(shown 1 FIG. 1). The call session manager 150A can be
configured to receive and transmit communication signals
from/to any communicating device in the communication
system 1. The call session manager 150A can be configured
to analyze and log call-specific data for each call originating
from a commumcating device 1n the communication system
1, such as, for example, from the communicating devices 10

or 26.

[0092] The call session manager 150A can be configured
to interact with, for example, the processor 100, the VRS
120, the storage 130, and the FID logging unit 150B such
that an utterance 1n an incoming call can be analyzed,
compared against a negative list, a speaker identified (or
predicted), and a fraudulent speaker logged.

[0093] The FID logging unit 150B can be configured to
interact with the VID 120F and, in response to a fraudster
determination by the VID 120F, log the 1dentification of the
speaker (for example, user of the communicating device 10)
and related call data. The FID logging unit 150B can be
configured to create, populate, or edit the negative list,
which can be contained, for example, 1n the storage 130.
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[0094] The FID alert generator 150C can be configured to
generate a fraudster alert notification message when an
utterance 1s determined (or predicted) to match an entry in
the negative list.

[0095] The FID communicator 150D can be configured to
send the alert notification message to, for example, the call
center 20 or another communicating device (not shown) 1n
the communication system 1. The FID communicator 150D
can be configured to packetize and transmit the alert noti-
fication message using a communication protocol compat-
ible with the communication platform of the call center 20
or other communicating device (not shown), such as, for
example, a communicating device in an enterprise commu-

nication system (for example, a communication system of an
organization or other entity).

[0096] FIG. 3 shows non-limiting examples of (a) a train-
ing phase, (b) an enrollment phase, and (¢) speaker recog-
nition phase of the VRFR system 100. For brevity, FIG. 3

only depicts the TDNN or CNN models, with speaker
embedding represented by x-vector as an example.

[0097] FIG. 3(a) depicts an example of a training phase 1n
which the DNN 120B 1s tramned to extract the speaker
embedding. Although not shown, 1t 1s understood that the
GMM/UBM 120A can be similarly trained to extract the
speaker embedding 1-vector. Subsequently, the PLDA 120D
can be trained to produce matching score between a pair of
1-vectors when the mput 1s from the GMM/UBM 120A, or
a pair of speaker embeddings such as x-vectors when the
mput 1s from the DNN 120B, for representing the log-
likelihood ratio of the two speaker embeddings belonging to
the same speaker.

[0098] FIG. 3(b) depicts an example of an enrollment
phase 1n which speaker embeddings (for example, x-vectors)
are extracted from a known speaker’s utterances by the
DNN 120B and stored in the database 130D as voice
biometric signature of that speaker. Similarly, 1-vectors can
be extracted from the known speaker’s utterances by the

GMM/UBM 120A and stored 1n the dataset 130D as voice
biometric signature data for that speaker.

[0099] FIG. 3(c) depicts an example of a speaker recog-
nition phase in which an out-of-sample test utterance 1s
presented to the DNN 120B as mput. Similarly, an out-oi-
sample test utterance can be presented to the GMM/UBM
120A. The output speaker embedding (for example, 1-vector
or x-vector) 1s paired with the enrolled speaker embedding
(for example, 1-vector or x-vector) of a known speaker for
the PLDA 120D to compute the matching score i order to
determine whether the test utterance matches the enrolled
speaker. Score normalization can be performed on the
PLDA 120D output before 1t 1s compared with a pre-
determined threshold for the match/no-match decision by
the VID unit 120F.

[0100] All score normalizations require a normalization
cohort consisting of utterances from speakers that are neither
in NL nor part of the test cohorts. The NL-enrolled utterance
set and the normalization cohort can be denoted as € and C,
respectively:

e={¢;|l<isE}

C={c;|1=i<N} (1)

where E and N are the size of NL and the normalization
cohort, respectively, and 1 1s a positive integer greater than
or equal to 1.
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[0101] The scores between an NL speaker utterance e and
every utterance c; can be

[0102] utilized 1n the normalization cohort:
S ={s(e, c,)|1<i<N} (2)

Resulting 1n the normalized score:

~ s(e, )= p(S.) 3)
E—HOVI l[T(SE)

s(e, 1)

where (S ) and (S ) are the mean and standard deviation
of S_, respectively. For NL detection, Eq. (2) needs to be
evaluated for every enrolled speaker e € €. However, these
evaluations can be carried out during NL enrollment instead
of at inference time. At each NL detection, the most com-
putationally expensive task 1s to calculate E similarity scores
{s(e., HI1<1<E}, which 1s required regardless of score nor-
malization.

[0103] Scores between t and every utterance ¢ 1 can be
used 1n the normalization cohort:

S.=1s(¢, c)I1<iEN} (4)

resulting 1n the normalized score:

s(e, 1) — u(Sy) (5)
a(S;)

S(E? r)a‘—nﬂrm —

In contrast, Eq. (4) 1s evaluated at inference time for a given
t, therefore there are (N+E) similarity scores to be computed
at each NL detection.

[0104] AS-Norm, which 1s often found to have the best
performance, especially for mulfi-target recognitions, 1s
defined as the average of adaptive Z-Norm and T-Norm,
namely, for an adaptive length K:

L[ ste, = (S
S(E: r)as—nﬂrm = E G_(Sg()) +

s(e, 1) —y(ng) (6)
o($)

where S_*) and S,'™ denote the subsets consisting of the
highest K scores in S_ and S, respectively. For NL detection,
S, (thus S_“ can be evaluated as soon as the NL is
constructed, however S, (thus S,** can only be calculated
when the target utterance t 1s present. Therefore, at inference
fime for each t the number of similarity scores to be
generated 1s (N+E).

[0105] An implementation of the VRS 120 can be tested
on the MCE 2018 dataset, a public dataset curated from
recordings of customer-agent conversations to an opera-
tional call center. The dataset 1s composed of 26,017 speak-
ers, with 22,386 background speakers and 3,631 speakers on
the negative list. The dataset 1s divided into three parts: train,
development, and testing; each part contains background
speakers (speakers not on the negative list) and speakers on
the negative list. The three data partitions are shown 1n Table

[.
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TABLE 1

MCE 2018 DATASET DESCRIPTION

No. of Total
Set Subset speakers utterances

Train Negative list 3.631 10,893
Background 500 30,952

Dev. Negative list 3.631 3.631
Background 5,000 5,000

Test Negative list 3.631 3.631
Background 12,386 12,386

[0106] The MCE 2018 dataset 1s provided 1n the form of
1-vectors corresponding to each of the negative list and
background speaker utterances. Using this dataset has sev-
eral advantages: NL detection 1s one of the tasks in MCE
challenge; the dataset consists of 600-dimension 1-vectors
extracted from call center conversations, the domain of
interest 1n an implementation of the disclosure; and the large
number of enrolled NL speakers E=3631 1s within range of
real-world NL sizes. In addition, 1n an implementation of the
VRS 120, part of the speaker recognition backend process,
therefore using a set of 1-vectors that has been validated by
previous studies, eliminated the need for vector extraction,
and prevented introducing unnecessary variabilities for the
purpose of this implementation.

[0107] The PLDA 120D can be a preferred method for
similarity score generation due to its accuracy as measured
in EER. However, the PLDA 120D by 1tself 1s computa-
tionally expensive to operate for NL detection as it requires
computing a large number of pairwise scores to determine
the membership of a test utterance 1in the NL set. Linear
Discriminant Analysis (ILDA) can be, optionally, applied
prior to the PLDA 120D to reduce dimensions and speed up
computation of the score. However, the limiting factor will
be the size of the NL. In commercial call-center applications
it 1s not uncommon for the NL to contain thousands of
entries, making the PLDA 120D by itself unfeasible for

real-time detection.

[0108] To speed up the search, the VRS 120 includes the
LLSH 120C, which can include a family of functions that can
solve the nearest neighbor problem by finding approxi-
mate—instead of exact—matches. Colloquially, LSH 120C
can hash the data and a query point in a way that maximizes
the probability of a collision for points that are close to each
other than for those which are farther apart. Formally, given
a set of points P={p;, p», . . . , p,,} a high-dimensional space

qe R, a query point ge R” , and distance function d:PxP =»

R", the LSH 120C finds the point pi that minimizes the
distance to the query:

arg min d(p;, q)
Py

s.t. d(p:,q) <cR

[0109] In the c-approximate neighbor problem, instead of
reporting the point p closest to g, the distance can be allowed
to vary no more than ¢ times a fixed radius, R. This
approximation allows efficient solutions to exist when the
dimensionality, m, 1s large. The LSH 120C can require
O(mn'*"¢) processing time and O(mn'’®) query time. A
crucial parameter in the IL.SH 120C can be the choice of a
distance function. The cosine similarity measure can be

approximated well by the LSH 120C.
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[0110] The LSH 120C can minimize run time at the
expense of accuracy, however, the approximate matches
retrieved by the LSH 120C have a high probability of being
correct as reflected 1n the lowered EER.

[0111] Open-set speaker recognition techniques by the
PLLDA 120D can be enhanced with score normalization by
the NL-NORM 120E. In various embodiments, the NL-
NORM 120E can be configured in certain aspects similar to
AS-Norm, with at least one important distinction that 1s
unique to NL detection. Instead of normalizing to the score
distribution of a single target utterance as Z-Norm, the
NL-NORM 120E 1s configured to construct the normaliza-
fion distribution using the collection of PLDA scores
between the normalization cohort and all enrolled utterances

in the NL. In addition, by allowing different adaptive lengths
the VRS 120 can take full advantage of the LSH 120C (for

example, with the NL-NORM 120E) for optimal speed and
accuracy 1n NL detection.

[0112] In applications of the VRS 120, the PLDA 120D
can be used effectively by allowing the LSH 120C to
constrain the number of PLLDA operations required to deter-
mine a match from the NL. In other words, the LSH 120

can operate to restrict the PLLDA score computations of the
PDLA 120D to a small set.

[0113] Eq. (3) above 1s designed to compensate similarity
score variations against a single target speaker e, so that
scores between e and all utterances can be normalized to the
same distribution in order to apply a consistent threshold for
speaker verification. For NL detection, since all enrolled
speaker utterances are present at testing time, and a single
threshold for normalized scores 1s needed for all speakers 1n

NL. a normalization can be introduced over the entire NL
cohort by the NL-NORM 120E. Formally, the scores used

by the NL-NORM 120E can include pairwise scores
between every normalization cohort member c1 and every
NL member e;:

Sni={S. | 1<j<E} (7)
Where S_; 1s a rewrite of Eq. (2) above:
S.={s(e, cHI<i<N} (8)

The NL-NORM 120E can define the NL normalization with
an adaptive length K that 1s analogous to AS-Norm in Eq.

(6):

1{ste, nh—pu(Sy)  ste, ©)— p(SH) 9
S(E? f)nf—nﬂrm = K + K

z o(Skz) ()
where
(S7) = {s¥n < j < E} (10)

with S_“™ denoting the subset consisting of the highest K
of
scores 1n S, .

[0114] The NL-NORM 120E can be configured to allow
different adaptive lengths K _ and K.. This can differ from the
adaptive length K used for AS-Norm 1n Eq. (6). Accordingly,
Eq. (6) can be modified as follows:

o 7 1 ste, n=p(SE) ste, 1) - u( S5 (11)
s (e, )as—na:-"m — 3 Q'(SEEKE)) + G_(SEK;))

Nov. 30, 2023

Similarly, Eq. (9) for NL-NORM 120E can be modified with
different adaptive lengths K, and K _:

1( ste, - Sy
s(e, 1) — — g(gﬁf))

s(e, 1) — y(SEEK”) (12)
_|_
(s

ni—norm 7

[0115] The NL-NORM 120E can apply different K_and K,
to NL detection. By decoupling K_ and K, not only does it
enable further optimization of detection accuracy, but it also
allows the selection of a small K, value without sacrificing
the benefit that may require a larger K . The combination of
the LSH 120C with a small K, can significantly improve the
speed of NL detection by reducing the number score com-
putations between the test utterance t and the normalization
cohort.

[0116] In NL detection, for a given test utterance t, its
similarity scores with all members of the NL can be com-
puted and ranked, with or without score normalization. The
top ranked score can then be compared with the pre-
determined threshold to reach a decision. The search time
here will be dominated by O(E), where E=lel.

[0117] As discussed above, the LSH 120C can speed up
the search process. In this regard, the LSH 120C pipeline can

be “trained” on the 1-vectors (for example, output from the
GM M/UBM 120A; or speaker embeddings (for example,

output from the DNN 120B) associated with the € and C,
where, as noted earlier, C 1s the normalization cohort. The
“training” can be performed by, for example, deriving
shorter characteristic embedding for each of the 600-dimen-
sion embeddings 1n € and C using a set of random hyper-
plane-based hash functions. Given a collection of embed-

.. . = . .
dings in K™, a random embedding r from the m-dimension

(Gaussian distribution can be chosen and a hash function h>
defined, as follows:

(13)

~b e
= o=l

FANI '
—~ <

(@) = {1
' 0

Then, for any embeddings U and v

a(7, V) (14)

T

Prih. @) =h,@)|=1-

where B(E, ?) 1s the angle between embeddings u and v. It
can be estimated that, for n embeddings, the hash functions
can be chosen by picking random O(log™n) bits, thereby

restricting the random hyperplanes to be in a family size
20Ues™™ For a given test i-vector t, the LSH 120C can be

applied twice: once to discover K, nearest neighbors to t
from €, and the second time to discover K_nearest neighbors

to t from C (for example, the K, mentioned earlier). There-
fore, in Eq. (11) and Eq. (12), S**” can be constructed by

identifying K. members in C using LSH 120C followed by
the generation of K, scores, instead of generating all N
scores followed by the 1dentification of top K, scores. (Recall

that N=ICl.) Using such an approach, for each t, the number
of PLDA score evaluations by the PLDA 120D can be

reduced from O(E+N) to O(K_+K,). Because LSH 120C
search time 1s negligible comparing with PLLDA score evalu-
ation, this approach can significantly reduce the computa-
tional cost and latency of NL detection.

[0118] FIG. 4 illustrates a flow diagram of a speaker
negative list detection process 200, according to the prin-
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ciples of the disclosure. Referring to FIGS. 1, 2 and 4
contemporaneously, a user of the communicating device 10
can 1itiate a call to a destination communicating device,
such as, for example, a communicating device 1n the call
center 20 or elsewhere 1n the communication system 1. The
call can be received at the fraud detection system 40 (Step
205) and, 11 the caller 1s not predicted to be a match 1n a list
of fraudsters, the call can be redirected to the destination

communicating device (for example, communicating device
26 1n the call center 20).

[0119] Altematively, the call can be received at the call
center 20 and bridged to the fraud detection system 40 for
simultaneous access to the call signal (Step 205).

[0120] The voice signal can be parsed by the processor
110 and one or more utterances forwarded for analysis (Step
210). A determination can be made whether to apply speaker
embedding (for example, 1-vector or x-vector) analysis (Step
215). If 1t 1s determined to apply 1-vector analysis, the voice
data can be forwarded to the GMM/UBM 120A and the
GMM/UBM model can be applied to the data to provide
1-vector data (Step 2135, then Step 220). If 1t 15 determined to
apply speaker embedding (for example, x-vector) analysis,
the voice data can be forwarded to the DNN 120B and a
DNN model can be applied to the data to provide x-vector
data (Step 2135, then Step 225).

[0121] A determination can be made whether to increase
processing speed with respect to the output from the GMM/
UBM 120A or the DNN 120B, before applying the speaker
embedding (for example, 1-vector or x-vector) data to the
PLDA 120D (Step 230). If a determination 1s made to
increase processing speed (YES at Step 230), then the output
from the GMM/UBM 120A or the DNN 120B can be 1nput
to and the LSH 120C applied to reduce processing (Step
235) and the output of the LSH 120C input to and the PLDA
120D applied for scoring (Step 240).

[0122] If a determination 1s made not to icrease process-
ing speed prior to applying PLDA (NO at Step 230), then the
output from the GMM/UBM 120A or the DNN 120B can be
input to and the PLDA 120D applied for scoring (Step 240).

[0123] A determination can be made whether to increase
accuracy to the scoring data output by the PLDA 120D (Step
245). I 1t 1s determined to increase accuracy (YES at Step
245), then the output of the PLDA 120 can be mput to and
the NL-NORM 120FE can be applied (Step 250). However,
if 1t 1s determined not to increase accuracy (NO at Step 245),
then the output of the PLDA 120 can be forwarded to the
input to and the VID 120F and the process ended.

[0124] FIG. § illustrates a flow diagram of a fraud detec-
tion and remediation process 300, according to the prin-
ciples of the disclosure. Referring to FIGS. 1, 2 and 3
contemporaneously, after the user of the communicating
device 10 initiates the call to the destination communicating
device and the call 1s received (Step 205) and parsed (Step
210), for example, 1n the VRFR system 100, an utterance 1n
the voice signal can be analyzed by the VRS 120 for
purposes of i1dentifying the speaker against an NL, for
example, stored in the DB 130D (Step 3135). The analysis
can mclude Steps 215 through 2335 of the voice 1dentification

process 200 (shown 1n FIG. 4).

[0125] Based on the analysis of the test utterance against
the NL, a matchability score S,,,,-- can be determined
(Step 320) The score can be determined, for example, by the
NL-NORM 120E. The matchability score S, ., -~ can be
compared against a predetermined threshold score S, 777
orp (Step 325) and the parametric values of the models 1n
VRS 120 can be updated to tune the models (Step 330). IT

it 1s determined that the matchability score S, ,, -+, 1S greater
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than the threshold score S ;rrzcrrorn (YES at Step 335),
then the utterance can be determined (or predicted), for
example, by the VID 120F to belong to a known caller (or
fraudster) 1n the negative list (Step 340), otherwise (NO at
Step 335) a determination can be made whether to end
analysis (Step 350). The determination can include an 1den-
tity of the fraudster.

[0126] Adter determining the utterance with high probabil-
ity matches a set of fraudsters (Step 340), a notification
signal can be generated by the FID alert generator 150C and
sent by the FID communicator 150D (Step 345), and a
determination can be made whether to end analysis (Step
350). The notification signal can be sent to, for example, a
call agent communicating device 26 or another communi-
cating device (not shown) to mvestigate the call, terminate
the call, or take other appropriate logging or remediation
steps.

[0127] If a determination 1s made not to end the analysis
(NO at Step 350), the process 300 can be repeated for the
next utterance 1n the call, otherwise (YES at Step 350) the
process can be ended.

[0128] Before recerving the call from the communicating
device 10, the machine learning models 1n the VRS 120 can
be trained. For example, the GMM/UBM 120A and DNN
120 models can be trained using voice recordings with
speaker labels. According to a non-limiting approach, an
MCE dataset consisting of 3,631 NL speakers and 5,000
background (non-NL) speakers can be used as a traiming
dataset to train, for example, the PLDA 120D. The MCE
dataset includes three utterances from each NL speaker, and
the mean of the three i1-vectors are enrolled in NL as the
utterance of the corresponding {raudster—that 1s, an
enrolled NL utterance. A normalization cohort of 4,000
augmented 1-vectors 1s generated by applying at random a
weighted sum between non-NL speaker 1-vectors and NL
speaker 1-vectors, limiting the maximum weight for NL
speakers to 20%. The development set, consisting of one
utterance from each of the 3,631 NL speakers and non-NL
speakers, 1s used to verily the baseline approach of the
PLDA model 120E with the AS-Norm model (in the NL-
NORM 120E), including the tuning of adaptive length K in

AS-Norm for baseline EER computation on the test dataset.

[0129] It 1s noted that a similar approach, as described
herein for 1-vectors from the GMM/UBM 120A can also be

applied for speaker embeddings (for example, x-vectors)
from the DNN 120B.

[0130] A stratified 350/50 random split of the MCE test
dataset, consisting of one utterance from each of the 3,631
NL speakers and 12,386 non-NL speakers, produces

equal-sized Vahdatlon dataset and evaluation dataset. The

validation dataset 1s used for tuning of hyper-parameters in
the LSH 120C, including LSH depth L, and the adaptive

length K 1n the NL-NORM 120E (for example, according to
Eq. (9)), as well as the K, and K (for example, according to
Eqgs. (11) and (12)). The evaluation dataset 1s reserved for
holdout testing only. Unless specified otherwise, all results
presented in this disclosure can be obtained using the
evaluation dataset. A motivation for generating the valida-
tion and evaluation datasets from the MCE test dataset 1s that
the 50/50 stratified split preserves the ratio of non-NL to NL
speakers of the test dataset, which 1s significantly higher
than that of the development dataset. In most real-world call
center applications, this ratio 1s much higher. In addition, 1t
1s desirable that the validation and evaluation datasets have
similar distributions and behaviors, whereas the MCE devel-
opment dataset exhibits much lower EER than the test
dataset.
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[0131] In maximizing the eflectiveness of the novel NL
detection methods disclosed herein, a minimal baseline
approach can be adopted—iIor example, by the PLDA 120D
followed by the NL-NORM 120E, in order to remove
potential variations introduced by nonessential steps. For
example, 1n the nstant disclosure, although optional, an
LDA 1s unnecessary and, therefore eliminated even though
it 15 often used 1n state-of-the art systems prior to PLDA for
dimension reduction. With this baseline, the NL detection
EER of the VRS 120 was observed to be 1.25% and 5.66%
for the MCE development and the entire test datasets,
respectively.

[0132] Inthe VRS 120, the LSH 120C can be applied prior
to the PLDA 120D to reduce the number of similarity score
computations. For example, the NearPy Python framework?2
can be used 1 an implementation of the LSH 120C with

random hyperplane-based hash functions.

[0133] Referring to the NL-NORM 120E, the resulting
EER of NL detection 1s 5.57%, reduced from 5.69% {for
AS-Norm (for example, according to Eq. (9)). To verity the
stability and consistency of this result, a cross validation 1s
performed by repeating 10 times the stratified random 50/50
split of the MCE test dataset into the validation and evalu-
ation datasets. The outcome 1s shown 1n Table II below,
where an average of 0.11% reduction 1n EER absolute value
1s observed.

TABLE 11

(NL-Norm vs. AS-Norm EER)

AS-Norm NL-Norm
EER (Evaluation Set) 5.69% 5.57%
EER (Cross Validation) mean 5.64% 5.53%
std 0.26% 0.28%

[0134] Comparing AS-Norm of Eq. (11) with Eq. (6), with
the additional tuning parameter, a lower EER can be reached
by the NL-NORM 120E when separate adaptive lengths K
and K_ are employed. Table 111 shows the tuning progress on
the validation dataset, where the first row represents the
AS-Norm that requires K_=K,, and the second row repre-
sents the best result found with K_=1600 and K =600. In
addition to the gain 1n accuracy, importantly, this approach
offers the flexibility of selecting a low K, value that yields a
close-to-optimal EER, as demonstrated by the last row of
Table III, where K=200. A low K, combined with LSH,
cnables a Signiﬁcant reduction 1 the number of score
computations between the test utterance t and the normal-
1zation cohort, which in turn increases the NL detection
speed.

TABLE 111

(Tuning AS-Norm with Different Adaptive Lengths)

K. K, EER (%)

300 300 5.69
1600 600 5.61
3800 200 5.62

[0135] Referring to the LSH 120C, a test vector, t, can be
compared against a NL of size E=3,631. As Table IV shows,
the fastest distance algorithm for comparison 1s cosine
distance, which takes 4 ms to compare t against all of the NL
entrics. However, 1ts speed 1s achieved at the cost of
accuracy: the cosine distance yields an EER of 7.40%. The
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PLDA 120D improves on the EER but at the expense of an
increased latency. The LSH 120C followed by the PLDA
120D allows the VRS 120, not only to dertve an EER similar
to that of the PLDA 120D only, but 1t also does so at a
fraction of time: 28 ms compared to 864 ms for the PLDA
120D. For the test vector t, the LSH 120C can first conduct
a search to find L. members of NL that are most similar to t,
then the PLDA 120D can compute the score between t and
these L utterances, with the highest score selected for EER
calculation.

TABLE IV

(Accuracy and latency)

Algorithm EER (%) Time (ms)
Cosine distance 7.40 4
PLDA 6.49 864
LSH + PLDA (L = 30) 6.46 28

[0136] FIG. 6 illustrates a chart that demonstrates empiri-
cally an example of where, as the depth L of the LSH 120C
increases, the resulting EER can approach the EER exhib-
ited by the PLDA 120D if a greedy score calculation strategy
1s used across the entire NL. In the chart, the relatively flat
line represents the EER obtained from PLDA 120D (without
score normalization), and the curved line represents the EER
obtained from the LSH 120C. For the NL dataset with size
E=3,631, an LSH depth L.=30 1s suilicient to match the EER
of PLDA alone.

[0137] InFIG. 6, even though EER=6.46% at L=30, which
1s slightly better than the EER of 6.49% without the LSH
120C, 1t 1s not necessarily an indication that the LSH 120C
can help improve NL detection accuracy. A reason for the
occasionally lower EER when performing the LSH 120C
first 1s that for a test utterance not spoken by any NL speaker,
the LSH 120C may fail to find the NL. member that would
have produced the highest PLDA score, thus ehmmatmg a
false-match instance from the EER evaluatlon As seen 1n
FIG. 6, this effect quickly disappears with increasing LSH
depth L. The results in FIG. are obtained without score

normalization. Score normalization improves EER, we next
discuss the effect of combining the LSH 120C and the PLDA
120D, and score normalization next.

[0138] FIG. 7 illustrates an example of a methodology
flow that can be performed by applying both LSH 120C and
NL-NORM 120E. For instance, the process in lines 1-12
establishes the normalization over the entire NL cohort as
discussed earlier. This step may be done only once, during
initialization. Each enrolled speaker’s utterances are scored
against all of the normalization cohorts and the top K,
matches for that speaker and the normalization cohort are
saved (line 10). At the end of the loop on line 11, S,, % is
populated and will be used to compute the NL-Norm later.
As part of the populating S,,* it is possible that the
eventual top-ranked NL speaker which induces the highest
normalized PLDA score 1s not among the top K, NL mem-
bers 1dentified by the LSH search, resulting in a decrease in
the NL detection accuracy. This deficiency can be mitigated
by expanding LSH search depth K_. At line 12, the NL-
Norm computation function can be invoked, which returns
true 1f a match 1s found.

[0139] For a given target vector t, first the top-L nearest
neighbors of t from the NL E (line 14) can be found. To
apply normalization, PLDA scores between t and utterances
in the normalization cohort C are also needed; LSH can be
utilized once more to find K, utterances in C that are most
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similar to t (line 15). B}gf the end of the loop on line 19, both
the sets S,%? and S,,,** are available, the latter populating
during, 1111t1ahzat1011 as described 1n the preceding paragraph.
Finally, lines 21-25 compute the normalized PLDA score
between t and each NL list member, saving the results 1n a
list (Line 25) that i1s checked against the threshold to
determine an NL match. With methodology of FIG. 6, the
total number of PLDA evaluations are reduced from O(E+N)
without LSH to O(L+K)) with LSH, where L<<E and
K <<N.

[0140] Table V lists the results obtamned using various
approaches, including the NL detection time per test utter-
ance along with parameters L, K_ and K_ which, as described
carlier, can be selected via a grid search for the lowest EER
on the validation dataset, then applied to the evaluation
dataset. As earlier, if multiple {K_, K } pairs yield near-
lowest EERSs for the validation dataset, then the one with a
low K, 1s selected to take full advantage of LSH.

TABLE V

(EER and NI Detection Time (Per Test Utterance)

EER Time
Method (%) L K, K, (ms)
PLDA, no score norm 6.49 — — — 864
AS-Nom (Eq. (6)) 5.69 — 300 300 1975
NL-Norm (Eq. (9)) 5.57 — 500 500 1981
AS-Nom (Eq. (11) 5.52 — 3800 200 2051
NL-Norm (Eq. (12)) 5.57 — 400 500 1976
LSH + PLDA, no score 6.46 30 — — 28

INOTIT1
LSH + AS-Norm (Eq. (11)) 566 50 2000 250 114

L.SH + NL-Norm (Eq. (12)) 548 50 3700 200 102

[0141] The first two rows 1n Table V are results of the
baseline model, with and without score normalization. By
applying LSH without score normalization, the NL detection
time per test utterance 1s reduced from 864 ms to 28 ms, with
little change mn FER. When adopting Eq. (12) for score
normalization, EER 1s lowered to 5.48% by taking advan-
tage of NL-Norm and allowing different adaptive lengths K.
and K , at the same time the NL detection time 1s shortened
significantly from 19735 ms to 102 ms, a beneficiary of LSH
search. As noted previously, these results are obtained using
the 600-dimension 1-vector as mput to PLDA model directly.
A dimension reduction step such as LDA can be, optionally,
inserted before the PLDA 120D to reduce the inference time
turther for all approaches listed 1n Table V, with or without
LLSH search. Nonetheless the LSH results presented here
demonstrate that real-time NL detection 1s eflective for
applications such as call center services.

[0142] Negative list detection 1s an important application
that can be used for fraud detection 1n various industries
such as call center services. The instant disclosure provides
novel techniques specifically devised for NL detection, with
the aim of improving both accuracy and speed. NL-Norm
considers similarity scores between the normalization cohort
and all enrolled NL speakers as a single distribution, which
helps calibrate test scores and select a consistent threshold
over the entire NL. LSH 1s applied to find NL speakers as
well as utterances in the normalization cohort that are most
similar to a test utterance, so that PLDA scoring i1s per-
formed only on small subsets of utterances, which signifi-
cantly lowers the computation cost and latency of the NL
detection. The eflectiveness of LSH i1s further amplified
when different adaptive lengths for Z-Norm and T-Norm
terms are allowed in AS-Norm and NL-Norm, so that
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cvaluating a relatively small number of similarity scores
between a test utterance and the normalization cohort 1s

[

suilicient t reach optimal accuracy.
4 2Lk 22

[0143] The terms “a,” “an,” and “the,” as used i1n this

disclosure, means “one or more,” unless expressly specified
otherwise.

[0144] The term ‘“backbone,” as used 1n this disclosure,
means a transmission medium or infrastructure that inter-
connects one or more computing devices or communication
devices to provide a path that conveys data packets and
instruction signals between the one or more computing
devices or communication devices. The backbone can
include a network. The backbone can include an ethernet
TCP/IP. The backbone can include a distributed backbone, a
collapsed backbone, a parallel backbone or a serial back-
bone.

[0145] The term “bus,” as used 1n this disclosure, means
any ol several types of bus structures that can further
interconnect to a memory bus (with or without a memory
controller), a peripheral bus, or a local bus using any of a
variety of commercially available bus architectures. The
term “bus” can include a backbone.

[0146] The terms “communicating device” or “communi-
cation device,” as used 1n this disclosure, mean any com-
puting device, hardware, or computing resource that can
transmit or receive data packets, instruction signals or data
signals over a communication link. The communicating
device or communication device can be portable or station-
ary.

[0147] The term “communication link,” as used in this
disclosure, means a wired or wireless medium that conveys
data or information between at least two points. The wired
or wireless medium can include, for example, a metallic
conductor link, a radio frequency (RF) communication link,
an Infrared (IR) communication link, or an optical commu-

nication link. The RF communication link can include, for
example, WiF1, WiIMAX, IEEE 802.11, DECT, 0G, 1G, 2G,

3G, 4G or 5G cellular standards satelllte or Bluetooth A
communication link can mcludej for example, an RS-232,

RS-422, RS-485, or any other suitable interface.

[0148] The terms “‘computer,” “computing device,” or
“processor,” as used 1n this disclosure, means any machine,
device, circuit, component, or module, or any system of
machines, devices, circuits, components, or modules that are
capable of mampulating data according to one or more
instructions. The terms “computer,” “computing device” or
“processor”’ can include, for example, without limitation, a
processor, a microprocessor (UC), a central processing unit
(CPU), a graphic processing unit (GPU), a data processing
umt (DPU), an application specific integrated circuit
(ASIC), a general purpose computer, a super computer, a
personal computer, a laptop computer, a palmtop computer,
a notebook computer, a desktop computer, a workstation
computer, a server, a server farm, a computer cloud, or an
array or system ol processors, uCs, CPUs, GPUs, ASICs,
general purpose computers, super computers, personal com-
puters, laptop computers, palmtop computers, notebook

computers, desktop computers, workstation computers, or
Servers.

[0149] The terms “computer resource asset” or “comput-
ing resource asset,” as used in this disclosure, means a
computing resource, a computing device or a communicat-
ing device, or any combination thereof.

[0150] The term “computer-readable medium,” as used 1n
this disclosure, means any non-transitory storage medium
that participates 1n providing data (for example, instructions)
that can be read by a computer. Such a medium can take
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many forms, including non-volatile media and volatile
media. Non-volatile media can include, for example, optical
or magnetic disks and other persistent memory. Volatile
media can 1include dynamic random-access memory
(DRAM). Common forms of computer-readable media
include, for example, a tloppy disk, a tlexible disk, hard disk,
magnetic tape, any other magnetic medium, a CD-ROM,
DVD, any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, a RAM,
a PROM, an FPROM, a FLASH-FEPROM, any other
memory chip or cartridge, a carrier wave as described
hereinafter, or any other medium from which a computer can
read. The computer-readable medium can include a “cloud,”
which can include a distribution of files across multiple (e.g.,
thousands of) memory caches on multiple (e.g., thousands
of) computers.

[0151] Various forms of computer readable media can be
involved 1n carrying sequences of 1mnstructions to a computer.
For example, sequences of instruction (1) can be delivered
from a RAM to a processor, (1) can be carried over a
wireless transmission medium, or (111) can be formatted
according to numerous formats, standards or protocols,
including, for example, WiFi, WiMAX, IEEE 802.11,
DECT, 0G, 1G, 2G, 3G, 4G, or 5G cellular standards, or
Bluetooth.

[0152] The terms “computer resource” or “computing
resource,” as used 1n this disclosure, mean software, a
software application, a web application, a web page, a
computer application, a computer program, computer code,
machine executable mstructions, firmware, or a process that
can be arranged to execute on a computing device or a
communicating device.

[0153] The terms “computer resource process’ or “com-
puting resource process,” as used 1n this disclosure, mean a
computing resource that 1s 1n execution or 1n a state of being
executed on an operating system of a computing device,
such as, for example, the NLP 110 or the MP 120 (shown 1n
FIG. 2). Each computing resource that 1s created, opened, or
executed on or by the operating system can create a corre-
sponding computing resource process. A computing
resource process can include one or more threads, as will be
understood by those skilled in the art.

[0154] The term “‘database,” as used 1 this disclosure,
means any combination of software or hardware, including
at least one computing resource or at least one computer. The
database can include a structured collection of records or
data organized according to a database model, such as, for
example, but not limited to at least one of a relational model,
a hierarchical model, or a network model. The database can
include a database management system application
(DBMS). The at least one application may include, but 1s not
limited to, a computing resource such as, for example, an
application program that can accept connections to service
requests Irom communicating devices by sending back
responses to the devices. The database can be configured to
run the at least one computing resource, often under heavy
workloads, unattended, for extended periods of time with
mimmal or no human direction.

[0155] The terms “including,” “comprising” and varia-
tions thereot, as used 1n this disclosure, mean “including, but
not limited to,” unless expressly specified otherwise.

[0156] The term “network,” as used i1n this disclosure
means, but 1s not limited to, for example, at least one of a
personal area network (PAN), a local area network (LAN),
a wireless local area network (WLAN), a campus area
network (CAN), a metropolitan area network (MAN), a
wide area network (WAN), a metropolitan area network
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(MAN), a wide area network (WAN), a global area network
(GAN), a broadband area network (BAN), a cellular net-
work, a storage-area network (SAN), a system-area network,
a passive optical local area network (POLAN), an enterprise
private network (EPN), a virtual private network (VPN), the
Internet, or the like, or any combination of the foregoing,
any of which can be configured to communicate data via a
wireless and/or a wired communication medium. These

networks can run a variety of protocols, including, but not
limited to, for example, Ethernet, 1P, IPX, TCP, UDP, SPX,

IP, IRC, HTTP, FTP, Telnet, SMTP, DNS, ARP, ICMP.

[0157] The term “server,” as used 1n this disclosure, means
any combination of software or hardware, including at least
one computing resource or at least one computer to perform
services for connected communicating devices as part of a
client-server architecture. The at least one server application
can include, but 1s not limited to, a computing resource such
as, for example, an application program that can accept
connections to service requests from communicating
devices by sending back responses to the devices. The server
can be configured to run the at least one computing resource,
often under heavy workloads, unattended, for extended
periods of time with minimal or no human direction. The
server can include a plurality of computers configured, with
the at least one computing resource being divided among the
computers depending upon the workload. For example,
under light loading, the at least one computing resource can
run on a single computer. However, under heavy loading,
multiple computers can be required to run the at least one
computing resource. The server, or any 1f 1ts computers, can
also be used as a workstation.

[0158] The terms “transmission,” “transmit,” or “send,” as
used 1n this disclosure, mean the conveyance of data, data
packets, computer instructions, or any other digital or analog,
information via electricity, acoustic waves, light waves or
other electromagnetic emissions, such as those generated
with communications in the radio frequency (RF) or infrared
(IR) spectra. Transmission media for such transmissions can
include air, coaxial cables, copper wire, or fiber optics,
including the wires that comprise a system bus coupled to
the processor.

[0159] Devices that are 1n communication with each other
need not be in continuous commumnication with each other
unless expressly specified otherwise. In addition, devices
that are in communication with each other may communi-
cate directly or indirectly through one or more intermediar-
1es.

[0160] Although process steps, method steps, or algo-
rithms may be described 1n a sequential or a parallel order,
such processes, methods and algorithms may be configured
to work 1n alternate orders. In other words, any sequence or
order of steps that may be described 1n a sequential order
does not necessarily indicate a requirement that the steps be
performed in that order; some steps may be performed
simultaneously. Similarly, 1 a sequence or order of steps 1s
described 1n a parallel (or simultaneous) order, such steps
can be performed 1n a sequential order. The steps of the
processes, methods or algorithms described 1n this specifi-
cation may be performed 1n any order practical.

[0161] When a single device or article 1s described, 1t will
be readily apparent that more than one device or article may
be used 1n place of a single device or article. Similarly,
where more than one device or article 1s described, 1t will be
readily apparent that a single device or article may be used
in place of the more than one device or article. The func-
tionality or the features of a device may be alternatively
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embodied by one or more other devices which are not
explicitly described as having such functionality or features.
[0162] The subject matter described above 1s provided by
way ol 1llustration only and should not be construed as
limiting. Various modifications and changes can be made to
the subject matter described herein without following the
example embodiments and applications illustrated and
described, and without departing from the true spirit and
scope of the invention encompassed by the present disclo-
sure, which 1s defined by the set of recitations in the
following claims and by structures and functions or steps
which are equivalent to these recitations.

What 1s claimed 1s:

1. A computer-implemented method for recognizing a
user ol a communicating device as belonging to a list of
known users from an utterance included 1n a voice signal
received from the communicating device, the method com-
prising:

applying an utterance of a speaker to a machine learning

volceprint extraction model to extract a voiceprint set
comprising an 1-vector or a speaker embedding based
on the utterance;

outputting the voiceprint set by the machine learming

volceprint extraction model;

applying the output voiceprint set to a machine learning

model to compute an utterance match score based on
the voiceprint set, or to a machine learning hashing
model to reduce the voiceprint set to a reduced dimen-
sion voiceprint set and apply the reduced dimension
voiceprint set to the machine learning model to com-
pute the utterance match score based on the reduced
dimension voiceprint set;

outputting the utterance match score by the machine

learning model;

applying the output match score to a machine learming

score normalization model (NL-NORM) to calibrate
the match score;

comparing the calibrated match score to a match score
threshold; and,

when the calibrated match score 1s greater than the match
score threshold, identifying the user as belonging to a
list of known users.

2. The computer-implemented method in claim 1, wherein

the machine learning vector extraction model comprises a
Gaussian Mixture Model (GMM) or a Gaussian Mixture

Model with Universal Background Model (GMM-UBM)
that extracts the 1-vector.

3. The computer-implemented method in claim 1, wherein
the machine learning voiceprint extraction model comprises
a Deep Neural Network model (DNN) that extracts the
speaker embedding.

4. The computer-implemented method 1n claim 3, wherein
the DNN comprises a Convolutional Neural Network
(CNN), a Residual Network (ResNet), a Time Delay Neural
Network (TDNN), or a machine learning model architecture
configured for speaker recognition.

5. The computer-implemented method in claim 1, wherein
the machine learning hashing model comprises a Locality
Sensing Hashing model (LSH).

6. The computer-implemented method in claim 1, wherein
the machine learning hashing model 1s configured to find a
subset of negative list speakers and a subset of a normal-
1zation cohort that are most similar to the utterance, such that
a similarity score 1s evaluated between the utterance and the
subset of negative list speakers and the subset of the nor-
malization cohort to reduce computation by a processor at
inference time.
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7. The computer-implemented method 1n claim 1, wherein
the machine learning score normalization model (NL-
NORM) 1s configured to analyze similarity scores between
a normalization cohort and all enrolled negative list speakers
as a single distribution to calibrate the match score.

8. An apparatus for recognizing a user of a communicat-
ing device as belonging to a list of known users from an
utterance included 1 a voice signal received from the
communicating device, the apparatus comprising:

One Or mMore pProcessors;
an input device;
an output device; and

a memory storing one or more programs to be executed by
the one or more processors, the one or more programs
comprising instructions for:

applying an utterance of a speaker to a machine learning
voiceprint extraction model to extract a voiceprint set
comprising an 1-vector or a speaker embedding based
on the utterance:;

outputting the voiceprint set by the machine learning
voiceprint extraction model;

applying the output voiceprint set to a machine learning
model to compute an utterance match score based on
the voiceprint set, or to a machine learning hashing
model to reduce the voiceprint set to a reduced dimen-
ston voiceprint set and apply the reduced dimension
voiceprint set to the machine learning model to com-
pute the utterance match score based on the reduced
dimension voiceprint set;

outputting the utterance match score by the machine
learning model;

applying the output match score to a machine learning
score normalization model (NL-NORM) to calibrate
the match score;

comparing the calibrated match score to a match score

threshold; and,

when the calibrated match score 1s greater than the match
score threshold, 1dentifying the user as belonging to a
list of known users.

9. The apparatus 1n claim 8, wherein the machine learning
vector extraction model comprises a Gaussian Mixture

Model (GMM) or a Gaussian Mixture Model with Universal
Background Model (GMM-UBM) that extracts the 1-vector.

10. The apparatus 1n claim 8, wherein the machine learn-
ing voiceprint extraction model comprises a Deep Neural

Network model (DNN) that extracts the speaker embedding.

11. The apparatus 1n claim 10, wherein the DNN com-
prises a Convolutional Neural Network (CNN), a Residual
Network (ResNet), a Time Delay Neural Network (TDNN),
or a machine learning model architecture configured for
speaker recognition.

12. The apparatus 1n claim 8, wherein the machine learn-

ing hashing model comprises a Locality Sensing Hashing
model (LSH).

13. The apparatus 1n claim 8, wherein the machine learn-
ing hashing model i1s configured to find a subset of negative
list speakers and a subset of a normalization cohort that are
most similar to the utterance, such that a similarity score 1s
evaluated between the utterance and the subset of negative
list speakers and the subset of the normalization cohort to
reduce computation by a processor at inference time.

14. The apparatus 1n claim 8, wherein the machine learn-
ing score normalization model (NL-NORM) 1s configured to
analyze similarity scores between a normalization cohort
and all enrolled negative list speakers as a single distribution
to calibrate the match score.
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15. A non-transitory computer readable storage medium
storing one or more programs, the one or more programs
comprising instructions, which, when executed by an appa-
ratus device with one or more processors, one or more input
devices, and one or more output devices, cause the apparatus
to perform operations for recognizing a user ol a commu-
nicating device as belonging to a list of known users from an
utterance included 1 a voice signal received from the
communicating device, the operations comprising;:

applying an utterance of a speaker to a machine learning

volceprint extraction model to extract a voiceprint set
comprising an 1-vector or a speaker embedding based
on the utterance;

outputting the voiceprint set by the machine learning

volceprint extraction model;

applying the output voiceprint set to a machine learning

model to compute an utterance match score based on
the voiceprint set, or to a machine learning hashing
model to reduce the voiceprint set to a reduced dimen-
sion voiceprint set and apply the reduced dimension
voiceprint set to the machine learning model to com-
pute the utterance match score based on the reduced
dimension voiceprint set;

outputting the utterance match score by the machine

learning model;

applying the output match score to a machine learming

score normalization model (NL-NORM) to calibrate
the match score;

comparing the calibrated match score to a match score

threshold; and,

when the calibrated match score 1s greater than the match

score threshold, 1dentitying the user as belonging to a
list of known users.
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16. The non-transitory computer readable storage medium
in claim 135, wherein the machine learning vector extraction
model comprises a Gaussian Mixture Model (GMM) or a
Gaussian Mixture Model with Universal Background Model
(GMM-UBM) that extracts the 1-vector.

17. The non-transitory computer readable storage medium
in claim 135, wherein the machine learning voiceprint extrac-
tion model comprises a Deep Neural Network model (DNN)
that extracts the speaker embedding.

18. The apparatus 1n claim 17, wherein the DNN com-
prises a Convolutional Neural Network (CNN), a Residual
Network (ResNet), a Time Delay Neural Network (TDNN),
or a machine learning model architecture configured for
speaker recognition.

19. The non-transitory computer readable storage medium
in claim 15, wherein the machine learning hashing model
comprises a Locality Sensing Hashing model (LSH) con-
figured to find a subset of negative list speakers and a subset
of a normalization cohort that are most similar to the
utterance, such that a similarity score 1s evaluated between
the utterance and the subset of negative list speakers and the
subset of the normalization cohort to reduce computation by
a processor at inference time.

20. The non-transitory computer readable storage medium
in claim 15, wherein the machine learning score normaliza-
tion model (NL-NORM) 1s configured to analyze similarity
scores between a normalization cohort and all enrolled
negative list speakers as a single distribution to calibrate the
match score.
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