United States Patent

US006980209B1

(12) 10y Patent No.: US 6,980,209 B1
Donham et al. 45) Date of Patent: Dec. 27, 2005
(54) METHOD AND SYSTEM FOR SCAILABLLE, Proceedings of SIGGRAPH 2000(New Orleans, Louisiana,
DATAFLOW-BASED, PROGRAMMABLE Jul. 23-28, 2000). In Computer Graphics, Annual Confer-
PROCESSING OF GRAPHICS DATA ence Series, ACM SIGGRAPH, 2000).*
(75) Inventors: Christopher D. S. Donham, San (Continued)
Mateo, CA (US); Alexander Lev : .
. ’ | Primary Examiner—Ulka J. Chauhan
if[m(li{m,. I;OSSAH‘?S’ C‘égU%)é Bryon Assistant Examiner—Daniel F. Hajnik
Egrwa?'l;lli I_il::tcﬁ?i; Mo(untgin View (74) Atiorney, Agent, or Firm—Moser, Patterson &
CA (US); Mark Tian, Mountain View, Sheridan, L.L.P.
CA (US); George Easton Scott III, (57) ABSTRACT
Dublin, CA (US)
(73) Assignee: NVIDIA Corporation, Santa Clara, CA A scalable pipelined pixel shader that processes packets of

(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 528 days.

(21) Appl. No.: 10/172,174
(22) Filed: Jun. 14, 2002
(51) Int. CL7 .o, GO06T 15/50
(52) US.CL ..., 345/426; 345/582; 345/5006
(58) Field of Search 345/426, 582,
345/583, 506, 690-697
(56) References Cited
U.S. PATENT DOCUMENTS
5,706,415 A * 1/1998 Kelley et al. 345/426
6,198,488 B1* 3/2001 Lindholm et al. 345/426
6,229,553 B1* 5/2001 Duluk et al. 345/506
6,333,744 B1 12/2001 Kirk et al. ...ceoeveen..n... 345/506
6,646,653 B2* 11/2003 San et al.ceeevee..n... 345/649
2002/0174318 Al* 11/2002 Stuttard et al. 712/13
2004/0085313 Al1* 5/2004 Moreton et al. 345/423
(Continued)

OTHER PUBLICAITONS

Peercy, Mark S., Marc Alano, John Airey, and P. Jeffery
Ungar, “Interactive Multi-pass Programmable Shading”,

#

data and preserves the format of each packet at each pro-
cessing stage. Each packet 1s an ordered array of data values,
at least one of which 1s an 1nstruction pointer. Each member
of the ordered array can be indicative of any type of data. As
a packet progresses through the pixel shader during process-
ing, cach member of the ordered array can be replaced by a
sequence of data values indicative of different types of data
(e.g., an address of a texel, a texel, or a partially or fully
processed color value). Information required for the pixel
shader to process each packet 1s contained 1n the packet, and
thus the pixel shader 1s scalable 1n the sense that it can be
implemented 1n modular fashion to include any number of
identical pipelined processing stages and can execute the
same program regardless of the number of stages. Prefer-
ably, each processing stage 1s 1tself scalable, can be 1mple-
mented to include an arbitrary number of identical pipelined
Instruction execution stages known as microblenders, and
can execute the same program regardless of the number of
microblenders. The current value of the instruction pointer
(IP) in a packet determines the next instruction to be
executed on the data contained 1n the packet. Any processing
unit can change the instruction that will be executed by a
subsequent processing unit by modifying the IP (and/or
condition codes) of a packet that it asserts to the subsequent
processing unit. Other aspects of the invention include
graphics processors (each including a pixel shader config-
ured in accordance with the invention), methods and sys-
tems for generating packets of data for processing 1n accor-
dance with the invention, and methods for pipelined
processing of packets of data.

64 Claims, 4 Drawing Sheets

10~~~ VERTEX PROCESSOR

WE RTEX DATA

20~ RASTERIZER

-‘-l—n—n.—

{ PIXEL DATA

25

) #

MEMORY [=——= TEXTURE |
30A— 4

(PIXEL SHADER) !

TEXTURE PIXEL DATA

PIXEL
PROCESSOR

~ 40

¥

FINAL PIXEL DATA

FRAME
BUFFER

US 6,980,209 B1
Page 2

U.S. PATENT DOCUMENTS Svetoslav Tzvetkov, Pat Hanrahan Aug. 2001. Proceedings
2005/0078117 Al* 4/2005 Suzuoki et al. 345500 Of the 28th annual conference on Computer graphics and
Interactive techniques.®
OTHER PUBLICATIONS Foley et al., “Computer Graphics: Principles and Practice”,

Addi Wesley, 2nd ed. in C, 1996, pp. 874-876, p. 879.*
“A real-time procedural shading system for programmable 1SOI WESILY, ~HE - 10 R » PP » P

ographics hardware” Kekoa Proudfoot, William R. Mark, * cited by examiner

U.S. Patent Dec. 27, 2005 Sheet 1 of 4 US 6,980,209 B1

10

VERTEX PROCESSOR_}
VERTEX DATA

ZOV\{ RASTERIZER
PIXEL DATA

25
5 FIG. 1
| MEMORY |=——={ TEXTURE

30A

40— PROCESSOR
(PIXEL SHADER) TEXTURE PIXEL DATA

PIXEL 40
PROCESSOR
FRAME
BUFFER | 50

FINAL PIXEL DATA

T4

T2 | 16
T0 | T P [Covg

192 bits—— 5 BITS | 16 BITS

FIG. 3

VARIABLE FORMATS

2xRGBA in U 8 |

RGBA in S4 11
STin S12 17

STRmM S17 13 I

U
—~——64 bits — _

U.S. Patent

60

80

Dec. 27, 2005

61

62

TO MEMORY

CONTROLLER

71 *
70 < LEL
e
\ -
i
o
82
TO MEMORY TC
CONTROLLER -
83 TF |
|£—i
IO
o]
90

L
FIG.

FROM

Sheet 2 of 4

RASTERIZER

TG

63

'

TF

64

FIFO

65

93

2

FIFO -—
0o
o0

uB

TO PIXEL

US 6,980,209 Bl

32

U.S. Patent Dec. 27, 2005 Sheet 3 of 4 US 6,980,209 B1

GateKeeper
f O k- .

\ 100
Instruction
105 Map/Exec
N 1T
MicroBlend
icroBlender 1 Math Fifo P-log,
.
07-
-- Fifo |
[H instruction \01
| Map/Exec
I
MicroBlender 2 Math Fifo 114, 020
[15°
I R |
|17 102 L1028

 Emit

{OZA™

US 6,980,209 Bl

Sheet 4 of 4

Dec. 27, 2005

I

U.S. Patent

US 6,930,209 B1

1

METHOD AND SYSTEM FOR SCALABLLE,
DATAFLOW-BASED, PROGRAMMABLE
PROCESSING OF GRAPHICS DATA

TECHNICAL FIELD OF THE INVENTION

The present invention relates to graphics chips (graphics
processors implemented as integrated circuits) and systems
including graphics processors, and to methods for providing
programmability 1n a computer graphics processing pipe-
line.

BACKGROUND OF THE INVENTION

In three dimensional graphics, surfaces are typically ren-
dered by assembling a plurality of polygons 1n a desired
shape. The polygons (which are typically triangles) are
defined by vertices, and each vertex 1s defined by three
dimensional coordinates 1n world space, by color values, and
by texture coordinates. Vertices can have other attributes,
such as surface normals.

The surface determined by an assembly of polygons 1s
typically mtended to be viewed 1n perspective. To display
the surface on a computer monitor, the three dimensional
world space coordinates of the vertices are transformed 1nto
screen coordinates in which horizontal and vertical values
(X, y) define screen position and a depth value z determines
how near a vertex 1s to the screen and thus whether that
vertex 15 viewed with respect to other points at the same
screen coordinates. The color values define the brightness of
each of red/green/blue (r, g, b) color at each vertex and thus
the color (often called diffuse color) at each vertex. Texture
coordinates (u, v) define texture map coordinates for each
vertex on a particular texture map defined by values stored
In Memory.

The world space coordinates for the vertices of each
polygon are processed to determine the two-dimensional
coordinates at which those vertices are to appear on the
two-dimensional screen space of an output display. If a
triangle’s vertices are known 1n screen space, the positions
of all pixels of the triangle vary linearly along scan lines
within the triangle in screen space and can thus be deter-
mined. Typically, a rasterizer uses (or a vertex processor and
a rasterizer use) the three-dimensional world coordinates of
the vertices of each polygon to determine the position of
each pixel of each surface (“primitive” surface”) bounded by
one of the polygons.

The color values of each pixel of a primitive surface
(sometimes referred to herein as a “primitive”) vary linearly
along lines through the primitive 1n world space. A rasterizer
performs (or a rasterizer and a vertex processor perform)
processes based on linear imterpolation of pixel values in
screen space, linear interpolation of depth and color values
in world space, and perspective transformation between the
two spaces to provide pixel coordinates and color values for
cach pixel of each primitive. The end result of this 1s that the
rasterizer outputs a sequence red/green/blue color values
(conventionally referred to as diffuse color values) for each
pixel of each primitive.

One or more of the vertex processor, the rasterizer, and a
texture processor compute texture coordinates for each pixel
of each primitive. The texture coordinates of each pixel of a
primitive vary linearly along lines through the primitive in
world space. Thus, texture coordinates of a pixel at any
position 1n the primitive can be determined in world space
(from the texture coordinates of the vertices) by a process of
perspective transformation, and the texture coordinates of

5

10

15

20

25

30

35

40

45

50

55

60

65

2

cach pixel to be displayed on the display screen can be
determined. A texture processor can use the texture coordi-
nates (of each pixel to be displayed on the display screen) to
index 1nto a corresponding texture map to determine texels
(texture color values at the position defined by the texture
coordinates for each pixel) to vary the diffuse color values
for the pixel. Often the texture processor interpolates texels
at a number of positions surrounding the texture coordinates
of a pixel to determine a texture value for the pixel. The end
result of this i1s that the texture processor generates data
determining a textured version of each pixel (of each primi-
tive) to be displayed on the display screen.

A texture map typically describes a pattern to be applied
to a primitive to vary the color of each pixel of the primitive
in accordance with the pattern. The texture coordinates of
the vertices of the primitive fix the position of the vertices
of a polygon on the texture map and thereby determine the
texture detail applied to each of the other pixels of the
primitive 1 accordance with the pattern.

A texture applied to a surface 1n space can have a wide
variety of characteristics. A texture can define a pattern such
as a stone wall. It can define light reflected from positions on
the surface. It can describe the degree of transparency of a
surface and thus how other objects are seen through the
surface. A texture can provide characteristics such as dirt or
scratches which make a surface appear more realistic. A
number of other variations can be provided which fall within
the general description of a texture. In theory, a number of
different textures can be applied to the pixels of any primi-
five. Some graphics processors capable of applying multiple
textures to the pixels of a primitive progress through a series
of steps 1n which data describing the pixels of each primitive
are generated, a first texture 1s mapped to the pixels of the
primitive using the texture coordinates of the vertices, texels
to be combined with each pixel of the primitive (to vary the
color of each such pixel in accordance with the first texture)
are generated or retrieved, the texels describing the first
texture and the color data for the pixels of the primitive are
blended to generate textured pixel data. Then, an additional
texture 1s mapped to the same primitive using the texture
coordinates of the vertices, texels for the additional texture
are generated or retrieved, and the texels describing the
additional texture are blended with the previously generated
textured pixel data to generate multiply textured pixel data.

U.S. Pat. No. 6,333,744, 1ssued on Dec. 25, 2001 and
assigned to the assignee of the present application, describes
a graphics processor including a pipelined pixel shader that
can be operated to blend multiple textures with each pixel of
a primitive 1n a single pass through the pipeline.

Some conventional pipelined pixel shaders can recirculate
data through their stages. For example, to apply N textures
(where N=1 or N=2) to each pixel of a primitive, such a pixel
shader operates 1n response to a program to pass each pixel
once through each stage. To apply 2N textures to each pixel
of the same primitive, the shader operates 1n response to
another program to pass each pixel once through each stage
(to generate partially textured pixels by combining first
texture data with each pixel) and then recirculate each
partially textured pixel through the shader (by passing each
partially textured pixel through each stage a second time) to
combine additional texture data with each partially textured
pixel.

Until the present invention, a pipelined pixel shader had
not been designed with a scalable architecture in the sense
that 1t could be 1mplemented in modular fashion with any
number of pipelined processing stages and still be operable
in response to the same program (regardless of the number

US 6,930,209 B1

3

of stages). The inventors have recognized how to design a
pipelined pixel shader with a scalable architecture so that it
can be 1mplemented with a low number of i1dentical pro-
cessing stages for applications 1n which it 1s acceptable to
operate the pixel shader (in response to a program) with a
high degree of data recirculation through each stage 1n order
to perform a large number of texturing operations on each
pixel, or with a high number of the same processing stages
for applications in which it 1s desired to operate the pixel
shader (in response to the same program) with no more than
a low degree of data recirculation through each stage 1n
order to perform the same number of texturing operations on
cach pixel.

Nor had a pipelined pixel shader been designed, until the
present invention, to have a scalable architecture and also to
be capable of executing conditional jumping and branching,
looping, and other high-level flow control constructs. Nor
had a pipelined pixel shader been designed, until the present
invention, with each of its processing stages having a
modular design so that each processing stage can be 1mple-
mented 1n a scalable manner to include any number of
identical pipelined instruction execution stages and be oper-
able to execute the same sequence of mstructions regardless
of the number of instruction execution stages.

SUMMARY OF THE INVENTION

In a class of embodiments, the invention 1s a scalable,
pipelined pixel shader that processes packets of data in
response to program instructions and preserves the format of
cach packet at each processing stage. All (or substantially
all) the information required for the pixel shader to process
cach packet (except for the program instructions themselves)
1s contained in the packet. The mstructions, or codes indica-
five of the imstructions, are typically pre-loaded into the
pixel shader. Each packet 1s an ordered array of data values,
and at least one of the data values 1s an instruction pointer.
The array can consist of bits transmitted 1n parallel during a
single clock cycle, a stream of serially transmitted bits (each
bit transmitted during a different clock cycle), or two or
more parallel streams of serially transmitted bits (in general,
cach stream can consist of a different number of bits).
Although the basic format of the ordered array (and thus the
format of the packet) is typically preserved during process-
ing, each of i1ts data values can be mndicative of any type of
data. For example, during different cycles of a processing
operation, one member of the ordered array can be indicative
of an address of a texel, then a texel, then a color value for
a color pixel, then a partially processed color value, and then
a fully processed color value. Further, 1n some embodi-
ments, data values are added or deleted from the ordered
array as a result of processing, causing the array to grow or
shrink as 1t 1s passed from one stage to the next. Each stage
of a typical embodiment of the pixel shader 1s configured to
respond to the instruction to which a packet’s instruction
pointer points by performing one of a number of predeter-
mined operations on data in the packet (texture data, pixel
data, and/or textured pixel data) and optionally also other
data retrieved 1n response to the pointer, including texturing
operations (in which texture data and pixel data are com-
bined to produce textured pixel data) and other operations
(such as format conversion on individual texels or color
values). Typically, the inventive pixel shader includes a local
memory into which program instructions are pre-loaded, and
the pixel shader retrieves an instruction from the local
memory for each packet in response to the packet’s mstruc-
tion pointer.

10

15

20

25

30

35

40

45

50

55

60

65

4

Each packet typically includes state mformation for at
least one pixel, as well as an instruction pointer that points
to the next instruction to be performed on data of the packet.
The state information includes the color values of each pixel,
and can also include at least one condition code usetul as an
instruction predicate, a value to indicate whether or not the
pixel should be added into the frame buifer at the end of
processing, at least one texel to be combined with the color
values of a pixel, intermediate results from instructions
previously executed on the packet, coordinates of each pixel
in “display screen” space, and/or other data.

Since all (or substantially all) the information required to
process each packet 1s contained within the packet, a pixel
shader embodying the 1mnvention can be implemented with
scalable architecture in the sense that it can be implemented
in modular fashion with any number of i1dentical pipelined
processing stages and be operable 1n response to the same
program regardless of the number of stages. If implemented
with a low number of processing stages, cach stage 1s
typically operated with a high degree of recirculation result-
ing 1n less system performance but also less cost of 1imple-
mentation. If implemented with a high number of processing
stages, each stage 1s typically operated with a low degree of
recirculation resulting in higher system performance but also
higher cost of implementation.

Each processing stage can 1itself be implemented with
scalable architecture, 1n the sense that it can be implemented
to 1nclude an arbitrary number of 1dentical pipelined instruc-
tion execution stages (sometimes referred to herein as
“microblenders”) and be operable in response to the same
set of 1nstructions regardless of the number of instruction
execution stages. If a processing stage 1s implemented with
a low number of microblenders, each microblender 1s typi-
cally operated with a high degree of recirculation resulting
in less performance but requiring less chip area to 1mple-
ment. If the processing stage 1s 1implemented with a high
number of microblenders, each microblender 1s typically
operated with a low degree of recirculation resulting 1n more
performance but requiring more chip area to implement.

All (or substantially all) information about the current
level of processing of a pixel being processed (e.g., an
RGBA pixel which had an 1nitial set of red, green, blue, and
alpha components when input to the pixel shader) is keyed
off the current value of the instruction pointer (“IP”) in the
packet containing the pixel. The current IP value (sometimes
together with one or more condition codes also included in
the packet) determines the next instruction to be executed on
the data contained in the packet. The pixel shader executes
cach operation determined by the current value of IP, and
also updates the value of IP. Since the updated IP 1n each
packet points to the next instruction to be executed on data
in the packet, any processing unit of the pixel shader can
change the 1nstruction that will be executed by a subsequent
processing unit by modifying the IP (and/or condition codes)
of a packet to be asserted to the subsequent processing unit.
Thus, the inventive pixel shader can implement jump,
branch, conditional jump, conditional branch, and loop
instructions, as well as other high-level flow control con-
structs.

Typically, the pixel shader of the ivention 1s 1mple-
mented as a portion of a graphics processing chip.

Other aspects of the invention include graphics processors
(each including a pipelined pixel shader configured in accor-
dance with the invention, and each typically implemented as
an integrated circuit), methods and systems for generating
packets of data (for processing by a pixel shader in accor-
dance with the invention), and methods for pipelined pro-

US 6,930,209 B1

S

cessing of packets of data. In a class of embodiments, the
invention 1s a pipelined graphics processor that includes a
rasterizer stage, a pipelined pixel shader configured in
accordance with the invention, and optionally also a vertex
processor, a pixel processor, and a frame buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system that embodies the
invention.

FIG. 2 1s a block diagram of an embodiment of pixel
shader 30 of FIG. 1.

FIG. 3 1s a diagram of the format of a portion of one data

packet processed by pixel shader 30 1 a typical implemen-
tation of the FIG. 1 system.

FIG. 4 1s a block diagram of one embodiment of processor

70 (or 90) of FIG. 2.

FIG. 5 1s a block diagram of one embodiment of a
microblender (e.g., unit 72, 73, 92, or 93) of FIG. 2.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In a class of embodiments, the invention 1s a scalable,
pipelined pixel shader. The expression “pixel shader” 1s
conventionally used to denote a pixel rendering engine that
combines pixel data (including color values and lighting
information, typically generated by a rasterizer) and texture
data (typically indicative of addresses of texels) to produce
textured pixel data. A pixel shader typically includes cir-
cuitry for retrieving texels from a texture memory (in
response to the texture data asserted to the pixel shader), and
blending the texels with the color values of the pixels to be
textured.

FIG. 1 1s a block diagram of a pipelined graphics pro-
cessing system 1implemented 1n accordance with the present
invention. Preferably, the FIG. 1 system 1s implemented as
an integrated circuit (including other elements not shown in
FIG. 1), but alternatively at least two portions thereof (e.g.,
frame buffer 50, and all other elements of FIG. 1) are
implemented as separate chips (or portions of separate
chips). Vertex processor 10 of FIG. 1 generates vertex data
indicative of the coordinates of the vertices of each primitive
(typically a triangle) of each image to be rendered, and
attributes (e.g., color values) of each vertex.

Rasterizer 20 generates pixel data in response to the
vertex data from processor 10. The pixel data are indicative
of the coordinates of a full set of pixels for each primitive,
and attributes of each pixel (e.g., color values for each pixel
and values that 1dentily one or more textures to be blended
with each set of color values). Rasterizer 20 generates
packets that include the pixel data and asserts the packets to
pixel shader 30. Each packet can but need not have the
format to be described with reference to FIG. 3. Each packet
includes the pixel data for one or more pixels and also all (or
substantially all) information that determines the state asso-
clated with each such pixel. The state information for a pixel
includes a pointer to the next mstruction to be executed by
pixel shader 30 to accomplish the appropriate processing on
the pixel, condition codes that can be used as predicates in
subsequent 1nstructions, a value to indicate whether or not
the pixel should be added into the frame buffer at the end of
processing, and a set of arbitrary-use bit locations that can
contain color values for pixels, iterated vertex data, texels
(e.g., color data from a texture map), intermediate results
from previous pixel shader mstructions, or other data.

10

15

20

25

30

35

40

45

50

55

60

65

6

Pixel shader 30 includes texture subsystem 30A, which
provides texels that are processed (with other data) by the
remaining portion of the pixel shader (labeled “processor” in
FIG. 1). Texture subsystem 30A, is coupled to memory 285,
and typically includes a texture cache memory. Typically,
pixel shader 30 combines the pixel data in each packet
received from rasterizer 20 with texture data determined
during the processing of the packet. For example, a packet
specifles one or more texture coordinates, and pixel shader
30 implements an algorithm to generate a texel average 1n
response to the specified texture coordinates (by causing
texture subsystem 30A to retrieve the texels from memory
25, and computing an average of the texels of each texture
map) and to generate textured pixel data by combining the
pixel with each of the texel averages. In typical implemen-
tations, pixel shader 30 can perform various operations in
addition to (or instead of) texturing each pixel, such as one
or more of the well known operations of format conversion
(e.g. floating point to fixed point conversion or vice versa),
input swizzle (e.g., duplicating and/or reordering an ordered
set of components of a pixel), scaling and biasing, inversion
(and/or one or more other logic operations), clamping, and
output swizzle.

When processing each packet, pixel shader 30 updates
elements of the packet (e.g., replaces color values with
partially processed color values, or with fully processed
color values indicative of blends of original color values and
texels) but preserves the basic packet structure. Thus, when
pixel shader 30 has completed all required processing opera-
fions on a packet, 1t has generated a modified version of the
packet (an “updated” packet). In some implementations,
pixel shader 30 asserts each updated packet to pixel proces-
sor 40, and pixel processor 40 performs additional process-
ing on the updated packets while preserving the basic packet
structure. Alternatively, pixel processor 40 performs the
required additional processing on textured pixel data gen-
crated by pixel shader 30, but after the data have been
extracted from the updated packets generated 1n shader 30
and without preserving packet structure. For example, an
input stage of pixel processor 40 extracts textured pixel data
from updated packets received from pixel shader 30, and
asserts the extracted textured pixel data to other circuitry
within processor 40 that performs the required processing
thereon.

In variations on the FIG. 1 embodiment, pixel processor
40 1s omitted. In this case, pixel shader 30 1s coupled directly
to frame buffer 50, pixel shader 30 performs all required
processing of the pixels generated by rasterizer 20 (by
operating on packets containing the pixels to generate
updated packets), and pixel shader 30 is configured to
extract the fully processed pixels from the updated packets
and assert the fully processed pixels to frame buitfer 50.

Pixel shader 30 can perform various operations 1n addi-
tion to (or instead of) texturing each pixel, such as one or
more of the conventional operations of culling, frustum
clipping, polymode operations, polygon offsetting, and frag-
menting. Alternatively, pixel shader 30 performs all required
texturing operations and pixel processor 40 performs some
or all required non-texturing operations for each pixel.

Since all (or substantially all) the information required to
process each pixel (in a packet) is contained in the packet,
pixel shader 30 (and other embodiments of the inventive
system) can easily be “scaled” in the sense that it can be
implemented with any number of pipelined processing
stages (€.g., any number of stages identical to stage 31 of
FIG. 2), including a low number of processing stages (each

US 6,930,209 B1

7

operated with a high degree of recirculation) or a high
number of processing stages (each operated with a low
degree of recirculation).

Typically, each processing stage 1s itself scalable in the
sense that 1t comprises an arbitrary number of pipelined
instruction execution stages (sometimes referred to herein as
“microblenders”), and can be implemented with a low
number of instruction execution stages (each operated with
a high degree of recirculation) to a high number of instruc-
tion execution stages (ecach operated with a low degree of
recirculation).

With reference to FIG. 3, we next describe the format of
a typical data packet asserted from rasterizer 20 to pixel
shader 30, from pixel shader 30 to processor 40, or within
pixel shader 30 from processor 64 to unit 71, unit 71 to
processor 84, processor 84 to unit 91, or unit 91 back to
processor 64, 1n a typical implementation of the FIG. 1
system (with pixel shader 30 implemented as in FIG. 2). The
packet comprises four of the 192-bitx4-clement data struc-
tures shown in FIG. 3 transmitted in parallel (e.g., one for
cach pixel in a 2x2 square of pixels in screen space called
a “quad”), and a 5-bit instruction pointer “IP” and a 16-bit
coverage value “Covg” transmitted in parallel with the
192-bitx4-element structures. Each 192-bitx4-clement
structure 1s transmitted 1n four clock cycles as follows: data
values T0, T1, and CO0/1 are transmitted (with instruction
pointer “IP” and coverage value “Covg”) in cycle N (where
N is an arbitrary integer), data values T2, T3, and C2/3 are
transmitted 1n cycle N+1, data values T4, TS5, and C4/5 are
transmitted 1n cycle N+2, and data values T6, 17, and C6/7
are transmitted 1n cycle N+3. Each of values T0, T1, C0/1,
12, T3, C2/3, T4, TS, C4/5, T6, T7, and C6/7 comprises 64
bits that are transmitted in parallel (in a single clock cycle).
Thus, a 789-bit (or 768-bit) subset of the packet is trans-
mitted during each clock cycle.

Each of the data values TO, T1, C0/1, T2, T3, C2/3, T4,
TS, C4/5,T6,T7, C6/7 can have any functionality (i.e., each
can be indicative of any specific kind of data, address, or
instruction). Neither the design nor the structure of any
component of the FIG. 2 embodiment depends on the
specific functionality assigned to the data values. In a typical
implementation, TO, T1, T2, T3, T4, TS5, T6, and T7 are
texture coordinate data values. Similarly, C0/1, C2/3, C4/5,
and C6/7 are typically color data values (e.g., red, green,
blue, and alpha values). In some implementations, each of
the values CO0/1, C2/3, C4/5, and C6/7 1s a pair of 32-bit
words of RGBA video data (each 32-bit word is a color
value for a different pixel), and each of the values TO, T1,
12, T3, T4, TS, T6, and T7 1s a 64-bit texture coordinate
(“ST” or “STR,” as indicated in FIG. 3) or a texel (or pair
of 32-bit texels) determined by the texture coordinate. In
other implementations, each of the values C0/1, C2/3, C4/5,
and C6/7 1s a 64-bit word of RGBA video data (a 64-bit red,
green, blue, or alpha value for a color pixel), and each of the
values TO, T1, T2, T3, T4, TS, T6, and 17 1s a 64-bit texture
coordinate (having “ST” or “STR” format, as indicated in
FIG. 3) or a texel determined by the texture coordinate. In
some 1mplementations, each value CO0/1 1s a 64-bit color
value of a pixel (a “first pixel”), each of values C2/3, C4/5,
and C6/7 is another 64-bit color value (in some cases these
color values are to be blended or otherwise combined with
the first pixel, or they are partially processed values gener-
ated by combining the first pixel with at least one other
value), and values TO, T1, T2, T3, T4, TS, T6, and T7 are
texels to be combined with each other and/or with one or
more of the color values C0/1, C2/3, C4/5, and C6/7 (or they

are texture coordinates for use in retrieving such texels). It

10

15

20

25

30

35

40

45

50

55

60

65

3

should also be recognized that the identifiers TO, T1, T2, T3,
T4, TS5, T6, and T7, and C0/1, C2/3, C4/5, and C6/7 are
meant as an aid to idenfifying the type of data typically
stored 1n each 64 bit field, but 1n no way limit the data which
can be stored in a particular field. Thus, a typical imple-
mentation would allow for ST, STR, 32-bit RGBA data, or
64-bit RGBA data to be stored 1n any field regardless of the
label which 1s assigned to the field. In such an 1mplemen-
tation, the instruction referenced by the instruction pointer
could be used to i1dentify the data which has been stored in
a particular field.

Alternatively, the position of a field within the packet
could be used to identify the type of data stored within the
field.

A value having “ST” format (as indicated in FIG. 3) is a
texture coordinate having the conventional “ST” format
often used to specily the address of a texel of a two-
dimensional texture map. A value having “STR” format (as
indicated in FIG. 3) is a texture coordinate having the
conventional “STR” format often used to specily the address
of a texel of a three-dimensional texture map.

When a particular field 1s used to store color data, the 8-bit
or 16-bit red, green, blue and alpha values which comprise
the color data can be denoted by the monikers R, G, B, and
A. For example, 1f C0/1 contains a single 64 color value,
then the red, green, blue, and alpha data within C0/1 can be
referred to as CO0/1,, C0/1,, CO/1,, and CO/1,. If CO/1
contains two 32 bit color values, then the components of
these values can be referred to as C0,, C0_., CO,, and CO,
for the red, green, blue, and alpha value for one color, and
Cl,, C1,, Cl,, and C1, for the red, green, blue, and alpha
values for the second color. Similarly, 1f TO 1s used to store
two dimensional texture coordinates (ST data), the indi-
vidual coordinates can be referred to as T0, and T0,. As a
final example, 1f T2 1s used to store a 64 bit color value, the
color components with the color value would be referred to
as 125, T2, T2,, and T2, for red, green, blue, and alpha;
likewise two dimensional texture coordinates stored within
field C4/5 could be referred to as C4/5. and C4/5.

In a typical implementation, as a packet 1s processed
within the pixel shader 30, the data values contained within
cach field can vary according to the particular part of the
program being executed. For example, when a packet 1s
created, field TO of the packet can be a texture coordinate.
As processing of the pixel shader program proceeds, TO can
be color data. Later in the same program, execution of the
program may cause lield TO again to be a texture coordinate.
In one 1implementation, each instruction can determine how
the fields TO, T1, T2, T3, T4, T5, Té, T7, C0/1, C2/3, C4/5,
and C6/7 will be mterpreted with regards to the type of data
determined by each field at any given level of processing. In
another 1implementation, the packets transmitted between
processing elements do not include fields that are not to be
immediately used (to allow packets containing less data to
be transmitted 1n less time). For example, a packet including
N fields can be transmitted to a first processing stage, an
updated version of the packet comprising N-1 fields can be
transmitted by the first processing stage to a second pro-
cessing stage, and a further updated version of the packet
comprising N+1 fields can be transmitted by the second
processing stage to a third processing stage. Yet another
implementation may constrain each field to only hold one
type of data and may require that all fields (even unused
fields) are transmitted between processing elements (so that
cach updated version of a packet that 1s transmitted always
has the same number of fields as the previous version of the
packet).

US 6,930,209 B1

9

All (or substantially all) information about the current
level of processing for a pixel (e.g., an RGBA pixel whose
components prior to processing in pixel shader 30 had the
values C0/1,, C0/1., C0/1;, and CO0/1,) is keyed off the
current value of the instruction pointer “IP,” since the current
value of IP in a packet (sometimes together with one or more
condition codes 1n the packet, where each condition code 1s
typically generated during execution of a prior instruction)

determines the next instruction to be executed on the data
contained 1n the packet. After the pixel shader executes the
operation determined by the current value of IP, it updates
the value of IP. Since the updated IP 1n each packet points
to the next mstruction to be executed on data in the packet,
any processing unit of the pixel shader can change the
instruction that will be executed by a subsequent processing
unit by modifying the instruction pointer (and/or condition
codes) of a packet that it asserts to the subsequent processing
unit. Thus, the mventive pixel shader can implement jump-
ing, branching, conditional jumping and branching, looping,
and other high-level flow control constructs.

The coverage value “Covg” of a packet having the FIG.
3 format indicates the extent to which the data values of a
sequence of the packets are valid data. For example, con-
sider a sequence of packets asserted to the imput of the
inventive pixel shader that determine the pixels of one
triangular primitive.

Each packet in the sequence comprises four of the 192-
bitx4-element data structures of FIG. 3 containing pixel data
for a 2x2 region of screen space, as well as a 5-bit IP value
and a 16-bit Covg value as shown in FIG. 3. The primitive
can be thought of as beimng “covered” by a grid of the
packets. Each packet of the grid that is “full” of data (and
“covers” a “central” pixel at or near the center of the
triangular primitive) includes valid data for processing the
central pixel (e.g., data indicative of the central pixel itself,
and texels for the central pixel and three other pixels of the
primitive surrounding the central pixel), and can include a
“Covg” value of equal to “1111111111111111.” Each packet
of the grid that 1s nearly “empty” of data since 1t includes
valid data for processing only an “edge” pixel at or near the
edge of a triangular primitive (e.g., data indicative of the
edge pixel itself, and texels for the edge pixel and not more
than one pixel of the primitive adjacent to the edge pixel),
can 1nclude a different value of “Covg” indicative of this
packet’s degree of coverage of the primitive.

The 1inventors contemplate many variations on the packet
format described with reference to FIG. 3. For example,
some packets for processing in accordance with the inven-
tion have width different from the packet width mentioned
above with reference to FIG. 3. For another example, some
packets for processing 1n accordance with the invention can
be transmitted 1n a single clock cycle, others require two or
three clock cycles to transmit them, and others require more
than four clock cycles to transmit them. In some implemen-
tations, packets may vary 1n length as the processing occurs
so that the packet 1s small when little storage 1s required
(such as near the completion of the program when only a
single color value is produced) or larger when more storage
is required (such as in the middle of the execution of a
program, where many temporary values are required). The
length of a packet can be controlled via parameters within
the packet itself allowing the program to directly control the
length of the packet throughout the execution of a program.
Alternately, the length can be controlled by hardware which
examines the resources required by a program at the begin-
ning of execution and/or during program execution.

10

15

20

25

30

35

40

45

50

55

60

65

10

A preferred embodiment of pixel shader 30 will be
described with reference to FIG. 2. The FIG. 2 embodiment

of pixel shader 30 comprises two 1dentical pipelined pro-
cessing stages: upstream stage 31 (including texture sub-
system 60 and processor 70) and downstream stage 32
(including texture subsystem 80 and processor 90). Texture
subsystem 60 1s 1dentical to texture subsystem 80, and
processor 70 1s 1dentical to processor 90. Texture subsystem
60 of FIG. 2 corresponds to texture subsystem 30A of FIG.
1, and texture subsystem 70 of FIG. 2 corresponds to a
second texture subsystem (not shown in FIG. 1) of pixel

shader 30.

Texture subsystem 60 comprises processor 64, texture
addressing stage 61 (coupled to receive texture coordinates
extracted by processor 64 from the packets received from
rasterizer 20), texture cache stage 62 (having an input
coupled to the output of stage 61, and an output), and texture
filtering stage 63 (having an input coupled to the output of
stage 62 and an output coupled to processor 64). Processor
64 includes shift register 65 (sometimes referred to as FIFO
65).

Processor 64 processes each packet asserted at the output
of rasterizer 20, except when the overall system 1s stalled
(such as when processor 64 receives and processes a recir-
culated packet from the output of processor 90, or when
some other element of pixel shader 30 receives and pro-
cesses a recirculated packet from another element of pixel
shader 30). For each packet accepted and processed by
processor 64, processor 64 extracts one or more texture
coordinates from the packet, sends each texture coordinate
to texture addressing stage 61, and shifts the packet into shaft
register 65. Stage 61 generates all the addresses determined
by the texture coordinates, and asserts these addresses to
texture cache stage 62. Stage 62 retrieves all the texels
determined by the addresses received from stage 61. Stage
62 includes a cache memory, and 1s coniigured to retrieve
from the cache memory those texels (determined by the
addresses received from stage 61) that are present in the
cache memory and to perform all necessary accesses of
texture memory 25 shown in FIG. 1 (or another texture
memory) to retrieve those texels (determined by the
addresses received from stage 61) that are not cached in the
cache memory. Stage 62 asserts all retrieved texels to texture
filtering stage 63.

Stage 63 performs any necessary filtering operations on
the texels received from stage 62, and asserts the resulting
filtered texels to processor 64.

In some implementations, stage 63 1s preconfigured to
perform specific filtering operations (before assertion of any
packet to processor 64). In other implementations, stage 63
can be controlled by processor 64 to perform speciiic
filtering operations 1n response to one or more 1nstructions
determined by packets being processed by pixel shader 30.
While stages 61, 62, and 63 perform the operations neces-
sary to generate filtered texels for a packet, the correspond-
ing packet 1s shifted through register 65 with appropriate
timing. Processor 64 generates updated packets by 1nserting
cach filtered texel output from stage 63 into the packet being
shifted out from register 635, typically in place of one or more
texture coordinates originally included in the packet. For
example, when a packet (received by unit 60 from rasterizer
20 and then shifted through register 65) includes a texture
coordinate that has been employed by unit 60 to generate a
filtered texel, an updated packet can be generated by omiut-
ting the texture coordinate from the packet and including in
its place the filtered texel.

US 6,930,209 B1

11

Processor 64 asserts each updated packet to gatekeeping
and recirculating unit 71 of processor 70. Unit 71 includes
shift register 74 (sometimes referred to as FIFO 74). In
response to each updated packet from processor 64, unit 71
either refuses to accept the packet (causing operation of the
system to stall, e.g., while microblenders 72 and 73 process
a recirculated packet that has been shifted through FIFO 74)
or unit 71 accepts the packet and asserts it to microblender
72. Microblender 72 identifies at least one instruction for
processing data within each packet that it receives (by
retrieving or generating each istruction in response to
contents of the packet), executes each instruction to generate
an updated version of the packet, and asserts the updated
version of each packet to microblender 73. Typically,
microblender 72 includes a local memory into which
instructions are pre-loaded (e.g., during initialization of
pixel shader 30) and microblender 72 retrieves a single
instruction, including an operation code (“Opcode™) and a
data value (a “constant”), from the local memory in response
to each instruction pointer.

Typically, a program comprising instructions for process-
ing the pixels and texels included 1n the packets 1s stored in
a frame buffer (e.g., frame buffer 50), and all or some of the
mstructions of the program are pre-loaded into local
memory in each of units 70 and 90 (or each of units 60, 70,
80, and 90) such as during initialization of pixel shader 30.
Each IP (instruction pointer) in a packet points to one of the
instructions that has been pre-loaded into the local memory.

Thus, 1n some 1mplementations, microblender 72
responds to a packet’s IP by retrieving a corresponding
instruction from local memory (e.g., elements 125 and 126
of the FIG. 5§ embodiment of microblender 72, or another
memory elsewhere within unit 70) and executing the instruc-
tion. The 1nstruction can be a conditional instruction, and
such a conditional instruction can depend on a data value
included 1n the packet being processed. For example, the 1P
in a packet can point to a conditional instruction, and the
conditional instruction can in turn point to some value
included in the packet (e.g., the conditional instruction can
require that microblender 72 perform some operation on the
packet’s “C0/17 value, shown 1n FIG. 3, 1n a manner
determined by the packet’s “T2” value, also shown 1n FIG.
3).

Microblender 73 also 1dentifies at least one instruction for
processing data within each packet 1t receives from microb-
lender 73, executes each such instruction to generate a
further updated version of the packet, and asserts the further
updated version of each packet to unit 71. In response to
cach packet received from microblender 73, unit 71 either
asserts the packet to processor 84 of texture subsystem 80,
or recirculates the packet (for further processing during an
additional pass through microblenders 72 and 73) by shifting
the packet into shift register 74 (note the direction of the
arrows on shift register 74). Typically, microblender 73
generates a control word 1n response to the current mstruc-
tion (the instruction being executed by microblender 73).
This control word determines whether unit 71 sends the
updated packet (asserted at the output of microblender 73) to
unit 80 or recirculates the packet back to microblender 72,
and microblender 73 asserts the control word (with the
updated packet) to unit 71 to cause unit 71 to route the
updated packet appropriately. Unit 71 shifts each updated
packet to be recirculated through microblenders 72 and 73
into register 74, and each such packet 1s shifted through
register 74 until it is asserted out of register 74 (with
appropriate timing) to the input of microblender 72. When a
recirculated packet 1s shifted out of register 74, unit 71 stalls

10

15

20

25

30

35

40

45

50

55

60

65

12

the transter from texture subsystem 60 to microblender 72 of
one or more subsequent packets while microblender 72 and
then microblender 73 process each recirculated packet.

Consider for example, the execution of a program that
requires the averaging of multiple texels of a packet, fol-
lowed by blending of the resulting averaged texel with a
color value (e.g., color value C0/1 of the FIG. 3 packet) in
the case that each of microblenders 72 and 73 1s capable of
performing only one multiplication (or addition) operation
per clock cycle. Processor 70 would execute some of the
operations required for computing the required average 1n a
first pass through microblender 72 (which would require
four clock cycles 1f the packet’s length 1s four cycles, as 1s
the length of the packet of FIG. 3). Then, other ones of the
averaging operations would be executed in a first pass
through microblender 73 (which would also require four
clock cycles 1n the case that the packet’s length 1s four
cycles). Then, unit 71 would shift the partially processed
packet through register 74 back to the input of microblender
72. Additional ones of the averaging operations would then
be executed 1n a second pass through microblender 72, and
additional ones of the averaging operations would then be
executed 1n a second pass through microblender 73. Then,
unit 71 would again shift the resulting packet through
register 74 back to the input of microblender 72. Additional
ones of the averaging operations would then be executed 1n
a third pass through microblender 72 to generate the
required averaged texel, and the updated packet (with the
averaged texel) would pass to microblender 73. Blending of
the averaged texel with the relevant color value (e.g., color
value C0/1) would then be executed in a third pass through
microblender 73 to generate the fully processed packet.

Texture subsystem 80 comprises processor 84, texture
addressing unit 81, texture cache unit 82, and texture filter-
ing unit 83, which are identical respectively to processor 64,
texture addressing unit 61, texture cache 62, and texel
filtering umit 63 of texture subsystem 60. Processor 84
includes shift register 85 which 1s 1dentical to shift register
65 of processor 64.

Processor 84 accepts and processes each packet asserted
at the output of processor 70, except when the overall system
1s stalled. When processing each accepted packet, processor
84 cxtracts one or more texture coordinates from the packet,
sends each texture coordinate to texture addressing unit 81,
and shifts the packet into shift register 85. Unit 81 generates
all the addresses determined by the texture coordinates, and
asserts these addresses to texture cache unit 82.

Unit 82 retrieves all the texels determined by the
addresses received from unit 81. Unit 82 includes a cache
memory, and 1s configured to retrieve from the cache
memory those texels (determined by the addresses received
from unit 81) that are present in the cache memory and to
perform all necessary accesses of texture memory 25 shown
in FIG. 1 (or another texture memory) to retrieve those
texels (determined by the addresses received from unit 81)
that are not cached 1n the cache memory. Unit 82 asserts all
retrieved texels to texture filtering unit 83.

Unit 83 performs any necessary filtering operations on the
texels recerved from unit 82, and asserts the resulting filtered
texels to processor 84. In some 1implementations, unit 83 1s
preconfigured to perform specific filtering operations (be-
fore assertion of any packet to processor 84). In other
implementations, unit 83 can be controlled by processor 84
to perform specific filtering operations 1n response to one or
more 1nstructions determined by packets being processed by
pixel shader 30. While units 81, 82, and 83 perform the

operations necessary to generate filtered texels for a packet,

US 6,930,209 B1

13

the corresponding packet 1s shifted through register 85 with
appropriate timing. Processor 84 generates updated packets
by 1nserting each filtered texel output from unit 83 nto the
packet being shifted out from register 85, typically m place
of one or more texture coordinates originally included 1n the
packet. Processor 84 asserts each updated packet to gate-
keeping and recirculating unmit 91 of processor 90.

Unit 91, microblenders 92 and 93, and shift register 94 of
processor 90 are 1dentical, respectively, to unit 71, microb-
lenders 72 and 73, and shift register 74 of processor 70. In
response to each updated packet from processor 84, unit 91
either refuses to accept the packet (causing operation of the
system to stall, e.g., while microblenders 92 and 93 process
a recirculated packet that has been shifted through register
94) or unit 91 accepts the packet and asserts it to microb-
lender 92. Microblender 92 1dentifies at least one instruction
for processing data within each packet that it receives (by
retrieving or generating the instructions in response to
contents of the packet), executes each instruction to generate
an updated version of the packet, and asserts the updated
version of each packet to microblender 93. Typically, each of
microblenders 92 and 93 includes a local memory (into
which mstructions have been pre-loaded, e.g. during nitial-
ization of pixel shader 30), and each microblender retrieves
a single instruction, including an operation code (“Opcode™)
and a data value (a “constant”), from the local memory in
response to each instruction pointer.

Microblender 93 1dentifies at least one additional instruc-
tion for processing data of each packet that it recerves from
microblender 92, executes each such instruction to generate
a further updated version of the packet, and asserts the
further updated version of each packet to unmit 91. In
response to each packet received from microblender 93, unit
91 either asserts the packet to pixel processor 40 (or directly
to frame buffer 50 in implementations 1n which processor 40
is not included), or recirculates the packet through shift
register 94 (for additional processing in another pass through
microblenders 92 and 93), or recirculates the packet to an
input of processor 64 (for further processing during another
pass through the entire pixel shader). Unit 91 can shift each
packet asserted at the output of microblender 93 through
register 94, and out of register 94 with appropriate timing to
the mput of microblender 92, while stalling the transfer to
microblender 92 of one or more subsequent packets from
texture subsystem 80 while microblender 92 and then
microblender 93 process each recirculated packet that has
been shifted out of register 94. Typically, microblender 93
generates a control word 1n response to the current mnstruc-
tion (the instruction being executed by microblender 93),
this control word determines whether unit 91 sends the
updated packet (being asserted at the output of microblender
93) to unit 40 (or frame buffer 50) or recirculates the packet
back to microblender 92 (or texture subsystem 60), and
microblender 93 asserts the control word (with the updated
packet) to unit 91 to cause unit 91 to route the updated
packet appropriately.

Typically, each of units 62 and 82 can perform one
bilinear texture lookup per clock cycle.

FIG. 4 1s a simplified block diagram of an embodiment of
processor 70 (or 90) of FIG. 2. Gatekeeper unit 100, FIFO
101, and emitter unit 102 (connected as shown) of FIG. 4
implement unit 71 of FIG. 2. The FIG. 4 processor also
includes a first microblender (an implementation of microb-
lender 72 or 92 of FIG. 2) comprising instruction mapping
and execution unit 104, math unit 105, FIFO 106, and
destination unit 107 (connected as shown), and a second
microblender (an implementation of microblender 73 or 93

10

15

20

25

30

35

40

45

50

55

60

65

14

of FIG. 2) comprising instruction mapping and execution
unit 114, math unit 115, FIFO 116, and destination unit 117
(connected as shown). Unit 114 is identical to unit 104, unit
115 1s 1dentical to 105, FIFO 116 1s 1dentical to FIFO 106,
and unit 117 1s identical to unmt 107.

FIG. 5 1s a block diagram of a fully pipelined, fixed
latency microblender (having five stages) suitable for imple-
menting each of the microblenders of FIG. 2 or FIG. 4. FIFO
106 and destination unit 107 of the FIG. 5 microblender are
identical to the 1dentically labeled units of FIG. 4. In FIG. §,
local memories 125 and 126 function as look-up tables into
which program data are pre-loaded to enable the microb-
lender to execute program instructions. Specifically, local
memory 125 stores an Opcode value (typically a 128-bit
word), and local memory 126 stores a constant value (typi-
cally a 64-bit word), for each instruction. In a typical
implementation, eight 128-bit Opcode values are stored in
memory 125 and eight 64-bit constant values (one for each
Opcode) are stored in memory 126. These eight opcodes can
represent all or part of a program.

To reduce the size of the instruction set that 1s stored 1n
local memory within the microblender, multiple 1nstructions
in the program are all mapped to a single Opcode/constant
pair. In an embodiment 1n which each instruction pointer
(IP) of a packet is a 5-bit value (as in the packet of FIG. 3),
remap unit 124 implements a look-up table that asserts to
cach of local memory 125 and local memory 126 a different
3-bit address 1n response to each different IP value. In
operation, each mmcoming packet 1s asserted to remap unit
124, to execution unit 128, and to FIFO 106. Remap unit 124
responds to the IP of the current packet by asserting a 3-bit
address to each of memory 125 and memory 126. In
response, memory 125 asserts an Opcode to execution unit
128, and memory 126 asserts a constant to execution unit
128. A new packet can be asserted to the microblender each
clock cycle, and units 124, 125, and 126 are configured to be
capable of asserting an updated Opcode/constant pair once
per clock cycle. Alternatively, a new packet may require
multiple clock cycles to transmit, and the microblender may
execute a new 1nstruction on each clock cycle using the data
which 1s available within the packet on the associated cycle,
or data which was available on a previous clock cycle for the
packet.

The microblender of FIG. 5 typically includes four math
units (each with a corresponding set of input processors):
math unit 138, math unit 136, and two math units (136A and
136B) identical to unit 136 (each connected serially so that
an output of math unit 138 is available for math unit 136, an
output of math unit 136 1s available to math unit 136B, and
an output of math unit 136B 1s available to math unit 136A,
each math unit connected between units 128 and 140). When
cach packet includes data for a red, green, blue, and alpha
pixel (a red, green, blue, and alpha component of a color
pixel) as does the packet described with reference to FIG. 3,
math unit 138 typically performs an operation on the alpha
pixel (or data related to the alpha pixel), math unit 136A
typically performs an operation on the red pixel (or data for
texturing the red pixel), the third math unit 136B typically
performs an operation on the green pixel (or data for
texturing the green pixel), and the fourth math unit 136
typically performs an operation on the blue pixel (or data for
texturing the blue pixel).

In the FIG. 5 implementation, execution unit 128 extracts
up to three, 64-bit input arcuments from an input packet, and
divides each argument into up to four components. Each
component of each argument 1s asserted to an input proces-
sor. For example, for a particular command, the three input

US 6,930,209 B1

15

arcuments T0, T1, and C0/1 may be extracted from the 1nput
packet. In this example, assume that each of these argcuments
contains red, green, blue, and alpha color data. For this
example, the execution unit provides T0,, T1, and C0/1, to
input processors 129A, 130A, and 131A, respectively, TO .,
11, and C0/1 . to mput processors 1298, 130B, and 131B,
respectively, T0,, T1,, and C0/1, to mput processors 129,
130, and 131, respectively, and T0,, T0,, and C0/1, to input
processors 132, 133, and 134 respectively. As another
example, for a particular command, the two mput arguments
T2 and T3 may be extracted from the mput packet. In this
example, assume that each of these arcuments contains three
texture coordinates S, T, and R. For this example, the
execution unit provides T2S and T3S to mput processors
129A and 130A, respectively, T2T and T3T to iput pro-
cessors 129B and 130B, respectively, and T2R and T3R to
input processors 129, and 130, respectively. In this example,
math unit 138 and associated input processors 132, 133, and
134 could be used to process another command. Finally, 1f
a parfticular command specifies a constant mput as an
arcument, the execution unit asserts the value provided by
constant memory 126 for this argcument.

In one contemplated implementation, execution unit 128
processes up to two idependent Opcodes 1n parallel utiliz-
ing math units 136A, 136B, and 136 to process Opcodes for
two or three component input arguments, and utilizing math
unit 138 to process one component mput arcuments. In this
implementation, math units 136A, 136B, and 136 can be
used to process an Opcode referring to only the red, green,
and blue components of a pixel color, and math unit 138
maybe used to process a ditferent Opcode referring to only
the alpha component of a pixel color. This implementation
could also allow all four math units 136A, 136B, 136 and
138 to process a single Opcode referring to all four color
components of a pixel (e.g. red, green, blue and alpha
components).

Each of mput processors 132, 133, and 134 performs an
input operation (determined by the control Opcode) on one
of the arecuments entering the alpha channel, each of input
processors 129, 130, and 131 performs an input operation
(determined by the Opcode) on one of the arguments enter-
ing the blue channel, each of mput processors 129A, 130A,
and 131A performs an input operation (determined by the
Opcode) on one of the argcuments entering the green channel,
and each of mput processors 129B, 130B, and 131B per-
forms an input operation (determined by the Opcode) on one
of the arguments entering the red channel.

The 1nput processors are typically implemented to per-
form any of a variety of input operations, such as format
conversion, mput swizzle, scaling and biasing, and inver-
sion. For example, 1n one implementation each of processors
129, 130, and 131 is coupled to route the argument (Al, A2,
or A3) received at its input to any of the three inputs of math
unit 138, and processors 129, 130, and 131 are configured to
implement an 1nput swizzle operation to duplicate and/or
reorder the arguments of an ordered set of arguments (Al,

A2, and A3) received from unit 128, e.g., by replacing this
ordered set with a reordered set (A2, Al, A3), a modified set

(A3, A2, A3), or some other reordered or modified set.

For another example, each of processors 129, 130, and
131 1s configured to perform format conversion (in response
to control bits generated by unit 128 1n response to a speciiic
Opcode) on an argument received from unit 128. For
example, where the argument 1s a 64-bit value having
conventional “ST” format from location TO of the packet,

10

15

20

25

30

35

40

45

50

55

60

65

16

format conversion 1s performed on this arcument to replace
it with a 64-bit value having a conventional “RGBA”
format.

Execution unit 128 also generates control bits (for pro-
cessing 1n each of the alpha, red, green, and blue processing
channels and in destination unit 107) in response to the
Opcode, and asserts these control bits to the input processing,
circuitry. Some of the control bits are employed by the 1nput
processing circuitry, and others are passed through the input
processing circuitry to appropriate ones of the math units,
output processing circuitry 140 (to be described below), and
destination unit 107. Umt 107 generates an updated IP 1n
response to a subset of the control bits and replaces the IP
of the current packet with the updated IP. Alternatively,
execution unit 128 generates the updated mstruction pointer
IP, the updated IP 1s routed to destination unit 107, and unit
107 substitutes 1t for the IP of the current packet.

In a preferred implementation, each of math units 136,
136A, 136B, and 138 receives three arguments (to be
denoted as ARGO, ARGI1, and ARG2, respectively) that
have undergone processing in the input processing circuitry,
and control bits MULT, LERP, and ADD that have been
generated 1n execution unit 128 and passed through the input
processing circultry. In some implementations, unit 128
generates control bits for each channel independently, so that
the MULI, LERP, and ADD bits for one channel do not
necessarily match those of another channel. TO cause a math
unit to multiply ARG1 with ARG2, and assert as a result a
value ARG1*ARG?2 at its output, the codes for the math unit
are MULT=1, LERP=0, and ADD=0. To cause the math unit
to add ARGO with ARG1, and assert as a result a value
ARGO+ARG]1 at its output, the codes for the math unit are
MULT=0, LERP=0, and ADD=1. To cause a math unit to
perform a linear interpolation operation on AR0O, ARG1, and
ARG2, and assert as a result a value ARGO*(1-ARG2)+
((ARG1)*(ARG?2)) at its output, the codes for the math unit
are MULT=0, LERP=1, and ADD=0.

Thus, each of the math units 1s configured to perform the
following operation on the three arguments at its inputs:

R=(MULT ? 0.0:ARGO)+(ARG1-(LERP ? ARG0:0.0))
*(ADD ? 1.0:ARG?2),

where the notation “TERM=X? Y.0:Z” denotes that 1if X=1,
then TERM=Y, and if X=0, then TERM=Z.

In some implementations, the math units are configured to
implement 3-component vector dot products (known as
“DP3” operations) and 4-component vector dot products
(known as “DP4” operations) efficiently. For example, the
math units are coniigured to respond to control bits indica-
tive of a DP3 operation by executing a 3-component vector
dot product on six arguments received from the input
processing circuitry, and the math units are configured to
respond to control bits indicative of a DP4 operation by
executing a 4-component vector dot product on eight argu-
ments received from the imput processing circuitry. In
executing a vector dot product, 1t may be efficient for each
of the math units to provide results to another math unait.
Thus, FIG. § shows that math unit 138 1s coupled to assert
an arecument to unit 136, unit 136 1s coupled to assert an
arcument to unit 1368, and unit 136B 1s coupled to assert an
arcument to unmit 136A, and 1t 1s contemplated that each of
at least some of the math units can perform mathematical
operations on a set of more than three arguments input
thereto.

Such dot-product operations are useful to 1mplement
some types of bump mapping. More generally, the microb-

US 6,930,209 B1

17

lender of FIG. 5 can be implemented to be capable of
executing the mathematical operations required for efficient
bump mapping and multi-texturing.

The data value “R” output from unit 136A 1s identified in
FIG. 5 as “R1,” the data value R output from unit 136B 1s
identified 1n FIG. 5 as “R2,” the data value R output from
unit 136 1s identified 1in FIG. 5 as “R3,” and the data value
R output from unit 138 1s 1dentified in FIG. 5 as “R4.”

Output processor 140, connected between math units 136,
136A, 136B, and 138 and destination unit 107, 1s configured
to perform output processing on the data values (R1, R2, R3,
and R4) that it receives from the math units. Output pro-
cessor 140 1s typically implemented to perform any of a
variety of output operations, such as output swizzle, per
channel logic operations, scaling, clamping, and format
conversion. For example, processor 140 can be configured to
perform an output swizzle operation to duplicate and/or
reorder the ordered set of data values (R1, R2, R3, and R4)
received from the math units, e¢.g., to replace 1t with a
reordered set (R2, R1, R3, R4), a modified set (R3, R2, R3,
R4), or some other reordered or modified version of the
ordered set asserted thereto. For another example, processor
140 can be configured to perform format conversion (in
response to one or more control bits generated by execution
unit 128 in response to a specific Opcode) on any of the
values received from the math units. For example, where the
value R1 1s a 16-bit color value to replace the current value
in location CO0/1 . of the packet, format conversion 1s per-
formed on R1 to replace 1t with an 8-bit color value R1' to
replace the current value 1n location C0_.. of the packet.

In alternative embodiments, units 132, 133, 134, 129, 130,
131, 129A, 130A, 131 A, 129B, 130B, and 131B are omatted
(replaced by short circuits), or processor 140 is omitted (so
that the output of math units 136, 136A, 136B, and 138 arc
data values R1, R2, R3, and R4, respectively), or units 132,
133, 134, 129, 130, 131, 129A, 130A, 131A, 1298, 130B,
and 131B are omitted (replaced by short circuits) and
processor 140 1s omitted.

Destination unit 107 of FIG. § corresponds to unit 107 (or
117) of FIG. 4. With reference to FIG. §, while unit 128
selects arcuments and the areuments are processed 1n the
input processing circuitry 129-134, 129A-131A, and
129B-131B, math units 136, 136A, 136B, and 138, and
output processor 140, the current packet 1s shifted through
FIFO 106 to destination unit 107. The packet 1s updated
when 1t 1s shifted out of FIFO 106. Specifically, destination
unit 107 responds to control bits (generated in execution unit
128 1n response to the current Opcode, and routed to unit
107) by replacing appropriate values of the packet emerging
from FIFO 106 with corresponding values received from
output processor 140. As noted above, unit 107 also replaces
the packet’s current IP with an updated IP. As also noted
above, one or more of the values inserted 1nto the packet by
unit 107 can function as condition codes for use by one or
more processing units of pixel shader as predicates for
subsequent 1nstructions.

Destination umit 107 asserts each updated packet to a
downstream unit. The downstream unit can be either the
emitter unit 102 of FIG. 4 (in case unit 107 is included in
microblender 73 or 93 or another final microblender 1n a
microblender sequence 1n a processor of the inventive pixel
shader) or a downstream microblender (in case unit 107 is
included 1n microblender 72 or 92 or another microblender
that 1s not the final microblender 1n a microblender sequence
in a processor of the inventive pixel shader).

Emitter unit 102 of FIG. 4 1s configured to route each
updated packet that it receives to output 102A (which can be

10

15

20

25

30

35

40

45

50

55

60

65

138

coupled to a downstream stage, such as pixel processor 30
or frame buffer 50 of FIG. 2 1n case emitter unit 102 1s within
processor 90, or processor 84 of FIG. 2 in case emitter unit
102 is within processor 70), or to output 102B (which can be
coupled to an input of an upstream stage, such as texture
subsystem 60 of FIG. 2), or to output 102C (which is
coupled to the input of FIFO 101). Control bits generated in
execution unit 128 in response to the current Opcode, and
routed to unit 102, determine how unit 102 routes each
updated packet that 1t receives. For example, unit 102 can
include logic that responds to a control bit that mandates
additional processing in a texture subsystem by routing a
packet to output 102B rather than to 102A 1if the state of the
logic indicates that no texture subsystem 1s coupled to output
102 A downstream from unit 102, and by routing the packet
to output 102A 1f the state of the logic indicates that a texture
subsystem 1s coupled to output 102A downstream from unit

102.

Typical implementations of the inventive pixel shader can
execute jump, branch, and conditional mstructions. For
example, if the current value of IP points to instruction I, and
the program 1s a sequence of consecutive mstructions with-
out branch instructions (or other conditional instructions), a
microblender merely substitutes a pointer to the next instruc-
fion I, , 1n place of the current value of IP. If the program
includes a branch (or other conditional) instruction that
specifles one of two or more possible 1nstructions as the
“next” nstruction depending on the value of one or more
condition codes, the microblender (e.g., unit 117 of the
microblender of FIG. §5) can select one of the possible
instructions (i.e., determine which of the possible instruc-
tions the next value of IP should point to) if the condition
codes are included 1n or determined by the packet being
processed. For example, a condition code could be the value
occupying a specific bit location of the packet (e.g., a “red”
texel value occupying location T6, of a packet having the

FIG. 3 format).

Consider one example of execution of a conditional
instruction to process a packet containing at least one data
structure that functions as a condition code. If the packet has
the format described above with reference to FIG. 3, the
pixel shader performs four texturing operations in parallel
on four pixels determined by each packet (each pixel being
determined by a different one of the packet’s four, 192-
bitx4-clement structures), and the packet points to a condi-
tional instruction, the first and fourth pixels can be operated
on by a different instruction than are the second and third
pixels during the same clock cycle. This 1s because the
condition code 1n each of the first and fourth 192-bitx4-
clement structures of the packet can have a first value, and
the condition code 1n each of the second and third 192-
bitx4-element structures of the packet can have a second
value different than the first value.

In variations on the FIG. 4 embodiment of processor 70
(or 90) of FIG. 2, the processor includes one microblender
(e.g., the upstream microblender of FIG. 4, with the output
of unit 107 being connected directly to the mnput of emitter
unit 102), or more than two microblenders (e.g., the
upstream and downstream microblenders of FIG. 4 and at
least one additional microblender, all connected in series
between gatekeeper 100 and emitter 102).

Another embodiment of the mvention 1s a method for
pipelined pixel shading. The method includes the steps of:

generating a packet, wherein the packet 1s an ordered
array of data values including an instruction pointer
indicative of a pixel shading instruction;

US 6,930,209 B1

19

asserting an 1nstruction code 1n response to the 1nstruction

pointer;

generating updated data values by processing at least

some of the data values 1n response to the instruction
code, thereby executing the instruction determined by
the 1nstruction pointer; and
generating an updated packet identical to the packet
except 1n that the updated packet imncludes an updated
instruction pointer in place of the instruction pointer,
the updated packet includes the updated data values 1n
place of corresponding ones of the data values, the
updated packet optionally does not include places for
data values that are no longer required, and the updated
packet optionally includes new places for data values
that may be required 1n subsequent processing.
Optionally, the method also includes the steps of:
generating control bits 1n response to the instruction code
and determining at least one set of argcuments 1n
response to the 1nstruction code and said at least some
of the data values, wherein each said set of the argu-
ments 1mncludes at least one of the data values;

generating at least one processed set of the arcuments in
response to each said set of the arcuments and at least
some of the control bits; and

generating the updated data values 1n response to the least

one processed set of the argcuments.

The updated packet can include a condition code, and the
updated 1nstruction pointer can be indicative of a conditional
instruction. At least one of the instruction pointer and the
updated instruction pointer can be indicative of a jump,
branch, loop, conditional jump, or conditional branch
instruction.

Another embodiment of the invention is a method for
pipelined pixel shading. The method includes the steps of:

generating a packet, wherein the packet 1s an ordered

array of data values;

determining at least one texel by processing at least one

texture coordinate of the packet;

generating an updated packet in response to the packet,

wherein the updated packet 1s an ordered array of
updated data values including an instruction pointer
indicative of an 1instruction, and including each said
texel;

asserting an 1nstruction code 1n response to the 1nstruction

pointer;

generating further updated data values by processing at

least some of the updated data values 1n response to the
instruction code, thereby executing the instruction
determined by the instruction pointer; and

generating a further updated packet identical to the

updated packet except in that the updated packet
includes an updated instruction pointer in place of the
instruction pointer, the further updated packet includes
the further updated data values 1n place of correspond-
ing ones of the updated data values, the further updated
packet optionally does not include places for data
values that are no longer required, and the further
updated packet optionally includes new places for data
values that may be required 1n subsequent processing.

The further updated packet can include a condition code,
and the updated instruction pointer can be indicative of a
conditional 1nstruction. At least one of the instruction
pointer and the updated instruction pointer can be indicative
of a jump, branch, loop, conditional jump, or conditional
branch instruction.

It should be understood that while certain forms of the
mvention have been 1llustrated and described herein, the

10

15

20

25

30

35

40

45

50

55

60

65

20

invention 1s not to be limited to the specific embodiments
described and shown or the specific methods described.

What 1s claimed 1s:

1. A pipelined pixel shader configured to process a packet
in accordance with a program comprising instructions,
wherein the packet 1s an ordered array of data values
including an instruction pointer indicative of one of the
instructions, the packet has a format, and the packet contains
information, other than the instructions themselves, required
for the pixel shader to process the packet, said pixel shader
comprising:

a set of pipelined processing stages coupled and config-
ured to perform pipelined processing operations on the
packet such that the format of the packet output from
cach stage of the set 1s related to the format of the
packet 1mnput to said stage, the packet output from each
stage of the set includes an updated 1nstruction pointer
in place of the 1nstruction pointer of the packet iput to
said stage, and the packet output from each stage of the
set includes at least one updated data value 1n place of
a corresponding one of the data values of the packet
input to said stage.

2. The pixel shader of claim 1, wherein the format of the
packet output from each stage of the set 1s 1dentical to the
format of the packet mput to said stage.

3. The pixel shader of claim 1, wherein the packet input
to each stage of the set comprises fields of data, and the
stages are configured so that the format of the packet output
from each stage of the set can differ from the format of the
packet mput to said stage by at least one of omission of at
least one of the fields and mclusion of at least one additional
field with the fields.

4. The pixel shader of claim 1, wherein each of the stages

includes at least one pipelined instruction execution unit,
and each said mstruction execution unit has 1dentical archi-
tecture.

5. The pixel shader of claim 4, wherein at least one of the
stages 1ncludes a first pipelined instruction execution unit
having an output, and a second pipelined mstruction execu-
tion unit having an mput coupled to the output of the first
pipelined instruction execution unit, and wherein the second
pipelined instruction execution unit 1s 1dentical to the first
pipelined 1nstruction execution unit.

6. The pixel shader of claim 1, wherein the packet input
to at least one of the stages includes a condition code and an
instruction pointer indicative of a conditional 1nstruction.

7. The pixel shader of claim 1, wherein the packet 1nput
to at least one of the stages includes an instruction pointer
indicative of one of a jump, a branch, a loop, a conditional
jump, and a conditional branch instruction.

8. The pixel shader of claam 1, wherein the packet
contains at least substantially all information, other than the
instructions themselves, required for the pixel shader to
process the packet.

9. The pixel shader of claim 1, wheremm the packet
contains all information, other than the instructions them-
selves, required for the pixel shader to process the packet.

10. A pipelined pixel shader configured to receive and
process a packet 1in accordance with a program comprising
instructions, wherein the packet 1s an ordered array of data
values mcluding an instruction pointer indicative of one of
the 1nstructions, said pixel shader comprising:

a set of N processing stages for performing pipelined
processing operations on the packet and at least one
updated version of the packet, where N 1s an integer
oreater than one, each of the stages has an input and an
output and 1s configured to assert at the output an

US 6,930,209 B1

21

updated version of the packet received at the input,
cach said updated version includes an updated 1nstruc-
tion pointer in place of the instruction pointer and at
least one updated data value 1n place of a corresponding
one of the data values, each of the stages has architec-
ture 1dentical to that of each other one of the stages, and
the pixel shader 1s operable to execute the program
regardless of the value of N.
11. The pixel shader of claim 10, wherein each said
updated version of the packet has format identical to the
format of the packet received at the 1input of said each of the
stages.
12. The pixel shader of claim 10, wherem each of the
stages 1ncludes at least one pipelined instruction execution
unit, and each said 1nstruction execution unit has identical
architecture.
13. The pixel shader of claim 12, wherein at least one of
the stages includes a first pipelined instruction execution
unit having an output, and a second pipelined instruction
execution unit having an input coupled to the output of the
first pipelined instruction execution unit, and wherein the
second pipelined mstruction execution unit 1s 1identical to the
first pipelined instruction execution unit.
14. The pixel shader of claim 10, wherein at least one said
updated version of the packet includes a condition code, and
the updated nstruction pointer of said updated version of the
packet 1s indicative of a conditional 1nstruction.
15. The pixel shader of claim 10, wherein at least one of
the 1nstruction pointer and the updated mstruction pointer 1s
indicative of one of a jump, a branch, a loop, a conditional
jump, and a conditional branch instruction.
16. A pipelined pixel shader configured to receive and
process a sequence of packets, wherein each packet 1n the
sequence 1s an ordered array of data values including an
mnstruction pointer indicative of an instruction, said pixel
shader comprising:
an 1nstruction determination stage coupled to receive the
instruction pointer of each packet and configured to
assert an 1nstruction code 1n response to each said
Instruction pointer;

an 1nstruction execution stage coupled to receive the
instruction code and at least a subset of the data values
of each packet, and configured to generate updated data
values by processing at least some of the data values 1n
response to the instruction code, thereby executing the
instruction determined by the instruction pointer; and

a destination stage, coupled to receive the updated data

values and at least some of the data values and con-
figured to assert an updated packet 1n response thereto,
wherein at least one of the instruction determination
stage, the 1nstruction execution stage, and the destina-
tion stage 1s configured to generate an updated 1nstruc-
tion pointer, and wherein the updated packet includes
the, updated 1nstruction pomter 1n place of the instruc-
tion pointer and the updated data values 1n place of
corresponding ones of the data values.

17. The pixel shader of claim 16, wherein each said
updated packet has format identical to the format of a packet
received by the pixel shader.

18. The pixel shader of claim 16, wherein the instruction
determination stage 1s configured to assert a first instruction
code 1n response to each said instruction pointer having a
first value and to assert the first instruction code in response
to each said imstruction-pointer having a second value,
thereby implementing a mapping of N different ones of the
instruction pointers to M different ones of the instruction
codes, where N 1s greater than M.

10

15

20

25

30

35

40

45

50

55

60

65

22

19. The pixel shader of claim 16, wherein the instruction
determination stage includes:

a memory 1nto which instruction codes can be loaded, and
wherein the instruction determination stage 1s config-
ured to retrieve from the memory one of the instruction
codes that has been loaded into the memory in response
to each said instruction pointer.

20. The pixel shader of claim 19, wherein the memory has
capacity to store M different ones of the instruction codes,
the mstruction determination stage i1s configured to retrieve
a first instruction code from the memory 1n response to each
said 1nstruction pointer having a first value and to retrieve
the first instruction code from the memory 1n response to
cach said instruction pointer having a second value, thereby
implementing a mapping of N different ones of the nstruc-
fion pointers to M different ones of the instruction codes,
where N 1s greater than M.

21. The pixel shader of claim 20, wherein the instruction
determination stage also includes:

a remap unit coupled and configured to receive each said
instruction pointer and to assert an address to the
memory 1n response to each said instruction pointer,
wherein the memory 1s configured to retrieve one of the
instruction codes from the memory 1n response to each
said address.

22. The pixel shader of claim 19, wherein the memory 1s
configured to store a set of constants and said instruction
codes, and the 1nstruction determination, stage 1s configured
to retrieve one of the instruction codes and one of the
constants from the memory in response to each said instruc-
tion pointer, and wherein the instruction execution stage 1s
coupled to receive said one of the instruction codes, said one
of the constants, and said at least some of the data values,
and 1s configured to generate the updated data values by
processing at least one argument selected from the data
values and said one of the constants 1n response to said one
of the instruction codes, thereby executing the instruction
determined by the instruction pointer.

23. The pixel shader of claim 16, wherein the 1nstruction
execution stage 1ncludes:

an argument selection and control bit generation stage
coupled to receive the 1nstruction code and said at least
some of the data values, and configured to generate
control bits 1n response to the instruction code and to
assert at least one set of arguments 1n response to the
instruction code and said at least some of the data
values, wherein each said set of the arguments 1includes
at least one of the data values;

an 1mput processing stage coupled to receive each said Set
of the arcuments and at least some of the control baits,
and configured to assert at least one processed set of the
arcuments 1n response thereto;

a math operation stage coupled to receive the at least one
processed set of the arcuments and at least some of the
control bits, and configured to assert at least one further
processed set of the arguments in response thereto; and

an output processing stage coupled to receive the at least
one further processed set of the arcuments and at least
some of the control bits, and configured to assert the
updated data values 1n response thereto.

24. The pixel shader of claim 23, wherein the 1nstruction
determination stage 1s configured to assert at least one
constant with the instruction code 1n response to each said
instruction pointer,

the argument selection and control bit generation stage 1s
coupled to recerve the mstruction code, the at least one

US 6,930,209 B1

23

constant, and said at least some of the data values, and
conflgured to assert the at least one set of argcuments 1n
response thereto,

the at least one set of argcuments 1ncludes a set of three

arcuments R0, R1, and R2, wheremn RO 1s a first
selected one of the at least one constant and said at least
some of the data values, R1 1s a second selected one of
the at least one constant and said at least some of the
data values, and R2 1s a third selected one of the at least
one constant and said at least some of the data values,
and

the mput processing stage 1s coupled to receive the

arcuments RO, R1, and R2 and at least some of the
control bits, and configured to assert a set of three
processed arguments ARGO, ARG1, and ARG2 1n
response thereto.

25. The pixel shader of claim 24, wherein at least some of
the control bits asserted to the math operation stage deter-
mine whether the math operation stage performs a multipli-
cation operation, ADD, a multiplication operation, MOLT,
or a linear interpolation operation, LERP, on the arcuments
ARGO, ARG1, and ARG2.

26. The pixel shader of claim 25, wherein the math
operation stage 1s configured to generate a value R 1n
response to the arecuments ARGO, ARG1, and ARG2 and
said at least some of the control bits, where:

R=(MULT ? 0.0:ARGO+(ARG1- (LERP ? ARG0:0.0))
*(ADD ? 1.0:ARG?2).

27. The pixel shader of claim 16, wherein the instruction
execution stage includes:
an argument selection and control bit generation stage
coupled to receive the 1nstruction code and said at least
some ol the data values, and configured to generate
control bits 1n response to the instruction code and to
assert at least one set of arcuments 1n response to the
mnstruction code and said at least some of the data
values, wherein each said set of the arcuments includes
at least one of the
data values; and
a math operation stage coupled to receive the at least one
set of argcuments and at least some of the control bits,
and configured to assert at least one processed set of the
arcuments 1n response thereto, and wherein
the 1nstruction determination stage 1s configured to assert
at least one constant with the instruction code 1n
response to each said instruction pointer,
the argument selection and control bit generation stage 1s
coupled to recerve the mstruction code, the at least one
constant, and said at least some of the data values, and
conilgured to assert the at least one set of arguments 1n
response thereto, and the at least one set of arcuments
includes a set of the arcuments ARGO, ARG1, and
ARG?2, wherein ARGO 1s a first selected one of the at
least one constant and said at least s9me of the data
values, ARG1 1s a second selected one of the at least
one constant and said at least some of the data values,
and ARG2 1s a third selected one of the at least one
constant and said at least some of the data values.
28. The pixel shader of claim 27, wherein at least some of
the control bits asserted to the math operation stage deter-
mine whether the math operation stage performs a multipli-
cation operation, ADD, a multiplication operation, MULT,
or a linear 1nterpolation operation, LERP, on the arcuments
ARGO, ARGI1, and ARG2.
29. The pixel shader of claim 28, wherein the math
operation stage 1s configured to generate a value R 1n

10

15

20

25

30

35

40

45

50

55

60

65

24

response to the arcuments ARGO, ARG1, and ARG2 and
said at least some of the control bits, where:

R=(MULT ? 0.0:ARGO)+(ARG1-(LERP ? ARG0:0.0))
*(ADD ? 1.0:ARG2).

30. The pixel shader of claim 16, wherein the updated
packet includes a condition code, and the updated 1nstruc-
fion pointer 1s 1indicative of a conditional mstruction.

31. The pixel shader of claim 16, wherein at least one of
the 1nstruction pointer and the updated instruction pointer 1s
indicative of one of a jump, a branch, a loop, a conditional
jump, and a conditional branch instruction.

32. A pipelined pixel shader configured to receive and
process a sequence of packets, wheremn each packet 1n the
sequence 1s an ordered array of data values including an
instruction pointer indicative of an instruction, said pixel
shader comprising:

a gatekeeper having a first input coupled to receive each

said packet, a second 1nput, and an output;

a first 1nstruction determination stage coupled to the
output of the gatekeeper for receiving the instruction
pointer of each packet asserted at the output of the
cgatekeeper, wherein the first instruction determination
stage 1s configured to assert an instruction code 1n
response to each said instruction pointer;

a first mstruction execution stage coupled to receive the
instruction code and to receive at least some of the data
values of each packet asserted at the output of the
cgatekeeper, wherein the first instruction execution stage
1s confligured to generate updated data values by pro-
cessing at least a subset of the data values 1n response
to the 1nstruction code, thereby executing the instruc-
tion determined by the instruction pointer;

a. first destination stage, coupled to receive the updated
data values and at least some of the data values of each
packet asserted at the output of the gatekeeper, and
configured to assert an updated packet 1n response
thereto, wherein at least one of the first mstruction
determination stage, the first instruction execution
stage and the first destination stage 1s configured to
generate an updated instruction pointer, and wherein
the updated packet includes the updated instruction
pointer in place of the instruction pointer and the
updated data values in place of corresponding ones of
the data values;

a second 1nstruction determination stage coupled to the
first destination stage for receiving the updated instruc-
tion pointer of each updated packet asserted by the first
destination stage, wherein the second instruction deter-
mination stage 1s configured to assert a second 1nstruc-
tion code in response to each said updated instruction
pointer;

a second 1nstruction execution stage coupled to receive
the second 1nstruction code and to receive at least some
of the data values of each updated packet asserted by
the first destination stage, wherein the second 1nstruc-
fion execution stage 1s configured to generate updated
data values by processing at least a subset of said data
values 1n response to the second instruction code,
thereby executing the instruction determined by the
updated instruction pointer; and

a second destination stage, coupled to receive the updated
data values generated by the second 1nstruction execu-
tion stage and at least some of the data values of each
updated packet asserted by the first destination stage,
and configured to assert a further updated packet 1n
response thereto, wherein at least one of the second

US 6,930,209 B1

25

instruction determination stage, the second 1nstruction
execution stage and the second destination stage is
configured to generate a further updated instruction
pointer, and wherein the further updated packet
includes the further updated mstruction pointer in place
of the updated nstruction pointer and the updated data
values generated by the second instruction execution
stage 1n place of corresponding ones of the data values
of the updated packet.

33. The pixel shader of claim 32, wherein each said
updated packet i1s i1dentical to the packet corresponding
thereto asserted at the output of the gatekeeper except 1n that
the updated packet includes said updated instruction pointer
in place of the instruction pointer and the said updated
values 1n place of the corresponding ones of the data values.

34. The pixel shader of claim 32, also including:

a FIFO, having an input and an output, wherein the output
of the FIFO 1s coupled to the second input of the
cgatekeeper for asserting the further updated packet to
the gatekeeper; and

an emitter unit having an input coupled to the second
destination stage for receiving the further updated
packet, a first output coupled to the mnput of the FIFO
for asserting the further updated packet to the FIFO,
and a second output,

wherein the gatekeeper 1s configured to pass through to
the first instruction determination stage, the {first
instruction execution stage, and the first destination
stage, data values being asserted to a selected one of the
first 1nput of the gatekeeper and the second 1nput of the
gatekeeper.

35. The pixel shader of claam 32, wherein at least one said
updated packet includes a condition code, the instruction
executed by the second instruction execution stage 1s a
conditional mnstruction, and the second 1nstruction execution
stage 15 coniigured to process the subset of the data values
of the updated packet in response to the condition code and
the second instruction code to generate the updated nstruc-
tion values, thereby executing the conditional instruction.

36. The pixel shader of claim 32, wherein the instruction
determined by the updated instruction pointer 1s one of a
jump, a branch, a loop, a conditional jump, and a conditional
branch instruction.

J7. The pixel shader of claim 32, also including:

a pipelined texture generator having a texture generator
output coupled to the first input of the gatekeeper,
wherein the texture generator 1s coupled and configured
to receive a preliminary version of each said packet, to
cXtract at

least one texture coordinate from each said preliminary
version of each said packet that includes at least one
texture coordinate, to determine a texel identified by
cach said texture coordinate, and to assert at the texture
generator output an updated version of each said pre-
liminary version, wherein the updated version of each
said preliminary version includes each said texel deter-
mined by the texture generator.

38. The pixel shader of claim 37, wherein the texture
generator 1ncludes:

a texel generation pipeline coupled and configured to
receive the preliminary version of each said packet and
determine each said texel, and having an output at
which each said texel 1s asserted;

a FIFO coupled and configured to receive at least some
data values of the preliminary version of each said

10

15

20

25

30

35

40

45

50

55

60

65

26

packet, the FIFO having an output at which the data
values of the preliminary version of each said packet
are asserted; and

a packet updating stage, coupled to the output of the texel
generation pipeline and the output of the FIFO, and
configured to assert the updated version of each said
preliminary version in response to the data values
asserted at the output of the FIFO and each said texel
asserted at the output of the texel generation pipeline.

39. A pipelined pixel shader configured to receive and
process a packet, wherein the packet 1s an ordered array of
data values including an instruction pointer indicative of an
instruction, wherein the pixel shader comprises:

a first pipelined texture subsystem having an input and an

output,

a first pipelined processor, having an mput coupled to the
output of the first pipelined texture subsystem, and
having an output;

a second pipelined texture subsystem, having an input
coupled to the output of the first pipelined processor,
and having an output; and

a second pipelined processor identical to the first pipe-
lined processor, wherein the second pipelined proces-
sor has an input coupled to the output of the second
pipelined texture subsystem, wherein the first pipelined
texture subsystem 1s coupled and configured to receive
the packet, to determine at least one texel identified by
at least one texture coordinate in the packet, and to
assert at the output of said first pipelined texture
generator an updated version of the packet, wherein the
updated version includes each said texel and an 1nstruc-
fion pointer.

40. The pixel shader of claim 39, wherein the first
pipelined processor 1s coupled and configured to receive the
updated version of the packet, to assert at the output of the
first pipelined processor a second updated version of the
packet, said second updated version including an updated
instruction pointer in place of the instruction pointer and at
least one updated data value in place of a corresponding one
of the data values of the updated version,

wheremn the second pipelined texture subsystem 1s
coupled and configured to receive the second updated
version of the packet, to determine at least one texel
identified by at least one texture coordinate in the
second updated version of the packet, and to assert at
the output of said second pipelined texture generator a
third updated version of the packet, wllerein the third
updated version 1ncludes each said texel determined by
the second pipelined texture subsystem and an instruc-
tion pointer, and

wherein the second pipelined processor i1s coupled and
configured to receive the third updated version of the
packet, to assert at the output of the second pipelined
processor a fourth updated version of the packet, said
fourth updated version including an updated instruction
pointer 1n place of the imstruction pointer of the third
updated version and at least one updated data value 1n
place of a corresponding one of the data values of the
third updated version.

41. The pixel shader of claim 40, wherein at least one of

the second

updated version of the packet and the fourth updated
version of the packet includes a condition code, and the
updated instruction pointer of said one of the second
updated version of the packet and the fourth updated
version of the packet i1s indicative of a conditional
Instruction.

US 6,930,209 B1

27

42. The pixel shader of claim 40, wherein at least one of
cach said instruction pointer and each said updated instruc-
fion pointer 1s indicative of one of a jump, a branch, a loop,
a conditional jump, and a conditional branch instruction.

43. A pipelined microblender configured to receive and
process a sequence of packets, wherein each packet 1n the
sequence 1s an ordered array of data values including an
instruction pointer indicative of a pixel shading instruction,
said microblender comprising:

an instruction determination stage coupled to receive the
instruction pointer of each packet and configured to
assert an 1instruction code 1n response to each said
Instruction pointer;

an 1nstruction execution stage coupled to receive the
instruction code and at least a subset of the data values
of each packet, and configured to generate updated data
values by processing at least some of the data values 1n
response to the instruction code, thereby executing the
instruction determined by the instruction pointer; and

a destination stage-, coupled to receive the updated data
values and at least some of the data values and con-
figured to assert an updated packet 1n response thereto,
wherein at least one of the instruction determination
stage, the 1nstruction execution stage, and the destina-

tion stage 1s configured to generate an updated 1nstruc-
tion pointer, and wherein the updated packet includes
the updated 1nstruction pointer in place of the nstruc-
tion pointer and the updated data values 1n place of
corresponding ones of the data values.

44. The microblender of claim 43, wherein the 1nstruction
execution stage 1ncludes:

an arcument selection and control bit generation stage
coupled to receive the instruction code and said at least
some of the data values, and configured to generate
control bits 1n response to the instruction code and to
assert at least one set of argcuments 1n response to the
instruction code and said at least some of the data
values, wherein each said set of the arcuments 1ncludes
at least one of the data values;

an 1nput processing stage coupled to receive each said set
of the arcuments and at least some of the control bits,
and configured to assert at least one processed set of the
arcuments 1n response thereto;

a math operation stage coupled to receive the at least one
processed set of the arcuments and at least some of the
control bits, and configured to assert at least one further
processed set of the arguments 1n response thereto; and

an output processing stage coupled to receive the at least
one further processed set of the arcuments and at least
some of the control bits, and configured to assert the
updated data values 1n response thereto.

45. A pipelined texture generator configured to receive
and process a sequence of packets, wherein each packet 1n
the sequence 1s an ordered array of data values imncluding an
instruction pointer: indicative of a pixel shading instruction,
sald texture generator comprising;

a texel generation pipeline coupled and configured to
determine at least one texel 1dentified by at least one
texture coordinate 1n each packet that includes at least
one texture coordinate, wherein the texel generation
pipeline has an output and 1s configured to assert each
said texel at the output;

a FIFO coupled and configured to receive and pass
through at least some data values of each said packet;
and

10

15

20

25

30

35

40

45

50

55

60

65

23

a packet updating stage, coupled to the output of the texel
generation pipeline, coupled to receive the data values
passed through the FIFO, and

configured to assert an updated version of each said
packet 1n response to said data values and each said
texel asserted at the output of the texel generation
pipeline.

46. A graphics processor, comprising:

a rasterizer configured to assert a sequence of packets,
wherein each packet in the sequence 1s an ordered array
of data values including an instruction pointer; and

a pipelined pixel shader configured to receive” and pro-
cess said each packet 1n accordance with a program
comprising instructions, wherein the 1nstruction pointer
of said each packet 1s 1ndicative of one of the instruc-
tions, wherein said pixel shader comprises

a set of N processing stages for performing pipelined
processing operations on said each packet and at least
one updated version of said each packet, wherein N 1s
an 1nteger greater than two, each of the stages has an
input and an output and 1s configured to assert at the
output an updated version of a packet received at the
input, each said updated version includes an updated
instruction pointer 1n place of the instruction pointer
and at least one updated data value in place of a
corresponding one of the data values, each of the stages
has architecture 1dentical to that of each other one of the
stages, and the pixel shader 1s operable to execute the
program regardless of the value of N.

4'7. The graphics processor of claim 46, wherein at least
one of the stages of the pixel shader includes a first pipelined
instruction execution unit having an output, and a second
pipelined 1nstruction execution unit having an input coupled
to the output of the first pipelined instruction execution unit,
and wherein the second pipelined instruction execution unit
1s 1dentical to the first pipelined instruction execution unit.

48. The graphics processor of claim 46, wherein at least
one said updated version of the packet includes a condition
code, and the updated instruction pointer of said updated
version of the packet 1s indicative of a conditional 1nstruc-
tion.

49. The graphics processor of claam 46, wherein at least
one of the instruction pointer and the updated instruction
polinter 1s 1ndicative of one of a jump, a branch, a loop, a
conditional jump, and a conditional branch instruction.

50. A graphics processor, comprising:

a rasterizer coniigured to assert a sequence ol packets,
wherein each packet in the sequence 1s an ordered array
of data values including an instruction pointer; and

a pipelined pixel shader configured to receive and process
said each packet 1in accordance with a program con-
sisting of instructions, wherein the instruction pointer
of said each packet 1s indicative of one of the nstruc-
tions, wherein said pixel shader comprises:

an 1nstruction determination stage coupled to receive the
instruction pointer of said each packet and configured
to assert an 1nstruction code in response to each said
instruction pointer;

an 1nstruction execution stage coupled to receive the
instruction code and at least a subset of the data values
of said each packet, and configured to generate updated
data values by processing at least some of the data
values 1n response to the instruction code, thereby
executing the instruction determined by the instruction
pointer; and

a destination stage, coupled to receive the updated data
values and at least some of the data values and con-

US 6,930,209 B1

29

figured to assert an updated packet 1n response thereto,
wherein at least one of the instruction determination
stage, the 1nstruction execution stage, and the destina-
tion stage 1s configured to generate an updated 1nstruc-
tion pointer, and wherein the updated packet includes
the updated 1nstruction pointer in place of the instruc-
tion pointer and the updated data values 1 place of
corresponding ones of the data values.

51. The graphics processor of claim 50, wheremn the
instruction determination stage 1s configured to assert a first
mnstruction code 1n response to each said mstruction pointer
having a first value and to assert the first mnstruction code 1n
response to each said instruction pointer having a second
value, thereby implementing a mapping of N different ones
of the instruction pointers to M different ones of the instruc-
tion codes, where N 1s greater than M.

52. The graphics processor of claim 50, wheremn the
Instruction execution stage includes:

an argument selection and control bit generation stage
coupled to receive the 1nstruction code and said at least
some ol the data values, and configured to generate
control bits 1n response to the instruction code and to
assert at least one set of arcuments 1n response to the
mnstruction code and said at least some of the data
values, wherein each said-set of the arcuments includes
at least one of the data values;

an 1nput processing stage coupled to recerve each said set
of the arcuments and at least some of the control bits,
and configured to assert at least one processed set of the
arcuments 1n response thereto;

a math operation stage coupled to receive the at least one
processed set of the arguments and at least some of the
control bits, and configured to assert at least one further
processed set of the arguments in response thereto; and

an output processing stage coupled to receive the at least
one further processed set of the arcuments and at least
some of the control bits, and configured to assert the
updated data values 1n response thereto.

53. The graphics processor of claim 50, wherein at least
one said updated packet 1includes a condition code, and the
updated 1nstruction pointer of said updated packet 1s 1ndica-
tive of a conditional 1nstruction.

54. The graphics processor of claim 50, wherein at least
one of the instruction pointer and the updated instruction
pointier 1s indicative of one of a jump, a branch, a loop, a
conditional jump, and a conditional branch instruction.

55. A method for pipelined pixel shading, including the
steps of:

generating a packet, wherein the packet 1s an ordered
array ol data values including an instruction pointer
indicative of a pixel shading instruction;

asserting an mstruction code in response to the instruction
pointer;

cgenerating updated data values by processing at least
some of the data values 1n response to the instruction
code, thereby executing the instruction determined by
the 1nstruction pointer; and

generating an updated packet that includes an updated
instruction pointer 1n place of the instruction pointer
and the updated data values 1n place of corresponding
ones of the data values.

56. The method of claim 55, wherein the updated packet

1s 1dentical to the packet except in that the updated packet

30

includes said updated instruction pointer in place of the
instruction pointer and said updated data values in place of
said corresponding ones of the data values.

57. The method of claim 55, also including the steps of:

generating control bits 1n response to the 1nstruction code
and determining at least one set of arguments 1n
response to the instruction code and said at least some
of the data values, wherein each said set of the argu-

ments mcludes at least one of the data values;

10 generating at least one processed set of the arguments 1n

response to each said set of the arcuments and at least
some of the control bits; and

generating the updated data values in response to the at
least one processed set of the arcuments.

58. The method of claim 55, wherein the updated packet
includes a condition code, and the updated instruction
pointer 1s 1ndicative of a conditional instruction.

15

59. The method of claim 55, wherein at least one of the

o0 1nstruction pointer and the updated instruction pointer 1s

indicative of one of a jump, a branch, a loop, a conditional
jump, and a conditional branch instruction.

60. A method for pipelined pixel shading, said method

including the steps of:

25 generating a packet, wherein the packet is an ordered

array of data values;

determining at least one texel by processing at least one
texture coordinate of the packet;

generating an updated packet in response to the packet,
wherein the updated packet 1s an ordered array of
updated data values including an instruction pointer
indicative of an instruction, and including each said
texel;

30

asserting an instruction code 1n response to the instruction
pointer;

35

cgenerating further updated data values by processing at
least some of the updated data values 1n response to the
instruction code, thereby executing the instruction

40 determined by the instruction pointer; and

ogenerating a further updated packet that includes an
updated 1nstruction pointer in place of the instruction
pointer and the further updated data values 1n place of
corresponding ones of the updated data values.

61. The method of claim 60, wherein the further updated
packet 1s 1dentical to the updated packet except in that the
further updated packet includes said updated instruction
pointer 1n place of the instruction pointer and said further
updated data values in place of said corresponding ones of
the updated data values.

62. The method of claim 60, wherein the further updated
packet includes a condition code, and the updated 1nstruc-
tion pointer 1s 1indicative of a conditional 1nstruction.

45

50

63. The method of claim 60, wherein at least one of the
instruction pointer and the updated instruction pointer is
indicative of one of a jump, a branch, a loop, a conditional
jump, and a conditional branch instruction.

55

64. The pixel shader of claim 1, wherein the packet
o contains all information, other than the instructions them-
selves, necessary for the pixel shader to process the packet.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,980,209 Bl Page 1 of 1
APPLICATION NO. :10/172174

DATED : December 27, 2005

INVENTOR(S) . Christopher D. S. Donham et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In column 22, Claim 23, line 50, after “said”, please delete “Set” and insert --set--.

In column 23, Claim 27, line 52, end the paragraph after “and” and begin a new
paragraph with “the”.

In column 23, Claim 27, line 55, please delete “s9me™ and insert --some--.
In column 26, Claim 40, line 47, please delete “wl1erein” and insert --wherein--.
In column 27, Claim 43, line 20, please delete “stage-,” and 1nsert --stage,--.

In column 28, Claim 46, line 12, please delete “[*“]” after “receive”.

Signed and Sealed this

Twelfth Day of December, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

