a9y United States
12y Patent Application Publication o) Pub. No.: US 2024/0211380 Al

US 20240211380A1

Cerny et al. 43) Pub. Date: Jun. 27, 2024
(54) BACKWARD COMPATIBILITY TESTING OF GO6L 9/46 (2006.01)
SOFTWARE IN A MODE THAT ATTEMPTS GO6F 12/0811 (2006.01)
TO INDUCE SKEW GOGF 12/084 (2006.01)
(71) Applicant: Sony Interactive Entertainment LLC, Gool 12/0875 (2006.01)
San Mateo, CA (US) GO6F 12/1027 (2006.01)
(72) Inventors: Mark Evan Cerny, Los Angeles, CA G061 1271045 (2006.01)
(US); David Simpson, L.os Angeles, (52) US. ClL
CA (US) CPC GoO6F 11/3668 (2013.01); GO6F 9/3001
(2013.01); GO6F 9/30079 (2013.01); GO6F
(21) Appl. No.: 18/438,332 9/46 (2013.01); GO6F 11/3684 (2013.01);
g1 Go6l 11/3688 (2013.01); GO6F 12/084
(22) Filed: Feb. 9, 2024 (2013.01); GOGF 12/0875 (2013.01):; GO6F
o 12/1045 (2013.01); GO6F 12/0811 (2013.01);
Related U.S. Application Dat " "
M pprEation GOGF 12/1027 (2013.01); GO6F 2212/452
(63) Continuation of application No. 17/353,673, filed on (2013.01); GO6F 2212/50 (2013.01); GO6F
Jun. 21, 2021, now Pat. No. 11,907,105, which 1s a 2212/62 (2013.01)
continuation of application No. 15/967,246, filed on
Apr. 30, 2018, now Pat. No. 11,042,470, which 1s a
continuation of application No.. PCT/U 82916/ (57) ARSTRACT
059751, filed on Oct. 31, 2016, which 1s a continu-
ation of application No. 14/930,408, filed on Nov. 2,
2015, now Pat. No. 9,892,024. A device and computer program product including one or
o _ _ more processors and a memory coupled to the one or more
rublication Classification processors. The device being configured to selectively run in
(51) Imt. CL a timing testing mode or 1n a mode of operation other than
GO6I’ 11/36 (2006.01) the timing testing mode, wherein in the timing testing mode
GO6F 9/30 (2006.01) the device 1s configured to attempt to induce skew.

510 Device to
rurn n timing
testing mods?

No

h 4

520 Run
530 Set up system to dfwcﬁ
run device in timing normatl.
testing mode
540 Run application
with device in timing
testing mode
|
/_Send cummands\ h 4 ~
- L. ~ éﬂ h‘?rdw..ware Run programs that
i ngs i SUDLINILS, 1 Ways interfere with
Modify seftings in : . oI
coal fime that disrupt timing application |
542 24 240
L 04ac y _ VAN .
Alter OS5)
functicnality In
ways that disrupt
timing
248
\. 1 v
Y
| 220 Test application tor |
eITOrs
—

C

End

r

Patent Application Publication Jun. 27,2024 Sheet 1 of 5 US 2024/0211380 Al

CPU Core

100
P

Branch Predict 102 Fetch and Decode 110
Return Address Stack 104 Instruction Fetch Unit 112

i Sy

Branch Target Buffer 108] Instruction Decode Unit 116

__Instruction Byte Buffer 114Wj

Instruction-Related
Caches and TLB 120

L1 I-Cache 122

Micro-op cache 126

Dispatch and Scheduling
130

Retirement Queues 132
SIMD and Int Rename 134

Scheduling Queues 136

Execution Units 150

oy
=L T E

Physical SIMD

Registers
142 ALUs 154
AGUs 156
Physical GP
Registers Load
144 Queue

164
' Other

levels of

Physical Registers cache

Data-Related Cache and TLB
170

(e.g. L2)
176

DTLB Cache Hierarchy 172

FIG. 1

Patent Application Publication Jun. 27, 2024 Sheet 2 of 5 US 2024/0211380 Al

200
202-1
Core 1 Cluster 1
Local 201-1
Caches
206 208

Cluster
Level
Shared

202-2
Core 2

Local
Caches

Core N

Local
Caches 205-1

Cache

203-1

202-N

Higher Level
Shared Cache

204

Core 1 Cluster M

Local 201-M
Caches

Cluster
Level

Shared

Cache

203-M

FIG. 2

Patent Application Publication Jun. 27, 2024 Sheet 3 of 5 US 2024/0211380 Al

5300

317

Cache 393
CPU Core
330
GPU
334 GPU Core
GPU 340 MEMORY

GPU Core 321 OS
322 Application

- 315 .

Memory 324 Graphics API
Controller

362

360
F e
STORE

370
USER
INTERFACE

380
DISPLAY

382
Rendered

Graphics

372
NETWORK
INTERFACE

FIG. 3

Patent Appl
pplication Publ
Licafi
ication Jun. 27, 2024 Sheet 4 of
of 5 US 2
024/0211380
Al

>

C -
A2 C
1
3
C,

FIG. 4

|-

|

Patent Application Publication Jun. 27,2024 Sheet 5 of 5 US 2024/0211380 Al

N

01 Start

500

10 Device {0

run in timing
testing modge?

No

Yes 520 Run

device

530 Set up system to normally.

run device in timing
testing mode

' 540 Run appiicétion' |
with device in timing
testing mode

Send commands

to hardware Run programs that
subumts, In ways interfere with
that disrupt timing application

544 230

Modify settings In
real time

942

Alter OS
functionality in
ways that disrupt
timing
248

' 550 Test application fér
errors

End

FIG. §

US 2024/0211380 Al

BACKWARD COMPATIBILITY TESTING OF
SOFTWARE IN A MODE THAT ATTEMPTS
TO INDUCE SKEW

CLAIM OF PRIORITY

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 17/353,675 filed Jun. 21, 2021, the
entire contents of which are incorporated herein by refer-
ence. U.S. patent application Ser. No. 17/353,675 1s a
continuation of U.S. patent application Ser. No. 15/9677,246,
filed Apr. 30, 2018, the entire contents of which are incor-
porated herein by reference. U.S. patent application Ser. No.
15/967,246 1s a continuation of International Patent Appli-
cation Number PCT/US2016/059751 filed Oct. 31, 2016, the
entire contents of which are incorporated herein by refer-
ence. International Patent Application Number PCT/
US2016/059751 claims the priority benefit of U.S. patent
application Ser. No. 14/930,408 filed Nov. 2, 2015 (now
U.S. Pat. No. 9,892,024, Issued Feb. 13, 2018, the entire
contents of both of which are incorporated herein by refer-
ence.

FIELD OF THE DISCLOSURE

[0002] Aspects of the present disclosure are related to
execution of a computer application on a computer system.
In particular, aspects of the present disclosure are related to
a system or a method that provides backward compatibility
for applications/titles designed for older versions of a com-
puter system.

BACKGROUND

[0003] Modern computer systems often use a number of
different processors for different computing tasks. For
example, 1n addition to a number of central processing units
(CPUs), a modern computer may have a graphics processing
unit (GPU) dedicated to certain computational tasks in a
graphics pipeline, or a unit dedicated to digital signal
processing for audio, all of which are potentially part of an
accelerated processing unit (APU) that may contain other
units as well. These processors are connected to memory of
various types, using buses that may be internal to an APU or
externally located on the computer’s motherboard.

[0004] It 1s common that a set of applications are created
for a computer system such as a video game console or
smartphone (the “legacy device”), and when a variant or a
more advanced version of the computer system 1s released
(the “new device”) it 1s desirable for the applications of the
legacy device to run flawlessly on the new device without
recompilation or any modification that takes into account the
properties ol the new device. This aspect of the new device,
as contained 1n its hardware architecture, firmware and
operating system, 1s often referred to as “backwards com-
patibility.”

[0005] Backwards compatibility 1s often achieved through
binary compatibility, where the new device 1s capable of
executing programs created for the legacy device. However,
when the real time behavior of the category of devices 1s
important to their operation, as is 1n the case of video game
consoles or smartphones, significant differences 1n the speed
of operation of a new device may cause 1t to fail to be
backwards compatible with respect to a legacy device. If the
new device 1s of lower performance than the legacy device,
1ssues that prevent backwards compatibility may arise; this

Jun. 27, 2024

1s also true 1f the new device 1s of higher performance, or has
different performance characteristics when compared to the
legacy device.

[0006] It 1s within thus context that aspects of the present
disclosure arise.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The teachings of the present disclosure can be
readily understood by considering the following detailed
description in conjunction with the accompanying drawings,
in which:

[0008] FIG. 11s ablock diagram illustrating an example of
a central processing unit (CPU) core that may be configured

to operate 1n a backwards compatibility mode in accordance
with aspects of the present disclosure.

[0009] FIG. 21s a block diagram illustrating an example of
a possible multi-core architecture for a CPU 1n accordance
with aspects of the present disclosure.

[0010] FIG. 3 1s a block diagram of a device having a CPU

configured to operate 1 a backwards compatibility mode 1n
accordance with aspects of the present disclosure.

[0011] FIG. 4 1s a timing diagram that illustrates the
concept of “skew”.

[0012] FIG. 5 1s a flow diagram that illustrates operation
of a device 1n a timing testing mode in accordance with
aspects of the present disclosure.

INTRODUCTION

[0013] Even if the CPUs of the new device are binary
compatible with the legacy device (1.e. capable of executing
programs created for the legacy device), differences in
performance characteristics between the CPUs of the new
device and the CPUs of the legacy device may cause errors
in legacy applications, and as a result the new device will not
be backwards compatible.

[0014] If the CPUs of the new device have lower perfor-
mance than the CPUs of the legacy device, many errors in
a legacy application may arise due to the 1nability to meet
real time deadlines imposed by display timing, audio
streamout or the like. It the CPUs of the new device have
substantially higher performance than the CPUs of the
legacy device, many errors 1n a legacy application may arise

due to the untested consequences of such high speed opera-
tion. For example, in a producer-consumer model, 1f a
consumer of data (e.g. the CPU) operates at higher speed
than originally anticipated, 1t may attempt to access data
betore the data producer (e.g. some other component of the
computer) makes it available. Alternatively 1t the producer
of the data (e.g. the CPU) operates at higher speed than
originally anticipated, 1t may overwrite data still being used
by the data consumer (e.g. some other component of the
computer).

[0015] Additionally, as speed of execution of code by a
CPU depends on the characteristics of the specific code
being executed, 1t 1s possible that the degree of increase of
performance of the CPUs of the new device relative to the
legacy device will depend on the specific code being
executed. This may lead to problems in the producer-
consumer model described above, where producer and con-
sumer are both CPUs but are executing the code of the
legacy application at relative speeds not encountered on the
legacy hardware.

US 2024/0211380 Al

Embodiments

[0016] Aspects of the present disclosure describe com-
puter systems and methods which may allow applications
written for a device to have a higher degree of backwards
compatibility when running on a second device that 1s binary
compatible (in that the programs written for the first device
will execute on the second device) but has diflerent timing
characteristics (in that the programs written for the first
device will execute at different rates on the second device,
and therefore errors 1n operation may arise). The second
device could potentially be a variant or a more advanced
version of the first device, and could potentially be config-
ured 1 a “backwards compatibility mode” where the fea-
tures and capabilities of the second device more closely
approximate those of the first device.

[0017] In implementations of the present disclosure, a
timing testing mode 1s created for the first device. This mode
creates timings not found (or not typically found) on the
device, with the result that when an application 1s run 1n this
mode, errors 1n synchronization between hardware compo-
nents (such CPU, GPU, audio and video hardware) or
between software components (such as application process-
ing or OS processing) occur 1n ways that are not possible or
not common on the device during normal operation. Once
these errors 1n synchronization are detected, the application
solftware may be fixed to eliminate or alleviate them,
increasing the likelihood that the application will execute
properly on a second device with different timing charac-
teristics, 1.e. the application will have a higher degree of
backwards compatibility on the second device with respect
to the first device. As the capabilities of the second device
may not be known (e.g. 1t may be a future device that does
not exist yet), it 1s of benefit to have a great vaniety to the
timings available in the timing testing mode.

[0018] Inimplementations of the present disclosure, 1n the
timing testing mode, the operating system may configure the
hardware 1n a certain state (e.g. at a specific operating
frequency not found 1n normal operation of the device).
Additionally, in the timing testing mode, the operating
system may alter the hardware configuration as the appli-
cation 1s running, or perform various processing (€.g., pro-
cesses that compete for system resources or preempt the
application processing) as the application 1s running.

[0019] In implementations of the present disclosure, the
testing may be performed on hardware different from the
device. For example, using ICs selected to run at a greater
operating range than a consumer device will allow testing
modes not available on the consumer device.

[0020] FIG. 1 depicts a generalized architecture of a CPU
core 100. The CPU core 100 typically includes a branch
prediction unit 102, that attempts to predict whether a branch
will be taken or not, and also attempts (1n the event that the
branch 1s taken) to predict the destination address of the
branch. To the extent that these predictions are correct the
clliciency of speculatively executed code will be increased;
highly accurate branch prediction 1s therefore extremely
desirable. The branch prediction unit 102 may include
highly specialized sub-units such as a return address stack
104 that tracks return addresses from subroutines, an indi-
rect target array 106 that tracks the destinations of indirect
branches, and a branch target bufler 108 and 1ts associated
prediction logic that track past history of branches in order
to more accurately predict their resulting addresses.

Jun. 27, 2024

[0021] The CPU core 100 typically includes an instruction
fetch and decode unit 110, which includes an instruction
fetch umit 112, an instruction byte bufler 114, and an
instruction decode unit 116. The CPU core 100 also typically
includes a number of instruction related caches and 1nstruc-
tion translation lookaside buflers (ITLBs) 120. These may
include an ITLB cache hierarchy 124 that caches virtual
address to physical address translation information such as
page table entries, page directory entries, and the like. This
information 1s used to transform the virtual address of the
istruction mto a physical address so that the instruction
fetch unit 112 can load the instructions from the cache
hierarchy. By way of example, and not by way of limitation,
the program instructions may be cached according to a cache
hierarchy that includes a level 1 istruction cache (L1
[-Cache) 122 residing in the core, as well as other cache
levels 176 external to the CPU core 100; using the physical
address of the instruction, these caches are first searched for
the program instructions. I the instructions are not found,
then they are loaded from a system memory 101. Depending
on the architecture, there may also be a micro-op cache 126
that contains the decoded 1nstructions, as described below.

[0022] Once the program instructions have been fetched,
they are typically placed in the instruction byte buiifer 114
awaiting processing by the mstruction fetch and decode unit
110. Decoding can be a very complex process; 1t 1s ditlicult
to decode multiple instructions each cycle, and there may be
restrictions on 1instruction alignment or type of instruction
that limit how many instructions may be decoded 1n a cycle.
Decoded instructions may, depending on architecture, be
placed in the micro-op cache 126 (if one 1s present on the
new CPU) so that the decode stage can be bypassed for
subsequent use of the program instructions.

[0023] Decoded mstructions are typically passed to other
units for dispatch and scheduling 130. These units may use
retirement queues 132 to track the status of the mnstructions
throughout the remainder of the CPU pipeline. Also, due to
the limited number of general purpose and SIMD registers
available on many CPU architectures, register renaming
may be performed, in which as logical (also known as
architectural) registers are encountered in stream of mstruc-
tions being executed, physical registers 140 are assigned to
represent them. The physical registers 140 may include
Single Instruction Multiple Data (SIMD) register banks 142
and General Purpose (GP) register banks 144, which can be
much larger i size than the number of logical registers
available on the particular CPU architecture, and as a result
the performance can be considerably increased. After reg-
ister renaming 134 1s performed, mstructions are typically
placed in scheduling queues 136, from which a number of
istructions may be selected each cycle (based on depen-
dencies) for execution by execution umts 150.

[0024] The execution units 150 typically include SIMD
pipes 152 that perform a number of parallel operations on
multiple data fields contained in 128-bit or wider SIMD
registers contained 1n the SIMD register bank 142, arithme-
tic and logic units (ALUs) 154 that perform a number of
logical, arithmetic, and miscellaneous operations on GPRs
contained 1n the GP register bank 144, and address genera-
tion units (AGUs) 156 that calculate the address from which
memory should be stored or loaded. There may be multiple
instances of each type of execution unit, and the nstances
may have differing capabilities, for example a specific SIMD

US 2024/0211380 Al

pipe 152 may be able to perform floating point multiply
operations but not tloating point add operations.

[0025] Stores and loads are typically bullered in a store
queue 162 and a load queue 164 so that many memory
operations can be performed 1n parallel. To assist in memory
operations, the CPU core 100 usually includes a number of
data related caches and data translation lookaside buflers
(DTLBs) 170. A DTLB cache hierarchy 172 caches virtual
address to physical address translation such as page table
entries, page directory entries, and the like; this information
1s used to transform the virtual address of the memory
operation mto a physical address so that data can be stored
or loaded from system memory. The data 1s typically cached
in a level 1 data cache (L1 D-Cache) 174 residing in the
core, as well as other cache levels 176 external to the core
100.

[0026] According to certain aspects of the disclosure, a
CPU may include a plurality of cores. By way of example
and not by way of limitation, FIG. 2 depicts an example of
a possible multi-core CPU 200 that may be used in con-
junction with aspects of the present disclosure. Specifically,
the architecture of the CPU 200 may include M clusters
201-1 ... 201-M, where M 1s an integer greater than zero.
Each cluster may have N cores 202-1, 202-2 . . . 202-N,
where N 1s an integer greater than 1. Aspects of the present
disclosure mnclude implementations 1n which different clus-
ters have different numbers of cores. Each core may include
one or more corresponding dedicated local caches (e.g., L1
instruction, L1 data, or L2 caches). Each of the local caches
may be dedicated to a particular corresponding core 1n the
sense that 1t 1s not shared with any other cores. Each cluster
may also include a cluster-level cache 203-1 . . . 203-M that
may be shared between the cores in the corresponding
cluster. In some implementations the cluster-level caches are
not shared by cores associated with different caches. Fur-
thermore, the CPU 200 may include one or more higher-
level caches 204, which may be shared between the clusters.
To facilitate communication among the cores 1n a cluster, the

clusters 201-1 . . . 202-M may include corresponding local

busses 205-1 . . . 205-M coupled to each of the cores and the
cluster-level cache for the cluster. Likewise, to facilitate
communication among the clusters, the CPU 200 may
include one or more higher-level busses 206 coupled to the
clusters 201-1 . . . 201-M and to the higher level cache 204.
In some implementations the higher-level bus or busses 206
may also be coupled to other devices, e.g., a GPU, memory,
or memory controller. In still other implementations, the
higher-level bus or busses 206 may be connected to a
device-level bus that connects to different devices within a
system. In yet other implementations, the higher level bus or
busses 206 may couple the clusters 201-1 . . . 201-M to the
higher level cache 204, and a device-level bus 208 may
couple the higher level cache 204 to other devices, e.g., a
GPU, memory, or memory controller. By way of example,
and not by way of limitation, an implementation with such

a device-level bus 208 may arise, e.g., where the higher level
cache 204 1s an L3 for all CPU cores, but not for GPU use.

[0027] Inthe CPU 200 OS processing may occur predomi-
nantly on a certain core, or a certain subset of the cores.
Similarly, application-level processing may occur predomi-
nantly on a particular core or subset of the cores. Individual
application threads may be designated by the application to
run on a certain core, or a certain subset of the cores. As
caches and buses are shared, speed of processing by a given

Jun. 27, 2024

application thread may vary depending on the processing
occurring by other threads (e.g., application threads or OS
threads) running 1n the same cluster as the given application
thread. Depending on the specifics of the CPU 200, a core
may be capable of executing only one thread at once, or may
be capable of executing multiple threads simultaneously
(“hyperthreading™). In the case of a hyperthreaded CPU, an
application may also designate which threads may be
executed simultaneously with which other threads. Perfor-
mance of a thread 1s impacted by the specific processing
performed by any other threads being executed by the same
core.

[0028] Turning now to FIG. 3, an illustrative example of
a device 300 configured to operate i accordance with
aspects of the present disclosure 1s depicted. According to
aspects of the present disclosure, the device 300 may be an
embedded system, mobile phone, personal computer, tablet

computer, portable game device, workstation, game console,
and the like.

[0029] The device 300 generally includes a central pro-
cessor unit (CPU) 320 which may include one or more CPU
cores 323 of the type depicted 1n FIG. 1 and discussed
above. The CPU 320 may include a plurality of such cores
323 and one or more caches 325 1n a configuration like that
shown 1n the CPU 200 of FIG. 2. By way of example and not
by way of limitation, the CPU 320 may be part of an
accelerated processing unit (APU) 310 that includes the
CPU 320, and a graphics processing unit (GPU) 330 on a
single chip. In alternative implementations, the CPU 320
and GPU 330 may be implemented as separate hardware
components on separate chips. The GPU 330 may also
include two or more cores 332 and two or more caches 334
and (in some 1mplementations) one or more busses to
facilitate communication among the cores and caches and
other components of the system. The busses may include an
internal bus or busses 317 for the APU 310, and an external
data bus 390.

[0030] The device 300 may also include memory 340. The
memory 340 may optionally include a main memory unit
that 1s accessible to the CPU 320 and GPU 330. The CPU
320 and GPU 330 may cach include one or more processor
cores, €.g., a single core, two cores, four cores, eight cores,
or more. The CPU 320 and GPU 330 may be configured to
access one or more memory units using the external data bus
390, and, 1n some 1mplementations, it may be usetul for the
device 300 to include two or more diflerent buses.

[0031] The memory 340 may include one or more memory
units 1n the form of integrated circuits that provides address-
able memory, e.g., RAM, DRAM, and the like. The memory
may contain executable instructions configured to 1mple-
ment a method like the method of FIG. 5 upon execution for
determining operate the device 300 1n a timing testing mode
when runming applications originally created for execution
on a legacy CPU. In addition, the memory 340 may include
a dedicated graphics memory for temporarly storing graph-
ics resources, graphics bullers, and other graphics data for a
graphics rendering pipeline.

[0032] The CPU 320 may be configured to execute CPU
code, which may include operating system (OS) 321 or an
application 322 (e.g., a video game). The operating system
may 1nclude a kemel that manages input/output (I/O)
requests from software (e.g., application 322) and translates
them into data processing instructions for the CPU 320,

GPU 330 or other components of the device 300. The OS

US 2024/0211380 Al

321 may also include firmware, which may be stored in
non-volatile memory. The OS 321 may be configured to
implement certain features of operating the CPU 320 1n a
timing testing mode, as discussed 1n detail below. The CPU
code may 1nclude a graphics application programming inter-
tace (API) 324 for 1ssuing draw commands or draw calls to
programs implemented by the GPU 330 based on a state of
the application 322. The CPU code may also implement

physics simulations and other functions. Portions of the code
for one or more of the OS 321, application 322, or API 324
may be stored 1n the memory 340, caches internal or external

to the CPU or 1n a mass storage device accessible to the CPU
320.

[0033] The device 300 may include a memory controller
315. The memory controller 315 may be a digital circuit that
manages the tlow of data going to and from the memory 340.
By way of example and not by way of limitation, the
memory controller may be an integral part of the APU 310,
as 1n the example depicted 1n FIG. 3, or may be a separate
hardware component.

[0034] The device 300 may also include well-known sup-
port functions 350, which may communicate with other
components of the system, e.g., via the bus 390. Such
support functions may include, but are not limited to,
input/output (I/0) elements 352, one or more clocks 356,
which may include separate clocks for the CPU 320, GPU
330, and memory 340, respectively, and one or more levels
of cache 358, which may be external to the CPU 320 and
GPU 330. The device 300 may optionally include a mass
storage device 360 such as a disk drive, CD-ROM dnive,
flash memory, tape drive, Blu-ray drive, or the like to store
programs and/or data. In one example, the mass storage
device 360 may receive a computer readable medium 362
containing a legacy application originally designed to run on
a system having a legacy CPU. Alternatively, the legacy
application 362 (or portions thereol) may be stored in
memory 340 or partly 1n the cache 358.

[0035] The device 300 may also include a display unit 380
to present rendered graphics 382 prepared by the GPU 330
to a user. The device 300 may also include a user interface
unit 370 to facilitate interaction between the system 100 and
a user. The display unit 380 may be in the form of a flat panel
display, cathode ray tube (CRT) screen, touch screen, head
mounted display (HMD) or other device that can display
text, numerals, graphical symbols, or images. The display
380 may display rendered graphics 382 processed in accor-
dance with various techniques described herein. The user
interface 370 may contain one or more peripherals, such as
a keyboard, mouse, joystick, light pen, game controller,
touch screen, and/or other device that may be used in
conjunction with a graphical user interface (GUI). In certain
implementations, the state of the application 322 and the
underlying content of the graphics may be determined at
least 1 part by user input through the user interface 370,
¢.g., where the application 322 includes a video game or
other graphics mtensive application.

[0036] The device 300 may also include a network inter-
tace 372 to enable the device to communicate with other
devices over a network. The network may be, e.g., a local
area network (LAN), a wide area network such as the
internet, a personal area network, such as a Bluetooth
network or other type of network. Various ones of the

Jun. 27, 2024

components shown and described may be implemented 1n
hardware, software, or firmware, or some combination of
two or more of these.

[0037] Aspects of the present disclosure overcome prob-
lems with backward compatibility that arise as a result of
differences 1n timing when programs written for a legacy
system run on a more powertul or a differently configured
new system. By running the device 300 1n a timing testing
mode developers can determine how soiftware written for
legacy systems perform when operated on the new system.

[0038] According to aspects of the present disclosure, the
device 300 may be configured to operate in a timing testing
mode. To appreciate the usefulness of such a mode of
operation, consider the timing diagram of FIG. 4. In FIG. 4,
when running an application, different computing elements
(e.g., CPU cores) A, B, C, D may run different tasks
indicated by the parallelograms A, .. . A, B, ... B, C, .
.. C,, D, ... D4. Certain tasks need to produce data for
consumption by other tasks, which can’t begin work until
the needed data 1s produced. For example, suppose task A,
requires data produced by task A, and task B, requires data
produced by tasks A, and B,. To ensure proper operation,
typically the application will use semaphores or other syn-
chronization strategies between the tasks, for example prior
to beginning execution of task B, it should be checked that
tasks A, and B, (that produce the required source data for
task B,) have run to completion. Further suppose that the
timing shown 1n FIG. 4 represents the timing of these tasks
as implemented on a legacy device. Timings may differ on
a new device (e.g. one with more powerful processing
capabilities 1in core B), and as a result task B, might finish
before task A, has produced the data need by task B,. The
shift in the relative timing of the tasks on the different
processors 1s referred to herein as “skew”. Such skew may
expose solftware errors 1n the application that will appear
only on the new device, or appear with increased frequency
on the new device. For example, 1f on the legacy device, task
A, were guaranteed to finish before task B,, the synchroni-
zation code ensuring that task A, finishes before task B,
might never be tested, and if the synchronization code were
improperly implemented, it 1s possible that this would only
become known when running the application on the new
device, e.g. task B, might begin execution before task A,
produced the data required my 1t, potentially leading to a
fatal error 1n the application. Furthermore, similar problems
may arise when applications written to be run on a new
device are run on a less capable legacy device. To address
these problems, a device such as 300 may be run 1n a timing
testing mode 1n which skew can be deliberately created, e.g.,
among CPU threads, or between the CPU 320 and GPU 330,
or among processes running on GPU 330, or between any of
these and real time clocks. Testing in this mode can increase
the likelihood that an application will run properly on future
hardware.

[0039] According to aspects of the present disclosure, 1n
the timing testing mode the CPU cores may be configured to
run at different frequencies (higher or lower) than for normal
operation of the device, or the OS 321 may continually or
occasionally modily the frequencies of the CPU cores. This
may be done 1n such a way that the CPU cores all run at the
same Irequency relative to each other, or 1n such a way that
the CPU cores run at different frequencies from each other,
or some may run at a certain frequency and others at another
frequency.

US 2024/0211380 Al

[0040] By way of example, but not by way of limitation,
il on a legacy device there are four cores that run at 1 GHz
on a consumer device 1n 1ts typical operating mode, then 1n
timing testing mode, during successive ten second periods,
a core may be selected randomly to run at 800 MHZ. As a
result, processes running on the selected core would run
more slowly, exposing possible errors 1 synchromization
logic between that core and the other cores, as other cores
might attempt to use data prepared by the selected core
before that data was fully ready.

[0041] In aspects of the current disclosure, in timing
testing mode a clock rate of caches not contained in the CPU
cores may be configured to run at a different (higher or
lower) frequency than their normal operating frequency, or
different than the normal operating frequency of the CPU
cores. If there are multiple caches that may be configured 1n
such a way, then they may be configured to run at the same
rate relative to each other, at different frequencies relative to
cach other, or some may run at a certain frequency and
others at another frequency.

[0042] In aspects of the current disclosure, in timing
testing mode CPU resources may be configured to be
restricted 1 ways that aflect the timing of execution of
application code. Queues, e.g., store and load queues, retire-
ment queues, and scheduling queues, may be configured to
be reduced 1n size (e.g., the usable portion of the resource
may be restricted). Caches, such as the L1 I-Cache and
D-Cache, the ITLB and DTLB cache hierarchies, and higher
level caches may be reduced 1n size (e.g. the number of
values that can be stored 1n a fully associative cache may be
reduced, or for a cache with a limited number of ways the
available bank count or way count may be reduced). The rate
of execution of all instructions or specific 1nstructions run-

ning on the ALU, AGU or SIMD pipes may be reduced (e.g.
the latency increases and/or the throughput decreases).

[0043] In aspects of the current disclosure, 1n timing
testing mode the OS may temporarily preempt (suspend)
application threads. By way of example, but not by way of
limitation, individual application threads may be preempted,
or multiple threads may be preempted simultaneously, or all
threads may be preempted simultaneously; the timing of the
preemption can be random or systematic; the number of
preemptions and their length may be tuned so as to increase
the likelihood that real time deadlines (such as for display
timing or audio streamout) can be met by the application.

[0044] In aspects of the current disclosure, in timing
testing mode, when the OS performs processing as requested
by the application (e.g. services such as allocation), or when
the OS performs processing independent of application
requests (e.g. servicing of hardware interrupts), the time
taken by the OS and a processor (e.g., a CPU core) used by
the OS may be different from the time taken and the CPU
core used 1n the normal mode of operation of the device. By
way of example, but not by way of limitation, the time taken
by the OS to perform memory allocation could be increased,
or the OS could service hardware interrupts using CPU cores
that are exclusively used by the application under normal
operation of the device.

[0045] In aspects of the current disclosure, in timing
testing mode, the application threads may execute on a CPU
core different from that designated by the application. By
way of example, but not by way of limitation, 1n an system
with two clusters (cluster “A” and cluster “B”) each with

two cores, all threads designated for execution on core 0 of

Jun. 27, 2024

cluster A could 1nstead by executed on core O of cluster B,
and all threads designated for execution on core 0 of cluster
B could instead by executed on core O of cluster A, resulting
in different timing of execution of thread processing due to
sharing the cluster high level cache with different threads
than under normal operation of the device.

[0046] In aspects of the current disclosure, 1n timing
testing mode, the OS 321 may randomly or systematically
write back or mvalidate CPU caches, or invalidate instruc-
tion and data TLBs. By way of example, but not by way of
limitation, the OS could randomly 1mvalidate and write back
the cache hierarchy of all CPU cores, resulting in delays in
thread execution during the invalidation and write back, as
well as delays as threads request data normally found 1n the
cache hierarchy, resulting 1n timing not encountered during
normal operation of the device.

[0047] In aspects of the current disclosure, in timing
testing mode the GPU and any GPU subunits with separate
configurable frequencies may be configured to run at dii-
terent frequencies from normal operation of the device, or
the OS may continually or occasionally modily the fre-
quency of the GPU and any of 1ts separately configurable
subunits.

[0048] In addition, other behaviors of one or more caches,
such as the [.1 I-Cache and D-Cache, the ITLB and DTLB
cache hierarchies, and higher level caches may be modified
in ways the disrupt timing 1n the timing testing mode. One
non-limiting example of such a change in cache behavior
modification would be to change whether a particular cache
1s exclusive or inclusive. A cache that i1s inclusive in the
normal mode may be configured to be exclusive in the
timing testing mode or vice versa.

[0049] Another non-limiting example of a cache behavior
modification mvolves cache lookup behavior. In the timing
testing mode, cache lookups may be done differently than in
the normal mode. Memory access for certain newer proces-
sor hardware may actually slow down compared to older
hardware 11 the newer hardware translates from virtual to
physical address before a cache lookup and the older hard-
ware does not. For cache entries stored by physical address,
as 15 commonly done for multi-core CPU caches 325, a
virtual address 1s always translated to a physical address
before performing a cache look up (e.g., n L1 and L2).
Always translating a virtual address to a physical address
before performing any cache lookup allows a core that
writes to a particular memory location to notify other cores
not to write to that location. By contrast, cache lookups for
cache entries stored according to virtual address (e.g., for
GPU caches 334) can be performed without having to
translate the address. This 1s faster because address transla-
tion only needs to be performed 1n the event of a cache miss,
1.¢., an entry 1s not in the cache and must be looked up 1n
memory 340. The difference 1n cache behavior between may
introduce a delay of 5 to 1000 cycles 1n newer hardware,
¢.g., 1I older GPU hardware stores cache entries by virtual
address and newer GPU hardware stores cache entries by
physical address. To test the application 322 for errors
resulting from differences in cache lookup behavior, 1n the
timing testing mode, caching and cache lookup behavior for
one or more caches (e.g., GPU caches 334) may be changed
from being based on virtual address to being based on
physical address or vice versa.

[0050] Yet another, non-limiting, example of a behavior
modification would be to disable an I-cache pre-fetch func-

US 2024/0211380 Al

tion 1n the timing testing mode for one or more I-caches that
have such a function enabled 1n the normal mode.

[0051] In aspects of the current disclosure, 1n timing
testing mode, 1n timing testing mode the OS may replace
GPU firmware, 1f 1t exists, with firmware with timings
different from normal operation of the device. By way of
example, but not by way of limitation, 1n timing testing
mode the firmware could be replaced by firmware with a
higher overhead for each object processed, or by firmware
that supports a lower count of objects that can be processed
simultaneously, resulting in timing not encountered during
normal operation of the device.

[0052] In aspects of the current disclosure, in timing
testing mode GPU resources may be configured to be
restricted 1 ways that aflect the timing of processing of
application requests. The GPU caches 334 may be reduced
in size (e.g. the number of values that can be stored 1n a fully
associative cache may be reduced, or for a cache with a
limited number of ways the available bank count or way
count may be reduced). The rate of execution of all mstruc-
tions or specific instructions running on the GPU cores 332
may be reduced (e.g. the latency increases and/or the
throughput decreases).

[0053] In aspects of the current disclosure, 1n timing
testing mode the OS 321 may request the GPU 330 to
perform processing that reduces that remaining resources
available to application 322 {for its processing. These
requests may be either random or systematic in their timing.
By way of example, but not by way of limitation, the OS 321
may request higher priority rendering of graphical objects or
compute shaders which may displace lower priornty appli-
cation rendering or other computation, or the OS 321 may
request that its processing occur on speciiic GPU cores 332
and thereby disproportionally impact application processing
designated to be occurring on those GPU cores.

[0054] In aspects of the current disclosure, in timing
testing mode, the OS 321 may randomly or systematically
request that the GPU 330 write back or invalidate 1ts caches,

or invalidate 1ts mstruction and data TLBs.

[0055] According to aspects of the present disclosure, the
APU 310 may include an internal clock or clocks 316 for the
internal bus or busses 317, which operates at a specific clock
rate or set of rates referred to heremn as the “internal bus
clock”. The internal bus or busses 317 connects to the
memory controller 315, which 1s 1n turn connected to the
external memory 340. Commumnications from the memory
controller 315 to the memory 340 may occur at another
specific clock rate, referred to herein as the “memory clock™.

[0056] According to aspects of the present disclosure,
when the device 300 operates 1n the timing testing mode the
memory clock and/or internal bus clock may be configured
to run at different (e.g., higher or lower) frequencies than
they run at during normal operation of the device, or the OS
321 may continually or occasionally modify the frequency
of the memory clock and/or internal bus clock.

[0057] In aspects of the current disclosure, in the timing
testing mode the memory controller 315 may be configured
to stimulate random failures to read data properly from the
external memory, to increase the latency of certain types of
memory accesses performed by the memory controller, or to
use prioritization between the various types of memory
accesses that differs from the priontization used during

Jun. 27, 2024

normal operation of the device. The OS 321 may continually
or occasionally modily these configurations 1in timing testing
mode.

[0058] According to aspects of the present disclosure, 1n
the timing testing mode the memory controller 315 may be
configured so that address lines are permuted, e.g., signals
ordinarily placed on one address line may be swapped with
signals placed on another address line. By way of example,
but not by way of limitation, if address line A was used to
send column information to external memory 315, and
address line B was used to send row information to the
external memory 340, and 1n timing testing mode the signals
sent to address lines A and B were swapped, then the result
would be very different timing than that found during normal
operation of the device.

[0059] Configuring the hardware and performing opera-
tions as described above (e.g., configuring the CPU cores to
run at different frequencies) may expose errors 1n synchro-
nization logic, but 1f the real time behavior of the device 1s
important, the timing testing mode itself may cause errors 1n
operation, e.g., 1n the case of a video game console, errors
due to the mability of the lower speed CPU cores to meet
real time deadlines imposed by display timing, audio
streamout or the like. According to aspects of the present
disclosure, 1n timing testing mode, the device 300 may be
run at higher than standard operating speed. By way of
non-limiting example, the higher than standard operating
speed may be about 3% to about 30% higher than the
standard operating speed. By way of example, but not by
way ol limitation, 1 timing testing mode, the clock of the
CPU, CPU caches, GPU, internal bus, and memory may be
set to higher frequencies than the standard operating fre-
quency (or the standard operating frequency range) of the
device. As the mass produced version of the device 300 may
be constructed 1n such a way as to preclude setting of clocks
at above standard operating frequencies, specially designed
hardware may need to be created, for example hardware that
uses higher speed memory chips than a corresponding mass
produced device, or uses the portion of a manufacturing run
of a system on chip (SoC) that allows higher speed operation
than average, or uses higher spec motherboards, power
supplies, and cooling systems than are used on the mass
produced device.

[0060] By way of example, but not by way of limitation,
if the specially designed hardware allows higher speed
operation of the CPU than the mass produced device does,
and 1f there are four cores that run at 1 GHz on the mass
produced device 1n 1ts typical operating mode, then in timing
testing mode on the specially designed hardware, during
successive ten second periods, three cores could be selected
to run at 1.2 GHZ, and the remaining core could run at 1
GHz. As a result, processing running on the selected core
would run more slowly than on the other cores, exposing
possible errors 1n synchronization logic, but unlike the prior
example as all cores are running at least as fast as they do
on the mass produced device, real time deadlines (e.g. for
display timing) can be met and the timing testing mode 1tself
1s unlikely to cause errors 1n operation.

By way of example, but not by way of limitation, 1 the
specially designed hardware allows higher speed operation
of the CPU than the mass produced device does, and if there
are four cores that run at 1 GHz on the mass produced device
in 1ts typical operating mode, then in timing testing mode on
the specially designed hardware, all cores could be selected

US 2024/0211380 Al

to run at 1.2 GHZ, and the OS 321 may randomly write back
and invalidate CPU caches. 11 the degree of slowdown due
to the cache write back and invalidation 1s less than the
speedup due to the higher CPU frequency, then as above real
time deadlines can be met and the timing testing mode itself
1s unlikely to cause errors in operation, in other words the
timing testing mode can induce skew via the cache opera-
tions and testing for synchronization errors can be per-
formed without concern that the overall operation of the
device will be slower and therefore more error-prone.

[0061] There are a number of ways 1 which application
errors may be manifested in the timing testing mode.
According to one implementation, the specially designed
hardware may include a circuit or circuits configured to
determine the number of instructions per cycle (IPC)
executed by the device 300. The OS 321 may monitor
changes 1 IPC to test for errors i the application. The OS
may correlate significant variations 1 IPC to particular

modifications to operation of the device in timing testing
mode.

[0062] According to aspects of the present disclosure a
computer device may operate 1n a timing testing mode. By
way of example, and not by way of limitation, a computer
system, like the device 300 may have an operating system,
like the operating system 321 that 1s configured to imple-
ment such a timing testing mode 1 a manner similar to a

method 500 illustrated in FIG. 5§ and discussed below.

[0063] The method starts, as indicated at 501. At 510, 1t 1s

determined whether the system 1s to run 1n timing testing
mode. There are a number of ways in which this may be
done. By way of example, and not by way of limitation, the
operating system 321 may prompt a user to determine
whether to enter the timing testing mode via rendered
graphics 382 on the display 380 and the user may enter an
appropriate instruction via the user interface 370. I 1t 1s
determined that the system should not operate in the timing
testing mode, the system may run normally, as indicated at
520. It 1t 1s determined that the system should operate 1n the
timing testing mode, the device may be set run in the timing,
testing mode, as 1ndicated at 530. Setting up the device to
run in the timing testing mode may generally mnvolve an
operating system for the device (e.g., OS 321) setting up a
hardware state, loading firmware, and performing other
operations to implement settings that are specific to the
timing testing mode.

[0064] The device 300 may be set to run 1n the timing
testing mode 1n any of a large number of possible ways. By
way of example, and not by way of limitation, in some
implementations the device may be configured externally,
¢.g., via a network (e.g., a local area network (LAN). In
another non-limiting example, the device may be configured
internally through the use of menus generated by the oper-
ating system and mnputs from a user interface. In other
non-limiting example, the device may be set up to run 1n the
timing testing mode through physical configuration of the
device hardware, e.g., by manually setting the positions of
one or more dual in-line package (DIP) switches on the
device. The device firmware (e.g., stored in ROM) may then
read the settings of the DIP switches, e.g., when the device
1s powered on. This latter implementation may be useful,
¢.g., In cases where the device 1s specially designed hard-
ware rather than the mass produced version of the device. In

Jun. 27, 2024

such cases, the switches may be located on an outside of a
box or case that contains the device hardware for conve-
nience.

[0065] Once the device 1s set run in the timing testing
mode, the device may run an application in the timing
testing mode, as indicated at 540. There are a number of
ways 1n which the operation of the system in timing testing
mode may differ from normal device operation.

[0066] By way of example, and not by way of limitation,
while the application 322 1s running, the OS 321 may do one
or more of the following while running the application 1n the
timing testing:

[0067] Moditying hardware settings in real time, as
indicated at 542;

[0068] Sending commands to various hardware compo-
nents of the device 300, in ways that disrupt timing, as
indicated at 544;

[0069] Running programs that interfere with the appli-
cation 322, e.g., by taking resources away from appli-
cation, suspending the application, or competing for
resources with the application, as indicated at 546.

[0070] altering functionality of the OS 321 1n the timing,
testing mode 1n ways that disrupt timing, as idicated
at 548.

[0071] Once the application 322 is running with the device
300 1n the timing testing mode, the application may be tested
for errors, as indicated at 550. Such testing may include, but
1s not limited to, determining whether the application stalls,
generates an error, or produces an anomalous result (e.g., a
significant IPC wvariation) that does not occur when the
device runs normally.

[0072] As an example of modifying settings at 342, 1n a
processor architecture of the type shown in FIG. 2, two or
more CPU cores may run at different frequencies, which
may be Irequencies higher than then normal operating
frequency of the consumer device. Similarly, two or more
caches within a device may run at different frequencies 1n
the timing testing mode. Furthermore, different combina-
tions of cores and caches may run at diflerent frequencies.

[0073] In other embodiments, CPU resources may be
reduced when the device operates 1n the timing testing
mode. Examples of such CPU resource reduction include,
but are not limited to reducing the size of store queues, load
queues, or caches (e.g., L1 or higher, I-cache, D-cache,
ITLB, or DTLB). Other examples include, but are not
limited to reducing the rate of execution of ALU, AGU,
SIMD pipes, or specific instructions. In addition, one or
more individual cores or application threads may be ran-
domly or systematically preempted. Additional examples
include delaying or speeding up or changing timing when
using OS functionality, changing use of cores by the OS,
altering virtual to physical core assignment (e.g., inter-
cluster competition), leveraging other asymmetrics, or writ-
ing back or mvalidating caches and/or TLBs.

[0074] In other implementations, modifying settings at
542 may include altering the functioning of the GPU 330.
Examples of such alterations include running GPU cores
332 at different frequencies, running one or more of the GPU
cores at a diflerent frequency than normal for a consumer
device, replacing GPU firmware with firmware with timings
different from normal operation of the device 300. One more
of the GPU cores 332 may be configured to selectively
operate at higher or lower frequencies than are used for the
normal operating mode of the device. Other examples

US 2024/0211380 Al

include disrupting GPU firmware (e.g., disrupting object
processing), and reducing GPU resources reduced such as
cache size or rate of execution.

[0075] In other implementations, GPU processing may be
altered when running the device 1n the timing testing mode,
e.g., by changing wavefront count via random compute
threads, randomly preempting graphics, or by writing back
or invalidating caches and/or TLBs.

[0076] Examples of sending commands to hardware com-
ponents 1n ways that disrupt timing at 544 include altering
the functioning of the memory 340 or memory controller
315. Examples of such alteration of memory or memory
controller functioming include, but are not limited to, run-
ning a memory clock/ and internal bus clock diflerent
frequencies, mserting noise into memory operations, adding
latency to memory operations, changing priorities of
memory operations, and changing row and/or column chan-
nel bits, to simulate different channel counts or row breaks.
[0077] Aspects of the present disclosure allow software
developers to test out the performance of new applications
on previous versions of a device. More specifically, aspects
of the present disclosure allow developers to probe efiects of
disruptions in timing on the application.

[0078] While the above 1s a complete description of the
preferred embodiment of the present imnvention, 1t 1s possible
to use various alternatives, modifications and equivalents.
Therefore, the scope of the present invention should be
determined not with reference to the above description but
should, instead, be determined with reference to the
appended claims, along with their full scope of equivalents.
Any feature described herein, whether preferred or not, may
be combined with any other feature described herein,
whether preferred or not. In the claims that follow, the
indefinite article “A”, or “An” refers to a quantity of one or
more of the item following the article, except where
expressly stated otherwise. As used herein, 1 a listing of
elements 1n the alternative, the term ‘“or” 1s used as the
inclusive sense, e.g., “X or Y covers X alone, Y alone, or
both X and Y together, except where expressly stated
otherwise. Two or more elements listed as alternatives may
be combined together. The appended claims are not to be
interpreted as including means-plus-function limitations,
unless such a limitation 1s explicitly recited in a given claim
using the phrase “means for.”

What 1s claimed 1s:
1. A device, comprising:
ONe Or MOre processors;
a memory coupled to the one or more processors; and
an operating system (OS) stored in the memory config-
ured to run on at least a subset of the one or more
processors, wherein the operating system 1s configured
to selectively run 1n a timing testing mode or 1n a mode
of operation other than the timing testing mode,
wherein 1n the timing testing mode the device 1s config-
ured to attempt to induce skew.
2. The device of claim 1 wherein skew 1includes a shiit in
relative timing of tasks on the one or more processors.
3. The device of claim 1, wherein in the timing testing
mode the device 1s configured to attempt to induce skew by
configuring at least one of the one or more processors to

operate at a different clock frequency than a standard clock
frequency for the one or more processors.

4. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by

Jun. 27, 2024

restricting resources ol at least one of the one or more
processors to aflect timing of the execution of application
code. cm 5. The device of claim 1, wherein 1n the timing
testing mode, the device 1s configured to attempt to induce
skew by the OS temporarily suspending one or more appli-
cation threads running on at least one of the one or more
processors. cm 6. The device of claim 1, wherein 1n the
timing testing mode the device 1s configured to attempt to
induce skew by the OS performing processing independent
ol application requests wherein, the time taken by the OS
and at least one of the one or more processors used by the
OS may be different than a time taken by the one or more
processors 1n the mode of operation other than the timing
testing mode. cm 7. The device of claim 1, wherein 1n the
timing testing mode the device 1s configured to attempt to
induce skew by executing application threads on at least one
of the one or more processors diflerent from a processor

specified by an application.

8. The device of claim 1, wherein in the timing testing
mode the device 1s configured to attempt to induce skew by
writing back a processor cache of at least one of the one or
mOore processors.

9. The device of claim 1, wherein in the timing testing,
mode the device 1s configured to attempt to induce skew by
invalidating a processor cache at least one of the one or more
Processors.

10. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
invalidating an instruction cache at least one of the one or

IMOrc proccssors.

11. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
invalidating a translation lookaside bufler of at least one of
the one or more processors.

12. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
the OS configuring a Graphics Processing Unit (GPU) to run

a different frequency than a standard operating frequency for
the GPU.

13. The device of claim 12, wherein the GPU includes one
or more GPU subunits having configurable frequencies and
the one or more GPU subunits are configured to run at a
different frequency than a standard operating frequency.

14. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
modilying a behavior of one or more of a list consisting of
L1 I-Caches, L1 D-Caches, Instruction Translation Looka-
side Buflers hierarchies, Data Translation L.ookaside Bufler
hierarchies, and higher level caches.

15. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by

restricting computing resources of a Graphics Processing
Unit.

16. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
requesting a Graphics Processing Unit to perform other
processing tasks that reduce the remaining resources avail-
able for processing an application.

17. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
configuring one or more ol the memory clock and the
internal bus clock to run at different frequencies than their
standard operating frequency for the device.

US 2024/0211380 Al

18. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
configuring the memory controller to permute address lines.

19. The device of claim 1, further comprising running an
application while in timing testing mode and determining
one or more of application stalls, application errors, and
anomalous results of the application occurring while running
the application 1n the timing testing mode.

20. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
configuring a memory controller to simulate random failures
to read external memory.

21. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
configuring a memory controller to increase latency of
memory accesses by the memory controller.

22. The device of claim 1, wherein 1n the timing testing
mode the device 1s configured to attempt to induce skew by
configuring a memory controller to priornitize types of

Jun. 27, 2024

.

memory accesses diflerent from the prioritization of types of
memory accesses during the mode of operation other than

the timing testing mode.

23. A device, comprising:

One Or more pProcessors;

a memory coupled to the one or more processors; and

wherein the device 1s configured to selectively run 1n a

timing testing mode or in a mode of operation other
than the timing testing mode, wheremn in the timing
testing mode the device 1s configured to attempt to
induce skew.

24. A non-transitory computer readable medium having
computer readable executable 1nstructions embodied
therein, the nstructions being configured to cause a device
having a processor and memory to implement a method
upon execution of the instructions, the method comprising;:

running the device 1n a timing testing mode, wherein 1n

the timing testing mode the device 1s configured to
attempt to mnduce skew.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

