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OBTAIN A FIRST SET OF TIME SERIES DATA ASSOCIATED WITH THE
SUBJECT AND A SECOND SET OF TIME SERIES DATA ASSOCIATED WITH
THE SUBJECT, WHEREIN THE FIRST SET OF TIME SERIES DATA RELATES

TO A FIRST VARIABLE INDICATIVE OF A HEALTH BEHAVIOR OF THE
SUBJECT AND WHERE THE SECOND SET OF TIME SERIES DATA RELATES
TO ASECOND VARIABLE INDICATIVE OF A HEALTH CONDITION OF THE

SUBJECT

DETERMINE A CAUSAL EFFECT OF THE FIRST VARIABLE ON THE
SECOND VARIABLE BY ESTIMATING AN AVERAGE TREATMENT EFFECT,
WHEREIN THE AVERAGE TREATMENT EFFECT IS ESTIMATED BY
PROCESSING THE FIRST SET OF TIME SERIES DATA AND THE SECOND
SET OF TIME SERIES DATA USING A MODEL-TWIN RANDOMIZATION
METHOD

GENERATE A PERSONALIZED TREATMENT OR INTERVENTION
RECOMMENDATION FOR THE SUBJECT TO CHANGE THE HEALTH
CONDITION BASED AT LEAST IN PART ON THE CAUSAL EFFECT
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METHODS AND SYSTEMS FOR
GENERATING PERSONALIZED
TREATMENTS VIA CAUSAL INFERENCE

CROSS-REFERENC.

(L]

[0001] This application claims priority U.S. Provisional
Application No. 63/370,525, filed Aug. 5, 2022, which 1s
entirely icorporated herein by reference.

BACKGROUND

[0002] Advances 1n technology have made it easier to
collect large amounts of longitudinal data and determine
associations between different sets of data. For example,
wearable or ambient devices or sensors may generate vol-
umes of data that are indicative of mental, behavioral, or
physical health. If a subject undergoes a treatment, the
treatment may aflect one or more health outcomes recorded
by the wearable or ambient devices or sensors. But beyond
acknowledging a statistical association between sets of data
collected during treatment, current analysis techniques often
do not establish causal links between the sets of data, which
would allow for better understanding of a treatment’s

eflects.

SUMMARY

[0003] In one aspect, a method 1s provided for generating
a personalized recommended intervention for a subject
based at least in part on causal inference, comprising: (a)
obtaining a first set of time series data associated with the
subject and a second set of time series data associated with
the subject, wherein the first set of time series data relates to
a {irst variable indicative of a health behavior of the subject
and wherein the second set of time series data relates to a
second variable indicative of a health condition of the
subject; (b) determining a causal effect of the first variable
on the second variable by estimating an average treatment
cllect, wherein the average treatment eflect 1s estimated by
processing the first set of time series data and the second set
of time series data using a model-twin randomization
method; and (c) generating a personalized treatment or
intervention recommendation for the subject to change the
health condition based at least 1n part on the causal effect
determined 1n (b). In some embodiments, the model-twin
randomization method comprises a sequential technique to
implement g-formula for estimating the average treatment
cllect. In some embodiments, implementing the g-formula
comprises 1mplementing extensions of the g-formula,
wherein the extensions comprise one or both of targeted
learning or targeted maximum likelihood estimation. In
some embodiments, the sequential technique comprises a
simulation-based technique or a Monte Carlo technique. In
some embodiments, processing the first set of time series
data and the second set of time series data using the
model-twin randomization method comprises randomizing
the first set of time series data for each time period or time
point of the first set of time series data. In some embodi-
ments, the method further comprises running a model-twin
through the randomized first set of time series data for a
number of iterations until a convergence condition 1s satis-
fied. In some embodiments, the model-twin 1s an outcome
model fitted to the first set of time series data and the second
set of time series data. In some embodiments, the method

turther comprises generating, by the model-twin, a predicted
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value of the second variable at each time point of the second
set of time series data. In some embodiments, the method
further comprises adding random noise to each predicted
value of the second wvariable. In some embodiments, the
method further comprises determining an average period
treatment eflect (APTE) from at least a subset of each of the
predicted values for at least a subset of the set of time points.
In some embodiments, the method further comprises esti-
mating a confidence interval for the APTE. In some embodi-
ments, the method further comprise calculating a cumulative
average confidence interval, wherein the convergence con-
dition relates to the cumulative average confidence interval.
In some embodiments, the model-twin comprises a gener-
alized linear model. In some embodiments, the linear model
comprises a generalized linear model. In some embodi-
ments, the model-twin comprises a non-parametric model.
In some embodiments, the model-twin comprises a machine
learning model. In some embodiments, the machine learning
model comprises a random forest. In some embodiments, the
first set of time series data 1s acquired from one or more
data-collection instruments that comprise at least one wear-
able device worn by the subject. In some embodiments, the
first set of time series data 1s indicative of sleep duration and
wherein the second set of time series data 1s indicative of
physical activity. In some embodiments, the second set of
time series data 1s indicative of speed of walking. In some
embodiments, the second set of time series data 1s indicative
of sleep duration and wherein the first set of time series data
1s 1indicative of physical activity. In some embodiments, one
or both of the first set of time series data or the second set
of time series data 1s collected daily. In some embodiments,
one or both of the first set of time series data or the second
set of time series data comprise variables that cause, mod-
erate, or contextualize data comprised 1n one or both of the
first set of time series data or the second set of time series
data. In some embodiments, the personalized treatment or
intervention recommendation comprises changing health
behavior of the subject. In some embodiments, changing the
health behavior or the subject comprises estimating a plau-
sible or suggested average treatment eflect of the health
behavior of the subject on the health condition of the subject.

[0004] In another aspect, one or more non-transitory coms-
puter-readable media are provided comprising computer-
executable mstructions that, when executed by at least one
processor, cause the at least one processor to: (a) obtain a
first set of time series data associated with the subject and a
second set of time series data associated with the subject,
wherein the first set of time series data relates to a first
variable indicative of a health behavior of the subject and
wherein the second set of time series data relates to a second
variable indicative of a health condition of the subject; (b)
determine a causal eflect of the first variable on the second
variable by estimating an average treatment eflect, wherein
the average treatment eflect 1s estimated by processing the
first set of time series data and the second set of time series
data using a model-twin randomization method; and (c)
generate a personalized treatment or intervention recoms-
mendation for the subject to change the health condition
based at least 1n part on the causal eflect determined 1n (b).

[0005] In another aspect, a computer system 1s provided
for generating a personalized recommended intervention for
a subject based at least 1n part on causal iniference, com-
prising: one or more processors; and one or more memories
storing computer-executable 1nstructions that, when
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executed, cause the one or more processors to: (a) obtain a
first set of time series data associated with the subject and a
second set of time series data associated with the subject,
wherein the first set of time series data relates to a first
variable indicative of a health behavior of the subject and
wherein the second set of time series data relates to a second
variable indicative of a health condition of the subject; (b)
determine a causal eflect of the first variable on the second
variable by estimating an average treatment eflect, wherein
the average treatment eflect 1s estimated by processing the
first set of time series data and the second set of time series
data using a model-twin randomization method; and (c)
generate a personalized treatment or intervention recoms-
mendation for the subject to change the health condition
based at least 1n part on the causal eflect determined 1n (b).

[0006] Another aspect of the present disclosure provides a
non-transitory computer readable medium comprising
machine executable code that, upon execution by one or
more computer processors, implements any of the methods
or techniques above or elsewhere herein.

[0007] Another aspect of the present disclosure provides a
system comprising one or more computer processors and
computer memory coupled thereto. The computer memory
comprises machine executable code that, upon execution by
the one or more computer processors, implements any of the
methods or techniques above or elsewhere herein.

[0008] Additional aspects and advantages of the present
disclosure will become readily apparent to those skilled 1n
this art from the following detailed description, wherein
only 1llustrative embodiments of the present disclosure are
shown and described. As will be realized, the present
disclosure 1s capable of other and different embodiments,
and 1ts several details are capable of modifications 1n various
obvious respects, all without departing from the disclosure.
Accordingly, the drawings and description are to be regarded
as 1llustrative 1n nature, and not as restrictive.

INCORPORAITION BY REFERENCE

[0009] All publications, patents, and patent applications
mentioned 1n this specification are herein incorporated by
reference to the same extent as 1f each individual publica-
tion, patent, or patent application was specifically and indi-
vidually indicated to be incorporated by reference. To the
extent publications and patents or patent applications incor-
porated by reference contradict the disclosure contained in
the specification, the specification 1s itended to supersede
and/or take precedence over any such contradictory mate-
rial.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The novel features of the invention are set forth
with particularity in the appended claims. A better under-
standing of the features and advantages of the present
invention will be obtained by reference to the following
detailed description that sets forth i1llustrative embodiments,
in which the principles of the invention are utilized, and the
accompanying drawings (also “Figure” and “FIG.” herein),
ol which:

[0011] FIG. 1 shows an example of a block diagram of an
environment for modeling an outbreak;

[0012] FIGS. 2A and 2B show examples of a simulation
that of model-twin randomization;
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[0013] FIGS. 3A and 3B show examples of results of 100
simulations 1 a simulation study for assessing model-twin
randomization;

[0014] FIG. 4 shows an example of a flowchart illustrating
a method for generating a personalized recommended 1nter-
vention for a subject based at least in part on causal
inference;

[0015] FIG. 5 shows an example of a computer system that
1s programmed or otherwise configured to implement meth-
ods provided herein; and

[0016] FIG. 6 shows an example of a random forest with
a plurality of decision trees.

DETAILED DESCRIPTION

[0017] While various embodiments of the invention have
been shown and described herein, 1t will be obvious to those
skilled 1n the art that such embodiments are provided by way
of example only Numerous variations, changes, and substi-
tutions may occur to those skilled in the art without depart-
ing from the invention. It should be understood that various
alternatives to the embodiments of the mvention described
herein may be employed.

[0018] The ever-increasing abundance of frequently col-
lected, temporally dense single-person small data may allow
for extracting personalized insights from this digital indi-
vidual-level information. However, standard analyses of
such 1ntensive longitudinal data merely characterize statis-
tical associations, making conclusions of causal eflects
generally hard to defend. Causal eflects are used to make
these insights truly actionable to the extent that one actually
expects to see an 1mpact from intervening on a measured
factor.

[0019] Currently, epidemiologists and econometricians
have developed and used causal inference techniques to
better mform population-level policies and decisions to
improve societal outcomes. However a question remains as
to how behavior change scientists can apply these tech-
niques to within-individual observational studies in order to
better inform individual-level behavioral interventions and
habit-changing practices.

[0020] One solution to this question includes conducting
within-individual experiments via the mobile phone apps
and wearable or implantable sensors that enable small-data
collection. These may be simple randomized or forced
crossover designs as are commonly used in within-indi-
vidual studies, that may not use experimental or observa-
tional causal inference methods.

[0021] In some cases, individuals with a chronic health
condition (CHC), which may include common recurring
conditions, 1 particular may benefit from such digitally
informed selif-experiments as provided by the systems, the
methods, the computer-readable media, and the techniques
disclosed herein. These CHCs may include migraines,
chronic pain, asthma, and 1rritable bowel syndrome, etc. In
some cases, substantial barriers to self-experimentation may
exist for these CHCs, highlighting the usefulness of better
using dense digital data by extracting insights that are not
just “correlational” (e.g., statistically associated) but also
plausibly causal 1n nature.

[0022] In some cases, an n-of-1 trial 1s a randomized
single-person crossover trial. For example, one individual
undergoes multiple crossover periods with varying treat-
ments. The target population 1n an n-oi-1 trial may be a
largely unobserved superset of periods experienced by one
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person. Specifically, 1t may be the set of all possible time
periods where the subject 1s at risk for a CHC, and 1s under
at least one of the treatment conditions being studied both
during and outside of the n-oi-1 trial total study period (e.g.,
before and after all n-of-1 treatment periods, in the “real
world”). Hence, this target population may be referred to as
a “population of yourselt” or “population-of-1."

[0023] Many biomedical research and clinical trials 1n
particular have successtully employed n-of-1 trials, with
trial design, implementation, and analysis guidance avail-
able 1n various texts. Accordingly, some wearable sensors
can be used to facilitate n-of-1 tnials.

[0024] In some cases, single-case experimental designs
(SCEDs) 1n psychology and n-oi-1 trials 1n clinical settings
are experimental single-person crossover studies focused on,
though not always limited to, one individual. These two
types of studies differ 1n design, but both are used to infer
average individual-specific outcomes under diflerent inter-
vention levels. Each average may be taken across a set of
consecutive (though, e.g., not necessarily contiguous) time
intervals with the same exposure level or treatment level.
These 1intervals may be called phases 1n SCEDs, and periods
in n-oi-1 tnals.

[0025] In some cases, both SCEDs and n-o1-1 trials share
the same underlying statistical foundations and target esti-
mands. In statistics, summary quantities that describe or
apply to repeated measures taken on one study participant
may be described as “within-subject” or “within-individual™
(examples may 1nclude the within-subject sum-of-squares,
within-cluster variance, and the intra-cluster or intraclass
correlation 1n mixed-eflects or random-efl

ects models and
survey sampling.) Hence, collectively, SCEDs, n-of-1 trials,
and their observational (e.g., nonexperimental/non-random-
1zed) counterparts may be referred to as “within-individual”
studies, similar to “1diographic” studies in psychology.
[0026] On the other hand, 1n some cases, hierarchical or
multilevel models may be used 1 group-level or “nomo-
thetic” studies to infer an average outcome taken across a set
of repeatedly measured individuals. Their target population
may 1nclude a largely unobserved superset of individuals. In
the special case of a longitudinal study, longitudinal models
may be used to posit and infer a population-average trend
taken across a set of individual trends.

[0027] In some cases, a single-person crossover observa-
tional study may be a non-experimental, non-randomized
study of one person, where recurring confounding and
selection bias may exist. Disclosed herein 1s single-person
crossover observational study objective to discover plau-
sible causal effects of would-be interventions that may be

tested 1n a subsequent single-person crossover experiment
like an n-of-1 trial or SCED.

[0028] In some cases, using the Neyman-Rubin-Holland
counterfactual framework as a scientific foundation, a
single-person crossover observational study analytical
framework for inferring a single-person crossover average
treatment eflect (ATE) may be formulated. This may be
within-individual ATE, the average period treatment effect
(APTE), based on the n-oi-1 trial design that partltlons
observations 1nto distinct periods, or the single-case experi-
mental design (SCED) design that partitions observations
into distinct phases. The APTE may be a recurring average
individual treatment eflect. The APTE framework may
claborate on the mmplicit causal assumptions underlying
dynamic regression models specified for a single individual.
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Additionally, this may enable a counterfactual interpretation
of repeated eflects over n-oi-1 trial periods or SCED phases
by stating common analytic challenges 1n terms of potential
outcomes, including outcome autocorrelation and time
trends (over multiple periods), and intervention carryover
cllects.

[0029] In some cases, the utility of the APTE framework
may be appreciated by applying two common causal infer-
ence methods, the g-formula (e.g., standardization, back-
door or regression adjustment) and propensity-score inverse
probability weighting, to infer a possible average eflect of an
exposure on CHC (e.g., to infer a possible average eflect of
physical activity on weight). Some techniques towards
causal prediction of electricity consumption may use a
prognostic-score technique and develop the large-sample
theory needed to conduct inference on the APTE 11 exposure
ellects do not carry over from one period to the next.
[0030] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques of the present
disclosure may utilize machine learning techmques to com-
pute ATEs for users 1n different population cohorts. In some
cases, the users of a cohort may be similar (e.g., sharing
similar demographics), and users within a cohort may be
exposed to different health behaviors, health conditions, or
interventions. The machine learning techniques trained
model may be used to estimate, e.g., eflectiveness of dif-
ferent treatments to perform comparative analyses across
treatments/preventative care measures (which can later be
prospectively validated). In some cases, the machine learn-
ing techniques use non-parametric techniques. In some
cases, causal inference techniques such as matching, pro-
pensity-score matching or weighting, the g-formula, or
augmented inverse probability weighted estimator (a com-
bination of the g-formula and propensity-score weighting)
can be used to estimate ATEs for each cohort. In some cases,
the machine learning techniques may gather propensity
estimates from, e.g., health organizations.

[0031] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
may be applied to various fields including, for example,
latent health states, acute 1illness, recovery {trajectories,
CHCs, intervention assistance, fitness tracking, functional
data analysis, digital phenotyping, personal sensing, etc.
[0032] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
may be applied to fields outside of health. In such cases, a
user may include an athlete, audience member, shopper,
body part, animal, vehicle, sports team, organization, politi-
cal party, mstitution, country, geographic region, financial
instrument, recurrent group behavior, geologic phenom-
enon, etc. In some cases, rather than a user specifically, the
systems, the methods, the computer-readable media, and the
techniques disclosed herein may more broadly apply to any
observational unit (e.g., an object, a subject, a phenomenon,
etc.) that goes through various experiences (e.g., recurring
experiences, related experiences, etc.) overtime. As such,
fields of use may include, finance, government, politics,
ecology, geology, climate, entertamnment, athletics,
astronomy, economics, manufacturing, etc.

Certain Notations and Definitions

[0033] As used in this specification and the appended
claims, various notations are used and will now be dis-
cussed. Random variables and fixed values are written 1n
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upper-case and lower-case, respectively. Let p(A=a) denote
the probability mass or density of random variable A at a,
with shorthand p(a). For any random variable B, let BIA
denote the relationship “B conditional on A,” with shorthand
Bla for BlA=a. Let B il A denote statistical independence of
B and A. Let E (*) denote the expectation operator, and let
I(*) denote the i1dentity function such that I(b)=1 i1 expres-
sion b 1s true and I(b)=0 otherwise. Turning next to set
notation, let {a} denote a set with elements {a,, a,, . . . }.
[Likewise, let a denote a vector with elements denoted with
commas as in (a,, a,, . . . ), or without commas as 1n (a,a,
. ). Assume vectors multiplied together are conformable;
e.g., a 1 xp random vector A and 1ts px1 coeflicient vector 3,
can be vector-multiplied as A . Let ({A,})=(Al, A2, . ..
) denote a stochastic process or time series (€.g., vector of
ordered random variables or vectors). For any non-empty set
S, Let {a} denote the set of all permutations of all possible
values of the vector a, not including the empty set Q.

[0034] Unless otherwise defined, all technical terms used
herein have the same meaning as commonly understood by
one of ordinary skill 1in the art to which the present subject
matter belongs.

[0035] As used in this specification and the appended
claims, the terms “artificial intelligence,” “artificial mtelli-
gence techniques,” “artificial intelligence operation,” and
“artificial 1intelligence algorithm™ generally refer to any
system or computational procedure that may take one or
more actions to enhance or maximize a chance of achieving
a goal. An example of such a goal 1s to mathematically or
computationally model the probabilistic relationship
between an exposure and an outcome like a CHC. The term
“artificial intelligence” may include “generative modeling,”
“machine learning” (ML), or “reinforcement learning™ (RL).

[0036]

As used 1n this specification and the appended
claims, the terms “machine learning,” “machine learning
techniques,” “machine learning operation,” and “machine
learning model” generally refer to any system or analytical
or statistical procedure that may progressively improve
computer performance of a task. An example of such a task
1s to mathematically or computationally model the proba-

bilistic relationship between an exposure and an outcome
like a CHC.

[0037] As used in this specification and the appended
claims, “some embodiments,” “further embodiments,” or “a
particular embodiment,” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment. Thus,
the appearances of the phrase “in some embodiments,” or
“in further embodiments,” or “in a particular embodiment™
in various places throughout this specification are not nec-
essarily all referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics may be
combined 1n any suitable manner in one or more embodi-
ments.

[0038] As used in this specification and the appended
claims, when the term “at least,” “greater than,” or “greater
than or equal to” precedes the first numerical value in a
series of two or more numerical values, the term “at least,”
“oreater than” or “greater than or equal to” applies to each
of the numerical values 1n that series ol numerical values.
For example, greater than or equal to 1, 2, or 3 1s equivalent
to greater than or equal to 1, greater than or equal to 2, or
greater than or equal to 3.
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[0039] As used in this specification and the appended
claims, when the term “no more than,” “less than,” or “less
than or equal to” precedes the first numerical value in a
series of two or more numerical values, the term “no more
than,” “less than,” or “less than or equal to” applies to each
of the numerical values in that series of numerical values.
For example, less than or equal to 3, 2, or 1 1s equivalent to
less than or equal to 3, less than or equal to 2, or less than
or equal to 1.

[0040] As used 1n this specification, “or” 1s intended to
mean an “inclusive or” or what 1s also known as a “logical
OR.” wherein when used as a logic statement, the expression
“A or B” 1s true it either A or B 1s true, or i1f both A and B
are true, and when used as a list of elements, the expression
“A, B or C” 1s mtended to include all combinations of the
clements recited 1in the expression, for example, any of the
clements selected from the group consisting of A, B, C, (A,
B), (A, C), (B, C), and (A, B, C); and so on 1f addltlonal
clements are listed. As such, any reference to “or” herein 1s
intended to encompass “and/or” unless otherwise stated.
[0041] As used in this speciﬁcation and the appended
claims, the indefinite articles “a” or “an,” and the corre-
sponding associated definite articles “the” or “said,” are each
intended to mean one or more unless otherwise stated,
implied, or physically impossible. Yet further, 1t should be
understood that the expressions “at least one of A and B,
etc.,” “at least one of A or B, etc.,” “selected from A and B,
etc. and “selected from A or B, etc. are each intended to
mean either any recited element individually or any combi-
nation of two or more elements, for example, any of the
clements from the group consisting of “A,” “B,” and “A
AND B together,” etc.

[0042] As used in this specification and the appended
claims “‘about” or “approximately” may mean within an
acceptable error range for the value, which will depend 1n
part on how the value 1s measured or determined, e.g., the
limitations of the measurement system. For example,
“about” may mean within 1 or more than 1 standard devia-
tion, per the practice in the art. Alternatively, “about” may
mean a range of up to 20%, up to 10%, up to 5%, or up to
1% of a given value. Where values are described in the
application and claims, unless otherwise stated the term
“about” meaning within an acceptable error range for the
particular value may be assumed.

Examples of Use Cases

[0043] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
may generally implement model-twin randomization to esti-
mate within-individual average treatment effect, a causal
cllect estimation based on “single-person small data.”

[0044] In some cases, temporally dense single-person
“small data” are becoming more accessible with adoption of
mobile apps and wearable sensors. Many caregivers and
seli-trackers may leverage these data to help a specific
person change their behavior to achieve desired health
outcomes. This may include discerming possible causes from
correlations using a person’s own observational time series
data. The systems, the methods, the computer-readable
media, and the techniques disclosed herein estimate within-
individual average treatment eflects of physical activity on
sleep duration, and vice-versa. Disclosed herein 1s a model-
twin randomization (MoTR; “motor”) for analyzing a per-
son’s 1ntensive longitudinal data. The MoTR may be an
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application of the g-formula (e.g., standardization, back-
door adjustment) under serial interference. The Mo TR may
estimate stable recurring eflects, as 1s done in n-of-1 trials
and single case experimental designs. As demonstrated
herein, the systems, the methods, the computer-readable
media, and the techniques disclosed herein improve upon
other correlation-based techniques (e.g., that characterize
statistical associations, not causal eflects) by using causal
inference to make better personalized recommendations for
health behavior change.

[0045] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
provide for inferring causal relationships between time
series sets of intensive longitudinal health data; for example,
app-based survey data (e.g., patient-reported outcomes and
other clinical outcome assessments) and wearable or ambi-
ent device or sensor data. Wearable or ambient device or
sensor data may include physical or biometric statistics (e.g.,
a statistic 1s defined as a single measurement 1n a sample, or
a calculated summary or aggregate taken over a set of single
measurements 1n a sample) such as length of time sleeping,
heart rate, and step count. These statistics may be indicative
of a subject’s physical health For example, the statistics may
be 1indicative of recovery from an acute event, such as an
illness or mjury. The statistics may be indicative of the acute
event itsell. For example, a user’s step count may decrease
during an 1llness.

[0046] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
provide for generating a “model twin” of a subject to infer
the causal relationship of an observed, non-randomized,
non-forced, or natural exposure on a recurring health out-
come (e.g., from a CHC). The model twin 1s a statistical

model of a relationship between a first set of time series
values and a second set of time series values.

[0047] Adfter the model twin 1s generated (e.g., by fitting
the model), the disclosed technique may produce an average
period treatment eflect (APTE) estimate describing an effect
produced by the first set of time series values on the second
set of time series values. This APTE may be produced by
randomizing the first set of time series data, using the model
twin to predict values of the second set of time series data
from the randomized first set of data. The calculation of the
APTE may be repeated until a convergence condition 1s
reached.

[0048] Temporal considerations such as autocorrelation,
time trends, carryover, and exogenous factors may compli-
cate analysis by creating serial interference over time. The
model-twin randomization techmique as used herein may
mitigate the eflects of this temporal interference.

[0049] In some cases, the causal inference techniques
disclosed herein may be used to determine the impact of an
adaptive treatment on recovery from an acute illness or
health condition. A treatment may be associated with a time
series set ol app-based survey data or wearable or ambient
device or sensor data. For example, a person who has
sullered an mjury may be prescribed a regimen of daily
exercises which may comprise body motions recorded by a
wearable device. A person’s recovery may be tracked by
monitoring the person’s step count, as increasing a number
of steps performed may be associated with recovery. The
model-twin randomization technique described herein may
be used to estimate a plausible effect of daily performance
of the exercise on a change in average step count, to
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determine a potential causal relationship between the two.
This suggested eflect may subsequently be used to adjust the
exercise regimen to achieve a better average step count.
[0050] In some cases, the causal inference techniques
disclosed herein may be used to determine causal relation-
ships between behavioral changes and changes in physical
health. For example, the system may collect time series data
related to sleep quality and step count. The disclosed model-
twin randomization technique may determine a causal rela-
tionship between the time series data relating to sleep quality
and the time series data related to step count.

[0051] The systems, the methods, the computer-readable
media, and the techniques disclosed herein may present a
Monte Carlo techmque called model-twin randomization
(MoTR) for estimating the APTE. This includes modeling
the outcome as a function of all causes, and then running this
“model-twin” through a simulated n-oi-1 trial by random-
1zing the exposure at each time point to generate an eflect
estimate.

[0052] The systems, the methods, the computer-readable
media, and the techniques disclosed herein may employ
causal inference concepts such as (1) an autoregressive
carryover modeling technique for estimating or predicting a
time series of potential outcomes that 1s stable in the long
run, and (2) MoTR as a Monte Carlo (numerical) technique
for estimating an APTE from these stable time series that
itseltf 1s stable 1n the long run. Performance of these tech-
niques will be demonstrated herein. Further, applications of
these techniques, e.g., use of MoTR (and a complementary
propensity-score technique) to estimate the APTE of sleep
duration on steps per minute are disclosed herein.

Examples of Environments

[0053] FIG. 1 1s a block diagram of an environment 100
for generating a personalized recommended intervention for
a subject based at least in part on causal inference, 1n
accordance with some cases. The environment 100 of FIG.
1 includes one or more data-collection instruments 110(1)-
110(N), which 1n some cases may be data-collection instru-
ments as 1n this example, a network 120, and a computer
system 130 with a modeling unit 135. In some cases, the
data-collection instrument may be non-electronic recording
equipment with data that are then entered into an electronic
device. For example, non-electronic recording equipment
can be a pen and a writing pad, a chalkboard, or a glass
board. At a high level, the data-collection instruments 110
(1)-110(N) may be used by one or more users (e.g., humans,
ammals, etc.) to collect or provide, via the network 120, data
about the one or more users to the computer system 130 so
that the computer system 130, using the modeling unit 135,
can predict risk of an acute illness to the one or more
subjects or a population (e.g., including at least a portion of
the one or more subjects).

[0054] The data-collection instruments 110(1)-110(IN)
may be one or more electronic devices. In some cases, the
clectronic devices may be desktop computers. In some
cases, the electronic devices may be mobile devices. For
example, the mobile devices may be smartphones (e.g., the
data-collection mstrument 110(2)) or tablets (e.g., the data-
collection mstrument 110(IN)). In some cases, the electronic
devices may be wearable or ambient devices or sensors. For
example, the wearable or ambient devices or sensors may be
smartwatches (e.g., the data-collection instrument 110(1)),
smartbands (e.g., a Fithit® device), smartclothing, smart
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jewelry, smartshoes, environmental sensors, or the like. In
some cases, the electronic devices may be a laptop or
desktop computer. In some cases, the electronic devices may
be gaming devices (e.g., the gaming device may collect data
as part of a game or may reward users based on certain
collected data or outcomes). In some cases, the data-collec-
tion instruments 110(1)-110(N) may 1include an intraday
sensor that may be used to characterize average daily trends
across periods (e.g., analogous to longitudinal trends or
trends 1n repeated measures across individuals). In general,
the data-collection istruments 110(1)-110(N) may be any
device suitable for collecting data such as wearable or
ambient device or sensor data, responses to queries, geo-
graphical or meteorological data (e.g, location, environmen-
tal conditions, etc.), demographical data (e.g., age, height,
weight, ethnicity, gender, etc.), medical data (e.g., blood
pressure, glucose levels, body temperature, etc.), short/long-
term trends, summaries, and statistics (e.g., averages, medi-
ans, maximums, minimums, ranges, etc.), or any other
health data or the like. For example, the data-collection
instruments 110(1)-110(N) may be any one or more of
desktop computers, laptop computers, notebook computers,
sub-notebook computers, netbook computers, netpad com-
puters, set-top computers, media streaming devices, hand-
held computers, Internet appliances, mobile smartphones,
tablet computers, personal digital assistants, video game
consoles, vehicles, televisions, exercise equipment, video
players, digital music players, booklet tablet computers,
slate tablet computers, convertible tablet computers, or the
like. Each of the data-collection instruments 110(1)-110(IN)
may be linked to, and collect data from, a single user. Each
the data-collection instruments 110(1)-110(N) may be linked
to, and collect data from, multiple users (e.g., a household).

[0055] As described, the data-collection instruments 110
(1)-110(N) are data-collection instruments that can be wear-
able or ambient devices or sensors or other device capable
of providing physical (e.g., medical, activity, nutrition,
sleep, efc.) statistics about one or more users. For example,
the data-collection instruments 110(1)-110(N) can be a dedi-
cated fitness tracker, a pedometer, a wrist-worn sleep tracker,
a sleep-tracking mattress pad, a smart scale, a blood pressure
monitor, an ambient air particle sensor, a CPAP machine, a
smart watch, smartphone, or mobile device (e.g., a tablet
computer or a personal digital assistant (PDA)) with physi-
cal statistic monitoring functionality. For example, the data-
collection 1mstruments 110(1)-110(N) can be a smartphone
of one or more users with an installed physical statistic
monitoring application using one or more sensors ol the
smartphone to measure steps, activity, movement, sleep
time, or other physical statistics. In some cases, a user may
be associated with multiple devices of the data-collection
mstruments 110(1)-110(N) measuring overlapping or dis-
tinct physical statistics about the user. For example, a
smartphone may measure sleep behavior or sleep efliciency
of the user (e.g., based on when the user uses the device), a
pedometer may measure step counts of the user, and a smart
exercise machine may measure blood pressure of the user.
The health behavior data gathered by the data-collection
istruments 110(1)-110(N) can be sent to the computer
system 130 directly from the data-collection instruments
110(1)-110(N), manually uploaded to the computer system
130 by the associated users or transmitted via a third-party
system to the computer system 130. For example, a user may
authorize a third-party service associated with the data-
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collection 1nstruments 110(1)-110(N) to transmit physical
activity data to the computer system 130. In some cases, a
user can interact with the computer system 130 via the
data-collection instruments 110(1)-110(N). For example, a
user may be able to update imnformation about themself (e.g.,
physical statistics, health conditions, behavior, etc.) stored in
the computer system 130 via the data-collection instruments
110(1)-110(N). In some cases, a user can interact with the
data-collection mstruments 110(1)-110(N) via an external
device (not shown; e.g., a laptop, a smartphone, etc.). For
example, the user may configure settings the data-collection
istruments 110(1)-110(N) through the external device (e.g.,
turn one or more of the data-collection mstruments 110(1)-
110(N) on/ofl, change a sampling rate, etc.). In some cases,
a user may further be able to provide feedback relating to
one or more estimates or predictions generated using the
computer system 130 or manually report health information
to the computer system 130 via the data-collection instru-
ments 110(1)-110(N). For example, In some cases, the user
may, €.g., through one or more of the data-collection instru-
ments 110(1)-110(IN), report to the computer system 130 that
they have received a treatment or intervention, have a certain
health condition, etc.

[0056] Each user of the data-collection instruments 110
(1)-110(N) may be a member of a population monitored by
the computer system 130. In some cases, each user 1s
associated with one or more of the data-collection instru-
ments 110(1)-110(N) measuring physical statistics of that
user. For example, the data-collection imstruments 110(1)-
110(N) can measure a user’s resting heart rate (RHR) over
time, a daily number of steps (or other measure of activity
level such as distance walked), and sleep statistics (such as
duration of sleep, number of times sleep was nterrupted,
sleep start and end times, etc.) for the user. Recorded
physical statistics (e.g., walking data, sleeping data, exercise
data, nutrition data, etc.) from the data-collection instru-
ments 110(1)-110(N) may be time series data and may be
stored as health behavior data and sent by the data-collection
instruments 110(1)-110(N) to the computer system 130, or
analyzed on the data-collection instrument itself. For
example, health data may be analyzed for correlations,
statistical associations, and causation on each of the data-
collection mstruments 110(1)-110(IN), with or without being
sent to the computer system 130. For example, the data-
collection mstruments 110(1)-110(N), using their own mod-
cling unit, may generate personalized treatment or interven-
tion recommendations for a user within a population based
on health behavior received from that user. In some cases,
the modeling unit of the health data-collection nstruments
110(1)-110(N) may predict a health condition for the user
based at least in part on the health behavior for the user. In
some cases, predicting the health condition for the user may
inform the generation of the personalized treatment or
intervention recommendations for the user. In some cases,
the modeling unit of the health data-collection instruments
110(1)-110(N) may implement a model-twin randomization
method. In some cases, the model-twin randomization tech-
nique comprises a sequential techmque to implement g-for-
mula for estimating average treatment eflect. In some cases,
the sequential technique comprises a simulation-based tech-
nique or a Monte Carlo techmique. In some cases, some or
all health behavior data 1s collected as time series data, or
periodically recorded measurements of physical statistics of
the user over time The frequency of measurements included
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in the physical statistics data sent to the computer system
130 can depend on the data-collection mstruments 110(1)-
110(N), user preference selections, or the type of health
behavior data being collected. For example, the data-collec-
tion mstruments 110(1)-110(N) may send time series data
for average RHR multiple times per day, but send hours slept
data once per day. In some cases, the data-collection instru-
ments 110(1)-110(N) may send health behavior data to the
computer system 130 frequently, for example, minutely,
hourly or in real time.

[0057] The data-collection nstruments 110(1)-110(IN)
(and, 1n some cases, users of the data-collection instruments
110(1)-110(N)) may communicate with the computer system
130 over the network 120. The network 120 may be a
network or system of networks connecting the computer
system 130 to the data-collection instruments 110(1)-110
(N). The network 120 may comprise any combination of
local area or wide area networks, using wired or wireless
communication systems. In some cases, the network 120
uses standard communications technologies or protocols.
For example, the network 120 can include communication
links using technologies such as Ethernet, 3G, 4G, CDMA,
WIFI, and Bluetooth. Data or mnformation exchanged over
the network 120 may be represented using any suitable
format, such as hypertext markup language (HTML) or
extensible markup language (XML). In some cases, all or
some of the communication links of the network 120 may be
encrypted using any suitable technique or techniques. In
some 1mplementations, the network 120 also facilitates
communication between the computer system 130, the data-
collection mnstruments 110(1)-110(N), and other entities of
the environment 100 such as the modeling unit 135, users
(not shown) or other external devices (not shown).

[0058] The computer system 130 may comprise computer
devices such as a server, server cluster, distributed server, or
cloud-based server capable of predicting health conditions,
statistics, risks, etc. For example, the computer system 130,
using the modeling umt 135 (which may be the same as or
similar to the modeling unit of the health data-collection
mstruments 110(1)-110(N)), may generate personalized
treatment or intervention recommendations for a user within
a population based on health behavior received from that
user. In some cases, the modeling unit 135 may predict a
health condition for the user based at least 1n part on the
health behavior for the user. In some cases, predicting the
health condition for the user may mform the generation of
the personalized treatment or intervention recommendations
for the user. In some cases, the modeling unit 135 may
implement a model-twin randomization method. In some
cases, the model-twin randomization technique comprises a
sequential techmique to implement g-formula for estimating
average treatment eflect. In some cases, the sequential
technique comprises a simulation-based technique or a
Monte Carlo technique.

[0059] In some cases, the computer system 130 gathers
health behavior data about a set of users within a population
(e.g., through data from one or more of the data-collection
mstruments 110(1)-110(IN)). Health behavior may include
physical statistics that may be measurements characterizing,
a user’s activity level or current health state (such as from
the data-collection instruments 110(1)-110(N), or other
sources) For example, physical statistics can include mea-
surements of the user’s vital signs such as body temperature,
resting heart rate (RHR), blood pressure, current heart rate
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(for example, presented as a time series), heart rate vari-
ability, respiration rate, or galvanic skin response, measure-
ments of user activity such as daily number of steps, distance
walked, time active, or exercise amount, sleep statistics such
as time slept, number of times sleep was interrupted, or sleep
start and end times, or other similar metrics.

[0060] The computer system 130 can analyze received
health behavior data to extract learned features or generate
a learned representation of the health behavior data using the
modeling unit 135. In some cases, the learned representation
generated by the modeling unit 135 may store a transformed,
modified, or compressed version of raw health behavior
data. This version of the raw health behavior data (or
wearable or ambient device or sensor data) may preserve
richness of information and usetul features that may be used
to 1dentily trends or outliers among data gathered across a
large population, predict health conditions, segment, cluster,
or categorize data from different users, or the like.

[0061] In some cases, outputs (e.g., predictions of health
conditions, recommendations of personalized treatment or
interventions, etc.) from the computer system 130 may be
shared. For example, the outputs from the computer system
130 may be shared with the corresponding user. In another
example, the outputs from the computer system 130 may be
shared with researchers or a laboratory (e g., for studying
health conditions), with consent from the corresponding
user. In another example, the outputs from the computer
system 130 may be shared with healthcare providers (e.g.,
the corresponding user’s primary care physician), with con-
sent from the corresponding user. In cases where the outputs
from the computer system 130 are shared with the healthcare
providers, the healthcare providers may maintain a comput-
ing system such as a server, set of servers, server cluster, etc.
which can create or modity an individual treatment plan or
perform interventions based on predicted health conditions
generated using the computer system 130. For example, the
computing system of the healthcare providers can be man-
aged by a medical provider, doctor, or other entity providing
medical care to a user for a health condition.

Examples of Sleep Studies

[0062] The systems, the methods, the computer-readable
media, and the techniques disclosed herein may be applied
to sleep studying, 1n some cases. The timing of sleep and
wake 1s believed to be regulated by 2 main underlying
processes: the homeostatic drive and the circadian rhythm.
The homeostatic drive 1s a use-state negative feedback
process that accumulates over periods of wakefulness and
dissipates over periods of sleep The circadian rhythm 1s an
intrinsic set of biological oscillations with approximately
24-hour (e.g., “circa” means about; “diem™ means day)
periodicity. Each of these biological processes may be
regulated by not only the primary sleep period, but also by
an organism’s behaviors throughout the waking period.
From the standpoint of the sleep homeostasis, the primary
somnogen, adenosine, 1s a breakdown product of the energy
molecule adenosine triphosphate (ATP), indicating that it 1s
not just the amount of preceding wakefulness, but the
intensity of that wakefulness (e.g., highly active vs. seden-
tary) that dictates the subsequent sleep drive. Similarly, there
are a number of environmental exposures and biological
processes (cumulatively termed zeitgebers or “time givers™)
that help synchronize the body’s intrinsic biorhythms to
meet the organismal needs. Most of these signals from
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dietary intake to light level and color variation are integrated
via a “master clock™ in the hypothalamus to orchestrate the
molecular clocks present 1n every other cell of the body.

[0063] The atorementioned physiologic processes may, 1n
some cases, help to regulate the intrinsic sleep-wake state
neurocircuitry in order to meet the needs of the organmism
(e.g., keeping nocturnal animals up at night). However, there
may be a wide range of variation 1n how these processes play
out, even within species. Genome-wide association studies
(GWAS) 1n humans have discovered polygenic contribu-
tions to the wide range of vanation 1n typical sleep duration/
need and intrinsic circadian phase (e.g., “chronotype™).
However, it seems that the intrinsic organismal needs also
reflect the function that sleep serves in maintaining health.
For example, families of individuals with mutations confer-
ring short sleep need seem to sleep more eflectively than
others, as 1s evidenced by their physiologic and functional
resilience to very short sleep durations. Studies of transgenic
mice showing less neurodegeneration 1n response to chronic
sleep restriction provide further evidence. Taken together,
there seems to be not only a genetically determined setpoint
for sleep need and timing, but also an individual-specific
resilience to perturbations of the sleep-wake system. The
current gold-standards of sleep physiologic measurements
are quite impractical: from the resource-intensive and dis-
ruptive nature of sleeping in a research laboratory to gather
neurophysiologic, cardiopulmonary, and behavioral signals,
to the highly controlled environment and inconvenient sam-
pling requirements needed to 1solate true circadian bio-
marker measurements (e.g., dim-light melatomin onset). On
the other end of the spectrum, affording more real-world
convenience at scale, self-report sleep and circadian mea-
sures such as the Morningness-Eveningness questionnaire,
Munich Chronotype Questionnaire, and the Consensus
Sleep Diary are plagued with recall bias and 1naccuracy.

[0064] Toward this end, the systems, the methods, the
computer-readable media, and the techmiques disclosed
herein that are able to gather sufliciently accurate data offer
a unmique opportunity for exploring the interrelationship
between sleep and wake. The systems, the methods, the
computer-readable media, and the techmiques disclosed
herein may overcome the challenge that what 1s typically
gained 1n convenience comes at the expense of what 1s lost
in fidelity. For example, sleep-tracking technologies that
depend on non-electroencephalographic signals may not
accurately recapitulate in-lab polysomnograms (although
such sensors often perform reasonably well 1n their general
estimation of the daily amounts of sleep and wake). Simi-
larly, different activity trackers have varying accuracy,
depending upon context. However, despite the known limi-
tations 1n accuracy in how wearables measure both sleep and
wake activities, their consistency in measurement longitu-
dinally 1s core to the potential value they bring to under-
standing the impact of deliberate interventions or umintended
changes within an individual. For these reasons, examining
sleep and how it relates to other behavioral metrics by
applying the systems, the methods, the computer-readable
media, and the techniques disclosed herein to data measured
by wearable sensors 1s a strong target application for 1dio-
graphic causal inference methods. For example, with the
systems, the methods, the computer-readable media, and the
techniques disclosed herein, one can examine varying the
exposure to factors that impact the physiologic sleep drive to
infer the APTE of that factor on sleep.
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Examples of Causal Inference

[0065] In some cases, a data-generating function (DGF) or
mechanism (or simply mechanism) may be a true, unknown
equation that relates mput variables or predictors to an
outcome variable. In some cases, a model may be a statis-
tical equation that i1s fit to data, which may or may not
approximate the DGF. This distinction reflects the famous
Box aphorism that “all models are wrong, but some are
usetul.”.

[0066] Turning to causal inference, let Y represent a
variable occurring after a binary variable X with support
s&{0, 1}. If E(YIX=0)=E(YIX=1) when X is randomized,
then there may be a direct effect of X on Y, and X may be
a direct cause ol Y. Let W represent the set of all other direct
or indirect causes of Y that may also be direct or indirect
causes of X, or may contextualize (e.g., modily or moderate)
the eflect of X on Y.

[0067] In some cases, an 1ndirect cause aflects the out-
come through other mediating factors, forming a causal path
from the in-direct cause to the outcome through the media-
tors. Causes of both X and Y confound causal interpretations
of the statistical dependence between X and Y, and hence
may be called confounders. An eflect contextualizer may not
be directly manipulable, but the effect of X on Y may vary
across the contexts 1t represents (e.g., day of week).
[0068] The observable outcome Y may then be written as
a Tunction of X, W, and completely random error € (e.g., due
to random between-measurement variation). Let Y=g(X,
W.g) represent this structural causal mechanism (e.g., true
“structural causal model” that generates the data); for
example, g(X, W, e)=p,+p , X+W[,+¢.

[0069] Now let Y* denote the value of Y corresponding to
s. This 1s the outcome that may be observed whenever X=s,
and hence may be called the potential outcome (PO) of an
exposure variable X. For x&{0, 1}, the relevant potential
outcomes may be Y' and Y°. The potential outcome Y* can
then be written as a function of W and ¢. Let Y =g (W, €)
represent this PO mechanism. In design-based or random-
1zation-based causal inference, the randomness 1n Y may be
assumed to result only from the assignment of X to 1 or O;
hence, the POs may be treated as fixed values (e.g., implying
W 1s also treated as fixed), and so may be written simply as
y' and y°.

[0070] The observed outcome Y, intervention of interest
X, and potential outcomes {Y®} may be related by the
equivalence Y=2 ,Y°I(X=s), with shorthand Y=Y". This
equivalence may be called causal consistency, and may
simply state that the observed outcome i1s equal to 1its
corresponding PO (e.g., statistical consistency, the asymp-
totic unbiasedness of an estimator, may simply be referred to
as “consistency”). Recalling the earlier example, because
x&{0, 1}, then Y=Y'X+Y"(1-X). Under causal consistency,
one natural set of PO mechanisms may be Y'=3 +p,+Wf.¢
and Y°=P,+Wp,+¢. The randomization-based counterpart to
this model-based or superpopulation-based technique
involves the same equations, but with fixed w and e.
[0071] Causal consistency formalizes the fundamental
problem of causal inference that the observable PO may be
the one corresponding to X=s. Hence, the term counterfac-
tual outcome (or simply counterfactual) 1s often used to refer
to Y™ for x'#x. Accordingly, “counterfactuals™ and “poten-
tial outcomes” may be used synonymously.

[0072] Statistical causal inference may involves four con-
ditions. When the POs occur independently of X, the assign-
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ment mechanism may be 1gnorable, and such 1gnorability or
unconfoundedness holds. We will see that this condition i1s
implied under randomization. For example, {Y '} £ X 1if X 15
randomized. If the POs occur independently of X given all
other causes W, then conditional 1gnorability may hold. For
example, { Y} L XIW.

[0073] Another condition, which may be referred to as
positivity or overlap, 1s the empirical requirement that all
elements 1n the support of X co-occur with all other causes.
For example, i1f we {0, 1}, then positivity holds if there 1s at
least one observation for each unique pair of w and x. That
1s, positivity holds if each element of {(w, x}}={(0, 0), (0, 1),
(1, 0), (1, 1)} 1s observed in the data. Positivity may be
required for estimating the average treatment effect.
[0074] Another condition may be the stable unit treatment
value assumption (SUTVA). A key component of this con-
dition 1s that the POs of a given individual are not affected
by any other individual’s treatment assignment. That 1is,
there 1s no interference between individuals. Formally, let
{Y.',Y, "} denote the PO sets of distinct individuals 1 and 7',
respectively.

[0075] In some cases, if interference exists, then indi-
vidual i instead has POs {Y,"', Y.'°, 1.°', Y °°}, where Y 5
denotes the potential outcome 1f 1ndividual 1 receives treat-
ment s, while individual 1' receives treatment s,. Likewise,
this holds for individual 1. Causal consistency 1n this case 1s

defined as

"= Z{Sf,sff '}Y A= Ay =),

with shorthand Y=Y"**".These studies may use careful char-
acterization, selection, and estimation of the relevant esti-
mand. In some cases, autocorrelation and treatment carry-
over from past periods may generate serial interference 1n
single-person crossover studies; e.g., “temporal interfer-
ence.”

[0076] Another condition may aid in establishing effect
transportability (e.g., generalization of a treatment effect to
a non-experimental setting) and may be referred to as
distributional stability or invariance. In some cases, invari-
ance holds if the distribution of the outcome conditional on
some subset of predictors does not change across all possible
environments or intervention regimes (e.g., randomized vs.
observed), which may be referred to as randomization
invariance in the special case wherein randomization status
neither affects the outcome nor 1s affected by any confound-
ers.

[0077] In some cases, if randomization invariance holds,
then randomization status may be an instrumental variable
that satisfies the exclusion restriction. That 1s, randomization
status may be associated with the exposure, but not with any
confounders, the outcome, or variation in the outcome not
explained by the exposure or confounders. This property of
randomization may be exploited to estimate single-person
crossover personalized average causal effects.

Examples of Potential Outcomes

[0078] In some cases, the PO framework 1s generally not
needed to conduct causal inference 1n simple or straightior-

ward cases. For example, 1t may be possible to simply
evaluate the model Y=P,+p,X+Wp,+¢ directly when X is
randomized. However, the power of the PO framework, may
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be 1n handling the complexity of commonplace cases that
have become particularly ubiquitous in the era of data
science. These span both observational studies with their
non-randomized predictors (e.g., convenience samples, real-
world data, health claims, medical records, user behavior)
and experimental studies with their randomized interven-
tions (e.g., A/B testing, experimentation, network effects,
etc.).

[0079] Thinking in terms of POs also implicates tech-
niques of statistical inference that are far from obvious when
concerned with how to statistically predict or model an
outcome—a primary focus of modern data science and
machine learning. For example, the PO framework allows
causal inference to be understood as a missing data or survey
sampling problem, or to be conducted via randomization-
based inference (in contrast to the superpopulation-based
inference central to statistical modeling and machine learn-
ing). This key insight 1s a reason for propensity score
matching and inverse probability weighting (IPW) tech-
niques. POs also encourage development, implementation,
and detailed characterization and analysis of discrete inter-

ventions that are intuitive and actionable (e.g., “do A=1 or
A=07).

Examples of Average Treatment Effect

[0080] In some cases, 1n a nomothetic study, participant
1€{1,...,n} with W.=w and €,=¢ may be considered to have
a set of fixed POs {y;} with the same number of elements
as {s}, as 1n design-based or randomization-based causal
inference. That is, individual i has the two fixed POs y,' and
y.”, and a difference between POs y,' and y,” that may be
referred to as an individual treatment effect (ITE).

[0081] The superpopulation-based counterparts to this
randomization-based definition may involve the same quan-
tities, but with random W and €, yielding random POs Y’
and Y.°. Here, the randomness in Y may additionally be
assumed to result from other mechanisms such as random
sampling of study participants, or random variation over
time (e.g., even just throughout the study period). In some
cases, time-series-based setting uses the assumption that at
least some confounders are realizations of randomly varying
guantities.

[0082] While of primary interest in some cases, the ITE
may not be 1dentifiable due to the fundamental problem of
causal i1nference. However, 1if X 1s randomized for all
individuals, then E(Y") (e.g., the mean PO taken across all
individuals) may be i1dentifiable using only observed data
because, by causal consistency for a randomized X,

EY|X=x)=E(Y*|X =x] (Equation 1)
=E(Y*| X =x) -

= E(Y%)

[0083] A difference between E(Y,) and E(Y") is called an
average treatment effect (ATE). Here, the expectations are
taken over all study participants. In randomization-based
causal inference, E(Y") 1s taken across all study participants
with unchanging confounders, contextualizers, and errors. In
the superpopulation-based framework, E(Y") 1s taken across
the superpopulation of all possible realizations of each study
participant (e.g., the supports of W, and €,) for all partici-
pants.
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[0084] Recall Y,'=B,+B,+W,B,+¢, and Y ,"=B,+W,B,+¢..
First, note that the ITE specified as Y,'-Y,” is equal to B,.
regardless of individual. This 1s an important and common
assumption in nomothetic causal inference when there 1s no
interference: the ITEs are all equal to the same constant
quantity, even though each potential outcome may be ran-
dom. In general, assume that the ITE 1s a constant for each
individual, as 1t 1s here. Indicating that this 1s a fixed quantity
that 1s nonetheless comprised of random components may
use the notation ofd =Y, -Y °.

0085] In this example, the ATE specified as 8*/*=E(8"*%)
=BE(Y'-Y)=E(Y")-E(Y") is also constant and equal to B;.
This expectation 1s taken over all individuals, who all have
F=B . when X is randomized for all individuals. Hence,
the ITEs may all be equal to the ATE.
[0086] In some cases, an ATE that varies based on some
clements of W 1s called a conditional ATE (CATE) {for
heterogeneous treatment eflects; e.g., the ATE 1s heterog-
enous across subgroups defined by values or levels of W.
The CATE 1s a more realistic estimand 1n many cases, and
an 1diographic type of CATE may be estimated using real
data.

[0087] The ATE may be a primary estimand of interest 1n
a randomized study like a randomized controlled trial (RCT)
or A/B tests because all other causes W need not be observed
in order to estimate the difference between E(Y") and E(Y").
That 1s, 1f X 1s randomized for (e.g., randomly assigned to)
cach individual, then estimates of E(Y|X=s), instead of
E(Y"), can be used to estimate the ATE without needing to
observe W or know how it functionally relates to Y. This
result conveys the power of randomization as a tool for
clucidating causal mechanisms, provided the assumption
that the ITEs are all identical holds true.

[0088] In an observational study, it does not generally
follow that E(YIX=x)=E(Y"). This may be because W may
also affect X. When X 1s not randomized, Equation 1 may
hold true up to E(YIX=x)=E(Y~*IX=x). Hence, estimates of
E(YIX=1) and E(YIX=0) cannot be used to estimate the
ATE. The effect of W on X may confound straightforward
estimation of the ATE, so W may be called a confounder. If
all confounders are observed, standard techniques to esti-

—

mating the ATE from observational data can be used.

Examples of Average Period Treatment Eflects

[0089] In some cases, 1 an 1diographic study, a single
participant 1 may be measured repeatedly over phases or
periods t&{1, . . ., m}. For now, the i index will be dropped
as the following may address one participant.

[0090] LetY,represent a recurring variable occurring after
a recurring binary variable X.. Let W, represent the set of all
other causes of Y, that may also be causes of X, 'The
individual at period t with W =w and € =¢ may have a set of
fixed POs y,' and y,°. The ITE analogue in this setting may
be referred to as a period treatment effect (PTE), defined as
a difference between y,' and y °.

[0091] In some cases, PTE 1s not identifiable due to the
fundamental problem of causal inference. However, 1f X 1s
randomized at every period, then E(Y”), e.g., the mean PO
taken across all periods, may be 1dentifiable using observed
data by the analogous derivation to Equation 1. Sequential
analogues of 1gnorability and conditional 1gnorability may
be mvoked with this time series setting.

[0092] In some cases, a difference between E(Y') and
E(Y") may be referred to as an average period treatment
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cllect. In some cases, it may be taken as the average over the
superpopulation comprised of all observed periods 1, . . .,
m. In some cases, a broader goal that reflects those of
nomothetic causal generalizability or transportability might
be used to estimate an APTE taken over all possible relevant
periods throughout the participant’s life (e.g., the times
when they are at risk for condition Y at varying levels of
exposure X).

[0093] Modityving the earlier example of PO mechanisms,
Y, =B,+p,+WB,+e, and Y,=p,=W p.+e, is derived,
assuming generally that the PTE 1s a constant at each period.
As with the analogous ATE, the APTE that may be specified
as O "*=E(dPTE) is also constant and equal to f3,, where
the expectation 1s taken over all periods when X 1s random-
1zed at every period.

[0094] This example reflects the common assumption 1n
n-oi-1 trials that the PTEs are all equal to the same constant
quantity regardless of period. This property may be referred
to as eflect constancy; e.g., 6; *2=8, . This follows because,
for example, all associations between the predictors X, and
W, and the observed outcome Y = ,+p X +¢, are constant;
¢.g., the coeflicients do not depend on t. Such a predictor-
specific association may be described, 1n some cases, as
being stable. This may be a property of n-oi-1 trials with no
serial interference across periods due to, for example, auto-
correlation and carryover of the treatment’s influence from
past periods.

[0095] In some cases, the APTE may be the primary
estimand of interest in an n-oi-1 trial because all other
recurring causes W need not be observed 1n order to estimate
the difference between E(Y,) and E(Y,). That 1s, i X 1s
randomized at each period (e.g., as 1n a standard n-of-1 trial),
then estimates of E(Y|X=s), instead of E(Y,), can be used
can be used to estimate the APTE without needing to
observe W or know how 1t functionally relates to Y. The key
assumption here may be that the PTEs are all identical when
there 1s no serial interference.

[0096] However, 1gnoring or mitigating autocorrelation
and carryover in observational (e.g., non-experimental) real-
world digital health settings may be infeasible. Accordingly,
one may allow for serial interference across periods. Hence,
while one may assume that the PTE i1s constant at each

period, one may not assume that the PTEs are all equal to a
single APTE.

Examples of N-of-1 Objectives

[0097] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
seek to answer the behavior-change seli-tracking question,
“What 1s a possible sustained effect (e.g., APTE) of X on Y,
that may be modifiable?” For example, using the systems,
the methods, the computer-readable media, and the tech-
niques disclosed herein, a user may seek to answer the
question “What 1s a possible average eflect of taking more
than my average number of steps per minute on my sleep
duration 1f I keep this up over a week, versus taking fewer
than my average number of steps per minute during that
same week?” Here, 1n some cases, APTE may be considered
to be sustained once it ceases to change after repeated
assignment of the same treatment level over successive
periods. This may be a between-period equivalent of within-
period ellect stability.

[0098] In some cases, autocorrelation and carryover can
delay an APTE from becoming sustained. The systems, the




US 2024/0047042 Al

methods, the computer-readable media, and the techniques
disclosed herein may lay the groundwork by answering the
question, “What 1s the APTE of X on Y 1f we were to
randomize X at every period under similar conditions?” This
can be answered by expanding the typical n-of-1 trial
technique to allow autocorrelation and carryover to intlu-
ence the APTE. Hence, the systems, the methods, the
computer-readable media, and the techmiques disclosed
herein provide for when X 1s, 1n some cases, randomized at
every period, which may be referred to as an n-of-1 experi-
ment to distinguish X from the standard constraints enforced
in an n-of-1 tnal.

Examples of Temporal Considerations

[0099] In some cases, relationships between vanables
across periods complicate estimation and interpretability of
an APTE 1n ways not commonly encountered 1n estimating
an ATE—even when interference 1s present. These compli-
cations may arise from autocorrelation, time trends, carry-
over, and slow onset or decay.

[0100] Autocorrelation may occur if Y, depends on 1ts

history up to 4’ lagged outcomes T}"“fy:(Lj L2 ..., L*?E?)Yﬂ
where L is the lag operator defined as LY =Y,_,. Note that,

in some cases, Y, need not depend on all lags up to 4’. For
example, in some cases, Y, may depend on Y,” only through
(L', L°, L") or (L°, L*) for a given mechanism.

[0101] Let V.&W, denote the set of exogenous causes of
Y . such that V, 1s unaftected by X or Y. For example, a
temporal cycle like weekday, week of month, month, annual
quarter, or season may be included 1n V, It all lagged

7 2
outcomes 1n }’ﬁ aflect Y, then the structural causal mecha-

nism 1s Y =g(X,, ?‘fyj V., €,). For simplicity of exposition,
assume that there are no endogenous causes of Y, (e.g., that
are aflected by Y, and maybe X) from here until discussion
on examples of autoregressive carryover models; e.g.,
assume that V=W _.

[0102] For example, suppose Y =P +P:XAP oY, +
V. p_ .+, where AR stands for “autoregressive.” For such
examples of linear models, assume |p,,I<1 for all lagged
coellicients; this may be referred to as the stationarity
condition 1n econometrics. Further, in some cases, assume
that {(V )} is jointly covariance stationary; equivalently, that
joint weak- or wide-sense stationarity (WSS) of {(V,)}
holds. These two conditions may imply that {(Y,)} is WSS,
enabling meeting of the imitial assumption.

[0103] In some cases, a time trend may be defined as a
sequential trend in the outcomes over successive periods
such that E(Y,) increases or decreases across periods, ren-
dering {(Y,} no longer WSS. For example, the mean
outcome E(Y,) may increase with t as with Y ,=[,+ X +

Bz‘rendt-l-vz‘[‘))ex 1:‘3 Wher C ngeﬂd:)o-
[0104] In some cases, carryover may be the tendency for

treatment eflects to linger beyond the crossover (e.g., when
one treatment 1s stopped and the next one started). Suppose,
for example, Y, depends on some set of lagged treatments

XO=(L, 12

. L"?X)Xr. In some cases, if all lagged

_ e pX
treatments 1n Yﬁ affect Y, then the structural causal

L
mechanism may be Y =g(X,, ¥; ,V_,¢€,). Such cases may be
referred to as having carryover, carryover intluence, or
treatment carryover.
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[T]

Examples of Serial Interference and
Modification

[0105] In some cases, the presence of carryover or auto-
correlation may mean that POs at a given period may be
influenced by treatment assignment 1n past periods. That is,
carryover can create serial interference over time, as noted
in various randomization-based temporal techniques. Nota-
bly, as demonstrated in the following example, carryover
does not necessarily modity the PTE itself.

[0106] If carryover 1s present, in some cases, the structural

causal mechanism may be Y ,=g(X,, Ef}f, V., €,). To 1llus-

trate, suppose E'f}{:Xr_l and Y =P,+PX AP X, +V +€,
where 3 0 at t=1. Let Y™+ denote the potential outcome 11
the participant recerves treatment s, at period t, and treatment

s, , at period t—1. The PO mechanism may therefore be, 1n
some cases, g, (V, &) Po+PxSHP.081+VY +E,. In some
cases, serial causal consistency states that Y =Y X%—IZ

Y X S X, =5,0).

[0107] LetY,” denote the current average PO (CAPO) at
period t corresponding to s. In some cases, extending to
multiple individuals, this may be referred to as contempo-
raneous average PO across all individuals at a particular
pertod. This 1s the potential outcome at period t under
treatment level s at that same period, averaged over all
possible treatment level combinations over all past periods;
in this case, justs,_;€{0, 1}. Thatis, Y,*=E, (Y*"X5s,)
=Y SflPr(X_ =11X =s }+Y *°Pr(X,_,=0IX =s ).

[0108] Similarly, let Y, ! denote the carryover average
PO at period t corresponding denote the carryover average
PO at period t corresponding to s, ;. This may be the
potential outcome at period t under treatment level s at the
previous period, t—1, averaged over all possible treatment
level combinations in the current period, in this case, s &{0,
1}. That is, Y;Sf‘l—_JX(YXﬁf‘ler =S, )=Pr(X=11X _,=s,
1)+Y >*'Pr (X;OIXLL_ =s_.).

[0109] PTE may now be redefined as a difference between
the CAPOs Y,'” and Y,”, which may be specified as the
difference 87 TE—Y "_Y ”". Likewise, the carryover effect
may be deﬁned as a dlﬁerence between carryover average
POs Y, and Y., which may be specified as the difference
0,°°=Y,'-Y . In some cases, both differences may be
referred to as period average direct causal ellects.

[0110] Continuing this example, suppose X 1s randomized
to 0 or 1 with equal probability (e.g., all conditional prob-
abilities are equal to 0.5). Table 1 lists the four POs.
Accordingly, Y,'=Y."0.54Y,'°0.5=B +B 4P 0.5+V +¢,
and  Y,”=Y,'0.5+Y°°0.5,+8,.0.5+Ve,.  Therefore,
8 "*=B . at any period t. Note that the PTE may be B,
regardless of whether or not a carryover eflect (and by
implication, carryover) exists, e.g., 1t 1s 3 ;- both when {3__=0
and [3__=0. Hence, neither the carryover effect nor influence
modifies the PTE.

(SpSp_1)

TABLE 1
YrSrSr—l ﬁﬁ + BXSr + I?’cogr—l + V: + Er
vy, B0 + Py + B, + V, + &,
Y, B30+ Py + V, +¢,
Yt B0 + P, + V., + €,
Y, 30+ V, + €,
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[0111] Now, suppose instead that Y =p+B.XA+B. X, +
By. XX, ,+V e, where B__=B,. =0 at t=1, with the four
POs listed in Table 2. Therefore, Y, "=f,+B+B...0.5+B .. 0.
5+VA+e, and Y "=B,.+B_.0.5+V+e. Hence, 06 '"=p,+
B 0.5 at any period t. The carryover POs may now be
Y;1=BO+BXO'S+BEQ+BXCQO 5+V +€, and Y, '=p,+B,0.5+V +
e.. Hence, 0,°=3__+B,0.5 at any peried t. Note that the PTE
may be just B, when there is neither a carryover effect nor
influence; e.g., B__=—f,0.5 and BCG—O respeetlvely How-
ever, 0, TE=BX—B.:Q when there is no carryover effect, but
there is a carryover influence; e.g., B__=—[B,. 0.5 but f__#
respeetwely That 1s, 1n some cases, carryover modlﬁes the
PTE 1n general—even when there 1s no carryover effect.

TABLE 2
YISrSr—l BD + BXSr + Bcosr—l + Bcosr—l + Vr + Er
lel 3D+BX+BC‘D+BXC‘D+VI‘+EI‘
Y, !° B0+ By + V, + &,
Y ! B0 + B, + V., + £,
Y 3o+ V, + &,

[0112] In some cases, if there 1s no carryover, autocorre-
lation can still create serial interference. Recall that the

: : : o
autocorrelation structure causal mechanismis Y =g(X,, Vi,

V , €,). For example, suppose that ?ﬁy:Yr_l,, then Y ,;=g(X;,
Vi,eand Y =g(X,, Y, ;, V, €)att>]. Even in this simple
example, the resulting POs may undergo a recursive com-
binatorial expansion with every successive period due to the
autocorrelation. Accordingly, estimating an APTE can easily
become intractable with more and more periods.

[0113] For example, note the sequence of PO mechanisms,
Y, =g, (Vy, €)), Y, =g (Y, L+Y,0(1-s,), Vs, &), and
Y53 =g, =Y, 1S 4+Y, 05‘(1 —s,), V5, &). For example,
eenmder our earlier structural causal mechanism, Y ,=B,+
B X+B.-Y, +V.B.+€,, where P,.=0 at t=1. Then,

Y 1 S]=BD+BXS ]+B€xv 1 7€, stzsl =BD+BXSZ+BE’IV2+82’
Y B+HB S HB A R Y52 B, Va+€4, and so on.

Examples of Average Period Effects

[0114] In some cases, the APTE can still be defined 1n the
presence of serial interference. A type of APTE may be
introduced based on the past exposure history. Further, the
APTE may relate to this history-based quantity through the

CAPO.

[0115] LetXe{(L,L* ..., L""NX={X_,,X ., ...,
X,)} denote the full exposure history where X 1s first
assigned at t=1. A general formula for the historical PTE
may be defined as 8 (x,)=Y,""—Y % Similar to defining the
set of lagged outcomes for auteeorrelatlon X, may not
include all past time points. For example, x =x,_, at all t in
Table 1 and Table 2. The historical PTE 1n Table 1 may, in
some cases, always be 0,(X)=[3,. However, Table 2 shows

that at t=1, o,(x,)=p, while for t>1 0,(1)=,+B, and 0,0)

=B
[0116] In some cases, historical APTE (HAPTE) may be
defined as

1
HAPTE pmr _ Zm -
0 (X) = ” Izlﬁr(ﬁfr)-
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The HAPTE may be the average effect taken over all periods
under the observed exposure history up to m—1; e.g., X

This may answer the question for a subject, “What was the
average effect over my particular history of exposures and

unchangeable exogenous characteristics (e.g., weather)?”
The HAPTE 1n Table 1 may be always

L
M@ == " B =B

However, 1n Table 2, HAPTE 1s defined as

L
6P @) = B +1m> D= 3 " 1001 = Dfix,,

If there 1s no carryover, autocorrelation, or any other source
of serial interference (e.g., an unobserved exogenous con-
founder V_, that affects both X,_; and Y ), then the observed
exposure history may not influence the POs. Suppose this 1s
the case, such that there 1s no serial interference, and
therefore Y,**=Y . Hence, 8 (x,)=Y,'-Y,” as would be the
case in Table 1 under Bco=0.

[0117] Furthermore, suppose that, as in the earlier n-of-1
trial example used to define an APTE, X 1s randomized at
every period, and that the PTEs and APTEs are all equal to
the same effect-constant quantity across all periods, denoted
0" 1% as before. Then 677" (x, )=06"""%, so that estimating
this trivial APTE 1s straightforward. Note that this may also
be the case 1n Table 1, showing that the HAPTE may be
constant, 1mplying that its expectation may be constant.
Accordingly, this n-of-1 trial may answer the question for a
subject, “What average effect should I have expected at any
given period, 1if I had randomized intervention at that
period?”

[0118] However, 1t should be understood that serial inter-
ference that produces non-constant HAPTEs (as in Table 2)
cannot always be ruled out, and effect constancy may not
hold in general, such that 6”*"'*(x )#6""'*. To answer
n-of-1 questions like the one above, one cannot always rely
on estimating the HAPTE even when X 1s randomized at
every period. Instead, one should generally first define each
CAPO used to calculate 9,”/*=Y,""-Y,”.

[0119] In some cases, the general formula for the CAPO
may resemble the logic of causal consistence. The CAPO
may accordingly be defined as Y,”"=Y," at t=1, and other-
WiS€E,

S;X; (EC_[UELHDH 2)

— Z Y ZJ(Z. = s )I(X, =

{57} {Zt}

= ZY}SIEIPF(JTI =5 | X, = SI)

{57}

[0120] Note that o, .~ may be similar to the “average
contemporary direct effect.” However, whereas the average
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contemporary direct effect may take the expectation over all
individuals at a given period, the expectation in Equation 2
may be taken over all periods prior to t for a single
individual.

[0121] Suppose X 1s randomized at every period, reducing
the conditional probability component of Equation 2 to I
sPr(X,=s,), and the CAPO to Y,*=E;(Y,™"). Recalling the
earlier definition that the expectation E(6”’%) be taken over

all periods when X 1s randomized at every period in defining
0", yields,

§APTE _ E( §PTE) (Equation 3)

randomization of X;

- 2ol (17 -7

[0122] Therefore, in some cases, APTE may be equal to
mean HAPTE taken over all possible exposure histories. In
some cases, the right side of the second equivalence may be
referred to as an average distributional shift effect a gener-
alization of the original group- and population-level quan-
tities.

[0123] The n-of-1 experimental quantity of Equation 3
may be referred to as target of inference that answers the
question for a subject, “What was the average effect over my
particular history of exposures and unchangeable exogenous
characteristics, 1f I had randomized intervention at every
period?”’ This quantity may be estimated using observed
data (e.g., without knowing counterfactuals) 1if X 1s random-
1zed at every period. To see this, note that the conditional

mean observed outcome at a given period 1s equal to the
CAPO.

EY; | Xi =x) = E(Y;ﬂy*‘ ‘Xr — Iz) by (Equation 4)

causal consistency
— X X
= Ey (YI

= Y,;" by Equation 2

X, = xr)

Hence,

[0124]

L m
6T = =) " E(Y, | X = 0)

when X 1s randomized at every period.
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[0125] Interestingly, note that the APTE of Equation 3
may actually be a conditional APTE because the original
values of the unchangeable exogenous characteristics may
be unmodified. This may reflect how 1n practice, one may
not be able to modify such characteristics. Specifically,
o TF=E(0"*IV,, ...,V _)where each 6 ~'* depends on the
corresponding V..

[0126] Accordingly, 1n some cases, average PO may be
estimated at any period that 1s stable or constant in the long
run (e.g., for very long multivariate time series). Accord-
ingly, if {(W,)} 1s WSS, a constant long-run APTE may be
defined and thereby estimated. In some cases, if such an
APTE exists, this property may be referred to as “long-run
effect constancy.”

[0127] Recall that effect constancy does not require WSS
to hold for the average effect to be constant at every period.
However, effect constancy may be overly optimistic to
expect from real-world observational data. In such cases,
long-run effect constancy may sfill be a reasonable property
to expect from a large enough sample (e.g., a long-enough
multivariate time series). In some cases, an autoregressive
carryover model may imply long-run effect constancy.

Examples of Autoregressive Carryover Models

[0128] In some cases, a basic linear model that accounts
for both carryover and autocorrelation, may be an autore-
gressive carryover (ARCQO) model. The ARCO model may
be based on dynamic regression models and may enable

deriving useful long-run averages (including a long-run
APTE) under WSS. The ARCO model may be defined as,

f}f — )i
Yt:BD-l_BXXI_l_ Xi‘ ng'l'Xr@BXm_l_ }T’: BAR+Y1“®BXAR+
VIBE‘_I_I_EI

Here, X © may be the vector of all unique two-way inter-
2%

actions (e.g., products) between the elements of (X, ¥," ),

and Y,” may be the vector of all unique two-way interac-

Y
tions between the elements of (X, Y;f ). Equation 5 may be

considered both a special case and generalization of a vector
autoregressive model; the former because it involves only
two three series, one of which 1s exogenous, and the latter
because of the interaction terms.

[0129] Note that, in some cases, the ARCO model can be
generalized as part of the exponential family by treating 1ts
linear component as 1, the linear predictor of a generalized
linear model (GLM). Specifically, let M,rco=BotBX,+

ﬁH _— F}?

X, B.+X°B x+¥e B, Y ©B x.+V.B,,. Therefore, cer-
tain dynamic regression models may be considered a special
case of the resulting generalized ARCO model, with a binary
outcome and the canonical logit link function. Hence, the

— Py . opX
structural causal model g(X,, ¥ j , X ;’ , W_ €) may be

specified using the ARCO model and {(W,)} may be
assumed to be WSS, unless otherwise stated.

Examples of ARCO 1n N-of-1 Experiments

[0130] In some cases, three long-run averages may be
derived via an ARCO model of lag order 1 (here, with

g}}
o

raw

¥, =X_,and ¥, =Y,_,) when X is randomized at every
period as in an n-of-1 experiment. These averages may
enable 1dentifying and estimating the APTE directly using
this simple model’s parameters. However, to fit more flex-
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ible models for use in APTE discovery, a model-agnostic
technique may be deployed to estimate the APTE. Model-
twin randomization may be one such technique.

[0131] In some cases, an order-1 model is Y=Y -
Xt_l_Be"‘BXX ABeoX i1 Breo X X B, Y o 1+BXarXrXr—1+
V.B_.+€,. This may be because of an implicit recursive
dependence of Y, on the exposure history beyond t—1; e.g.,
Y, ;maybeatfunctionof X, ,and Y, ,, and Y, , may be a
function of X_, and Y,_,, etc.
[0132] In  general,  E(Y,X=x)=P;+B.x+B. EX,
1 |XI=XI)+BXCDIX[E(XI—1 |XI=XI)+B£17E(YI—] |XI=XI)+BXLIIXZE
(Y,_ 1 X=x WE(V X =x)p,.. Suppose X is randomized with
probability Pr(X=1)=m such that E(X_;IX =x,)=E(X,_;)=Pr
(X,_=1)=m, E(Y,_IX=x)=E(Y, ), and E(V IX =x )=E(V)).
Furthermore, E(Y, )=E(Y)=pY because {(Y,} 1s WSS;
likewise, E(V )=pv.
[0133] Finally, recall from Equation 4 that E(Y X =x)
=Y. Hence, long-run effect constancy holds because
0" TE—Y Y U'—E(Y I X =1)-E(Y IX =0)=p,+B,. . T+
BXM”Y is constant across all periods in the long run.
Therefore, 6*" /=B ,+P,. . T+B, 1Y based at least in part on
Equation 3. After re-arranging terms, E(Y IX =X )=0+
6" """ where =P +B. TPy LY+UVP. ..

[0134] When the APTE 1s not modified by carryover such

that 3...=0, and is not modified by past outcomes such that

+.,=0, it may reflect the impact of X, through B,. If
carryover's modifying influence 1s positive such that
B, >0, this may amplify the impact of X, in proportion to
the probability that X =1; a negative influence dampens its
impact. For completeness, in an n-of-1 experiment the
long-run mean outcome may be represented by,

Bo + Bxm+ B, + ﬂxeaﬂz + Uy Bex

]- — )Bm" — ﬁX[I?"H

Hy =

Further Examples of ATEs, APTEs, and HAPTEs

[0135] In some cases, the HAPTE may be useful to a
self-tracker interested primarily in past effects given their
past behavior, which may be suitable if the goal 1s mainly to
diagnose what already happened. However, if the seli-
tracker’s goal 1s treatment or intervention by first under-
standing the effect or impact in order to change the outcomes
by changing their behavior (e.g., not replicate the same
exposure history), the HAPTE may not be the appropriate
estimand.

[0136] The APTE question of “What might the effect be in
an n-of-1 experiment?” may be less intuitive than the one
posed earlier: “What 1s a possible sustained effect of X on Y,
that I might be able to modity?” However, the importance of
questions like “what might the effect be 1n an n-of-1 experi-
ment” that are answerable by the APTE in accordance with
the systems, the methods, the computer-readable media, and
the techniques disclosed herein, should be appreciated.

[0137] The quantity &*7’" may highlight the important
differences in interpretation between the APTE and the ATE.
This APTE may be a type of expected average treatment
effect where the APTE captures the expected effect of
changing a random period’s treatment 1f the current study
had been an n-of-1 experiment, with 1its particular history of
unchangeable, exogenous characteristics. Contrast this with
the ATE, which 1s the average effect of changing all partici-
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pants’ treatments from X=1 to X=0. Applying this technique
to time series data may include, 1n some cases, assigning
X=1 and X=0 at all periods, and comparing the predicted
mean potential outcomes under each treatment level. This
ATE-type procedure may help answer a related but different
question: “What would have been the average effect of
changing the treatment to the same level over all periods 1f
the current study had been an n-of-1 experiment, with 1ts
particular history of unchangeable, exogenous characteris-
tics?”

[0138] This key distinction may foreshadow how the
model-twin randomization procedure estimates the APTE,
compared to how the analogous ATE-type procedure above
works. Briefly, in some cases, model-twin randomization
may be a Monte Carlo technique that randomly shutffles the
exposure vector over all periods, predicts potential outcomes
under each treatment level, adds random noise for better
stafistical comparison, compares the average predicted noisy
outcomes under each treatment level, and then repeats this
procedure multiple times until convergence. In contrast, the
ATE-type procedure above may just simply change all
treatments to 1 or 0 1n order to compare outcomes (possibly
with noise added).

Examples of Other Temporal Considerations

[0139] Insome cases, 1n an n-oi-1 trial, carryover might be
avolded in PTE estimation by using a washout period that
allows the lingering influence of past treatment to “wash
out” of the participant’s system. This may be done by
design, through analytic adjustment, or both. The physical or
design-based washout technique may include not adminis-
tering the next treatment assignment until the influence of
the previous treatment assignment has subsided. The ana-
lytic washout technique may include down-weighting or
dropping time points at which carryover still exists.

[0140] In some cases, an example of either technique may
include dropping time points, including t at which X, =0
(assuming X=0 denotes the baseline treatment at which the
outcome 1s at a baseline level). In some cases, this may
constrain the PTE to just Y,'°-Y°°=B,, regardless of
whether carryover modifies the overall PTE that allows for
carryover. In some cases, one may assume that one cannot
designate a washout period a priori, and so one may 1nstead
include any treatment history with potential carryover in the
models.

[0141] In some cases, if a participant 1s measured multiple
times during a period or phase such that je {1, ..., m,}, for
repeated measurements per period t, there 1s an opportunity
to assess and adjust for slow onset or decay of the treatment
effect. For example, a treatment with slow onset may take
fime to reach its maximum or stable PTE, which may span
more than one period. Similarly, a treatment with slow decay
may take time to dissipate or wash out. If i1ts washout time
spans more than one period, then carryover may still exist.
Multiple measurements per phase may be standard practice
in SCEDs. In studies that define a day as a period, intraday
sensor measurements (e.g., with a Fitbit® or smart watch)
may be taken over uniform time intervals commonly called
epochs.

Examples of Estimation Techniques

[0142] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
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may be applied to n-of-1 trials. For example, 1in an n-oi-1
trial, randomization may eliminate confounding due to auto-
correlation and carryover. There may be no such guarantee
in an n-of-1 observational study; thus, the possibility of
confounding cannot be 1gnored. There may be a number of
techniques existing to address or adjust for confounding 1n
nomothetic studies, thereby estimating the ATE. Such tech-
niques may be adapted for estimating the APTE; for
example, a g-formula technique may directly adjust for
autocorrelation-induced and carryover-induced confound-
ng.

[0143] Recall that to estimate the ATE, E(Y") can be
estimated directly 1if X 1s randomized by estimating
E(Y|X=x) using only observed values. In some cases,
directly modeling the outcome mechanism Y=g(X, W, E)
need not use an outcome model. This may follow from the
law of total expectation,

EY|X=x)=EJEY |X=x, W)|X =x)
= E{E(Y | X = x, W)} if
X is randomized
= E(Y") by (1)

(Equation 6)

[0144] Specifically, this result may explain why E(Y™) can
be 1nferred from the estimate of E(YI|X=x) when X 1is
randomized, without having to model E(Y|1X=x, W). None-
theless, an outcome model may still be fit to correctly
estimate the ATE (e g., using an asymptotically consistent
estimator).

[0145] First, note that fitting an outcome model may be a
ubiquitous practice in both statistical and machine learning
settings; explicitly in the former, implicitly in the latter as
the prediction function Y~{(X, W). Due at least in part on
causal consistency, the outcome mechanism may be related
to the PO mechanism as Y=g(X, W, E)=X,g (W, E)I(X=s),
with shorthand Y=g,(W, €). Hence, the outcome mechanism
g(X, W, €) or the PO mechanism g,{W, €) may be modeled
together as both may be mathematically identical (e.g.,
specifically, for a given value of X).

[0146] In some cases, fitting the correct outcome model to
the observed values may enable estimating the conditional
mean E(YIX=s, W)=E (g(X, W, €)IX=s, W) for each expo-
sure level s. To illustrate, recall that g(X, W, €)=P+B, X+
Wp,+¢. Estimating the parameters {[3,. 3,, B,} to estimate
E(YIX=s, W) may enable, for each se{0, 1}, predicting
outcome values as Y * for all study participants i=1, . . ., n.
Following Equation 6, E(Y") may be estimated by averaging
over all predicted values for each se{0, 1}; e.g.,

— l —n  as
7 = ;ZM};.

Finally, ATE may be estimated as the difference between
these averages; e.g., Y'-Y°.

[0147] However, in some cases, this procedure may also
work for estimating E(Y ) even if X 1s not randomized. This
result serves as a key insight underlying the technique of
g-formula or g-computation formula, which may also be
referred to as direct standardization, stratification, regression
adjustment, or the back-door adjustment formula. The g-for-

mula may be the equivalence of the penultimate and last
expressions of Equation 6. The g-formula states that if one
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has observed all confounders and knows the outcome
mechanism, then one can correctly estimate the ATE by

replicating the probability conditions for the corresponding
hypothetical RCT.

[0148] In some cases, it may be possible or desired to
apply this equivalence when X 1s not randomized. For
example, L.et R=1 denote the case when X 1s randomized,
and R=0 otherwise. Randomization invariance may hold
when g(X, W, R, g)=g(X, W, €) (e.g., data-generation
invariance) and WJIULR (e.g., distributional invariance).
These two conditions together 1imply

EplEY | X=x, W}=EJ EY|X=x, W<R=0)|R=0}
=EfEY | X=x, W,R=1)|R=1)
=E{E(Y | X =x, W) if X is randomized
= F£(Y") by Equation 1

[0149] Hence, the g-formula may be applicable, in some
cases, 1f randomization invariance holds Further, 1t may be
noted that randomization of X may be a particular way to set

or 1x X, such that p(yldo(x))=p(yIX=x, R=1) for the do
operator.

[0150] In some cases, it may be possible to specify a
useful propensity model for Pr(X=sIW), as 1n, the propensity
of seeing X=s for a given level of W. In some cases, a variety
of propensity score techniques may be applied to estimate
the ATE. For example, these may include the matching and
IPW techniques disclosed herein with respect to PO For
example, with this technique, X=I(e¢*<Pr(X=11W)), where
e* is uniformly distributed between 0 and 1.

[0151] In some cases, 1t may be useful to characterize the
performance (e.g., with respect to empirical bias) of a
g-formula estimation technique. However, a complementary
propensity-score IPW technique may also be applicable,
when used for comparison. Moreover, 1n some cases, doubly
robust techniques (e.g., “angmented IPW™), which involve
specifying both outcome and propensity models may be
applicable.

Examples of Modeling Flexibility

[0152] In some cases, the outcome and propensity mecha-
nisms may be either unknown or cannot otherwise be
reasonably justified (e.g., due to a lack accumulated theo-
retical evidence). This may be the case for settings of causal
hypothesis generation and causal discovery. In such cases, a
key objective may include 1dentifying, selecting, or propos-
ing plausible models for a small set of posited causal effects,
rather than estimating effects and associations posited by
scientifically defensible or otherwise well-established a
prior1 models.

[0153] Note that the outcome mechanism i1n Equation 6
can take any appropriate functional form. For example, these
have traditionally been modeled using linearized parametric
or semi-parametric models in the statistics literature. How-
ever, Equation 6 may apply to the true mechanism, which
may or may not be a linearized model. Hence, supervised
learning techniques may be applied to allow fitting models
focused on characterizing the relationship between X, the
exposure of interest, and the outcome Y, while also flexibly
accommodating non-exposure variables W. Likewise, the
same may hold for modeling the propensity of X.




US 2024/0047042 Al

[0154] In some cases, the decision tree may be one such
non-parametric technique for estimating a conditional ATE
for a continuous outcome (e.g., specified as a difference
between mean POs). The decision tree-based technique may
be used to estimate an APTE if conditional WSS holds (e.g.,
the outcomes are WSS conditional on the causes). WSS may
replace the assumption of conditional independence (e.g.,
the outcomes are mutually independent conditional on the
causes) used for consistent effect estimation. Unlike linear-
1zed models that use prespecification of interaction terms,
the decision tree-based technique known as random forests
(RF) may be able to implicitly allow for multiple interac-
tions between predictors in predicting the outcome.

[0155] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
apply a Single Tree technique (e.g., use of a single decision
tree 1n the implementation of RF involving many decision
frees), and model the outcome as a function of both the
exposure and other causes using RF. In some cases, the
systems, the methods, the computer-readable media, and the
techniques disclosed herein may apply a Two Trees tech-
nique for conducting feature selection (e.g., for non-expo-
sure causes important for predicting potential outcomes),
which 1nvolves fitting separate outcome models for each
exposure level. Furthermore, the systems, the methods, the
computer-readable media, and the technmiques disclosed
herein may model the exposure propensity directly (e.g.,
versus a Transformed Outcome Tree technique).

Examples of Model-Twin Randomization

[0156] As previously discussed, a sequential technique
may be useful for implementing the g-formula for estimating
the APTE. Recall Y, may be sequentially generated, unlike
the outcome Y, that may be generated across participants in
ATE-focused settings.

[0157] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
may apply sequential techniques for numerical estimation
called model-twin randomization (MoTR). In some cases,
MoTR may randomize originally observed sequential expo-
sure {(x,)}, thereby changing the originally observed
sequential exposure from a possibly endogenous variable
(e.g., one that may be affected by past values of Y) into an
exogenous variable (e.g., one that may be unaffected by the
outcome). Hence, MoTR may be a Monte Carlo technique
that provides numerically approximate calculations of sta-
tistically consistent estimates of the APTE, along approxi-
mate confidence intervals (Cls) for conducting inference.

[0158] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
may 1mplement one or more operations, including:

[0159] (1) fitting an outcome model, p,=E(Y,IX, W), to
observed data, {(X,), (w,)}, where an estimator, p,, {from
fitting the outcome model 1s, for a participant, a model-
twin (e.g., a digital twin that represents the participant’s
outcome mechanism for estimating APTE);

[0160] (2) running the model-twin through a simulated
n-of-1 trial by performing, for each iteration, r, opera-

tions including:

0161] (a) randomly permuting or shuffling all

observed x,, where X =(X ,, . .., X _ ) represents
this randomized sequence, where this operation may
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preserve the original ratio of exposures to non-

exposures, reflecting the exposure’s observed overall

propensity;
[0162] (b) generating W, at each period t sequen-
tially, by performing operations including:

[0163] (1) keeping any exogeneous variable, v,
contained i1n wr equal to their corresponding val-
nes n W_,

[0164] (11) setting all lags of Y, included in W to
their values generated in past runs (e.g., set Y,_;
equal to &A’F(I_D, as defined 1n operation (c)); and

[0165] (111) setting all lags of X, included in W, to
their corresponding values 1in X ;

[0166] (c) generating Y , at each period t sequentially,
by performing operations including:
0167] (1) predicting an outcome as ﬂrrzﬁ
(Y, X=X_, W=W_); and
[0168] (1) adding random noise to each predicted

value as Y, =p_+¢. where € _~N(0, 6,), where G,
1s the standard deviation of the residuals ({Y,—
u}), treated as fixed, where p=E(Y IX~=x,
W =w ) depends on the observed data {(x,), (w,)}
rather than {(X ), (W _)} (e.g., the data resulting
from the random permutation or shuftling of {(x,)
}), where this operation may preserve summary
information about residual variation 1n the out-
come (e.g., as 1s done to create prediction intervals
in statistics), and where Y, may be an element of
W __for some future period t'<t;

[0169] (d) estimating E(Y ), the mean PO, for s {0,
1}, to be the average of the noisy predicted out-
comes, €.g.,

=~ 1 Mmoo

Y, = — Y d( X = 8)

. =1

where m.2,_, “I(X,=s), which may be constant regardless of
r, and APTE may be estimated as 5FM”TR=1A’},1—Y?FD;
[0170] (e) estimating corresponding confidence inter-

vals likewise, e.g., via a common t—test 1f the predicted
outcomes are fairly normally distributed; and

[0171] (1) calculating the cumulative average APTE
over all previous runs as the average of all estimates
0,  up to and including the current run, r, e.g.,

MoTR 1 s~ r  AMoTR
6, == b
7 h=1

and where the cumulative average confidence intervals are
likewise calculated:

[0172] (3) performing operations 2(a)-2(e) repeatedly
until all three cumulative averages converge based at
least 1n part on reasonable criteria, where to ensure
some stability in cumulative estimates, a minimumtr,;,_
may be set such thatr, . <r . and

[0173] (4) reporting final values from operation 3 as the

APTE estimate 0™°'® along with a corresponding con-

fidence interval.
[0174] In some cases, any number of operations of the one

or more operations described above may be added or
removed. Further, the one or more operations described




US 2024/0047042 Al

above may be performed 1n any order. Further, at least one
of the one or more operations described above may be
repeated, e.g., iteratively.

Examples of Propensity Score Twins

[0175] Insome cases, one or more IPW techniques may be
implemented by the systems, the methods, the computer-
readable media, and the techniques disclosed herein to
complement the MoTR techniques. The one or more IPW
techniques may be referred to as propensity score twin
(PSTn). Unlike MoTR, PSTn may not be a sequential Monte
Carlo technique. Instead, PSTn may predict the exposure
probability at each period once after modeling the probabil-
ity of exposure; e.g., Pr(X =sIW ). In some cases, the sys-
tems, the methods, the computer-readable media, and the
techniques disclosed herein may apply to characterization
bias in PSTn estimation, rather than characterizing inference
(e.g., which includes estimating ClIs).

[0176] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
may 1mplement one or more operations, including:

[0177] (1) fitting a propensity model T =Pr(X =11W ) to
data, where similar to the one or more operations
described with respect to Mo TR, the estimator, T, from
fitting the propensity model may be, for a participant,
a propensity score twin (e.g., a digital twin that repre-
sents the participant’s exposure mechanism for esti-
mating APTE),

[0178] (2) weighting each observed Y, by the reciprocal
of its corresponding estimated propensity based at least
in part on observed exposure, e.g., Y =Y /{x 7 +(1-x)
(1-m,) }, where optionally, mitigating overly large
weilghts resulting from overly small estimated proper-

ties, 1ncluding performing operations, may involve

performing operations including:

0179] (a) wsing trimmed &, values (e.g., dropping
extreme T, values); )

[0180] (b) using overlapping T, values (e.g., keeping
the range of T, values with the most overlap between
groups with s {0,1}); and

[0181] (c) using stabilized weights (e.g., multiply Y,
by the proportion of the sample with X=x, for the
corresponding values of x;

[0182] (3) estimating, for se{0,1}), E(Y") as the aver-

age of the weighted outcomes e.g.,

and

[0183] (4) estimating the APTE as 6"°7"'= ¥t —Y?,
[0184] In some cases, any number of operations of the one
or more operations described above may be added or
removed. Further, the one or more operations described
above may be performed 1n any order. Further, at least one
of the one or more operations described above may be
repeated, e.g., iteratively.

Examples of Simulation Studies

[0185] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
may use simulated data to characterize the empirical bias of
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the MoTR and PSTn estimators (0M°"® and 86757, respec-
tively). The systems, the methods, the computer-readable

media, and the techniques disclosed herein may characterize
this bias when each model 1s correctly specified as the true
data-generating mechanism, which may be specified as a
GLM (e.g., ARCO for the outcome, logistic for the expo-
sure). The systems, the methods, the computer-readable
media, and the techniques disclosed herein may also char-
acterize this bias using naive APTE estimation methods, for
example, when no modeling 1s done, and when the true
models are fit but are not adjusted for confounding by either
method. The systems, the methods, the computer-readable
media, and the techniques disclosed herein may also char-
acterize the empirical bias of the RF techniques disclosed
herein with respect to modeling flexibility For example, 1n
some cases, while RF may be more flexible than linearized
models 1n certain useful ways, RF may be more biased
because the relevant prediction function 1s not identical to
the true GLM mechanism.

Examples of Simulation Study Data-Obtaining
Procedures

[0186] In some cases, data may be collected using one or
more of the techniques disclosed herein with respect to FIG.
1. For example, data may be collected using smart clothing
or other body-tracking devices or software.

[0187] For a specific example to be discussed, 222 days of
days of sleep duration and step-count data was collected
using a Fithit® Charge 3 wrist—worn sensor. Hence, each
simulated (e.g., simulated) dataset was generated with
m=222 time points.

[0188] For the specific example, outcome and exposure of
interest was specified as follows. A period was specified as
a day. Outcome was daily total sleep time (TST), defined as
the total number of hours asleep per night. Physical-activity
exposure was the daily number of steps per minute awake
(chosen, e.g., rather than daily raw step count) to understand
if increasing physical activity overall, regardless of how
much time the participant was awake, led to longer or
shorter sleep; however, simply getting more sleep leaves one
less time to take steps the following day). Raw step count
may be associated with sleep duration because simply
getting more sleep leaves one less time to take steps the
following day. Raw step count may simultaneously not
affect sleep duration, which 1s the APTE of interest in the
specific example.

[0189] In the standard potential outcomes framework, 1t
may be reasonable to dichotomize continuous exposures 1n
order to define clear causal effects between distinct groups
or levels. Hence, for the specific example, exposure was
dichotomized into high and low physical activity based on
the observed median steps per minute over all 222 days of
observation.

[0190] In the specific example, each simulated dataset
(indexed h) was generated using the following operations,
which may induce autoregression and confounding via
endogeneity (e.g., as might be present i1n real data).

[0191] (1) if t=1, generate Y,, as a continuous variable
drawn from Bg+€, where € ~N(0, 0,), otherwise, pro-
ceed to operation (2);

[0192] (2) for both s=0 and s=1, generate Y,,” using the
ARCO PO mechanism Y, =Ps+Bys+P. Y, +€,,

where Y,_; 1s set equal to Y ,,_;:
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[0193] (3) if t=1, generate X, {0, 1} as a binomial
variable with probability t,=Pr(X,=1), otherwise, gen-
erate X, using the propensity mechanism logit(® )=0i,+
o Y ., where T=Pr(Xt=11Y_,), and where Y,_, 1s set
equal to Y,,,_,,, and where «,,20 induces endogeneity
by making X, depend on Y,_,; and

[0194] (4) generate the observed outcome Y,, using

causal consistency e.g., generate Y, =Y,'X +Y °(1-X),
where Y, 1s set equal to Y, for both s=0 and s=1, and
where X, 1s set equal to X, ..

[0195] In some cases, any number of operations of the one
or more operations described above may be added or
removed. Further, the one or more operations described
above may be performed 1n any order. Further, at least one
of the one or more operations described above may be
repeated, e.g., iteratively.

[0196] Note that, parameters used with the specific

example include: ,=2, 0.=0.5, B,=1.1, B,~=0.8, ®,=0.5,

0,—=—0.25, and o_,_=1.25. Note that You may be stationary
because P, »/<I; hence the true APTE was B,=1.1.

Examples of Analysis Techniques and Results

[0197] For the specific example, six estimation techniques
were used, as listed in Table 3. Specifically, r=200 MoTR
runs were used, and applied trimming and overlapping were
used with propensity scores (e.g., which may be stabilized).
The coeflicient estimate technique was included as an extra
coding check to confirm that code was correct (e.g., to
confirm expectation of being unbiased over many simula-
tions).
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TABLE 3

Method Estimator Description
Raw comparison of §raw 1 m 1 m
averages (no ”’1—1 IZIYrI(Xr =1)- m_Z;ﬂYEHXI = 0)
modelling) ’
Coetlicient estimate BX GLM estimator of ARCO exposure

coeflicient
MoTR-GLM Y OTR-GEM  §MOTR after fitting GLM outcome model
PSTn (Stabilized)- oS In-GLM — §PI after fitting GLM propensity model
GLM
MoTR-RF GUTRRE §MOTR after fitting RF prediction function
PSTn-RF P In-RE §P5I7 after fitting RF prediction function

[0198] The coefhicient estimate, Mo TR-GLLM, and PSTn
(Stabilized)-GLLM techniques all may include fitting the
correct models (e.g., the correct ARCQO-outcome or expo-
sure mechanisms). With the specific example, for both the
coefficient and MoTR-GLM methods, the outcome model
Y =B B XAPsrY, +€, was fit where €~N(0, 0,). Further,
for the PSTn (Stabilized)-GLLM technique, the propensity
model logit( =0+ . Y, ; where T=Pr(X =11Y, ;) was it.
In some cases, the RF techniques include fitting prediction
functions. For the MoTR-RF techniques, the prediction

function Y ~1(X, Y, ;) may be fit. For the PSTn-RF tech-
nique, the classification function X ~f(Y,_ ;) may be fit.

[0199] FIGS. 2A and 2B show examples of results of a

simulation applying model-twin randomization and propen-
sity score twin.

[0200] FIG. 2A specifically shows, for the specific
example, the results of analyzing one simulated dataset
(h=1) with how the MoTR and PSTn techniques relate to
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each other. Here, the corrected models were used for MoTR
and PSTn, with a sample size of m=220. The corresponding
values of each final estimate at run r=200 are shown 1n Table
4. FIG. 2A shows analysis results of applying each of the
MoTR and PSTn techniques to one simulated dataset. For
example, 205A 1illustrates results for a generalized linear
model (GI1.M) and 210A 1llustrates results for random forests
(RF). As 1llustrated, MoTR used r, . =10 runs to r, =200

T'uIs.

TABLE 4
Method Estimate (95% CI)
Raw comparison 0.35 (0.1, 0.6)
Coefficient estimate 1.10 {0.92, 1.27)
MoTR-GLM 1.08 (0.68, 1.48)
PSTn (Stabilized)-GLM .98
MoTR-RF 0.69 (0.4, 0.98)
PSTn-RF 0.94

[0201] For this parficular dataset used with the specific
example, the MoTR and PSTn techniques estimate the true
APTE with little bias compared to the raw comparison when
their models are specified correctly. The MoTR CI even
covers the true APTE. However, the MoTR technique that
uses RF may be more biased than the corresponding PSTn
technique. This result may be due to sample-to-sample
variation, as seen 1n the empirical bias results over 100
simulated datasets shown in FIG. 3A. These techniques may
be a way of approximating the true bias of an estimator at a
given sample size.

Bias
Expected

yeSs

no

no
no

SOINE
SOINC

[0202] In FIG. 3B, the sample size 1s increased to m=730.

This enables beginning to assess the asymptotic trend 1n bias
of each estimator implied by the central limit theorem
(CLT). FIG. 3B shows that all estimators exhibit similar or
smaller bias compared to the smaller sample of m=222. In
particular, PSTn (Stabilized)-GLM performs better (e.g.,
with reduced empirical bias), as expected under the CLT.

[0203] FIG. 2B specifically shows analysis results of
applying each of the MoTR and PSTn techniques to real
datasets. For example, 205B illustrates results for a GLM
and 210B illustrates results for RFs. As illustrated, MoTR

used r, . =10 runs to t__ =200 runs.

[0204] The notation of FIG. 2B matches that of FIG. 2A.
For FIGS. 2A and 2B, one of the solid black lines represents
the MoTR estimate (marked as “MoTR: 7Y (e.g.,
cumulative over all previous APTE estimates) and the
non-horizontal dashed black lines behind this solid black
line represents each MoTR run’s APTE estimate. For FIGS.
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2A and 2B. For FIGS. 2A and 2B, one of the dashed black
lines represents the PSTn estimate (marked as “PSTn:
). For FIGS. 2A and 2B, the thick line represents the
raw comparison estimate (marked as “RAW: ). For
FIGS. 2A and 2B, one of the solid lines represents each of
the estimated mean potential outcomes (POs) under high
(marked as “HIGH EXPOSURE ESTIMATED MEAN
PO”) and low (marked as “HIGH EXPOSURE ESTI-
MATED MEAN PO”) exposure levels, respectlvely,, for
cach of the three estimators. Note that the diflerence
between the solid lines of the high and low exposure levels

equals the corresponding MoTR estimate for any run. For
FIGS. 2A and 2B, the circled X’s mark the true mean PO and

APTE values.

[0205] FIG. 3A shows examples of results of 100 simu-
lated datasets. FIG. 3A shows, with respect to the specific
example, for over 100 datasets, that the empirical bias for the

raw comparison techmque i1s the largest compared to the
coellicient estimate, MoTR-GLM, and PSTn (Stabilized)-

GLM techniques, while PSTn (Stabilized)-GLM performs
worse than Mo TR-GLM. The coetlicient estimate technique
1s unbiased, as expected, confirming that the modeling code
was correct. For the RF-based methods, the MoTR-RF
performs better than raw comparison. However, MoTR-RF
performs worse than MoTR-GLM, as expected. Likewise
holds for PSTn-RF, which also 1s less consistent in that 1ts
results vary widely more from sample to sample, as evi-
denced by 1ts wider spread of points and CI.

[0206] Specifically, FIG. 3A illustrates analysis 300A of
the results of applying each technique to 100 simulated
datasets each with m=220. Each light dot of FIG. 3A
represents the empirical bias of one simulated dataset for
estimating a true APTE of 1.1 Each dark dot of FIG. 3A
represents the average empirical bias over all 100 datasets,
with corresponding 95% confidence interval shown as sym-
metric error bars.

[0207] Specifically, FIG. 3B illustrates analysis 300B of
the results of applying each technmique to 97 simulated
datasets with m=730. Each light dot of FIG. 3B represents
the empirical bias of one simulated dataset for estimating a
true APTE of 1.1. Each dark dot of FIG. 3B represents the
average empirical bias over all 100 datasets, with corre-
sponding 95% confidence interval shown as symmetric error
bars.

Examples of Empirical Studies

[0208] The systems, the methods, the computer-readable
media, and the techmques disclosed herein may be applied
to estimate an APTE of nightly TST on steps per minute the
next day for a participant. The models of the systems, the
methods, the computer-readable media, and the techniques
disclosed herein, may include an indicator for various time-
related factors, e.g., weekend (versus weekday), which may
be treated as an exogenous variable. To reflect the fact that,
in practice, when designing a study one cannot modily the
day of the week 1n an n-of-1 trial, the models may not
modily original values. Hence, the estimand was that of

T

Equation 3, a conditional APTE.

[0209] As with the simulation study described with respect
to FIGS. 2A-3B, the models analyzed m=222 days of the
participant’s sleep duration (an example of time series data
relating to health behavior) and step-count data (an example
of time series data relating to health condition) using a
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Fithit® Charge 3 wrist—-worn sensor, collected from May
2019 through December 2020. Then, the time series of the
health condition may be transformed from the raw outcome,
steps per minute the next day, by taking 1ts log (base 10); this
was the outcome analyzed. This log transform may be
performed to ensure the outcomes were fairly normally
distributed, to meet the GLM modeling assumption of
normally distributed residuals. Exposure, nightly TST, may
be dichotomized (as was done here), based on the observed
median over all 222 days of observation of 7.1 hours; e.g.,
high TST corresponded to >7.1 hours of sleep on a given
night, and otherwise the exposure was labeled as low TST.

[0210] The same or similar six estimation techniques
listed 1 Table 3 may be used 1n this case, except for the
coellicient estimate technique (which, e.g., may be used to
check that the modeling code 1s correct). As with this
simulation study, =200 MoTR runs may be performed, and
trimming and overlapping may be applied to the stabilized
propensity scores. For all four techniques, W, including the
endogenous variables X, ; and Y, , (or Q, ,, explained
below), and the exogenous variable V, where V =1 1f day t
1s a weekend (and V =0 otherwise).

[0211] For this empirical study, the systems, the methods,
the computer-readable media, and the techniques disclosed
herein may apply various MoTR models. For the MoTR-
GLM technique, the outcome model Y =+ X +p_. X, ,+
Q._ P r+B..V +e. may be fit where ¢ ~N(O, o,). Here, Q,_,
may be a 1x4 vector of zeros and ones 1ndicating the quartile
of ({Y,)} that Y, , fell into (along with conformable coet-
ficient 4x1 vector B , . For example, Q, ,=(0,0,1,0)11Y,_,
1s 1n the third quartile. This may allow for a more flexible
non-linear relationship between the current and lagged out-
come, at, el the expense of losing continuous-valued pre-
dictor mformation. For the MoTR-RF technique, the pre-
diction functionY ~{(X, X, ,, Y, ,, V,) may be fit. Note that
Y, ; may be used mstead of QQ._, because RF may automati-
cally segment or partition these continuous values, preclud-
ing the use of doing so manually. In this empirical example,
MoTR was performed using r, . =200 runs and performance

FIIF

over all the runs 1s illustrated in FIG. 2B.

[0212] Further, 1n this empirical example, various PSTn
models may be {fit. For the PSTn (Stabilized)-GLM tech-
nique the propensity model, logit(x,)=o+o X, +o, Q.
1+, V, may be fit where t=Pr(X =11X,_,,Q,_,, V,). For the

PSTn RF technique, the classification function, X ~f(X,_,,
V) may be fit.

E—lﬂ

[0213] The results of these techniques applied to the
empirical example in accordance with the systems, the
methods, the computer-readable media, and the techniques

disclosed herein are included 1n Table 5. As shown 1n Table
5, under high TST, the participant took about 1.23 more
operations per minute than the participant did under low
TST. However 1s this outcome model were 1dentical to the
true outcome mechanism, then getting more sleep (e.g., a
high TST) may increase the participant’s physical activity
(e.g., verse a low TST) by an average of only 1 operation per
minute. That 1s, 1.23 operations per minute would have been
a naive overestimate of the APTE of sleep duration on
physical activity. Applying the more flexible RF technique
yields qualitatively similar results in this empirical example.




TABLE 5

Estimate Estimated Steps
Method (95% CI) per Minute (95% CI)
Raw comparison 0.09 (0.02, 0.16) 1.23 (1.05, 1.45)
MoTR-GLM 0 (-0.07, 0.07) 1 (0.851, 1.17)
PSTn (Stabilized)-  0.15 1.41
GLM
MoTR-RF 0.03 (-0.05, 0.1) 1.07 (0.891, 1.26)
PSTn-RF 0.22 1.66

[0214] On the other hand, if the propensity model were

identical to the true propensity mechamsm, then getting
more sleep would have increased the participant’s physical
activity by an average of 1.41 operations per minute. In this
case, 1.23 operations per minute would have been a naive
underestimate of the APTE of sleep duration n physical
activity. As with MoTR, the RF technique vields qualita-
tively similar results.
[0215] The results of at least this empirical study demon-
strate the eflectiveness and advantages of the systems, the
methods, the computer-readable media, and the techniques
disclosed herein. For example, presented herein 1s a model-
twin randomization model applied to estimate the APT
using, ¢.g., wearable sensor data. Using this model, estima-
tion of the daily APTE of sleep duration on operations per
minute using 222 days of participant wearable data 1s
presented as an empirical study.
[0216] In some cases, the contradiction in APTE estimates
between MoTR and the propensity-score based technique
“propensity score twin” results may highlight the 1mpor-
tance of specilying the model as close to the true mechanism
as possible. This may be done both empirically (e.g., 1n a
data-driven way, such as using parameter tuning and model
selection) and scienftifically (e.g., based on related litera-
ture).
[0217] In some cases, an advanced doubly robust tech-
nique may be applied using the systems, the methods, the
computer-readable media, and the techmiques disclosed
herein. Such advanced doubly robust technique may use
targeted learming or targeted maximum likelihood estimation
(TML H) to estimate and infer the APTE. This TMLE tech-
nique may lay the groundwork for a sequentially adaptive
design for learning optimal 1diographic treatment rules over
time. In some cases, the TMLE technique also optimizes the
use of machine learning models by minimizing the bias
incurred when {fitting such models.
[0218] The systems, the methods, the computer-readable
media, and the techniques disclosed herein provide the
MoTR model as a way to surface plausible or suggested
causal eflects for possible further investigation or confirma-
tion through an n-oi-1 trial. The MoTR model can be used,
in some cases, to develop a personalized 1diographic inter-
vention plan. For example, one might use the following
data-driven procedure to i1dentily combinations of models
and plausible confounders that produce APTE estimates that
meanmgfully differ from naive estimates calculated by com-
paring raw averages (as in Table 3). In some cases, one or
more applications of the systems, the methods, the COm-
puter-readable media, and the techniques disclosed herein
may include:

[0219] (1) the study participant, their health provider, or

an analyst decide on plausible confounders;
[0220] (2) the analyst may fit and may select or cross-
validate initial outcome or propensity models;

—
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[0221] (3) the analyst may select the final model (e.g.,
test all selected models on a holdout set);

[0222] (4) the analyst runs MoTR or PSTn using these
final models;

[0223] (5) the analyst reports the findings with the
largest, most statistically discernible differences (e.g.,
with the highly statistically significant p-values) from
the naive estimates, where these findings may indicate
situations in which confounding 1s strong enough to
change eflect estimates and thereby change how future
within-individual interventions are designed; and

[0224] (6) the analyst discusses the plausibility of the
selected models with the study participant and their
health provider to determine an intervention plan.

[0225] In some cases, any number of elements of the
applications described above may be added or removed.
Further, the elements described above may occur in any
order. Further, at least one of the elements described above
may be repeated, e.g., iteratively.

[0226] In some cases, the APTE framework (e.g., MoTR
and PSTn) may be applied to functional data analysis of
intensive longitudinal data. For example, time point t(j) can
include subpoints (e.g., t(3,)). This modularity allows for
flexible temporal scaling of posited causal relationships.
Accordingly, the APTE framework’s utility can also be
complemented and improved with formal causal diagrams
such as directed acyclic graphs (DAGs) for conceptualizing,
formal structures. In some cases, a participant may use the
systems, the methods, the computer-readable media, and the
techniques disclosed herein to compare oneself to others; for
example, one might ask, “how does my APTE relate to a
corresponding group-level (nomothetic) ATE?” One com-
mon technique 1s to combine APTE estimates in the same

way ATEs from multiple nomothetic studies may be aggre-
gated 1n a meta-analysis (e.g., a

series-oi-n-oi-1). Another
technique may be to use a mixed-eflects model to combine

and compare participant—-level APTEs to the overall ATE.

Examples of Methods

[0227] FIG. 4 shows an example of a flowchart illustrating
a method 400 for generating a personalized recommended
intervention for a subject based at least 1n part on causal
inference. The method 400 may be implemented using one
or more systems (e.g., hardware or software) described
heremn (e.g., the environment 100). The method 400 may
implement one or more techniques or operations described
herein. At a high level, the method 400 may include:
obtaining a first set of time series data associated with the
subject and a second set of time series data associated with
the subject, where the first set of time series data relates to
a {irst variable indicative of a health behavior of the subject
and where the second set of time series data relates to a
second variable indicative of a health condition of the
subject (block 405); determining a causal eflect of the first
variable on the second variable by estimating an average
treatment e ect 1s esti-

Tect, where the average treatment efl
mated by processing the first set of time series data and the
second set of time series data using a model-twin random-
ization method (block 410); and generating a personalized
treatment or intervention recommendation for the subject to
change the health condition based at least in part on the
causal eflect determined in the block 410 (block 415).

[0228] In some cases, with the method 400, the model-
twin randomization method comprises a sequential tech-
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nique to implement g-formula for estimating the average
treatment eflect. In some cases, the sequential technique
comprises a simulation-based technique or a Monte Carlo
technique. In some cases, processing the first set of time
series data and the second set of time series data using the
model-twin randomization method comprises randomizing,
the first set of time series data for each time period or time
point of the first set of time series data. In some cases, the
method 400 further comprises running a model-twin through
the randomized first set of time series data for a number of
iterations until a convergence condition 1s satisfied. In some
cases, the model-twin 1s an outcome model fitted to the first
set of time series data and the second set of time series data.
In some cases, the method 400 further comprises generating,
by the model-twin, a predicted value of the second variable
at each time point of the second set of time series data. In
some cases, the method 400 further comprises adding ran-
dom noise to each predicted value of the second variable. In
some cases, the method 400 further comprises determining
an average period treatment effect (APTE) from at least a
subset of each of the predicted values for at least a subset of
the set of time points. In some cases, the method 400 further
comprises estimating a confidence interval for the APTE. In
some cases, the method 400 turther comprises calculating a
cumulative average confidence interval, where the conver-
gence condition relates to the cumulative average confidence
interval. In some cases, the model-twin comprises a gener-
alized linear model. In some cases, the linear model com-
prises a generalized linear model. In some cases, the model-
twin comprises a non-parametric model. In some cases, the
model-twin comprises a machine learning model. In some
cases, the machine learning model comprises a random
forest. In some cases, the first set of time series data 1s
acquired from a wearable device worn by the subject. In
some cases, the first set of time series data 1s indicative of
sleep duration and where the second set of time series data
1s 1indicative of physical activity In some cases, the second
set of time series data 1s indicative of speed of walking. In
some cases, the second set of time series data 1s indicative
of sleep duration and where the first set of time series data
1s indicative of physical activity. In some cases, one or both
ol the first set of time series data or the second set of time
series data 1s collected daily. In some cases, one or both of
the first set of time series data or the second set of time series
data comprise variables that cause, moderate, or contextu-
alize data comprised in one or both of the first set of time
series data or the second set of time series data. In some
cases, the personalized treatment or intervention recommen-
dation comprises changing health behavior of the subject.
[0229] In some cases, any number of operations of the
method 400 may be added or removed. Further, the opera-
tions of the method 400 may be performed in any order
Further, at least one of the operations of the method 400 may
be repeated, e.g., iteratively.

Examples of Machine Learning Techniques

[0230] As disclosed throughout, 1n some cases, the sys-
tems, the methods, the computer-readable media, and the
techniques disclosed herein may implement one or more
machine learming techniques. In some cases, machine learn-
ing (ML) may generally involve identilying and recognizing
patterns 1n existing data in order to facilitate making pre-
dictions for subsequent data. ML may mclude a ML model
(which may include, for example, a ML algorithm). Machine
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learning, whether analytical or statistical 1n nature, may
provide deductive or abductive inference based on real or
simulated data. The ML model may be a trained model. ML
techniques may comprise one or more supervised, semi-
supervised, self-supervised, or unsupervised ML techniques.
For example, an ML model may be a trained model that 1s
trained through supervised learning (e.g., various parameters
are determined as weights or scaling factors). ML may
comprise one or more of regression analysis, regularization,
classification, dimensionality reduction, ensemble learning,
meta learning, association rule learning, cluster analysis,
anomaly detection, deep learming, or ultra-deep learning.
ML may comprise: k-means, k-means clustering, k-nearest
neighbors, learning vector quantization, linear regression,
non-linear regression, least squares regression, partial least
squares regression, logistic regression, stepwise regression,
multivariate adaptive regression splines, ridge regression,
principal component regression, least absolute shrinkage
and selection operation (LASSO), least angle regression,
canonical correlation analysis, factor analysis, independent
component analysis, linear discriminant analysis, multidi-
mensional scaling, non-negative matrix factorization, prin-
cipal components analysis, principal coordinates analysis,
projection pursuit, Sammon mapping, t—distributed stochas-
tic neighbor embedding, AdaBoosting, boosting, gradient
boosting, bootstrap aggregation, ensemble averaging, deci-
sion trees, conditional decision trees, boosted decision trees,
gradient boosted decision trees, random {forests, stacked
generalization, Bayesian networks, Bayesian beliel net-
works, naive Bayes, Gaussian naive Bayes, multinomial
naive Bayes, hidden Markov models, hierarchical hidden
Markov models, support vector machines, encoders, decod-
ers, auto-encoders, stacked auto-encoders, perceptrons,
multi-layer perceptrons, artificial neural networks, feedior-
ward neural networks, convolutional neural networks, recur-
rent neural networks, long short—term memory, deep belief
networks, deep Boltzmann machines, deep convolutional
neural networks, deep recurrent neural networks, large lan-

guage models, vision transformers, or generative adversarial
networks.

[0231] Trainming the ML model may include, in some
cases, selecting one or more untrained data models to train
using a traiming data set. The selected untrained data models
may 1nclude any type of untrained ML models for super-
vised, semi-supervised, self-supervised, or unsupervised
machine learning. The selected untrained data models may
be specified based upon put (e.g., user input) specifying
relevant parameters to use as predicted variables or other
variables to use as potential explanatory variables. For
example, the selected untrained data models may be speci-
fied to generate an output (e.g., a prediction) based upon the
input. Conditions for trammng the ML model from the
selected untrained data models may likewise be selected,
such as limits on the ML model complexity or limits on the
ML model refinement past a certain point. The ML model
may be trained (e.g., via a computer system such as a server)
using the training data set. In some cases, a first subset of the
training data set may be selected to train the ML model. The
selected untrained data models may then be traimned on the
first subset of training data set using appropriate ML tech
niques, based upon the type of ML model selected and any
conditions specified for training the ML model. In some
cases, due to the processing power requirements of training
the ML model, the selected untrained data models may be
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trained using additional computing resources (e.g., cloud
computing resources). Such tramning may continue, 11 some
cases, until at least one aspect of the ML model 1s validated
and meets selection criteria to be used as a predictive model.
[0232] In some cases, one or more aspects ol the ML
model may be validated using a second subset of the traiming,
data set (e.g., distinct from the first subset of the training data
set) to determine accuracy and robustness of the ML model.
Such validation may include applying the ML model to the
second subset of the training data set to make predictions
derived from the second subset of the training data. The ML
model may then be evaluated to determine whether perior-
mance 1s suflicient based upon the derived predictions. The
suiliciency criteria applied to the ML model may vary
depending upon the size of the training data set available for
training, the performance of previous iterations of tramned
models, or user-specified performance requirements. If the
ML model does not achieve suflicient performance, addi-
tional training may be performed. Additional traimning may
include refinement of the ML model or retraining on a
different first subset of the training dataset, after which the
new ML model may again be validated and assessed. When
the ML model has achieved suflicient performance, 1n some
cases, the ML may be stored for present or future use. The
ML model may be stored as sets of parameter values or
weights for analysis of further input (e.g., further relevant
parameters to use as further predicted variables, further
explanatory vanables, further user interaction data, etc.),
which may also include analysis logic or indications of
model validity 1n some 1nstances. In some cases, a plurality
of ML models may be stored for generating predlctlons
under different sets of mput data conditions. In some
embodiments, the ML model may be stored 1n a database
(e.g., associated with a server).

Examples of Decision Trees and Random Forests

[0233] As described above, the machine learning model
may 1mplement a decision tree. A decision tree may be a
supervised ML algorithm that can be applied to both regres-
sion and classification problems. Decision trees may mimic
the decision-making process of a human brain. For example,
a decision tree may grow from a root (base condition), and
when 1t meets a condition (internal node/feature), it may
split into multiple branches. The end of the branch that does
not split anymore may be an outcome (leaf). A decision tree
can be generated using a training data set according to the
following operations: (1) starting from a root node (the
entire dataset), the algorithm may split the dataset in two
branches using a decision rule or branching criterion, (2)
cach of these two branches may generate a new child node;
(3) for each new child node, the branching process may be
repeated until the dataset cannot be split any further; (4) each
branching criterion may be chosen to maximize information
gain (e.g., a quantification ol how much a branching crite-
rion reduces a quantification of how mixed the labels are in
the children nodes). The labels may be the data or the
classification that 1s predicted by the decision tree.

[0234] A random forest regression i1s an extension of the
decision tree model that tends to yield more robust predic-
tions by stretching the use of the training data partition.
Whereas a decision tree may make a single pass through the
data, a random forest regression may bootstrap 50% of the
data (e.g., with replacement) and build many trees. Rather
than using all explanatory variables as candidates for split-
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ting, a random subset of candidate variables may be used for
splitting, which may enable trees that have diflerent data and
different variables (hence the term random). The predictions
from the trees, which may be collectively referred to as the
“forest,” may then be averaged to produce a final prediction.
Many trees (e.g., ten trees, fifty trees, one hundred trees, one
thousand trees, etc.) may be included in a random forest
model, with a number (e.g., 3, 6, 10, etc.) of terms sampled
per split, a minimum of number (e.g., 1, 2, 4, 10, etc.) of
splits per tree, and a minimum split size (e.g., 16, 32, 64,
128, 256, etc.). Random forests may be trained in a similar
way as decision trees. Specifically, training a random forest
may include the following operations: (1) randomly select k
features from the total number of features; (2) create a
decision tree from these k features using the same operations
as for generating a decision tree; and (3) repeat the previous
two operations until a target number of trees 1s created.

[0235] As disclosed, a random forest classifier, which may
comprise a plurality of decision trees where the output
prediction may be the mode of the predicted classifications
of the individual trees, can be helpful 1n reducing overfitting
to training data. In some cases, an ensemble of decision trees
can be constructed using a random subset of features at each
split or decision node. The Gini criterion may be employed,
in some cases, to choose the best partition, where decision
nodes having the lowest calculated Ginmi impurity index are
selected. The Gimi impurity can be used, in some cases, as
a criterion to find mmformative features based on which the
splits 1n each decision tree may be constructed.

[0236] In some cases, each decision tree of a random
forest may comprise one or more decision nodes, where each
decision node specifies a predicate condition. For example
decision node may predicate the condition that, for a given
dataset, the outcome to an question 1s a specific outcome. At
cach decision node, a decision tree can be split based on
whether the predicate condition attached to the decision
node holds true, leading to various prediction nodes Each
prediction node can comprise output values that represent
“votes” for one or more of the classifications or conditions
being evaluated by the assessment model. At prediction
time, a “vote” can be taken over all of the decision trees, and
the majority vote (or mode of the predicted classifications)
can be output as the predicted classification.

[0237] In some cases, when the dataset being queried 1n
the assessment model reaches a “leat”, or a final prediction
node with no further downstream splits, the output values of
the leaf can be output as the votes for the particular decision
tree. Since a random forest model comprises a plurality of
decision trees, the final votes across all trees 1n the forest can
be summed to vield the final votes and the corresponding
classification of the subject. A large number of decision trees
can help reduce overfitting of the assessment model to the
training data, by reducing the variance of each individual
decision tree. For example, an assessment model can com-
prise, for example, at least about 3 decision trees, at least
about 5 decision trees, at least about 10 decision trees, at
least about 20 decision trees, at least about 50 decision trees,
at least about 100 decision trees, etc.

[0238] FIG. 6 1llustrates a random forest 600. The random
forest 600 (which may also be referred to as a random forest
model) 1s an ensemble of decision trees 605, 610, and 615

with randomly selected features 1n each of the decision trees
605, 610, and 615 such that the random {forest 600 can
provide more stable and accurate outcomes. Outcomes may
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be determined by majority voting 1n the case of a classifi-
cation problem. In the example of FIG. 6, the random forest
600, which has been trained previously by a training
method, 1s used to decide between classifications A, B and
C. For example, the random forest 600, with only the three
decision trees shown in FIG. 6, would return the classifica-
tion A by majority voting.

Examples of Computing Systems

[0239] Referring to FIG. 5, a block diagram 1s shown
depicting an example machine that includes a computer
system 500 (e.g., a processing or computing system) within
which a set of 1nstructions can execute for causing a device
to perform or execute any one or more of the aspects or
methodologies for static code scheduling of the present
disclosure. The components 1n FIG. 5 are examples and do
not limit the scope of use or functionality of any hardware,
software, embedded logic component, or a combination of
two or more such components with particular implementa-
tions.

[0240] Computer system 3500 may include one or more
processors 501, a memory 503, and a storage 508 that
communicate with each other, and with other components,
via a bus 540. The bus 540 may also link a display 532, one
or more iput devices 533 (which may, for example, include
a keypad, a keyboard, a mouse, a stylus, etc.), one or more
output devices 534, one or more storage devices 533, and
various tangible storage media 536. All of these elements
may interface directly or via one or more interfaces or
adaptors to the bus 540. For instance, the various tangible
storage media 536 can interface with the bus 540 via storage
medium nterface 526. Computer system 500 may have any
suitable physical form, including but not limited to one or
more mtegrated circuits (ICs), printed circuit boards (PCBs),
mobile handheld devices (such as mobile telephones or
PDAs), laptop or notebook computers, distributed computer
systems, computing grids, or servers.

[0241] Computer system 500 includes one or more pro-
cessor(s) 507 (e.g., central processing units (CPUs), general
purpose graphics processing units (GPGPUSs), or quantum
processing units (QPUs)) that carry out functions. Processor
(s) 501 optionally contains a cache memory unit 502 for
temporary local storage of instructions, data, or computer
addresses. Processor(s) 501 are configured to assist in execu-
tion of computer readable instructions. Computer system
500 may provide functionality for the components depicted
in FIG. 5 as a result of the processor(s) 501 executing
non-transitory, processor-executable instructions embodied
in one or more tangible computer-readable storage media,
such as memory 503, storage 508, storage devices 3535, or
storage medium 536. The computer-readable media may
store software that implements particular operations, and
processor(s) 501 may execute the software. Memory 503
may read the software from one or more other computer-
readable media (such as mass storage device(s) 535, 536) or
from one or more other sources through a suitable interface,
such as network interface 520. The software may cause
processor(s) 501 to carry out one or more processes or one
or more operations of one or more processes described or
illustrated herein. Carrying out such processes or operations
may include defining data structures stored in memory 503
and modifying the data structures as directed by the sofit-
ware.
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[0242] The memory 503 may include various components
(e.g., machine readable media) including, but not limited to,
a random access memory component (e.g., RAM 504) (e.g.,
static RAM (SRAM), dynamic RAM (DRAM), ferroelectric
random access memory (FRAM), phase-change random
access memory (PRAM), etc.), a read-only memory com-
ponent (e.g., ROM 5035), and any combinations thereof.
ROM 505 may act to communicate data and instructions
umdirectionally to processor(s) 501, and RAM 504 may act
to communicate data and instructions bidirectionally with
processor(s) 501. ROM 505 and RAM 504 may include any
suitable tangible computer-readable media described below.
In one example, a basic input/output system 506 (BIOS),
including basic routines that help to transfer information
between elements within computer system 500, such as
during start-up, may be stored in the memory 503.

[0243] Fixed storage 508 1s connected bidirectionally to
processor(s) 301, optionally through storage control umit
507. Fixed storage 3508 provides additional data storage
capacity and may also include any suitable tangible com-
puter-readable media described herein. Storage 508 may be
used to store operating system 509, executable(s) 510, data
511, applications 512 (application programs), and the like.
Storage 508 can also include an optical disk drive, a solid-
state memory device (e.g., tlash-based systems), or a com-
bination of any of the above. Information 1n storage 508
may, 1n appropriate cases, be icorporated as virtual memory
in memory 503.

[0244] In one example, storage device(s) 335 may be
removably mterfaced with computer system 500 (e.g., via an
external port connector (not shown)) via a storage device
interface 523. Particularly, storage device(s) 535 and an
assocliated machine-readable medium may provide non-
volatile or volatile storage of machine-readable instructions,
data structures, program modules, or other data for the
computer system 500. In one example, software may reside,
completely or partially, within a machine-readable medium
on storage device(s) 535. In another example, software may
reside, completely or partially, within processor(s) S01.

[0245] Bus 540 connects a wide variety of subsystems.
Herein, reference to a bus may encompass one or more
digital signal lines serving a common function, where appro-
priate. Bus 540 may be any of several types of bus structures
including, but not limited to, a memory bus, a memory
controller, a peripheral bus, a local bus, and any combina-
tions thereotf, using any of a variety of bus architectures. As
an example and not by way of limitation, such architectures
include an Industry Standard Architecture (ISA) bus, an
Enhanced ISA (EISA) bus, a Micro Channel Architecture
(MCA) bus, a Video Electronics Standards Association local
bus (VLB), a Peripheral Component Interconnect (PCI) bus,
a PCI-Express (PCI-X) bus, an Accelerated Graphics Port
(AGP) bus, HyperTransport (HTX) bus, serial advanced
technology attachment (SATA) bus, and any combinations
thereof.

[0246] Computer system 500 may also include an nput
device 533. In one example, a user of computer system 500
may enter commands or other mformation into computer
system 500 via mput device(s) 533. Examples of an input
device(s) 533 include, but are not limited to, an alpha-
numeric mput device (e.g., a keyboard), a pointing device
(e.g., a mouse or touchpad), a touchpad, a touch screen, a
multi-touch screen, a joystick, a stylus, a gamepad, an audio
iput device (e.g., a microphone, a voice response system,
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etc.), an optical scanner, a video or still image capture device
(c.g., a camera), and any combinations thereof. In some
cases, the mput device 1s a Kinect, Leap Motion, or the like.
Input device(s) 533 may be interfaced to bus 340 via any of
a variety of input interfaces 523 (e.g., mput interface 523)
including, but not limited to, serial, parallel, game port,
USB, FIREWIRE, THUNDERBOLT, or any combination of

the above.

[0247] In some cases, when computer system 500 1s
connected to network 530, computer system 500 may com-
municate with other devices, specifically mobile devices and
enterprise systems, distributed computing systems, cloud
storage systems, cloud computing systems, and the like,
connected to network 530. Communications to and from
computer system 500 may be sent through network 1nterface
520. For example, network interface 520 may receive
incoming communications (such as requests or responses
from other devices) 1n the form of one or more packets (such
as Internet Protocol (IP) packets) from network 3530, and
computer system 500 may store the imncoming communica-
tions 1n memory 503 for processing. Computer system 500
may similarly store outgoing communications (such as
requests or responses to other devices) 1n the form of one or
more packets in memory 503 and communicated to network
530 from network interface 520. Processor(s) 501 may
access these communication packets stored in memory 503
for processing.

[0248] Examples of the network interface 520 include, but
are not limited to, a network interface card, a modem, and
any combination thereof. Examples of a network 530 or
network segment 530 include, but are not limited to, a
distributed computing system, a cloud computing system, a
wide area network (WAN) (e.g., the Internet, an enterprise
network), a local area network (LAN) (e.g., a network
associated with an oflice, a building, a campus or other
relatively small geographic space), a telephone network, a
direct connection between two computing devices, a peer-
to-peer network, and any combinations thereof. A network,
such as network 530, may employ a wired or a wireless
mode of communication. In general, any network topology
may be used.

[0249] Information and data can be displayed through a
display 532. Examples of a display 532 include, but are not
limited to, a cathode ray tube (CRT), a liquad crystal display
(LCD), a thin film transistor liquid crystal display (TFT1-
LCD), an organic liqud crystal display (OLED) such as a
passive-matrix OLED (PMOLED) or active-matrix OLED
(AMOLED) display, a plasma display, and any combina-
tions thereof. The display 332 can interface to the processor
(s) 501, memory 503, and fixed storage 508, as well as other
devices, such as input device(s) 533, via the bus 540. The
display 532 1s linked to the bus 540 via a video interface 522,
and transport of data between the display 532 and the bus
540 can be controlled via the graphics control 521. In some
cases, the display 1s a video projector. In some cases, the
display 1s a head-mounted display (HMD) such as a VR
headset. In further cases, suitable VR headsets include, by
way ol non-limiting examples, HTC Vive, Oculus Ritit,
Samsung Gear VR, Microsoit HoloLens, Razer OSVR,
FOVE VR, Zeiss VR One, Avegant Glyph, Freefly VR
headset, and the like. In still further cases, the display 1s a
combination of devices such as those disclosed herein.

[0250] In addition to a display 332, computer system 500
may include one or more other peripheral output devices 534
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including, but not limited to, an audio speaker, a printer, a
storage device, and any combinations thereof. Such periph-
eral output devices may be connected to the bus 540 via an
output interface 524. Examples of an output interface 524
include, but are not limited to, a serial port, a parallel
connection, a USB port, a FIREWIRE port, a THUNDER -

BOLT port, and any combinations thereof.

[0251] In addition or as an alternative, computer system
500 may provide functionality as a result of logic hardwired
or otherwise embodied 1n a circuit, which may operate 1n
place of or together with software to execute one or more
processes or one or more operations of one or more pro-
cesses described or 1llustrated herein. Reference to sotftware
in this disclosure may encompass logic, and reference to
logic may encompass soiftware. Moreover, reference to a
computer-readable medium may encompass a circuit (such
as an IC) storing software for execution, a circuit embodying
logic for execution, or both, where appropriate. The present
disclosure encompasses any suitable combination of hard-
ware, software, or both.

[0252] Various illustrative logical blocks, modules, cir-
cuits, and algorithm operations described in connection with
the examples disclosed heremn may be implemented as
clectronic hardware, computer software, or combinations of
both. To clearly 1llustrate this interchangeability of hardware
and software, various illustrative components, blocks, mod-
ules, circuits, and operations have been described above
generally in terms of their functionality.

[0253] The various illustrative logical blocks, modules,
and circuits described in connection with the examples
disclosed herein may be implemented or performed with a
general purpose processor, a digital signal processor (DSP),
an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereot designed to
perform the functions described herein. A general purpose
processor may be a microprocessor, but in the alternative,
the processor may be any processor, controller, microcon-
troller, or state machine. A processor may also be 1mple-
mented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
MICroprocessors, One or more miCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

[0254] The operations of a method, a technique, or an
algorithm described 1n connection with the examples dis-
closed herein may be embodied directly in hardware, 1n a
software module executed by one or more processor(s), or in
a combination of the two. A software module may reside 1n
RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, hard disk, a remov-
able disk, a CD-ROM, or any other form of storage medium
known 1n the art. An example storage medium may be
coupled to the processor such the processor can read infor-
mation from, and write information to, the storage medium.
In the alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside
in an ASIC. The ASIC may reside 1n a user terminal. In the
alternative, the processor and the storage medium may
reside as discrete components in a user terminal.

[0255] In accordance with the description herein, suitable
computing devices 1nclude, by way of non-limiting
examples, server computers, desktop computers, laptop
computers, notebook computers, sub-notebook computers,
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netbook computers, netpad computers, set—top computers,
media streaming devices, handheld computers, Internet
appliances, mobile smartphones, tablet computers, personal
digital assistants, video game consoles, and vehicles. Select
televisions, video players, and digital music players with
optional computer network connectivity may be suitable for
use 1n the system described herein. Suitable tablet comput-
ers, 1n various cases, include those with booklet, slate, and
convertible configurations.

[0256] In some cases, the computing device includes an
operating system configured to perform executable instruc-
tions. The operating system 1s, for example, software,
including programs and data, which manages the device’s
hardware and provides services for execution of applica-
tions. Suitable server operating systems may include, by
way ol non-limiting examples, FreeBSD, OpenBSD,
NetBSD®, Linux, Apple® Mac OS X Server®, Oracle®
Solaris®, Windows Server®, and Novell® NetWare®. Suit-
able personal computer operating systems may include, by
way of non-limiting examples, Microsolt® Windows®,
Apple® Mac OS X®, UNIX®, and UNIX-like operating
systems such as GNU/Linux®. In some cases, the operating
system 1s provided by cloud computing. Suitable mobile
smartphone operating systems may include, by way of
non-limiting examples, Nokia® Symbian® OS, Apple®
10S®, Research In Motion® BlackBerry OS®, Google®
Android®, Microsoft® Windows Phone® OS, Microsoft®
Windows Mobile® OS, Linux®, and Palm® WebOS®.

[0257] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
include one or more non-transitory computer readable stor-
age media encoded with a program including instructions
executable by the operating system of an optionally net-
worked computing device. In further cases, a computer
readable storage medium 1s a tangible component of a
computing device. In still further cases, a computer readable
storage medium 1s optionally removable from a computing
device. In some cases, a computer readable storage medium
includes, by way of non-limiting examples, CD-ROMs,
DVDs, flash memory devices, solid state memory, magnetic
disk drives, magnetic tape drives, optical disk drnives, dis-
tributed computing systems including cloud computing sys-
tems and services, and the like. In some cases, the program
and instructions are permanently, substantially permanently,
semi-permanently, or non-transitorily encoded on the media.

[0258] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
include at least one computer program, or use of the same.
A computer program includes a sequence of instructions,
executable by one or more processor(s) of the computing
device’s CPU, written to perform a specified task. Computer
readable instructions may be implemented as program mod-
ules, such as functions, objects, Application Programming
Interfaces (APIs), computing data structures, and the like,
that perform particular tasks or implement particular abstract
data types. A computer program may be written in various
versions of various languages.

[0259] The functionality of the computer readable mstruc-
tions may be combined or distributed in various ways across
various environments. In some cases, a computer program
comprises one sequence ol instructions. In some cases, a
computer program comprises a plurality of sequences of
instructions. In some cases, a computer program 1s provided
from one location. In some cases, a computer program 1s
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provided from a plurality of locations. In some cases, a
computer program includes one or more software modules.
In some cases, a computer program includes, 1n part or 1n
whole, one or more web applications, one or more mobile
applications, one or more standalone applications, one or

more web browser plug-ins, extensions, add-ins, or add-ons,
or combinations thereof.

[0260] In some cases, a computer program includes a web
application. A web application, 1n various cases, may utilize
one or more software frameworks and one or more database
systems. In some cases, a web application 1s created upon a
soltware framework such as Microsoft® NET or Ruby on
Rails (RoR). In some cases, a web application utilizes one or
more database systems including, by way of non-limiting
examples, relational, non-relational, object oriented, asso-
ciative, XML, and document oriented database systems. In
turther cases, suitable relational database systems include,
by way of non-limiting examples, Microsoft® SQL Server,
mySQL™, and Oracle®. A web application, 1n some cases,
may be written 1n one or more versions of one or more
languages. A web application may be written 1n one or more
markup languages, presentation definition languages, cli-
ent—side scripting languages, server-side coding languages,
database query languages, or combinations thereof. In some
cases, a web application 1s written to some extent 1 a
markup language such as Hypertext Markup Language
(HTML), Extensible Hypertext Markup Language
(XHTML), or extensible Markup Language (XML). In some
cases, a web application 1s written to some extent 1n a
presentation definition language such as Cascading Style
Sheets (CSS). In some cases, a web application 1s written to
some extent in a client-side scripting language such as
Asynchronous JavaScript and XML (AJAX), Flash®
ActionScript, JavaScript, or Silverlight®. In some cases, a
web application 1s written to some extent 1n a server-side
coding language such as Active Server Pages (ASP), Cold-
Fusion®, Perl, Java™, JavaServer Pages (JISP), Hypertext
Preprocessor (PHP), Python™, Ruby, Tcl, Smalltalk,
WebDNA®, or Groovy. In some cases, a web application 1s
written to some extent in a database query language such as
Structured Query Language (SQL). In some cases, a web
application integrates enterprise server products such as
IBM® Lotus Domino®. In some cases, a web application
includes a media player element. In some cases, a media
player element utilizes one or more of many suitable mul-
timedia technologies including, by way of non-limiting
examples, Adobe® Flash®. HIML 3, Apple® QuickTime®,
Microsolt® Silverlight®, Java™, and Unity®.

[0261] In some cases, a computer program includes a
mobile application provided to a mobile computing device.
In some cases, the mobile application 1s provided to a mobile
computing device at the time 1t 1s manufactured. In other
cases, the mobile application 1s provided to a mobile com-
puting device via the computer network described herein.

[0262] In view of the disclosure provided herein, a mobile
application may be created using hardware, languages, and
development environments known to the art. In some cases,
mobile applications are written 1n several languages. Suit-
able programming languages may include, by way of non-
limiting examples, C, C++, C#, Objective-C, Java™,
JavaScript, Pascal, Object Pascal, Python™, Ruby,
VB.NET, WML, and XHTML/HTML with or without CSS,

or combinations thereof.
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[0263] Suitable mobile application development environ-
ments are available from several sources. Commercially
available development environments include, by way of
non-limiting examples, AirplaySDK, alcheMo, Appcelera-
tor®, Celsius, Bedrock, Flash Lite, NET Compact Frame-
work, Rhomobile, and WorklLight Mobile Platform. Other
development environments are available without cost
including, by way of non-limiting examples, Lazarus, Mobi-
Flex, MoSync, and PhoneGap. Also, mobile device manu-
facturers distribute software developer kits including, by
way ol non-limiting examples, 1Phone and 1Pad (10S) SDK,
Android™ SDK, BlackBerry® SDK, BREW SDK, Palm®
OS SDK, Symbian SDK, webOS SDK, and Windows®
Mobile SDK.

[0264] Several commercial forums may be available for
distribution of mobile applications including, by way of
non-limiting examples, Apple® App Store, Google® Play,
Chrome WebStore, BlackBerry® App World, App Store for
Palm devices, App Catalog for webOS, Windows® Market-
place for Mobile, Ovi Store for Nokia® devices, and Sam-
sung Apps.

[0265] In some cases, a computer program includes a
standalone application, which 1s a program that 1s run as an
independent computer process, not an add-on to an existing
process, €.g., not a plug-in. Standalone applications may be
compiled. A compiler may be a computer program(s) that
transforms source code written 1n a programming language
into binary object code such as assembly language or
machine code. Suitable compiled programming languages
include, by way of non-limiting examples, C, C++, Objec-
tive-C, COBOL, Delphi, Eiffel, Java™, Lisp, Python™,
Visual Basic, and VB .NET, or combinations thereof. Com-
pilation 1s often performed, at least 1n part, to create an
executable program. In some cases, a computer program
includes one or more executable complied applications.

[0266] In some cases, the computer program includes a
web browser plug-in (e.g., extension, etc.). In computing, a
plug-1n 1s one or more software components that add specific
functionality to a larger software application. Makers of
soltware applications support plug-ins to enable third-party
developers to create abilities which extend an application, to
support easily adding new features, and to reduce the size of
an application. When supported, plug-ins enable customiz-
ing the functionality of a software application. For example,
plug-ns are commonly used 1n web browsers to play video,
generate iteractivity, scan for viruses, and display particular
file types. Web browser plug-ins may include Adobe®
Flash® Player, Microsoft® Silverlight®, and Apple®
QuickTime®. In some cases, the toolbar comprises one or
more web browser extensions, add-ins, or add-ons. In some

cases, the toolbar comprises one or more explorer bars, tool
bands, or desk bands.

[0267] Several plug-in frameworks may be available that
enable development of plug-ins in various programming
languages, including, by way of non-limiting examples,
C++, Delphi, Java™, PHP, Python™, and VB .NET, or
combinations thereof.

[0268] Web browsers (also called Internet browsers) are
soltware applications, designed for use with network-con-
nected computing devices, for retrieving, presenting, and
traversing information resources on the World Wide Web.
Suitable web browsers include, by way of non-limiting
examples, Microsoft® Internet Explorer®, Mozilla® Fire-

fox®, Google® Chrome, Apple® Safari® Opera Software®
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Opera®, and KDE Konqueror. In some cases, the web
browser 1s a mobile web browser. Mobile web browsers
(also called microbrowsers, mini-browsers, and wireless
browsers) are designed for use on mobile computing devices
including, by way of non-limiting examples, handheld com-
puters, tablet computers, netbook computers, subnotebook
computers, smartphones, music players, personal digital
assistants (PDAs), and handheld video game systems. Suit-

able mobile web browsers include, by way of non-limiting
examples, Google® Android® browser, RIM BlackBerry®

Browser, Apple® Safari®, Palm® Blazer, Palm® WebOS®
Browser, MozillavFirefox® for mobile, Microsoft® Internet
Explorer® Mobile, Amazon® Kindle® Basic Web, Nokia®

Browser, Opera Software® Opera® Mobile, and Sony®
PSP™ browser.

[0269] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
include software, server, or database modules, or use of the
same. Soitware modules may be created by techniques using,
machines, software, and languages. The software modules
disclosed herein are implemented 1n a multitude of ways. In
some cases, a software module comprises a file, a section of
code, a programming object, a programming structure, a
distributed computing resource, a cloud computing resource,
or combinations thereof. In some cases, a software module
comprises a plurality of files, a plurality of sections of code,
a plurality of programming objects, a plurality of program-
ming structures, a plurality of distributed computing
resources, a plurality of cloud computing resources, or
combinations thereof. In some cases, the one or more
solftware modules comprise, by way of non-limiting
examples, a web application, a mobile application, a stand-
alone application, and a distributed or cloud computing
application. In some cases, software modules are in one
computer program or application. In some cases, soltware
modules are 1 more than one computer program or appli-
cation. In some cases, software modules are hosted on one
machine. In some cases, software modules are hosted on
more than one machine. In some cases, software modules
are hosted on a distributed computing platform such as a
cloud computing platform. In some cases, software modules
are hosted on one or more machines 1n one location. In some
cases, software modules are hosted on one or more machines
in more than one location.

[0270] In some cases, the systems, the methods, the com-
puter-readable media, and the techniques disclosed herein
include one or more databases, or use of the same. In some
cases, various databases may be suitable for storage and
retrieval of one or more of (1) wearable data, (1) responses
to health queries, (111) geographic data, etc., one or more of
which may be historical, present, or future data or informa-
tion. In some cases, suitable databases include, by way of
non-limiting examples, relational databases, non-relational
databases, object oriented databases, object databases,
entity-relationship model databases, associative databases,
XML databases, document oriented databases, and graph
databases. Further non-limiting examples include SQL,
PostgreSQL, MySQL, Oracle, DB2, Sybase, and MongoDB.
In some cases, a database 1s Internet—based. In further cases,
a database 1s web-based. In still further cases, a database 1s
cloud computing-based. In a particular case, a database 1s a
distributed database. In other cases, a database 1s based on
one or more local computer storage devices.
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Additional Considerations

[0271] While various embodiments of the imnvention have
been shown and described herein, it will be obvious to those
skilled 1n the art that such embodiments are provided by way
of example. Numerous variations, changes, and substitutions
may occur to those skilled 1n the art without departing from
the mvention. It should be understood that various alterna-
tives to the embodiments of the mvention described herein
may be employed.

[0272] It should be noted that various illustrative or sug-
gested ranges set forth herein are specific to their example
embodiments and are not intended to limit the scope or range
of disclosed technologies, but, again, merely provide
example ranges for frequency, amplitudes, etc. associated
with their respective embodiments or use cases. Certain
inventive embodiments herein contemplate numerical
ranges. When ranges are present, the ranges include the
range endpoints. Additionally, every sub range and value
within the range 1s present as 1 explicitly written out.

[0273] While preferred embodiments of the present inven-
tion have been shown and described herein, it will be
obvious to those skilled in the art that such embodiments are
provided by way of example. It 1s not intended that the
invention be limited by the specific examples provided
within the specification. While the invention has been
described with reference to the aforementioned specifica-
tion, the descriptions and illustrations of the embodiments
herein are not meant to be construed 1 a limiting sense.
Numerous variations, changes, and substitutions will now
occur to those skilled 1n the art without departing from the
invention. Furthermore, 1t shall be understood that all
aspects of the invention are not limited to the specific
depictions, configurations or relative proportions set forth
herein which depend upon a variety of conditions and
variables. It should be understood that various alternatives to
the embodiments of the invention described herein may be
employed 1n practicing the invention. It 1s therefore con-
templated that the invention shall also cover any such
alternatives, modifications, variations, or equivalents. It 1s
intended that the following claims define the scope of the
invention and that methods and structures within the scope
of these claims and their equivalents be covered thereby.

What 1s claimed 1s:

1. A method for generating a personalized recommended
intervention for a subject based at least 1n part on causal
inference, comprising:

(a) obtaining a first set of time series data associated with
the subject and a second set of time series data asso-
ciated with the subject, wherein the first set of time
series data relates to a first variable indicative of a
health behavior of the subject and wherein the second
set of time series data relates to a second variable
indicative of a health condition of the subject;

(b) determining a causal eflect of the first variable on the

second variable by estimating an average treatment
cllect, wherein the average treatment eflect 1s estimated
by processing the first set of time series data and the

second set of time series data using a model-twin
randomization method: and

(c) generating a personalized treatment or intervention
recommendation for the subject to change the health

condition based at least in part on the causal effect
determined 1n (b).

Feb. &, 2024

2. The method of claim 1, wherein the model-twin ran-
domization method comprises a sequential technique to
implement g-formula for estimating the average treatment
cllect.

3. The method of claim 2, wherein implementing the
g-formula comprises implementing extensions of the g-for-
mula, wherein the extensions comprise one or both of
targeted learning or targeted maximum likelihood estimation

4. The method of claim 2, wherein the sequential tech-
nique comprises a simulation-based technique or a Monte
Carlo technique.

5. The method of claim 1, wherein processing the first set
of time series data and the second set of time series data
using the model-twin randomization method comprises ran-
domizing the first set of time series data for each time period
or time point of the first set of time series data.

6. The method of claim 5, further comprising running a
model-twin through the randomized first set of time series
data for a number of 1terations until a convergence condition
1s satisfied.

7. The method of claim 6, wherein the model-twin 1s an
outcome model fitted to the first set of time series data and
the second set of time series data.

8. The method of claim 7, further comprising generating,
by the model-twin, a predicted value of the second variable
at each time point of the second set of time series data.

9. The method of claim 8, further comprising:

adding random noise to each predicted value of the
second variable.

10. The method of claim 9, further comprising:

determining an average period treatment eflect (APTE)
from at least a subset of each of the predicted values for
at least a subset of the set of time points.

11. The method of claim 10, further comprising:

estimating a confidence interval for the APTE.

12. The method of claim 11, further comprising:

calculating a cumulative average confidence interval,
wherein the convergence condition relates to the cumu-
lative average confidence interval.

13. The method of claim 6, wherein the model-twin
comprises a generalized linear model.

14. The method of claim 13, wherein the linear model
comprises a generalized linear model.

15. The method of claim 6, wherein the model-twin
comprises a non-parametric model.

16. The method of claim 6, wherein the model-twin
comprises a machine learning model.

17. The method of claim 15, wherein the machine learning
model comprises a random forest.

18. The method of claim 1, wherein the first set of time
series data 1s acquired from one or more data-collection
instruments that comprise at least one wearable device worn
by the subject.

19. The method of claim 18, wherein the first set of time
series data 1s indicative of sleep duration and wherein the
second set of time series data 1s indicative of physical
activity.

20. The method of claim 18, wherein the second set of
time series data 1s indicative of speed of walking.

21. The method of claim 18, wherein the second set of
time series data 1s indicative of sleep duration and wherein
the first set of time series data 1s indicative of physical

activity.
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22. The method of claim 18, wherein one or both of the
first set of time series data or the second set of time series
data 1s collected daily.

23. The method of claim 1, wherein one or both of the first
set of time series data or the second set of time series data
comprise variables that cause, moderate, or contextualize
data comprised 1n one or both of the first set of time series
data or the second set of time series data.

24. The method of claim 1, wherein the personalized
treatment or intervention recommendation comprises chang-
ing health behavior of the subject.

25. The method of claim 24, wherein changing the health
behavior or the subject comprises estimating a plausible or
suggested average treatment eflect of the health behavior of
the subject on the health condition of the subject.

26. One or more non-transitory computer-readable media
comprising computer-executable instructions that, when
executed by at least one processor, cause the at least one
processor to:

(a) obtain a first set of time series data associated with the
subject and a second set of time series data associated
with the subject, wherein the first set of time series data
relates to a first variable indicative of a health behavior
of the subject and wherein the second set of time series
data relates to a second variable indicative of a health
condition of the subject;

(b) determine a causal eflect of the first variable on the
second variable by estimating an average treatment

cllect, wherein the average treatment eflect 1s estimated
by processing the first set of time series data and the
second set of time series data using a model-twin
randomization method; and
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(c) generate a personalized treatment or intervention
recommendation for the subject to change the health
condition based at least in part on the causal eflect
determined 1n (b).

27. A computer system for generating a personalized
recommended intervention for a subject based at least 1n part
on causal inference, comprising:

OIIC OI INOIC Proccss50r1s, and

one or more memories storing computer-executable
instructions that, when executed, cause the one or more
processors 1o:

(a) obtain a first set of time series data associated with
the subject and a second set of time series data
associated with the subject, wherein the first set of
time series data relates to a first variable indicative of
a health behavior of the subject and wherein the
second set of time series data relates to a second
variable indicative of a health condition of the sub-
ject;

(b) determine a causal eflect of the first variable on the

second variable by estimating an average treatment
ellect, wherein the average treatment eflect 1s esti-
mated by processing the first set of time series data
and the second set of time series data using a

model-twin randomization method; and

(c) generate a personalized treatment or intervention
recommendation for the subject to change the health
condition based at least 1n part on the causal effect
determined 1n (b).

G o e = x
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