US006510441B1
12 United States Patent (10) Patent No.: US 6,510,441 B1
Kenninga 45) Date of Patent: Jan. 21, 2003
(54) OPTIMAL LINE BREAK DETERMINATION 6,044,383 A * 3/2000 Suzuki et al. ............... 707/509
6,189,020 B1 * 2/2001 Shimizu .........coeoveen... 707/526
(75) Inventor: KEric A. Kenninga? Sea‘[tle? WA (US) 6,279,018 B1 * 8/2001 Kudroll et al. ............ 707/540
(73) Assignee: Adobe Systems Incorporated, San OTHER PUBLICATIONS
Jose, CA (US) Rod Stephens, “Ready—to—Run, Visual Basic Algorithms,”
_ | o | Second Edition, Wiley Computer Publishing, pp. 117-185.
(*) Notice: Sub]ect. to any dlSCl&lII]GI‘,; the term of this URW hz—program, “Micro—typography for advanced type-
patent 1s extended or adjusted under 35 setting,” URW Software & TypeGmbH, Hamburg, Germany,
U.S.C. 154(b) by O days. 1993, 1-38.
Knuth et al.,, “Breaking Paragraphs into Lines,” Sojt-
(21) Appl. No.: 09/209,791 ware—Practice and Experience, vol. 11,, pp. 1119-1184,
(22) Filed:  Dec. 11, 1998 Feb. 1981,
(51) I0te CL7 oo GO6F 17/21  cited by examuner
(52) US.CL ., 707/521, 707/517, 7077/531 Primary Examingr_S‘[ephen S. Hong
(58) Field of Search .............................. 707/521, 500, (74) Artorney, Agent, or Firm—¥ish & Richardson P.C.
7077/517, 531
(57) ABSTRACT
(56) References Cited

U.S. PATENT DOCUMENTS

5,438,512 A * §/1995 Mantha et al. .............. 707/517
5,625,773 A * 4/1997 Bespalko et al. ........... 345/467
5,835,920 A * 11/1998 Horton ...c.ceevvvvvnennnnnn.. 707/517
5,978,819 A * 11/1999 Berstis ...ccvvevenvninenen.. 707/513
6,018,749 A * 1/2000 Rivette et al. .............. 707/525

Method and apparatus divide a paragraph of text into lines.
The mnvention determines possible line breaks for multiple
lines from a portion of the paragraph and selects an optimal
line break that produces an 1deal set of line breaks for the
multiple lines from the possible line breaks.

36 Claims, 5 Drawing Sheets

CREATE AN ACTIVE LINE 50 e 10
AND ADD TO ACTIVE LIST
[GET NEXT WORD]
/"54
ADD WORD TO
T THE ACTIVE LINE
ff REMOVE THE
_ ACTIVE LINES
WORD = EOP FROM THE
‘ ACTIVE LIST
N
60 100
ACTIVE -
LINE Y ACCEPT LINE
REASONABLE (FIG. 2)
LENGTH
?
N /"54
65 REMOVE THE
ACTIVE LINE ACTIVE LINE
TOO LONG FROM THE
? ACTIVE LIST
N
66
N_~ACCEPT LINE 1,
PERFORMED
?
Y
68
N _~"DONE WITH
ACTIVE LIST
e ?
ADD THE ACTIVE 7 72
NEW LINE TO THE FIND SHORTEST
ACTIVE LIST 2 ATH

SET LINES
CORRESPONDING TO
THE SHORTEST PATH




U.S. Patent Jan. 21, 2003 Sheet 1 of 5 US 6,510,441 B1

CREATE AN ACTIVE LINE | 50 10
AND ADD TO ACTIVE LIST

52
GET NEXT WORD
54
ADD WORD TO
THE ACTIVE LINE
f{ﬁ REMOVE THE
_ ACTIVE LINES
WORD = EOP FROM THE
' ACTIVE LIST
N
60 100

ACTIVE

LINE Y ACCEPT LINE

REASONABLE (FIG. 2)
LENGTH
?
\ 64
REMOVE THE
ACTIVE LINE ACTIVE LINE
TOO LONG FROM THE

? ACTIVE LIST

ACCEPT LINE
PERFORMED
?

N DONE WITH

- ACTIVE LIST
ADD THE ACTIVE ’ &
NEW LINE TO THE FIND SHORTEST
ACTIVE LIST PATH
74
SET LINES
CORRESPONDING TO
THE SHORTEST PATH




U.S. Patent Jan. 21, 2003 Sheet 2 of 5 US 6,510,441 B1

100 COPY THEACTIVE | /702
~ =
2357
104
CREATE A BLANK a
ACTIVE LINE

106 FIG._4a

N

GRAPH
COMPLETED TO

A PREDETERMINED
DEPTH
?

Y 108

SELECT AN IDEAL
SET OF NODES

110

REMOVE NODES THAT
DO NOT CONTINUE
FROM THE FIRST NODE

SET AND SAVE
THE FIRST NODE
REMOVE
THE FIRST NODE

FIG..2

112
114

| In olden times when wishing still helped one, there lived a
king whose daughters were all beautiful; and' the youngest was
so beautiful that the sun itself, which had seed s¢ much, was
astonjshed whenever if shoné in' her'face! Close' by the king’s
castle lay a’ great dark forest, and under an old lime;tree in the
forest was a well, and when the day' was very warm, the king’s
child went out into the forlest' and sat down by the side of the
cool fountain; and when she was'bored' she took' a' golden' ball,

and threw it up on highI and caught it; and this ball was her
favorite plaything. G



U.S. Patent Jan. 21, 2003 Sheet 3 of 5 US 6,510,441 B1

2357/ \1734
a

6 4692



U.S. Patent Jan. 21, 2003 Sheet 4 of 5 US 6,510,441 B1

was SO

038 3440

wa aston-

212 3066
IIHHIEI _castle
7437 3709 2043

- -

1635 5016 413 346

the ' king’s chlld went out

FIG._6

was
938

was
212
7437_—— 2043
8630 L 2
1635 346
out
39/ \12 JINN 182975

side of IIIIII ~cool] |foun-] | tain; and
FIG._7a



U.S. Patent Jan. 21, 2003 Sheet 5 of 5 US 6,510,441 B1

9338

was
212

1

8630 1S
1635

2
the

39 12 2714093

_side_ the
FIG._7b

1437

32 38
* -
PROCESSOR
PROGRAM DATA

40

OUTPUT
DEVICE

FIG._8




US 6,510,441 BI1

1
OPTIMAL LINE BREAK DETERMINATION

BACKGROUND OF THE INVENTION

This invention relates to methods and apparatus for break-
ing text into lines.

One operation commonly performed in preparing text
materials for printing or displaying 1s to divide paragraphs
into individual lines. When done well, readers hardly notice
that the words have been arbitrarily broken into a plurality
of lines. When done poorly, readers notice awkward line
breaks that interrupt their train of thought, requiring more
fime and effort to read the text.

A conventional method for breaking a paragraph into lines
determines appropriate line breaks by analyzing one line at
a time. Words are added to a line unfil a suitable length 1s
obtained, at which point a break 1s made and a new line 1s
started. Although this method is relatively simple and fast, it
fails to take 1nto consideration that the final appearance of
the paragraph as a whole and how the appearance of a given
line 1s nfluenced by preceding and succeeding lines.

As discussed 1in Donald E. Knuth and Michael F. Plass’s
article entitled “Breaking Paragraph Into Lines,” Software-
Practice and Experience, Vol II, pp. 1119-1184 (1981),
optimal line breaks may be selected by considering all
feasible line breaks for one paragraph. The articles describes
a method that evaluates all combinations of line breaks for
a given paragraph and selects an optimal set of line breaks
for the paragraph. This method was designed to operate 1n a
batch-processing environment on a mainframe or minicom-
puter and not 1 an 1nteractive environment of modem
personal computers.

SUMMARY OF THE INVENTION

In general, 1n one aspect, the mnvention features methods
and apparatus for dividing a paragraph into lines. The
method includes the steps of selecting a first line break to
define the end of a first line by evaluating possible line
breaks for multiple possible lines 1n a first portion of the
paragraph; and selecting a second line break to define the
end of a second line following the first line by evaluating
possible line breaks for multiple possible lines 1n a second
portion of the paragraph, where the second portion overlaps
the first portion but does not include words before the first
line break.

Among the advantages of the invention are the following.
The 1nvention determines optimal line breaks 1n a paragraph
by considering feasible line breaks for a portion of the
paragraph covering multiple lines. The mvention requires
less memory space and processing time even for a long
paragraph because only a portion of the paragraph at a time
1s analyzed to determine optimal line breaks. This 1s par-
ticularly important when processing a long paragraph since
possible combinations of line breaks grow exponentially for
a linear increase of feasible line breaks. The invention
therefore 1s advantageous 1n a real-time editing environment
with memory, processing resource and time constraints.

For a fuller understanding of the nature and further
advantages of the invention, reference should be made to the
detailed description taken in conjunction with the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a flow chart of a method for determining
optimal line breaks for a paragraph.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 shows a flow chart of a method for handling an
active line of reasonable length.

FIG. 3 shows an exemplary paragraph that 1s used to
illustrate the operation of the present invention.

FIG. 4a shows a graph having a first node representing a
first feasible line break.

FIG. 4b shows the graph of FIG. 4a having a second node
representing a second feasible line break.

FIG. 5a shows the graph filled six levels deep.

FIG. 5b shows a graph 1n which nodes that do not
continue from a first node of a selected path have been
removed.

FIG. 6 shows a graph where the first node of the selected
path of FIG. 5b has been removed.

FIG. 7a shows the graph of FIG. 6 which has been
completed to a sixth level.

FIG. 7b shows another graph 1n which all nodes that do
not continue from a first node of a second selected path in
the graph of FIG. 7a have been removed.

FIG. 8 1s a diagram 1illustrating a computer suitable for
determining optimal line breaks 1n a paragraph.

DETAILED DESCRIPTION

FIG. 1 shows a process 10 for determining optimal line
breaks for a paragraph. A first active line which 1s initially
blank is created and added to an active list (step 50). The
active line receives the words 1n the paragraph and 1s used
to locate feasible line breaks in the paragraph. In this
context, a “word” 1s an elemental unit of text and not limited
to a complete word of the language. A user may set a
complete word or a syllable as the elemental unit. If the user
sets a complete word as the elemental unit, feasible line
breaks are located at the end of the words. Alternatively, if
the user sets a syllable as the elemental unit, feasible line
breaks are located at the end of the syllables. The term
“word” may be set to include an end-of-paragraph marker
such as a carriage return and a punctuation mark trailing a
word such as a comma or period.

New active lines are continuously created and existing
active lines are continuously retired during the process. A
retired line 1s an active line that has been removed from the
active list for various reasons, as explained below. The
retired line 1s discarded and 1s no longer considered by the
process 10. The active list tracks the active lines to which a
new word can be added. An active line that has not been
included 1n the active list cannot receive a new word, as
explained 1n more details below.

After creating the first active line, a first word in the
paragraph is retrieved (step 52). The words are sequentially
retrieved so the next word retrieved when step 52 1s per-
formed again would be a second word in the paragraph. The
retrieved word is added to the first active line (step 54). If the
word that 1s added to the first active line 1s an end-of-
paragraph maker that indicates the end of the paragraph,
such as a carriage return, the active line 1s removed from the
active list and retired (step 58).

If the word 1s not an end-of-paragraph marker, the process
10 determines whether the first active line, including the new
word, has reasonable length (step 60). An active line is
deemed reasonable 1n length if 1ts width can be fitted 1nto a
predetermined ideal line length and 1s within a predeter-
mined tolerance of the ideal line length. The factors used to



US 6,510,441 BI1

3

determine the width of an active line may include the
pointsize, the fonts, and the kerning and side-bearing values
of the characters in the line.

If the active line 1including the new word 1s reasonable 1n
length, the line 1s accepted (step 100), a process discussed
below 1n reference to FIG. 2. The acceptance of the line
includes locating a feasible line break and creating another
active line which 1s mitially blank.

If the active line is not reasonable in length (step 60), the
process determines whether the active line 1s longer than and
cannot be fit into the 1deal line length (step 62). If so, the
active line is removed from the active list (step 64) and
retired, and the process proceeds to step 68. Otherwise, the
process determines whether accept line step 100 has been
performed at least once (step 66). If not, the process loops
back to step 52 to retrieve and add more words to the active
line (step 54). Steps 52—66 are repeated until accept line step
100 has been performed.

Eventually the first active line becomes reasonable in
length (step 60) and is accepted. The accepting the line
includes locating a feasible line break and creating another
active line (step 100). The process then determines whether
additional active line exists 1n the active list for which the
retrieved word needs to be added (step 68). If so, the process
loops back to step 54 to add the retrieved word to the next
active line 1n the active list. Otherwise, the newly created
active line i1s added to the active list (step 70). The process
then loops back to step 52 to retrieve the next word and
repeat the above steps untfil the paragraph ends. The end of
the paragraph 1s detected when a word added to the current
active line is an end-of-paragraph marker (step 56). When
this occurs, the best set of line breaks in the graph 1is
determined using a graph metric, as will be described (step
72). The nodes in the best set of line breaks are set as the line
breaks for the corresponding lines in the paragraph (step 74).

Process 10 for determining optimal line breaks for a

paragraph may be more succinctly described using
pseudocode, as shown 1n the following Table 1.

TABLE 1

Data Structures:

List of Active Lines

Graph of Copied Lines
Process:
1. Create a blank first Active Line, and add 1t to the Active Line List.
2.  Repeat steps 3—11 until the paragraph i1s completed:

3. Get the next “word” from the paragraph

4. Repeat steps 5-11 for every Active Line in the list

5. Add the word to the Active Line

10

15

20

25

30

35

4

FIG. 2 1s a flow chart showing 1n more detail step 100 for
handling an active line that 1s reasonable in length. The new
word added to the active line 1s copied to a graph of feasible
line breaks as a node in the graph (step 102). Thus, the end
of the new word 1s now stored as a feasible line break. An
example showing feasible line breaks 1 a paragraph 1is
shown 1n FIG. 5a. Alternatively, the entire active line may
be copied to the graph of feasible line break rather than
copying only the added word to the graph.

In FIG. 54, a graph having multiple nodes representing,
multiple feasible line breaks for a paragraph 1s illustrated.
Each node 1s assigned a demerit number according to
desirability of setting a line break at that point. The demerit
number 1s assigned based on how much a given feasible line
break causes a line to deviate from a predetermined 1deal
line length. The factors used 1n assigning the demerit num-
ber include how much the line has to be squeezed or
stretched and how much the resulting line 1s shorter or
longer than the predetermined i1deal length. The demerit
number 15 assigned to a feasible line break according to the
formula

DemeritNumber=(K-R>+H+1 ) +L+LLL+LLP+CF

where K 1s a constant, R 1s a compress or stretch amount, H
1s a hyphen penalty, L 1s a hyphen ladder penalty, CF 1s a
consistency factor, LLL 1s a last line length penalty, and LLP
1s a last full hyphen penalty. The hyphen penalty assigns a
penalty according to the undesirability of placing a hyphen
at the end of a given line. The hyphen ladder penalty assigns
a penalty 1f the previous lines also end with a hyphen. The
last line length penalizes lines that are too short or too long.
The consistency factor penalizes if adjacent lines signifi-
cantly differ 1n stretch or compress amounts. The algorithms

used for determining the values of these variables are as
follows.

6. If the word is an “end-of-paragraph marker” remove the Active Line from

the list and continue at step 5.

7. If the Active Line 1s a reasonable length, perform steps 8—10.

8. Add a copy of the Active Line to the Graph.

9. Create a new, blank Active Line, Add 1t to the Active Line List.
This new line 1s the continuation of the line copied to the Graph.

10. If the Graph 1s completed to a predetermined depth

® Find the best copied line at the specified depth.

® Trace up the Graph from this best line to the top of the

Graph
® Remove everything from the Graph that is not a

continuation of this top line. Also remove all Active Lines

that are continuations of lines that were removed.

® Sct, save, freeze the top line. Then remove it from the

tree. The tree 18 now one level shorter.

11. If the Active Line 1s too long, remove the Active Line from the list.
13. The Graph of Copied Lines 1s complete. Find the “shortest” path through the Graph.

14. Set the lines corresponding to this shortest path.



US 6,510,441 BI1

Hyphen Penalty (H)
The hyphen penalty receives a quality rating between 0-100:

#define kNoHyphenPoint 0

#define kUnpreferredHyphenPoint 25
#define kRegularHyphenPoint 50
#define kPreferredHyphenPoint 75
#define kDiscretionaryHyphenPoint 30
#define kHardHyphenPoint 50

These amounts are scaled into hyphen penalty:
H = (100-quality rating)/scalefactor + basePenalty
Both “scalefactor” and “basePenalty” may be user defined.
Hyphen Ladder Penalty (L)
ladder = number of adjacent hyphens up to this hyphen
[f(ladder <= 1)
L = 0.0;
else if(ladder > ladderLimit)
L = kMaxDemerit;
else
{
L. = fAdjacentHyphenFactor;
for (int 1 = 2; 1 < ladder; 1++)
L. = L. - fAdjacentHyphenMagnifier;
t
Both “fAdjacentHyphenFactor” and “fAdjacentHyphenMagnifier” may be user
defined to provide the user with more control over the penalty associated with
hyphen.
Last Line Length (LLLL)
The last line length penalizes lines that are too short or too long. The ratio of the
width of the line to the width of the frame (which is always between 0 and 1) is
used to calculate the last line length penalty. The definition of too short and too

long may be user defined.
[f (ratio < fLastLineTooShort)

{

LLL = (fLastLineTooShort-ratio) - 12.0 + 0.75;
LLL=LLL-LLL - LLL - 35.0;

/f never allowed

// can be user defined

/f can be user defined

i
else if(ratio > fSettings.fLastlineTooLong)
{
LLL = (ratio-fSettings.flastlineTool.ong) - 15.0 + 0.75;
ILILL=1LLL - LLL-LLL - 35.0;
i
else
LLL = 0.0;

Consistency Factor (CF)
The consistency factor takes two line ratings and penalizes adjacent lines that
significantly differ in stretch or compress amounts.
typedef enum {kUnknown, kTooLoose, kVeryLoose, klLoose, kNormal,
kTight, kVeryTight, kTooTight}

LineTightness which are called ratingl and rating? calculates a penalty. The
factor “fConsistency” may be user defined to control the magnitude of this
evaluation.

// equal or unknown or irrelevant
if(ratingl == rating |[rating 1 == kUnknown || rating2 == kUnknown |
fConsistency == 0.0)

CF = 0.0;
else

{

int diff = (number of ratings apart from each other)
if(diff <= 1)
CF = 0.0:
else
CF = (fConsistency - (diff-1));
h

// close enough

// penalty

55

Generally, the lower the demerit number at a point, the
more desirable it 1s to have a line break at that point. In this
example, the graph of FIG. 5a 1s six level deep, where each
level corresponds to a line in the paragraph. The nodes in
cach level constitute all feasible line breaks for a line
corresponding to that level. For example, the nodes labeled
“a” and “king” 1n the first level of the graph constitute all
feasible line breaks for the first line of the paragraph.
Similarly the nodes labeled “was” and “so” constitute all
feasible line breaks for the second line of the paragraph.

Turning back to FIG. 2, from step 102, a second active

line which i1s initially blank is created (step 104) after the

60

65

first active line has been copied to the graph. The process
determines whether the graph has been completed to a
predetermined depth (step 106). If not, the process of FIG.
2 terminates. If the graph has been completed to the prede-
termined depth, a set of the nodes from each level that
produce a path with the least cumulative demerit number 1s
selected as an ideal set of nodes (step 108). The set having,
the least cumulative demerit number 1s also referred as
having the shortest path in the graph since the demerit
number can be thought of as a distance measurement.

All nodes 1n the graph that do not continue from the first

node of the shortest path, 1.e., a line break 1n the first level,



US 6,510,441 BI1

7

are removed from the graph (step 110). The first node 1s set
and saved as a first line break of the paragraph (step 112).
The first node i1s removed from the graph (step 114). The
oraph consequently 1s one level shorter and the process
continues with step 66 of FIG. 1.

The process may be better understood by considering an
example. FIG. 3 shows an exemplary paragraph that is used
in the following 1llustrative example of the process. Little
vertical marks placed 1n the paragraph indicate feasible
break points. For purposes of this example, the graph 1s
deemed to be completed if 1t 1s filled to six levels.

In this example, a first active line which 1s 1nitially blank
1s created. The word “In,” which 1s the first word of the
paragraph, 1s retrieved and added to the first active line.
Since accept line step 100 has not yet been performed, the
words 1n the paragraph are sequentially retrieved and added
to the first active line unfil the first active line becomes
reasonable 1n length.

Eventually the word “a” 1s retrieved and added to the first
active line. At this stage, the first active line 1s reasonable 1n
length and 1s processed according to step 100.

In the accepting step, the end of the word “a” serves as a
feasible line break because the feasible line break 1s located
at the end of each word that makes the active line reasonable
in length. The graph 1s provided with 1ts first node, 1.¢., first
feasible line break, consisting of “a” and a demerit number
3357, as shown 1n FIG. 4a. A second active line which 1s
initially blank 1s created. The accepting step terminates since
the graph has not been completed to the sixth level. The
second active line 1s added to the active list.

The process continues by retrieving the word “king” and
adding 1t to the first active line. The first active line 1s still
reasonable 1n length so 1t 1s handled according to step 100.
The graph 1s provided with its second node consisting of
“king” and a demerit number 1734, as shown 1n FIG. 4b. A
third active line which 1s 1nitially blank 1s created. The graph
still has not been completed to the sixth level so the
accepting step terminates.

The active list additionally contains the second active
line. The word “king” 1s added to the second active line. The
second active line consisting of only the word “king” 1is
neither reasonable 1n length nor greater than the upper
character limit so the second active line 1s left alone. A third
active line 1s placed 1n the active list and the above steps are
repeated.

Eventually, the word “whose” 1s retrieved and added to
the first active line, making the first active line unreasonable
in length since the first active line now 1s longer than the
ideal line length and cannot be fitted 1nto the given line slot.
The first active line 1s removed from the active list and
retired.

The active list additionally contains the second and third
active lines that have not yet received the word “whose.”
The word “whose” 1s added to the second active line, which
now has two words “king” and “whose”. It 1s neither
reasonable 1n length nor longer than the ideal line length so
nothing else 1s done to the second active line. Next the word
“whose” 1s added to the third active line, which now has one
word “whose.” The third active line 1s neither reasonable 1n
length nor longer than the ideal so nothing else 1s done to the
third active line as well.

The above steps are repeated until the graph 1s completed
to the sixth level, as shown i1n FIG. 54. In particular, the
oraph 1s completed to the sixth level when word “out” is
added to an active line and the active line 1s accepted. In the
accepting step, the graph 1s provided with the node “out” and
a demerit number 346. Another blank active line 1s created.

10

15

20

25

30

35

40

45

50

55

60

65

3

Since the graph now has been completed to a desired
depth, the process selects a set of nodes which defines the
shortest path, 1.¢., has the least cumulative demerit number,
from the first level to the sixth level of the graph. The path
defined by the nodes “king’s”, “the”, “king’s”, “was”,
“was”, and “a” has the lowest cumulative demerit number of
3516 and 1s chosen as a first selected path. All nodes that do
not follow from “a” 1n the first level of the first selected path
are removed from the graph, as shown 1n FIG. 5b. The first
node “a” 1s set and saved as the first line break for the
paragraph and removed from the graph. The graph now 1s
one level shorter, as shown 1n FIG. 6.

The steps above are repeated and until the graph i1s
completed to the sixth level once again. This occurs when
the node “and” 1s added to the graph, as shown in FIG. 7a.
The process again selects a set of nodes which defines the
shortest path from the first level to the sixth level of the
oraph. The path defined by the nodes “the”, “king’s”, “the”,
“king’s”, “was”, and “was” has the lowest cumulative
demerit number at 1156 and 1s chosen as a second selected
path. All nodes that do not follow from the first node “was”
of the second selected path are removed from the graph, as
shown 1n FIG. 7b. The first node of the second selected path
1s set and saved as the second line break of the paragraph and
then removed from the graph. The above steps are repeated
until the paragraph ends.

When the paragraph ends, all active lines 1n the active list
are removed from the active list. The shortest path through
the graph 1s determined. The nodes 1n the shortest path are
set as the line breaks for the corresponding lines of the
paragraph. The line breaks for the entire paragraph has now
been determined.

Referring to FIG. 8, an apparatus suitable for implement-
ing a method for breaking a paragraph of text into appro-
priate lengths of lines include a computer processor 30, such
as an integrated circuit microprocessor, and a memory 32 for
storing 1nstructions and data executed and used by the
processor 30. The processor 30 running under control of a
program 34 1 the memory 32 has access to a paragraph 36
that 1s stored 1n a machine-readable form 1n the memory 32
or on a separate storage device 38. The processor 30 breaks
the paragraph 36 mto appropriate lines and outputs a result-
ing paragraph to an output device 40, such as a display
screen or a printer. The processor 30 and the memory 32 may
be embedded 1n a peripheral device such as a PostScript™
printer.

The methods described here may be readily implemented
in hardware, firmware, or equivalents such as application-
specific integrated circuits (ASICs), or in a computer pro-
oram product tangibly embodied 1n a computer program
storage device for execution by a computer processor. Stor-
age devices suitable for tangible embodying computer pro-
oram 1nstructions implementing the methods described here
include all forms of non-volatile memory, 1including semi-
conductor memory devices, such as EPROM, EEPROM,
and flash memory devices, magnetic disks such as internal
hard disks and removable disks, magneto-optical disks, and
CD-ROM disks.

Although the present invention has been described in
terms of a specific embodiment, the invention is not limited
to this specific embodiment. For example, the reasonable-
ness of line length may be determined by setting lower and
upper character limits that may be present in the line rather
than using a cumulative width calculation.

What 1s claimed 1s:

1. A method for dividing a paragraph into lines, compris-
ng:




US 6,510,441 BI1

9

selecting a first line break to define the end of a first line
by evaluating possible line breaks for multiple possible
lines 1n a first portion of the paragraph, the first portion
being less than the enfire paragraph; and

selecting a second line break to define the end of a second
line immediately following the first line by evaluating
possible line breaks for multiple possible lines 1n a
second portion of the paragraph, where the second
portion mncludes all words 1n the first portion after the
first line break as well as additional words i1n the
paragraph coming after the first portion and excludes

all words 1n the first portion before the first line break.

2. The method of claim 1, wherein selecting the first line

break by evaluating the possible line breaks 1n a first portion
COMprises:

calculating a figure of merit for each possible combination
of possible line breaks;

comparing the calculated figures of merit to select one of
the possible combinations of possible line breaks as an
optimal combination; and

selecting the first possible line break in the optimal
combination as the selected first line break.
3. The method of claim 1, further comprising;:

generating a first set of possible line breaks for the first
portion of the paragraph.
4. The method of claim 1, further comprising:

generating a second set of possible line breaks for the
second portion of the paragraph.

5. The method of claim 4, wherein generating the second
set of possible line breaks comprises:

removing from the first set of possible line breaks the
selected first line break and the possible line breaks that
do not continue from the selected first line break.
6. The method of claim 1, wherein selecting the second
line break by evaluating the possible line breaks in a second
portion comprises:

calculating a figure of merit for each possible combination
of possible line breaks;

comparing the calculated figures of merit to select one of
the possible combinations of possible line breaks as an
optimal combination; and

selecting the second possible line break in the optimal
combination as the selected second line break.
7. A method for dividing a paragraph of text into lines,
comprising:
generating a first set of possible line breaks for a first
portion of the paragraph to be considered;

selecting a first line break from the first set of possible line

breaks;

generating a second set of possible line breaks by remov-
ing the first line break and the possible line breaks that
do not continue from the first line break from the first
set of possible line breaks and adding possible line
breaks for text in the paragraph after the first portion;
and

selecting a second line break from the second set of

possible line breaks.

8. The method of claim 7, wherein the first line break and
the second line break are selected to divide the paragraph
into lines of approximately equal length.

9. The method of claim 7, wherein each line break has a
demerit rating, and wherein selecting the first line break
COMprises:

calculating the demerit rating of all possible ordered
combinations of possible line breaks from the first set
of possible line breaks;

10

15

20

25

30

35

40

45

50

55

60

65

10

identifying a possible ordered combination of possible
line breaks with a lowest cumulative demerit number as
an optimal ordered combination of possible line breaks;
and

selecting the first 1n order of the optimal ordered combi-
nation of possible line breaks as the first line break.
10. A method for dividing a paragraph of text into lines,
comprising;
generating a first set of possible line breaks for a first
portion of the paragraph to be considered;

selecting a first line break from the first set of possible line

breaks;

generating a second set of possible line breaks by remov-
ing the first line break and the possible line breaks that
do not continue from the first line break from the first

set of possible line breaks and adding possible line
breaks for text in the paragraph after the first portion;

selecting a second line break from the second set of
possible line breaks;

g

herein each line break has a demerit number;

herein selecting the first line break comprises,

calculating the demerit number of all possible ordered
combinations of possible line breaks from the first
set of possible line breaks,

identifying a possible ordered combination of possible
line breaks with a lowest cumulative demerit number
as an optimal ordered combination of possible line
breaks, and

selecting the first in order of the optimal ordered

combination of possible line breaks as the first line
break; and

wherein the demerit number of each line break 1s assigned
according to the formula

g

DemeritNumber=(K-R°+H+1)*+L+LLL+LLP+CF

where K 1s a constant, R 1s a compress or stretch

amount, H 1s a hyphen penalty, L 1s a hyphen ladder

penalty, CF 1s a consistency factor, LLL 1s a last line

length penalty, and LLP 1s a last full hyphen penalty.

11. A computer program on a computer-readable medium

for dividing a paragraph of text into lines, the program
comprising instructions to:

select a first line break to define the end of a first line by
evaluating possible line breaks for multiple possible
lines 1n a first portion of the paragraph, the first portion
being less than the enfire paragraph; and

select a second line break to define the end of a second

line immediately following the first line by evaluating

possible line breaks for multiple possible lines in a

second portion of the paragraph, where the second

portion 1ncludes all words 1n the first portion after the

first line break as well as additional words in the

paragraph coming after the first portion and excludes

all words 1n the first portion before the first line break.

12. The computer program of claim 11, wherein the

instruction to select the first line break comprises an mstruc-
fion to:

generate a set of possible line breaks for the first portion
ol the paragraph to be considered.
13. The computer program of claim 12, further compris-
Ing an instruction to:

remove the selected first line break and the possible line
breaks that do not continue from the selected first line
break from consideration.




US 6,510,441 BI1

11

14. The computer program of claim 11, wherein the
instructions to select the first line break by evaluating the
possible line breaks comprises instructions to:

calculate a figure of merit for each possible combination
of possible line breaks;

compare the calculated figures of merit to select one of the
possible combinations of possible line breaks as an
optimal combination; and

select the first possible line break 1n the optimal combi-

nation as the selected first line break.

15. A method for rendering a block of contiguous text so
large that at least N+1 lines are required to render the block
of text, where N 1s an integer that 1s at least three, compris-
ng:

determining possible line breaks for rendering a portion of

the block of text into M+1 lines, where M 1s an integer
that 1s at least two and at most N-1;

selecting an optimal combination that results 1n an opti-
mal fit for the M+1 lines by comparing combinations of
the determined possible line breaks; and

selecting a first possible line break in the optimal com-
bination as the selected first line break.
16. The method of claim 15, wherein the selecting an
optimal combination comprises:

calculating a figure of merit for each possible combination
of possible line breaks; and

comparing the calculated figures of merit to select one of
the possible combinations of possible line breaks as the
optimal combination.
17. The method of claim 15, further comprising generat-
ing a hard copy of the rendered block of text.
18. The method of claim 15, further comprising generat-
ing a copy of the rendered block of text on a display device.
19. A computer-implemented method of dividing a para-
ograph 1nto lines, the method comprising;:

identifying possible line breaks for a portion that 1s less
than the entirety of the paragraph;

selecting a predetermined maximum number;

building a graph to the predetermined maximum number
of levels using the determined possible line breaks as
nodes, each level having one or more nodes which
represent all possible line breaks for a line of the

paragraph corresponding to the level;

identifying a set of nodes having a least cumulative
demerit number from the bottom level to the top level
of the graph as an optimal set of nodes; and

selecting the top node of the optimal set of nodes as a first
line break to define the end of a first line.
20. The method of claim 19, wherein selecting the first
line break comprises:

cumulating demerit number of all possible combinations
of possible line breaks;

determining one possible combination of possible line
breaks with a lowest cumulative demerit number as an
optimal combination of possible line breaks; and

selecting a parent line break of the optimal combination of
possible line break as the first line break.
21. A computer-implemented method of dividing a para-
ograph 1nto lines, the method comprising:

identifying possible line breaks for a portion of the
paragraph;
building a graph to a predetermined maximum number of

levels using the determined possible line break as
nodes, each level having one or more nodes which

10

15

20

25

30

35

40

45

50

55

60

65

12

represent all possible line breaks for a line of the
paragraph corresponding to the level;

identifying a set of nodes having a least cumulative
demerit number from the bottom level to the top level
of the graph as an optimal set of nodes; and

selecting the top node of the optimal set of nodes as a first
line break to define the end of a first line;

wherein selecting the first line break comprises,

cumulating demerit number of all possible combina-
tions of possible line breaks,

determining one possible combination of possible line
breaks with a lowest cumulative demerit number as
an optimal combination of possible line breaks, and

selecting a parent line break of the optimal combination
of possible line break as the first line break; and

wherein the demerit number of each line break 1s assigned
according to the formula

DemeritNumber=(K-R°+H+1)*+L+LLL+LLP+CF

where K 1s a constant, R 1s a compress or stretch
amount, H 1s a hyphen penalty, L 1s a hyphen ladder
penalty, CF 1s a consistency factor, LLL 1s a last line
length penalty, and LLP 1s a last full hyphen penalty.
22. The method of claim 21, wherein the hyphen ladder
penalty assigns a penalty if the number of hyphens adjacent
to a hyphen placed at the end of a given line exceeds a
predetermined number.
23. The method of claim 21, wherein the last line length
penalizes lines that are too short or too long.
24. A computer program on a computer-readable medium
for dividing a paragraph of text into lines, the program
comprising 1nstructions to:

ogenerate a first set of possible line breaks for a first portion
of the paragraph to be considered;

select a first line break from the first set of possible line

breaks;

generate a second set of possible line breaks by removing,
the first line break and the possible line breaks that do
not continue from the first line break from the first set
of possible line breaks and adding possible line breaks
for text 1n the paragraph after the first portion; and

select a second line break from the second set of possible

line breaks.

25. The computer program of claim 24, wherein the first
line break and the second line break are selected to divide
the paragraph into lines of approximately equal length.

26. The computer program of claim 24, wherein each line
break has a demerit rating, and wherein the instruction to
select the first line break comprises mstructions to:

calculate the demerit rating of all possible ordered com-
binations of possible line breaks from the first set of
possible line breaks;

1dentify a possible ordered combination of possible line
breaks with a lowest cumulative demerit number as an
optimal ordered combination of possible line breaks;
and

select the first in order of the optimal ordered combination
of possible line breaks as the first line break.
27. A computer program on a computer-readable medium
for dividing a paragraph of text into lines, the program
comprising instructions to:

generate a first set of possible line breaks for a first portion
of the paragraph to be considered;

select a first line break from the first set of possible line
breaks;




US 6,510,441 BI1

13

generate a second set of possible line breaks by removing,
the first line break and the possible line breaks that do
not continue from the first line break from the first set
of possible line breaks and adding possible line breaks
for text 1n the paragraph after the first portion;

select a second line break |
line breaks;

rom the second set of possible

wherein each line break has a demerit number;

wherein the i1nstruction to select the first line break
comprises 1nstructions to,

calculate the demerit number of all possible ordered
combinations of possible line breaks from the first set
of possible line breaks,

identify a possible ordered combination of possible line
breaks with a lowest cumulative demerit number as an
optimal ordered combination of possible line breaks,
and

select the first 1n order of the optimal ordered combination
of possible line breaks as the first line break; and

wherein the demerit number of each line break 1s assigned
according to the formula

DemeritNumber=(K:R>+H+1)"+L+LLL+LLP+CF

where K 1s a constant, R 1s a compress or stretch amount,
H 1s a hyphen penalty, L 1s a hyphen ladder penalty, CF
1s a consistency factor, LLL 1s a last line length penalty,
and LLP 1s a last full hyphen penalty.

28. A computer program on a computer-readable medium
for rendering a block of contiguous text so large that at least
N+1 lines are required to render the block of text, where N
1s an 1nteger that 1s at least three, the program comprising
instructions to:

determine possible line breaks for rendering a portion of
the block of text into M+1 lines, where M 1s an integer
that 1s at least two and at most N-1;

select an optimal combination that results 1n an optimal fit
for the M+1 lines by comparing combinations of the
determined possible line breaks; and

select a first possible line break in the optimal combina-
tion as the selected first line break.
29. The computer program of claim 28, wherein the
instruction to select an optimal combination comprises
instructions to:

calculate a figure of merit for each possible combination
of possible line breaks; and

compare the calculated figures of merit to select one of the
possible combinations of possible line breaks as the
optimal combination.

30. The computer program of claim 28, further compris-
ing an 1nstruction to generate a hard copy of the rendered
block of text.

31. The computer program of claim 28, further compris-
Ing an 1nstruction to generate a copy of the rendered block
of text on a display device.

32. A computer program on a computer-readable medium
for dividing a paragraph 1nto lines, the program comprising
instructions to:

1dentify possible line breaks for a portion that 1s less than

the entirety of the paragraph;

select a predetermined maximum number;

10

15

20

25

30

35

40

45

50

55

14

build a graph to the predetermined maximum number of
levels using the determined possible line breaks as
nodes, each level having one or more nodes which
represent all possible line breaks for a line of the
paragraph corresponding to the level;

1dentify a set of nodes having a least cumulative demerit
number from the bottom level to the top level of the
oraph as an optimal set of nodes; and

select the top node of the optimal set of nodes as a first
line break to define the end of a first line.
33. The computer program of claam 32, wherein the
instruction to select the first line break comprises instruc-
fions to:

cumulate demerit number of all possible combinations of
possible line breaks;

determine one possible combination of possible line
breaks with a lowest cumulative demerit number as an
optimal combination of possible line breaks; and

select a parent line break of the optimal combination of
possible line break as the first line break.
34. A computer program on a computer-readable medium
for dividing a paragraph into lines, the program comprising
instructions to:

1dentify possible line breaks for a portion of the para-
graph;

build a graph to a predetermined maximum number of
levels using the determined possible line breaks as
nodes, each level having one or more nodes which
represent all possible line breaks for a line of the
paragraph corresponding to the level;

1dentify a set of nodes having a least cumulative demerit
number from the bottom level to the top level of the
oraph as an optimal set of nodes; and

select the top node of the optimal set of nodes as a first
line break to define the end of a first line;

wherein the i1nstruction to select the first line break
comprises instructions to,

cumulate demerit number of all possible combinations of
possible line breaks,

determine one possible combination of possible line
breaks with a lowest cumulative demerit number as an
optimal combination of possible line breaks, and

select a parent line break of the optimal combination of
possible line break as the first line break; and

wherein the demerit number of each line break 1s assigned
according to the formula

DemeritNumber=(K-R°+H+1)*+L+LLL+LLP+CF

wherien K 1s constant, R 1s a compress or stretch amount,
H 1s a hyphen penalty, L 1s a hyphen ladder penalty, CF
1s a consistency factor, LLL 1s a last line length penalty,

and LLP 1s a last full hyphen penalty.
35. The computer program of claim 34, wherein the

hyphen ladder penalty assigns a penalty if the number of

o hyphens adjacent to a hyphen placed at the end of a given

line exceeds a predetermined number.
36. The computer program of claim 34, wherein the last

line length penalizes lines that are too short or too long.



	Front Page
	Drawings
	Specification
	Claims

