a9y United States
12y Patent Application Publication (o) Pub. No.: US 2024/0167822 Al

FABUSUYI et al.

US 20240167822A1

(54)

(71)

(72)

(73)

(21)

(22)

(60)

ENERGY EFFICIENT SAMPLING FOR
LAST-MILE DELIVERY SYSTEMS

Applicant: THE REGENTS OF THE
UNIVERSITY OF MICHIGAN, Ann
Arbor, MI (US)

Inventors: Tayo FABUSUYI, Ann Arbor, MI
(US); Majid MIRZANEZHAD, Ann
Arbor, MI (US)

Assignee: THE REGENTS OF THE
UNIVERSITY OF MICHIGAN, Ann
Arbor, MI (US)

Appl. No.: 18/510,077

Filed: Nov. 15, 2023

Related U.S. Application Data

Provisional application No. 63/425,712, filed on Nov.
16, 2022.

43) Pub. Date: May 23, 2024
Publication Classification

(51) Int. CL

GOIC 21/16 (2006.01)

B6OW 60/00 (2006.01)

GOIC 21720 (2006.01)
(52) U.S. CL

CPC ...... GOIC 21/1656 (2020.08); B6OW 60/001

(2020.02); GOIC 21720 (2013.01)

(57) ABSTRACT

A computer-implemented method 1s presented for determin-
ing sampling rate for at least one of a camera and a receiver

of a global navigation satellite system deployed in an
autonomous vehicle. A Kalman filter 1s used for predicting

a local sampling rate for the camera and a global sampling
rate for the receiver 1n the global navigation satellite system.
The method includes: retrieving length of the lane being
traversed by the autonomous vehicle from a graph, where
nodes of the graph represent intersection 1n a road network
and edges of the graph represent paths 1n the road network;
measuring speed of the autonomous vehicle as 1t traverses
the lane; estimating the local sampling rate and the global
sampling rate using the measured speed and the Kalman
filter; and capturing, by the camera, 1images in accordance
with the local sampling rate estimated by the Kalman filter.
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ENERGY EFFICIENT SAMPLING FOR
LAST-MILE DELIVERY SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-

sional Application No. 63/425,712, filed on Nov. 16, 2023.
The entire disclosure of the above application 1s 1ncorpo-
rated herein by reference.

FIELD

[0002] The present disclosure relates to maintaining
veracity of information obtained from noisy and sparse GPS
data 1n context of vehicle navigation.

BACKGROUND

[0003] Over the past few decades, vehicle navigation
systems using global positioning systems (GPS) have
received substantial attention in transportation research and
development. One of the key components of such systems 1s
reliable geolocational data that 1s captured by the satellite in
order to track the commuting entity on a road network. Such
data 1s often noisy particularly when the entity 1s located 1n
high density-built environments, such as cities’ central busi-
ness districts (CBDs), where tall and massive structures
often restrict satellites from sending and/or receiving signals
casily. This typically causes signal obstruction when the
commuting entity 1s stuck in some blind spot, meaning the
GPS may not successfully locate the entity. In some cases,
tracking entities and vehicles using GPS 1s diflicult due to
energy considerations and privacy reasons. This leads to
low-sampling data and 1ts attendant complications. The
result of infrequent and noisy GPS samples is scattered data
with locations spread entirely across the road network, thus
making it diflicult to ascertain the actual path traversed by
the entity. Clearly, the sparsity of the samples 1s defined with
respect to a base underlying network from where the GPS
samples are retrieved.

[0004] This section provides background information
related to the present disclosure which 1s not necessarily
prior art.

SUMMARY

[0005] This section provides a general summary of the
disclosure, and 1s not a comprehensive disclosure of 1ts full
scope or all of its features.

[0006] A computer-implemented method 1s presented for
determining sampling rate for at least one of a camera and
a receiver ol a global navigation satellite system deployed 1n
an autonomous vehicle. A Kalman filter 1s used for predict-
ing a local sampling rate for the camera and a global
sampling rate for the receiver in the global navigation
satellite system, where control matrix of the Kalman filter 1s
defined 1n terms of length of a lane being traversed by the
autonomous vehicle, state transition matrix of the Kalman
filter 1s defined 1n terms the number of entities occupying a
unit length of the lane, and measurable 1nput to the Kalman
filter 1s speed of the autonomous vehicle. The method
includes: retrieving length of the lane being traversed by the
autonomous vehicle from a graph, where nodes of the graph
represent intersection 1 a road network and edges of the
graph represent paths 1n the road network; measuring speed
of the autonomous vehicle as 1t traverses the lane; estimating
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the local sampling rate and the global sampling rate using
the measured speed and the Kalman filter; and capturing, by
the camera, 1mages 1 accordance with the local sampling
rate estimated by the Kalman filter.

[0007] Further areas of applicability will become apparent
from the description provided herein. The description and
specific examples 1n this summary are intended for purposes
of 1llustration only and are not intended to limit the scope of
the present disclosure.

DRAWINGS

[0008] The drawings described herein are for illustrative
purposes only of selected embodiments and not all possible

implementations, and are not intended to limait the scope of
the present disclosure.

[0009] FIG. 1 1s block diagram of an example vehicle
navigation system.

[0010] FIG. 2 1s a flowchart showing a navigation algo-
rithm according to this disclosure.

[0011] FIG. 3 1s a diagram of a Kalman filter.

[0012] FIG. 4 1s a diagram depicting a method of deter-
mining the sampling rates for a camera and/or satellite
navigation device deployed 1n an autonomous vehicle.
[0013] Corresponding reference numerals indicate corre-
sponding parts throughout the several views of the drawings.

DETAILED DESCRIPTION

[0014] Example embodiments will now be described more
tully with reference to the accompanying drawings.

[0015] FIG. 1 depicts components of a vehicle navigation
system 10. The vehicle navigation system 10 1s comprised of
a satellite navigation device 12, a camera 14 and a computer
processor 16. In an example embodiment, the satellite
navigation device 12 1s a GPS receiver although other
satellite systems are contemplated. The vehicle navigation
system may also receive input from various sensors 1n the
vehicle, for example a speed sensor 18. It 1s understood that
only the relevant components of the system are shown 1n
FIG. 1 but that other sensors and components may be need
to mmplement vehicle navigation. In one example, the
vehicle navigation system 10 1s integrated into a personal
delivery device. The vehicle navigation system 10 1s suitable
for other types of vehicles including but not limited to bikes,
cars, trucks and unmanned aerial vehicles, such as drones.

[0016] The vehicle navigation system 10 operates to navi-
gate the vehicle autonomously. Different navigation tech-
niques are readily found 1n the art. One example approach 1s
based on 1mage processing, road and navigable are i1denti-
fication, template matching classification for navigation
control and trajectory selection based on GPS way-points.
The vehicle follows a trajectory defined by GPS points
avoiding obstacles using a single monocular camera. The
images obtained from the camera are classified navigable
and non-navigable regions of the environment using neural
networks that control the steering and velocity of the
vehicle. This approach i1s further described 1n the paper
“Vision and GPS-based Autonomous Vehicle Navigation
Using Templates and Artificial Neural Networks™ by Souza
et al., SAC ’12: Proceedings of the 27th Annual ACM
Symposium on Applied Computing March 2012 which 1s
incorporated in its entirety herein by reference. Other suit-
able navigation techniques also fall within the scope of tis
disclosure.
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[0017] Regarding the energy efliciency ol autonomous
vehicles, the vehicle navigation procedure 1s the dominant
component of energy consumption. One conventional
thought 1s to reduce the amount of energy by limiting the
frequent use of GPS built-1n features 1n autonomous delivery
vehicles. Instead, this disclosure uses a sparse set of GPS
traces while completing the Last-Mile task. Obtaining a
reasonable size of GPS traces, when necessary, can signifi-
cantly save the battery in the delivery vehicle.

[0018] Given a graph G=(V,E), where the edge set .
represents the roads and node-set V represents the intersec-
tions of the network, potential spots that require one GPS
sample to navigate globally are intersections, 1.¢., nodes of
the road networks. For any e€E, ideally, use the camera
built-in feature 1n an autonomous delivery vehicle to capture
images to perform local navigation. There are numerous lane
departure algorithms that help the vehicle to proceed among
obstacles within the lane or sidewalk. These algorithms fall
outside the scope of this disclosure. On the other hand, the
constant snapshots of the surroundings, typically every 3-10
seconds on average allow the system to realize il the
delivery vehicle 1s approaching (or at) an imtersection, 1.e.,
vEV. Therelore, GPS and camera are two complementary
sensors to recognize the best time for receiving a GPS
tracepoint, whenever necessary. It 1s understood that the
navigation system may rely upon other sensors (e.g., ultra-
sonic sensors) as well. Once the intersection v becomes
visible, the delivery vehicle attempts to receive a GPS trace
from the satellite. The satellite obtains geographic coordi-
nates (e.g., loc:=(longitude.latitude)) for the vehicle. One
can then retrieve the actual location on a map using the
geographic coordinates (i.e., GIS) and realize where (glob-
ally on ) the vehicle 1s located.

[0019] While the above 1dea seems plausible, 1t 1s often a
suboptimal approach to use the camera with a constant
temporal rate of capturing images from different lanes. Some
sidewalks are lengthier than others and occupied with more
entities such that capturing images every 5-10 seconds
results 1n an expensive 1image processing time. Conversely,
some sidewalks are comparatively shorter with less occu-
pying entities hence resulting 1n missing some GPS traces at
some 1ntersections as the camera misses the right time to
detect the intersection. Let ©=(01, 0g) be a parameter for
which global and local navigations are set, where 01 1s the
temporal rate of snapshots taken by the camera and Og 1s the
temporal rate of GPS trace recerval.

[0020] FIG. 2 depicts a high-level navigation algorithm
according to this disclosure. Images are continual retrieved
from the camera as indicated at 21. It 1s understood that
images are retrieved from the camera 1 accordance with the
local sampling rate, 0l. For each retrieved 1mage, a deter-
mination 1s made at 22 as to whether an intersection 1s
contained in the image. If the image does not contain an
intersection, the local and global sampling rates can be
updated at 27 1n the manner described below. Another image
1s retrieved from the camera at 21 and the process is
repeated. During such time, the vehicle 1s navigated using
image data.

[0021] If the image does contain an intersection, then the
vehicle can elect to navigate using geographic coordinates
from a satellite navigation device. More specifically, geo-
graphic coordinates for the vehicle are received at 23 from
the satellite navigation device. It 1s understood that geo-
graphic coordinates are retrieved from the camera 1 accor-

(L]
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dance with the global sampling rate, Og. The location of the
vehicle 1s then retrieved at 24 from a map using the
geographic coordinates.

[0022] In the example embodiment, the path of the vehicle
1s selected at 25 using a graph, where the nodes of the graph
represent intersections and edges of the graph represent
paths in the vehicle environment. In an urban environment,
path may be understood to be a sidewalk and/or a road. Path,
however, may have a more generic meaning such as a path
on a lactory floor. In any case, the graph represents the
available paths that can be traversed 1n the vehicle’s envi-
ronment. In this way, the vehicle 1s navigated at least 1n part
using the geographic coordinated from the satellite naviga-
tion device.

[0023] With continued reference to FIG. 2, the local and
global sampling rates are again updated as indicate at 26 and
in the manner described below. Upon leaving the intersec-
tion, the vehicle can return to navigating based on 1mages
captured by the camera as seen at 21. This process 1is
repeated until the vehicle’s current location corresponds to

the end point of the navigation route. This process 1s also set
torth below.

NAVIGATION ALGORITHM

Input: GPS samples, GIS geodatabase map, Network G (V, E), Image
Output: Navigation with minmimal set of GPS and 1mage samples
cur__loc <—starting point
WHILE cur__loc 1s not ending point:
image <—Camera snapshot
If image does not contain an intersection v € V:// 1f currently located
within a lane
image <—Recelve image at temporal rate O,
Update(0,,)
PredictNext(0,,)
Else: // i currently located at an intersection
cur__lock<— receive a GPS trace (lat, Ing) at temporal rate 6,
retrieve cur__loc on the GIS map and select the next lane e € E
Update (6,
PredictNext (0,,)
ENDLOOP

[0024] The challenge 1s predicting and updating the opti-
mal value for the sampling rates fulfilling the global and
local navigations properly. This challenge 1s tackled by
predicting these parameters from a road network G through
an adequate number of trips taken across the network.
Hypothetically, assume that the network’s traflic flow and
traflic density are learned and hence given instantly. One can
aim to predict © instantly as a new lane (edge) is encoun-
tered 1n the network so that the autonomous vehicle adjusts
its temporal data retrieval rate based on the new observation.
In this regard, a Kalman Filter 1s used as an iterative linear
predictive filter that copes with uncertainty in measurement
and process and corrects its prediction. It predicts © from
the traflic flow induced by pedestrians, bikes, or cars and
geographic features of the surroundings, such as the length
of the lane.

[0025] FIG. 3 illustrates an example Kalman filter. The
Kalman filter 1s comprised of two main components: (1)
prediction and (2) correction (update). The mput to the filter
1s a sequence of observations (measurements) Z=(z1, z2, . .
., zk) coming along discrete time points t=(t1, t2, . . ., tn).
There are five equations that allow us to update and predict
the system state properly. These equations are described
below to better understand the filtering process.
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State Extrapolation Equation:
[0026]

)

X

at+l.n

[0027] %,
step n+1
[0028] X, , 1s an estimated system state vector at time
step n

[0029] U 1s a control or input variable—a measurable
(deterministic) mput to the system

[0030] w_ 1s a process noise or disturbance—an unmea-
surable input that affects the state

[0031] F is a state transition matrix

[0032] G 1s a control matrix or input transition matrix
(mapping control to state variables)

=Fx, +Gu,+w,

1s a predicted system state vector at time

Covariance Extrapolation Equation

[0033]
P

a+l.m

=FP, . F'+0

[0034] P, , 1s the uncertainty of an estimate—covari-
ance matrix of the current state

[0035] P,.,, 1s the uncertainty of a prediction—cova-
riance matrix for the next state

[0036] F is the state transition matrix

[0037] Q 1s the process noise matrix

Measurement Equation

[0038]
z,=Hx +v_
[0039] =z, 1s a measurement vector

[0040] x_ 1s a true system state (hidden state)
[0041] v, _ 1s a random noise vector
[0042] H 1s an observation matrix

State Update Equation
[0043]

X, 0= Aﬂ,n_ 1 +KH(ZH_H£H.,H— 1 )

71,71

[0044] X, , 1s an estimated system vector at time step n

[0045] X, ., 1s a predicted system state vector at time
step n—1

[0046] K 1s a Kalman Gain

[0047] 2z 1s a measurement

[0048] H 1s an observation matrix

Where the Kalman Gain 1s:
[0049]

K,=P, H(HP,, H4R) 1

[0050] R, 1s the Measurement Uncertainty (measure-
ment noise covariance matrix)

Covariance Update Equation

[0051]
P n,n:(I_KnmP n,n_—]

[0052] P, 1s the estimate uncertainty (covariance)
matrix of the current state

[0053] P, ,_, 1s the prior estimate uncertainty (covari-
ance) matrix of the current state (predicted at the
previous state)
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[0054] K i1s the Kalman Gain
[0055] H 1s the observation matrix

[0056] 1 1s an Identity Matrix (the nxXn square matrix
with ones on the main diagonal and zeros elsewhere)

[0057] Next, the Kalman filter 1s adapted to determine the
sampling rates for the navigation algorithm. In an example
embodiment, the state vector that estimates the temporal rate
of 0] and Og 1s as follows:

The two parameters above are related to the network G and
the geometry of the surroundings measured by the vehicle
through the sensors.

[0058] Suppose that g 1s the trathc flow induced by the

commuting entities (vehicles, pedestrians, bikes, etc.) within
the lane and/or the sidewalk. Then one has:

where n 1s the number of commuting enfities passing some
designated point during time t. In one example, the number
of commuting enfities can be determined by a loop detector
implemented underneath the road surface. Let k be the traffic
density per unit distance in the lane, m be the number of
enfities occupying the unit length of the lane at some
specified time and L be the length of the lane. The traffic
density 1s:

1
k= —
L

Now, given the space-mean speed u of the entities, one has
g=uk. By taking Ol=t:

Note that Lu indicates the time that the vehicle entirely
fraverses the entire lane. This 1s equivalent to Og and
therefore:

1
0, = ;Hg + E'fﬂ

Also, note that:

L
U

Oy = — +0g,.

[0059] In the example embodiment, the state transition
matrix 1s
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Measurement Equation
o
1 —_—
= m [0061]
0 1.
Z,=Hx +V_,
and the control matrix is The true System State 1s:
0
G = [ ] B [ 0 ]
L X, =
93
Thus, the state extrapolation equation 1s _
) ) However the vehicle only measures the two 0, and O
Xpt1.n = FXppn + Gty +wy, (1) &
parameters. Hence, take:
. o nara
01 +1, 1 — || 9. 0 ’1]
) =l w7 1 0
._Hgn—l—l,ﬂd __O 1 ~-9gﬁ,ﬂ_ U H=[0 1]
~ 1y A 7
Wn’”ﬂ[ ér’n +1,n gfn"n " (;)g‘gﬂ’n
WH -— . — L
93:-‘1"‘11” - Hgnjn + ;
Assume that u_ 1s a control output, meaning that there 1s a
sensor connected to the vehicle that estimates the inverse Thus:
speed 1/u or its pace. For simplicity, one can assume the 0062
unmeasurable input noise 1s zero, 1.e, w,_=0. In some sce- [ ]
narios, it 1s also assumed that: u_=0. In some instances, one
also assumes no control input, meaning that no sensor 1s
1 1 01 [6 0, (3)
connected to the vehicle’s control. z, = - =
o 1]16,17 16,
Covariance Extrapolation Equation
[0060] Assume that the random Noise Vector v, =0
Pn-l—l,n :FPH,HFT+Q
2
I'r'T"r:r‘HL:r‘: G-fn-l—l,n G-gn+1,n B
; —
i D-gn—l—l,ﬂ Jfrﬁl,n [Tgn—l—ljn
-1 E G-i;ﬂ [Tfn,n [Tgn,n - :I 0 [ V(Hf) COV(QI:Qg)
m =+
0 1920 T0n G‘ém | 1 COV(bg, 6;) V(fg)
See Appendix below for constructing the Process Noise State Update Equation
Matrix Q:
- [0063]
F )
2
Q = . mo. [ng
i ; L | Enjn — inm_l +KH(ZH _Hinjﬁ—l)
. énnq éﬂﬂ— ” Fé 1 0 Fénn— ”
We plug Q and F into the formula below: [f' :If' 1 +Kn[ g —[0 1] S ]
ggn.n ggn.n—l | _gg _ | Ygnn—1 |
Pn—l—l n:‘FPn n‘FT_l_Q
) . ~ 1y A
A A g —1+(_)9 a2
) , gnn— o 1.1 an.n
And we obtain: L RN 'S | R -
gn.n—1 Qg égn -1 1T = )
o2 = +2(£)J o, .+ T . (2) 0 ” -9;—9;;1_,1_1 +(£)§gﬂ-ﬂ—1 ‘
f:r‘:._,:-‘: - m Enn"” n fn,,nﬂ'gnjn Izhfn.n—l —|—KH i) ;
n\2 n o Y
— —_— 2 —_ 2 nn—1 | — o _—
Pn—l—ljn — z(m) G,-gnjn z(m)g-gnjn g - Hg Hgn 1.x 1‘|‘ » J
Ty 2 2
OgpnT iy +2(m)a'gm 20,

Now plug the Kalman Gain into the formula above. See
Appendix for obtaining Kalman Gain K, and X, ,,. Finally,

See Appendix below for further details. set out to the Covariance Update Equation.
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Covariance Update Equation

[0064]
P n,n:(}r _KnmP

m,r—1

P, , can be obtained by plugging (2) and (5) (obtained in
Appendix) into the formula above. Due to the space-con-
suming expansion of matrix multiplication we avoid sim-
plifying this formula.

[0065] Given the adapted Kalman filter described above, a
computer-implemented method for determining the local
and global sampling rates 1s described 1n relation to FIG. 4.
The adapted Kalman filter 1s used to predict a local sampling
rate for the camera and a global sampling rate for the
receiver in the global navigation satellite system. In the
example embodiment, the confrol matrix of the Kalman
filter 1s defined in terms of length of a lane being traversed
by the autonomous vehicle, the state transition matrix of the
Kalman filter 1s defined in terms the number of entities
occupying a unit length of the lane, and the measurable 1nput
to the Kalman filter 1s speed of the autonomous vehicle.
[0066] First, the length of the lane being traversed by the
autonomous vehicle 1s retrieved at 42 from a graph, where
nodes of the graph represent intersections 1n a road network
and edges of the graph represent paths 1n the road network.
While reference 1s made to a graph representing a network
of roads, 1t 1s understood that the graph can more generically
represent available paths that can be traversed 1n the vehi-
cle’s environment.

[0067] Next, the speed of the autonomous vehicle as 1t
traverses the lane 1s measured at 43, for example by a speed
sensor. Using vehicle speed as an input, the local sampling
rate and the global sampling rate are estimated at 44 with the
adapted Kalman filter described above. This method can be
used to periodically update the sampling rates in the context
of a navigation algorithm, for example as seen at 26 and 27
of FIG. 2. The updated sampling rate may in turn be used
capture 1mages with a camera and/or receive geographic
coordinates by a satellite navigation device.

[0068] The techniques described herein may be imple-
mented by one or more computer programs executed by one
or more processors. The computer programs include pro-
cessor-executable instructions that are stored on a non-
transitory tangible computer readable medium. The com-
puter programs may also include stored data. Non-limiting
examples of the non-transitory tangible computer readable
medium are nonvolatile memory, magnetic storage, and
optical storage.

[0069] Some portions of the above description present the
techniques described herein in terms of algorithms and
symbolic representations of operations on information.
These algorithmic descriptions and representations are the
means used by those skilled 1n the data processing arts to
most effectively convey the substance of their work to others
skilled 1n the art. These operations, while described func-
tionally or logically, are understood to be implemented by
computer programs. Furthermore, it has also proven conve-
nient at times to refer to these arrangements of operations as
modules or by functional names, without loss of generality.
[0070] Unless specifically stated otherwise as apparent
from the above discussion, 1t 1s appreciated that throughout
the description, discussions utilizing terms such as “process-
ing” or “computing” or “calculating” or “determining” or
“displaying” or the like, refer to the action and processes of
a computer system, or similar electronic computing device,
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that manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories
or registers or other such information storage, transmission
or display devices.

[0071] Certain aspects of the described techniques include
process steps and 1nstructions described herein 1n the form
of an algorithm. It should be noted that the described process
steps and 1nstructions could be embodied 1n software, firm-
ware or hardware, and when embodied 1n software, could be
downloaded to reside on and be operated from different
platforms used by real time network operating systems.

[0072] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus may be
specially constructed for the required purposes, or 1t may
comprise a computer selectively activated or reconfigured
by a computer program stored on a computer readable
medium that can be accessed by the computer. Such a
computer program may be stored in a tangible computer
readable storage medium, such as, but 1s not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,

EEPROMSs, magnetic or optical cards, application specific
integrated circuits (ASICs), or any type of media suitable for
storing electronic 1nstructions, and each coupled to a com-
puter system bus. Furthermore, the computers referred to 1n
the specification may include a single processor or may be
architectures employing multiple processor designs for
increased computing capability.

[0073] The algorithms and operations presented herein are
not inherently related to any particular computer or other
apparatus. Various systems may also be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatuses to
perform the required method steps. The required structure
for a variety of these systems will be apparent to those of
skill 1n the art, along with equivalent variations. In addition,
the present disclosure 1s not described with reference to any
particular programming language. It 1s appreciated that a
variety of programming languages may be used to imple-
ment the teachings of the present disclosure as described
herein.

[0074] The foregoing description of the embodiments has
been provided for purposes of illustration and description. It
1s not intended to be exhaustive or to limit the disclosure.
Individual elements or features of a particular embodiment
are generally not limited to that particular embodiment, but,
where applicable, are interchangeable and can be used 1n a
selected embodiment, even 1if not specifically shown or
described. The same may also be varied in many ways. Such
variations are not to be regarded as a departure from the
disclosure, and all such modifications are intended to be
included within the scope of the disclosure.

APPENDIX

Covariance Extrapolation Equation

[0075]

Pn+1,n :FPH,HFT+Q

2
lrI‘Er:r*z-lrl,:ri Jfﬂ#—lﬁn lr'Tg:r*:+1,:r‘z 1

2
i [Tgn—l—ljn l'r')-‘err1+11:=‘1 [Tgn+1,n

R [Tfnjn G-gnjﬂ

I
— 3| =

-

gnﬁn 5 gﬂjﬁ
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-continued
; 0 V@)  COV@H, b,)
— 1| | cove,. 6y v,
L |

For constructing the Process Noise Matrix Q we do the
following:

[ V@) COV@E, by
C=lcove.oy Ve,

Where V denotes the variance and COV denotes the cova-
riance between the two variables. We have:

V(91)=CT§£, =
o n\2 n\2 [ n* . Y
E(Hﬁ)_ﬂﬁf :E((;) gg)_(’u%';) | .2 (E(gg)_#f‘g) 1,2 Uy
Vibe) = o,

COV(H;, E'g) = COV(Hg, 9;) = E(Hh E'g) —ﬂgi, ',Uhgg —
o e8] = (5 J g = () B06) =) = ()i

I H

So (Q would be:

, ﬁ "
o=|m m|op
— 1
L N
Therefore:
[0076]

Pﬁ+1,n :FPH,HFT—I_Q

2
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Where R 1s a measurement noise captured by the device.
The noise can be a white Gaussian noise:

P ¥y 0
H_[() rg]

Where r~8(0,.V(9,) and r~x(0,V(0,)) . Now we have:

2
[Tfrzjn {Tfn,n (‘Tgn,n
K, = 5
- G-gnﬁn G-fnan G-gﬂ.,ﬁ
i 2 —1
l£T“r:r*:jrz—l [Tfn,n—l D-gnjn—l I N [F"f 0 ]
2 0 r
G-gﬂaﬂ_lg-fﬁjﬁ—l G-gn’n—]_ g
2 2 11
[Tfr: 7 Uty n En,n G-fnjn—l L Jfﬂ,n—l Crgn,n—l
= 2 pi
[Tgn,n G—-‘rnjn G-gn.,n G-gﬂ n—1 [Tfn,ﬁ—l G-gnjn—l T g i
 g? T, Tg |
inverse nn fﬂ,n En.n 1
z 2 2 2 2
ar 0y —
Enn = i n.n ([Tfnjn—l + Ff)(g-gn n—1 + Fg) (Tgn n—1 [Tfn nn—1
a2 tr, —O o
Spn—1 ' '8 b n—1 Snn—1
2
{Tgn n—1 D-fn 1n—1 [Tgnjn—l T
2 -
Inn [Tfn,n [Tgn,n
= 2
[Tgn,n [Tfn,n G-gn,n
Kow +r, — 0y To 4
1 Enn—1 & nn—1 Enn—
ot +r,07 + 7 Ug 1Ty o2 T 7
! fnjn—l & frnjn—l gl JL Enn nn—1 Snn—1 ]
(5)
|
=
P 2
(ng-gﬁjﬁ—]_ _|_ rggfﬁjﬁ—l _|_ Ffrg)
ot (o2 +ry | — ~0} O 19¢ 1+-
i \Y gnn—1 g na na— n—
2
Jfﬁﬁ G-gﬁaﬁ O-gn,n—l [Tfn,n—l [Tfn,n G-gn,n (Ufﬂjn_l T rf)
2
-0t o O + 2 2 _
Enn ‘nn—1" &nn-1 D-gnjn ({Tfrz,n—l + Fy
2
i [Tfﬂaﬂ G—gﬁaﬁ ([Tfn,ﬁ—l * Fg) {Tfﬁﬁ G-gﬂ,ﬁ [Tgn,n—l l:;I-"r:r‘ijrz—l |
Therefore:
6, — 0 Y
][ 2
) gfn—l—l,n n—1n-1 m En—1.n-1
Xpn = ) + K, 7
gﬂ—i_lan - gg- - Ggﬂ_].,ﬂ_]. _I_ ;




US 2024/0167822 Al

-continued
2
Z 2 _ -0, T O .+
G-f;qﬁn (G-gn,n—l -I—F"g) nn  ‘nn—1 na—1
2
Jfﬂﬂ G-gﬂ,ﬂ G-gnﬁﬂ—l U-fnﬁn—l U-f”v” [Tg”a” (G-fn,n—l i ﬁ)
-é ?";(1"2 + ¥ [1"2 + Py ¥ I";(_Tz —I-;f"l:Z}"2 + Py
A !H,H—l Enn—1 g ‘rﬂjn—l g Enn—1 g fﬂﬁﬁ_l g
Xnn = + 5
) o, O o + 2 2
i ggn_l gn.n J!r:-‘z,:ri—l En.n—1 G-gn,n (G-fnjn—l T Fr’)'ﬂ-fnjn
2
O-fnjn Jgﬂ,ﬁ (G—fnﬁn_l T F"g) [Tgﬂﬁ [Tgn,n—l [Tfrz,ﬁ—l
o2 + p 07 o, TIO: + 1g07 Ty
Y g1 T8 Y ) T e Snn—1 &% Iy g

May 23, 2024

determining, by the computer processor, whether the
given 1image contains an intersection;

capturing, by the camera, additional 1mages 1n accordance
with the local sampling rate and 1n response to the
absence of an intersection in the given image; and

navigating the autonomous vehicle using the additional
images and 1n response to the presence of an i1ntersec-
tion 1n the given image.

5. The method of claim 4 further comprises navigating the

What 1s claimed 1s:

1. A computer-implemented method for determining sam-
pling rate for at least one of a camera and a receiver of a
global navigation satellite system deployed in an autono-
mous vehicle, comprising:

providing a Kalman filter for predicting a local sampling

rate for the camera and a global sampling rate for the
receiver in the global navigation satellite system, where
control matrix of the Kalman filter 1s defined 1n terms
of length of a lane being traversed by the autonomous
vehicle, state transition matrix of the Kalman filter is
defined 1n terms the number of entities occupying a unit
length of the lane, and measurable 1input to the Kalman
filter 1s speed of the autonomous vehicle;

retrieving, by a computer processor, length of the lane

being traversed by the autonomous vehicle from a
graph, where nodes of the graph represent intersection
in a road network and edges of the graph represent
paths 1n the road network;

measuring, by a sensor, speed of the autonomous vehicle

as 1t traverses the lane; and

estimating, by the computer processor, the local sampling

rate and the global sampling rate using the measured
speed and the Kalman filter; and

capturing, by the camera, 1mages 1n accordance with the

local sampling rate estimated by the Kalman filter.

2. The method of claam 1 wherein the state transition
matrix 1s

1
0

Z
m
1]

and the control matrix 1s

where L 1s the length of the lane being traversed by the
autonomous vehicle, m 1s the number of entities occupying
a unit length of the lane and n 1s current time step.

3. The method of claim 1 further comprises determining
the number of entities occupying a unit length of the lane by
loop detector sensor.

4. The method of claim 1 further comprises

receiving, by the computer processor, a given image from
the camera;

autonomous vehicle using geographic coordinates from t.

1€

receiver 1n response to the presence of an intersection 1n t.

1€

given 1mage.

6. The method of claim 5 wherein navigating the autono-
mous vehicle using geographic coordinates from the
receiver further comprises

receiving geographic coordinates from the receiver in
accordance with the global sampling rate estimated by

the Kalman filter;

retrieving location of the autonomous vehicle on a map

using the geographic coordinates;

selecting next lane to traverse from the graph; and

updating estimates of the local sampling rate and the

global sampling rate using the Kalman filter.

7. A non-transitory computer-readable medium having
computer-executable instructions that, upon execution of the
instructions by a processor of a computer, perform to:

retrieve length of the lane being traversed by an autono-

mous vehicle from a graph, where nodes of the graph
represent 1ntersection 1n a road network and edges of
the graph represent paths in the road network;

measure speed of the autonomous vehicle as it traverses
the lane;

maintain a Kalman filter for predicting a local sampling
rate for a camera deployed in the autonomous vehicle
and a global sampling rate for a receiver of a global
navigation satellite system deployed in the autonomous
vehicle, where control matrix of the Kalman filter 1s
defined 1n terms of length of a lane being traversed by
the autonomous vehicle, state transition matrix of the
Kalman filter 1s defined 1n terms the number of entities
occupying a unit length of the lane, and measurable
input to the Kalman filter 1s speed of the autonomous
vehicle;

estimate the local sampling rate and the global sampling
rate using the measured speed and the Kalman filter;
and

capture 1mages using the camera, where the 1mages are
captured 1n accordance with the local sampling rate
estimated by the Kalman filter.

8. The non-transitory computer-readable medinm of claim
7 wherein the state transition matrix 1s

1
0

7
m
1

and the control matrix 1s
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where L 1s the length of the lane being traversed by the
autonomous vehicle, m 1s the number of entities occupying
a unit length of the lane and n 1s current time step.
9. The non-transitory computer-readable medium of claim
7 further performs determining the number of entities occu-
pying a unit length of the lane by loop detector sensor.
10. The non-transitory computer-readable medium of
claim 7 further performs
receive a given image from the camera;
determine whether the given 1mage contains an intersec-
tion;
capture additional 1mages in accordance with the local
sampling rate and in response to the absence of an
intersection in the given image; and
navigate the autonomous vehicle using the additional
images and 1n response to the presence of an intersec-
tion in the given image.
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11. The non-transitory computer-readable medium of
claiam 10 further performs to navigate the autonomous
vehicle using geographic coordinates from the receiver in
response to the presence of an intersection in the given
1mage.

12. The non-transitory computer-readable medium of
claim 11 wherein navigating the autonomous vehicle using
geographic coordinates from the receiver includes receiving
geographic coordinates from the receiver in accordance with
the global sampling rate estimated by the Kalman filter;
retrieving location of the autonomous vehicle on a map
using the geographic coordinates; selecting next lane to
traverse from the graph; and updating estimates of the local
sampling rate and the global sampling rate using the Kalman

filter.
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