12 United States Patent

Overton et al.

US007103640B1

(10) Patent No.: US 7,103.640 B1
45) Date of Patent: Sep. 5, 2006

(54) NETWORK DISTRIBUTED TRACKING
WIRE TRANSFER PROTOCOL

John K. Overton, Chicago, IL (US);
Stephen W, Bailey, Chicago, IL (US)

(75)
(73)

(%)

(21)

(22)

(60)

(51)

(52)
(58)

(56)

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Econnectix, LLC, Chicago, IL (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 640 days.
09/661,222

Sep. 13, 2000

Related U.S. Application Data

Provisional application No. 60/153,709, filed on Sep.
14, 1999,

Int. CI.

GO6F 15/16 (2006.01)

U.S. CL
Field of Classification Search

See application file for complete search history.

4,553,261
4,636,858
4,728,978
4,800,488
4,825,406
4,835,372
4,914,571
5,008,700
5,124,814
5,193,185
5,208,623
5,291,399
5,319,401
5,347,600
5,384,643
5,414,841
5,455,648

> B B B B B B B e

709/217;°709/219; 707/10
709/201-3,

709/217-19, 230, 227, 228; 707/3, 4, 3,
7077/6, 10

References Cited

U.S. PATENT DOCUMENTS

11/1985 Froessl
1/1987 Hague et al.
3/1988 Inoue et al.
1/1989 Agrawal et al.
4/1989 Bean et al.
5/1989 Gombrich et al.
4/1990 Baratz et al.
4/1991 Okamoto
6/1992 Takahashi et al.
3/1993 Lanter
5/1993 Takahashi
3/1994 Chaco
6/1994 Hicks
9/1994 Barnsley et al.
1/1995 Inga et al.
5/1995 Bingham et al.
10/1995 Kazami

104

?OG?

DISPLAY

5475817 A * 12/1995 Waldo et al. ............... 719/316

5,479,654 A 12/1995 Squibb
5,499,115 A 3/1996 Tsuboi et al.
5,522,077 A 5/1996 Cuthbert et al.

(Continued)
FOREIGN PATENT DOCUMENTS

EP 508 161 Al 3/1993

(Continued)
OTHER PUBLICATIONS

“Service Location 1n an Open Distributed Environment,” Beitz et al,

Second International Workshop on Services in Distributed and
Networked Environments, IEEE Comput. Soc., pp. 28-34 (Jun.
1995).

(Continued)

Primary Examiner—Marc D. Thompson
(74) Attorney, Agent, or Firm—Brinks Hofer Gilson &

[.10ne

(57) ABSTRACT

A network distributed tracking wire transfer protocol for
storing and retrieving data across a distributed data collec-
tion. The protocol includes a location string for specifying
the network location of data associated with an entity in the
distributed data collection, and an identification string for
speciiying the identity of an enfity in the distributed data
collection. According to the protocol, the length of the
location string and the length of the identification string are
variable, and an association between an 1dentification string
and a location string can be spontaneously and dynamically
changed. The network distributed tracking wire transfer
protocol 1s application 1independent, organizationally inde-
pendent, and geographically independent. A method {for
using the protocol 1n a distributed data collection environ-
ment and a system for implementing the protocol are also
provided.

25 Claims, 12 Drawing Sheets

NETWORK DISTRIBUTED TRACKING
DISTRIBUTED RECORD RETRIEVAL

I0¢

| 102 [ 100
ox-1 || ox-1 [ OX~1
108°~ 1087 104
OX~2
OX-2 “‘”"2 /
MG H

WORKSTATION

IGG)

E R. CARDIOLDGY RADIOLOGY

106

G| \ e
G| G
CTy
X RA')’Q




US 7,103,640 B1

Page 2
U.S. PATENT DOCUMENTS 6,154,738 A 11/2000 Call
6,188,766 Bl 2/2001 Kocher
5,537,547 A 7/1996 Chan et al. 6,201,931 Bl 3/2001 Cipolla et al.
5,550,981 A 8/1996 Bauer et al. 6,202,070 Bl  3/2001 Nguyen et al.
5,551,027 A 8/1996 Choy et al. 6,209,095 Bl 3/2001 Anderson et al.
5,557,790 A 9/1996 Bingham et al. 6,212,280 Bl  4/2001 Howard, Jr. et al.
5,560,005 A 9/1996 Hoover et al. 6,377,986 B1* 4/2002 Philyaw et al. ............. 709/219
5,576,952 A 11/1996 Stutman et al. 6418441 B1* 7/2002 Call ....ooeovveeeeeeeeenn., 707/10
5,579,067 A 11/1996 Wakabayashi 6,438,652 Bl 872002 Jordan et al.
5,610,653 A 3/1997 Abecassis 6,463,454 B1  10/2002 Lumelsky et al.
5,617,570 A 4/1997 Russell et al. 6,466,980 B1  10/2002 TLumelsky et al.
5,625,841 A 4/1997 Dawkins et al. 6,578,068 Bl 6/2003 Bowman-Amuah
5,649,247 A 7/1997 Itoh et al. 6,711,408 Bl 3/2004 Raith
5,664,170 A 9/1997 Taylor 2002/0112048 Al 82002 Gruyer et al.
5,669,029 A 9/1997 Fyson et al.
5,740,428 A 4/1998 Mortimore et al. FOREIGN PATENT DOCUMENTS
5,764,880 A 6/1998 Ault et al.
5764906 A * 6/1998 Edelstein et al. ........... 709/219  EP 0839422 A2 /1999
5,774,670 A 6/1998 Montulli WO WO 86/05610 9/1986
5.781.725 A 7/1998 Saito WO WO 98/15910 4/1998
5,784,565 A 7/1998 Tewine WO WO 98/31138 7/1998
5,802,518 A 9/1998 Karaev et al WO WO 00/03526 172000
5,809,161 A 9/1998 Auty et al.
5,809,331 A 9/1998 Staats et al. OTHER PUBLICATIONS
5,809,495 A 9/1998 Loaiza Callaghan V L et al: “Structures and Metrics for Image Storage and
5,813,006 A 9/1998 Polnerow et al. Interchange™ Journal of FElectronic Imaging, vol. 2 No. 2, Apr. 1,
5,848,246 A 12/1998 QGish 1993, pp. 126-137.
5,804,482 A 1/1999 Hazama et al. Bourke D G et al: “Programmable Module and Circuit for Machine-
5,872,973 A 2/1999 Mitchell et al. Readable Unique Serial Number” IBM Technical Dislosure Bulle-
5,875,302 A 2/1999 Obhan tin, vol. 27, No. 4A, Sep. 1, 1984 pp. 1942-1944.
5,903,889 A 5/1999 de la Huerga et al. Kleinholz L et al: “Supporting Cooperative Medicine: The Bermed
5,907,837 A 5/1999 Ferrel et al. Project” IEEE Multimedia, vol. 1, No. 4, Dec. 21, 1994, pp. 44-53.
5,913,210 A 6/1999 Call “Method for Network Naming and Routing” IBM Technical Dis-
3,915,240 A 6/1999 Karpt closure Bulletin, vol. 37, No. 9, Sep. 1, 1994, p. 255.
5,918,214 A 6/1999 Perkowski “Minimizing Locking To Access Global Shared Data”, IBM Tech-
5,920,702 A 7/1999 Bleidt et al. nical Disclosure Bulletin, pp 619-622, Feb. 1995.
5,940,844 A 8/1999 Cahill et al. “Service Location in an Open Distributed Environment,” Beitz et al,
5,950,173 A 9/1999  Perkowski Second International Workshop on Services in Distributed and
5,961,610 A 10/1999 Kelly et al. Networked Environments, IEEE Comput. Soc., pp. 28-34 (Jun.
5,966,705 A 10/1999 Koneru et al. 1995).
5,974,124 A 10/1999 Schlueter, Jr. et al. Muniz, R., et al., “A robust software barcode reader using the Hough
3,978,773 A 1171999 Hudetz et al. transform”, Abstract from IEEE/IEE Electronic Library online,
5,987,519 A 11/1999 Peifer et al. printed Apr. 30, 2001, 2 pages.
3,995,965 A 11/1999  Experton Fresonke, D., “In-fab 1dentification of silicon wafers with clean,
6,032,175 A 2/2000 Fletcher et al. laser marked barcodes”, Abstract from IEEE/IEE Electronic Library
6,047,332 A 4/2000 Viswanathan et al. OIlliIle, prin‘[ed Apr 30, 2001, 2 pages.
6,055,544 A 4/2000 DeRose et al. Sriram, T., et al., “Applications of barcode technology 1n automated
6,058,193 A 5/2000 Cordery et al. storage and retrieval systems”, Abstract from IEEE/IEE Electronic
6,092,189 A 7/2000 Fisher et al. Library online, printed Apr. 30, 2001, 2 pages.
6,108,787 A 8/2000 Anderson et al.
6,131,095 A * 10/2000 Low etal. .......cocvvvennn. 707/10 * cited by examiner



U.S. Patent Sep. 5, 2006 Sheet 1 of 12 US 7,103,640 B1

'

f /¢
18
Client 10 / Server
Req, Id=1000
10

)/—]8

— 1 Reqg=2000” "

Rsp, 1d=2000 ’4
]
Rsp, [d=1000

Use Of Request Identifiers

= 7 /



US 7,103,640 B1

Sheet 2 of 12

Sep. 5, 20006

U.S. Patent

e

(43

o¢C

yewloq LA9 dLAN
Sulpped

B1Ep JOJHUSP]

(U) yagua] Jayyuap]

(v + (WyaNNOY) yisua] ease Suug
?1nuUapl 1senbal JI AN
PIAJISY

- . [

Jewa0 Sul3S LLAN
duipped
BIB( 33
(1) PI3ua]
1 0 6 8 L 9 S ¥ € T 1 0
. ﬁ

3
oL

[-U 9AQ JOYIIUSP]

(0) LHD dLAN
L 9 S ¥ € T 1 0
0




US 7,103,640 B1

Sheet 3 of 12

Sep. 3, 2006

U.S. Patent

S ¥

t

[4

Jewaog 4SY 139 JdLAN

W3uIppe

03ulppeq

[UO1}BO0T

B]EP QUOIIBO0T

(Ou) ya8us| Quones0 ]
(v + (W)pANNOT +  + ¥ + (OWPANNOY) Ui3us] vale 3uLIlS

JolIuapI 3sanbal J1 N

DIAJOSIY

I 0 6 8
[4

L 9 S b

3

4

[

-+ L/

0
I

6 3

Ot

[-U 9JAQ WUOIJBI0T

[-U 91AQ QUOIIBO0]

(1)dSd 13D 4dIAN
L 9 S ¥ € T 1 0

0




US 7,103,640 B1

Sheet 4 of 12

Sep. 3, 2006

U.S. Patent

jeunioy 1Nd JLAN

guipped co:wooq, ]-W 91AQ UOIIRD0T |

-G BJBP UOIJBI0 T

(ur) y33us] uo1BOOT

Suipped 1ogIuap] 1-U 914Q JOLIIUIP]

(A2 giEp IoNUSP]

(4) Y13u9| JOYIUSP]
(¥ + (WPANNOY + ¥ + (WYANNOY) YISus] Bote Sul
Januapt 3senbalr J1ON

POAIISIY . (7) L0d dLaN

p € T 1 0 6 8 L 9 § ¥ € T I 0 6 8 L/9 S v € T 1 0

C ! 0 0



US 7,103,640 B1

Sheet 5 of 12

Sep. 3, 2006

U.S. Patent

L=

yeuriog dSY LNd dLAN
(0) y13us| vate SuLg

Jaynuapl 1senbar JLAN
PIAISSIY
€ T I 0 6 8 L 9 5 ¥ £ T

C

0
I

6

02

8

(¢) dS¥ 1Nd dIAN

L 9 § ¥ ¢ T 1 0
0



US 7,103,640 B1

Sheet 6 of 12

Sep. 3, 2006

U.S. Patent

/G

Jeuloy TAAd JLAN

3ulpped UOI}BO0T  T-W 91AQ UO1IBOOT

o BJED UOIIBO0T

(w) yr3dus] uoyeoOT _
guipped 1a131u9p] [-U 91AQ IS1J13USP]

.MM ElED IsNUap]

(W) yy3usd] Jagnuapy
(¥ + (WraNNOY + ¥ + (W)yANNOY) YiSus] eote JuLig
ISnuIp! 31s9nbal JTAN

ooy (pEd azay

b ¢t ¢ I 0 6 8 L 9 ¢ v € T 1 0 6 8/L 9 ¢ ¥+ € 7T 1 0
4 | I OL 0




US 7,103,640 B1

Sheet 7 of 12

Sep. 3, 2006

U.S. Patent

yewrrog 4S9 14d JdLAN

(0) Yy¥3us] vale Fulg
J9Y1uapl 3sanbar JLAN

PIAIISIY

I

0 6 8 L 9 ¢ v € T
C

I

14

¢

(¢) dS¥ 1A dIAaN

A



103,640 Bl

2

Sheet 8 of 12 US 7

Sep. 3, 2006

U.S. Patent

(v)(/, /7 /

IIqBL 1AIS UNA dSY d QY dLAN

5T T

& [T 12A19S dLAN
oSuippeg [-0U 91Aq QTN
> eIep 0TI 19A19S dLAN
(0w) YISus 0T JoARS JLAN
(¥ + (WYANNOY +  + ¥ + (OU)yANNOY) Y1Sus] eare Sullg
191J13USDI 189nbal JTAN )
POAISSIY] (9) dSY ¥AI 4IAN
9 § ¥ € T I 0 6 8 L 9 § ¥ € T I 0 6 8/L 9 s v € T 1 0
4 I 0
| 06



US 7,103,640 B1

Sheet 9 of 12

Sep. 3, 2006

U.S. Patent

O R-TA

uouduNg uonRIPIY YA dSH @A dLAN
duipped

BIEP UOIDUNJIOIPIYJLAN PAZIelog

(U) yi8ua] uonounJ3001paY d LAN PaZIEHSS
(7 + (WPANNOY) Y3dus| eare FuLg

I91IUSPI 3sonbal JLAN
POAIISIY _
S ¥ € T I 0 6 8 L 9 S ¥ € T 1 0 6 8

4 [
06

[-U 91AQ uonoun,g

(9) dS¥ ¥YTI 4IAN

L

2

S

4

3

4

[

0
0




US 7,103,640 B1

Sheet 10 of 12

Sep. 3, 2006

U.S. Patent

AJ077010V Y AJ0701d¥VvD E

rotvasswom |
NOLLVY LSHYHHEOM

2 Ol

oA 01
T~XO

HOW
¢-XO

4oy

\\ 0!

00|

AVAIJIYEL3Id Q40239 g3lngiyisia
IONIMOVIL d3ILNgIylsia MHOMLIN

201

OAVIN
C-~XO

1 Ol




U.S. Patent Sep. 5, 2006 Sheet 11 of 12 US 7,103,640 B1

110

NDTP Server
Constellation

L - e
---—'--------- -

Network

transfer

Repository1

. NDTP Server Constellation Context

110

NDTP Server
120a Constellation

120b
NDTP NDTP
ServerO Servert

NDTP 3
Request NDTP
2 Request
122a NDTP ‘ ;
vir NDTP
Redirection Response
/ v
1220

NDTP Chiecnt-Centric Constellation




U.S. Patent Sep. 5, 2006 Sheet 12 of 12 US 7,103,640 B1

/110

NDTP Server

Constellation
130 a 13256 2 [30b
? NDTP
NDTP Request
ServerO
.3

NDTP
Response I34a

1

NDTP
Request

134 b

4
NDTP

Response

/

]132a

NDTP Server-Centric Constellation

TS




US 7,103,640 Bl

1

NETWORK DISTRIBUTED TRACKING
WIRE TRANSFER PROTOCOL

RELATED APPLICATIONS

This application claims priority to provisional patent
application Ser. No. 60/153,709, entitled SIMPLE DATA

TRANSPORT PROTOCOL METHOD AND APPARATUS,
filed on Sep. 14, 1999, and to regular patent application Ser.
No. 09/111,896, entitled SYSTEM AND METHOD FOR.
ESTABLISHING AND RETREIVING DATA BASED ON
GLOBAL INDICES, filed on Jul. 8, 1998.

MICROFICHE/COPYRIGHT REFERENCE

A Microfiche Appendix (143 frames, 2 sheets) 1s included

in this application that contains material which 1s subject to
copyright protection. The copyright owner has no objection
to the facsimile reproduction by anvone of the Microfiche
Appendix, as 1t appears 1n the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

This invention relates generally to the storage and
retrieval of mformation, and 1n particular, to a protocol for
dynamic and spontaneous global search and retrieval of

information across a distributed network regardless of the
data format.

BACKGROUND OF THE INVENTION

Data can reside in many different places. In existing
retrieval systems and methods, a client seeking information
sends a request to a server.

Typically, only data that are statically associated with that
server are returned. Disadvantageously, the search 1s also
usually restricted to previously known systems. The search
1s thus conducted only where the server knows 1n advance to
look.

Another disadvantage of known retrieval systems i1s the
difficulty 1n accessing data in different forms. Known
retrieval systems are typically designed to search for data in
limited forms. One example 1s where a client requests files
based on a subject, like a person’s name. In the search
results, therefore, only text files of peoples’ names may be
retrieved. Another problem i1n current retrieval systems 1s
that the client may recerve text and 1mage files 1n the search
results, but could not secamlessly access the image files. Yet
another problem in current retrieval systems 1s that video
and sound files related to the request may not even be found
in the search results. For example, a doctor might be able to
retrieve medical records on a specific patient, but cannot
view an MRI or X-Ray results associated with that record.

A distributed data collection 1s a system where data 1s
stored and retrieved among multiple machines connected by
a network. Typically, each machine 1n which some portion of
the data 1n a distributed data collection may reside 1s called
a “data repository machine”, or simply a “data repository”.
One commonly asked question 1n a data repository environ-
ment 1s: Where 1s data associated with a particular entity in
a distributed data collection? The data location 1s a key
question when a distributed data collection has highly
dynamic data distribution properties.

In networked environments where there are a large num-
ber of data repositories and any particular entity does not

10

15

20

25

30

35

40

45

50

55

60

65

2

store data 1n all the repositories, a mechanism 1s needed that
would permit queries to be directed only at data repositories
with relevant information. It would also be beneficial to
permit membership 1n the set of data repositories itself to be
highly dynamic. Such a system would support on-the-fly
addition and removal of data repositories from a distributed
data collection seamlessly and without the need to repro-
gram the client and server participants.

BRIEF SUMMARY OF TH.

L1l

INVENTION

In view of the above, the mvention provides a network
distributed tracking wire transier protocol, and a system and
method for using the protocol 1n a networked environment.
The network distributed tracking wire transier protocol
includes two basic components: i1dentification strings for
speciiying the identity of an enfity in the distributed data
collection, and location strings for speciiying network loca-
tions of data associated with an entity. The protocol accom-
modates variable length 1dentifier and location strings. Rela-
tionships between 1dentification strings and location strings
can be dynamically and spontaneously manipulated thus
allowing the corresponding data relationships also to change
dynamically, spontaneously, and efliciently. In addition, the
network distributed tracking wire transier protocol 1s appli-
cation independent, organizationally independent, and geo-
graphically independent.

In another aspect of the invention, a system of compo-
nents using the network distributed tracking protocol are
provided for storing and identifying data with a distributed
data collection. The components include (1) a data reposi-
tory for storing data in the distributed data collection, (2) a
client entity for manipulating data in the distributed data
collection, and (3) a first server entity operative to locate
data 1n the distributed data collection, which may be coupled
to a client entity and/or data repository. In a network with
these components, a client entity transmits an 1dentifier
string to the first server entity along with the client request,
and the first server entity provides a set of location strings to
the client entity in response thereto. The first server entity
maps the identifier string received from the client entity to
a set of location strings. The network may also include any
number of additional server entities coupled to the first
server entity.

According to yet another aspect of the invention, a
method 1s provided for storing and retrieving tracking infor-
mation over a network using a wire transfer protocol. A
location string specifies the location of data associated with
an entity in the distributed data collection and the 1dentifi-
cation string specifies the identification of an entity 1n a
distributed data collection. A first data repository entity
stores data by associating an identification string with each
particular stored unit of data, and by mapping the identifi-
cation string to a location string associated with the first data
repository. The identification string and location string for
the particular unmit of data are at a first server entity coupled
to the first data repository entity. A request 1s transmitted
from a client entity to the first server entity to retrieve at least
one location string associated with the stored unit of data 1n
the distributed data collection. The request includes the
identification string associated with the particular stored unit
of data. The request 1s received at the first server entity,
which responds to the client entity by providing at least one
location string associated with the particular stored unit of
data to the client entity.

The request may also be transmitted to a second server
entity prior to responding to the client entity, where the




US 7,103,640 Bl

3

second server entity 1s coupled to the first server entity and
includes the mapping of the identification string and location
strings for the particular umts of data. In such case, the
second server entity responds to the client entity by provid-
ing the at least one location string associated with the
particular stored unit of data to the client entity.

The network distributed tracking protocol of the invention
1s a networking protocol that efliciently manages mappings
from one or more 1dentifier strings to zero or more location
strings. The protocol permits client entities to add and
remove 1dentifier/location associations, and request the cur-
rent set of locations for an idenftifier or identifiers from
server entities that comply with the protocol.

The protocol 1s designed for use 1n the larger context of
a distributed data collection. As such, 1t supports an archi-
tecture in which information about where data associated
with particular application entities can be managed and
obtained independently of the data itself. The protocol and
its associated servers thus maintain a mapping between
entity 1dentifiers and data locations. The 1dentifier/location
mapping maintained by the servers 1s very dynamic. Regard-
less of the expected system context in a distributed data
collection, the protocol can be used for any application 1n
which one-to-one or one-to-many associations among
strings are to be maintained and accessed on a network.

In any context, the protocol supports 1dentifier and loca-
tion strings of up to 2°°—4 bytes in length, but in most
applications it 1s expected that the strings are typically short.
String length 1s not fixed by the protocol, except by the
upperbound. Accordingly, string formats are controlled at a
local level and not dictated by the protocol.

These and other features and advantages of the mnvention
will become apparent upon a review of the following
detailed description of the presently preferred embodiments
of the invention, when viewed in conjunction with the
appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example of multiple outstanding protocol
requests.

FI1G. 2 1s a layout of one presently preferred string format.

FIG. 3 1s a layout of one presently preferred NDTP_GET
message.

FI1G. 4 1s a layout of one presently preterred NDTP_GET
RSP message.

FIG. 5 1s a layout of one presently preferred NDTP_PUT
message.

FIG. 6 1s a layout of one presently preferred NDTP_PUT
RSP message.

FI1G. 7 1s a layout of one presently preferred NDTP_DEL
message.

FIG. 8 1s a layout of one presently preferred ND'TP_DEL
RSP message.

FIG. 9 1s a layout of one presently preferred NDTP_
RDR_RSP message, where FIG. 9(a) shows a server table
layout, and FIG. 9(b) shows a redirection function layout.

FIG. 10 1s a system block diagram showing a multi-server
implementation environment of the network distributed
tracking wire transier protocol of the ivention.

FIG. 11 1s a system diagram showing an NDTP server
constellation configuration.

FIG. 12 1s a system diagram showing a client-centric
constellation approach.

FIG. 13 1s a system diagram showing a server-centric
constellation approach.

10

15

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EMBODIMENTS OF
THE INVENTION

1]

The following terms are used to describe the operation of
the presently preferred network distributed tracking protocol
(NDTP). An *“1dentifier string” or an “identifier” 1s a unique
string with which zero or more location strings are associ-
ated 1n an NDTP server. A “data location” or a “location” 1s
a string that 1s a member of a set of strings associated with
an 1dentifier string 1n an NDTP server. An “NDTP client” or
a “client” 1s a network-attached component that initiates
update or lookup of identifier/location mappings from an
NDTP server with NDTP request messages. An “NDTP
server” or a “server’ 1s a network-attached component that
maintains a set of identifier/location mappings that are
modified or returned 1n response to NDTP request messages
from NDTP clients. The term “Network Byte Order” is the
ordering of bytes that compose an integer of larger than a
single byte as defined in the Internet Protocol (I P) suite.
Preferably, Network Byte Order specifies a big-endian, or
most significant byte first, representation of multibyte inte-

gers. In this specification a byte 1s preferably composed of
cight bits.

Network Distributed Tracking Protocol (ND'TP)

The Network Distributed Tracking Protocol (NDTP) efii-
ciently tracks the location of data associated with an indi-
vidual entity 1n a distributed data collection. NDTP 1s a
transactional protocol, which means that each operation
within NDTP consists of a request message from an NDTP
client to an NDTP server, followed by an approprate
response message from the ND'TP server to the ND'TP client.
NDTP defines an entity key (or “identifier”) as a unique
string used to refer to an entity about which a distributed
query 1s performed.

The NDTP server treats the entity key as an unstructured
stream ol octets, which 1s assumed to be umque to a
particular entity. The precise structure of the NDTP entity
key and the mechanism for ensuring i1ts umiqueness are a
function of the application in which the NDTP server is
used. In a customer oriented application, the NDTP entity
key might be a unique customer identifier, for example, a
Social Security Number, 1n either printable or binary integer
form, as 1s appropniate to the application. ND'TP also defines
a data location specifier as a string used to specily a data
respository 1n which data associated with a particular entity
may be found.

As with NDTP entity keys, the NDTP server treats ND'TP
data location specifiers as unstructured streams ol octets.
The structure of an NDTP data location specifier 1s a
function of the application in which the NDTP server is
used. For example, an NDTP data location specifier might be
an Internet machine name, and a TCP/IP port number for a
relational database server, or an HT TP Universal Resource
Locator(URL), or some concatenation of multiple compo-
nents.

The NDTP server efliciently maintains and dispenses one
to zero or one to many relationships between entity keys and
data location specifiers. In other words, an entity key may be
associated with any number of data location specifiers.
When data for a particular entity 1s added to a data reposi-
tory, the NDTP server 1s updated to indicate an association
between the entity key and the data repository’s data loca-
tion specifier. When a query 1s performed for an entity key,
the NDTP server supplies the set of data repositories in
which data may be found for that entity key.




US 7,103,640 Bl

S

General NDTP Mechanics

The protocol of the invention 1s designed to provide
maximum transaction throughput from the NDTP server,
associated clients, and associated data repositories when
appropriate. The design goal 1s realized through two design
principles:

1. NDTP messages should preferably be as short as

possible to maximize the rate of NDTP transactions for
a given network communication bandwidth.

2. NDTP messages should preferably be structured for
ellicient processing on existing machine architectures.

Design Optimizations.

Numerical fields of an NDTP message are preferably
represented in binary imteger format rather than ASCII or
other printable format to minimize host processing overhead
and network utilization. Numerical fields of ND'TP messages
are also aligned on 32-bit boundaries to minimize the cost of
manipulation on current machine architectures. Manipulat-
ing unaligned multibyte integer quantities on modern
machine architectures usually incurs an extra cost ranging
from mild to severe compared to manipulating the same
quantities 1n aligned form.

In keeping with other network protocol standards 1nclud-
ing TCP/IP, multioctet integer quantities in NDTP are pret-
erably encoded using the big end 1an integer interpretation
convention, as set forth above.

To overcome network latency, NDTP 1s designed to
support asynchronous operation, where many requests may
be sent to an NDTP server belore a response from any of
them 1s received.

Each NDTP message 1s preceded by a fixed size, 12-octet
header, using the preferred data structure:

typedef struct ndtp-hdr {

wnt8 T op; /* opcode */
uint8_ t pad[3];
wnt32_ t 1d; /* transaction identifier */

/* total request size
following the header */

wnt32  t size;

tndtp  hdr_t;
where:
op:
NDTP message numerical operation code.
NDTP_ GET: get request
NDTP_GET__RSP: get response
NDTP_PUT: put request
NDTP_PUT_RSP: put response
NDTP__DEL: delete request
NDTP__DEL_RSP: delete response
NDTP__RDR__RSP: provide redirection
1d:

Client supplied operation request used to distinguish
responses from multiple outstanding NDTP asynchronous
requests. Each “_RSP” message echoes the 1d field of the
associated request.

S1ze:

S1ze, 1n octets of the remainder of the NDTP message. The
s1ze field should always be a multiple of 4 octets.

Variably sized portions of NDTP messages are preferably
defined with a size field rather than some other delimiter
mechanism to facilitate eflicient reading of NDTP messages.
Requests may be made to the network layer to read the entire
variably sized portion of an NDTP message, rather than
reading small chunks while scanning for a delimiter. Fur-
thermore, client and server resource management can be
more etlicient since the size of NDTP messages 1s known
betfore reading.

10

15

20

25

30

35

40

45

50

55

60

65

6

The variably sized portions of NDTP messages are com-
posed of zero or more NDTP stings:

typedef struct ndtp_str {

uint32_t len:
uint8 _t data [ |;

{ndtp_str_t;

Note that the C struct definitions in this document are
schematic, and not necessarily fully compliant structures in
the C programming language. Specifically, arrays denoted in
this document with “[ |7 imply a dimension which 1s only
known dynamically and this indefinite array size specifier 1s
not allowed 1n C struct definitions. Note also the following;:

[en:

the number of significant octets of data following the len
field in the data area.

Data:

len octets of data, followed by up to 3 octets of padding,
to ensure that the total length of the NDTP string
structure 1s a multiple of 4 octets. The padding octets
are not included 1n the len field.

Because variable sized portion NDTP messages are com-
posed of zero or more NDTP stings and NDTP strings
preferably occupy an even multiple of 4 octets, this ensures
that the “size” field of NDTP message headers will prefer-
ably be a multiple of 4 octets.

Protocol Structure

An example of multiple outstanding ND'TP requests and
the use of request identifiers 1s shown 1 FIG. 1. NDTP
preferably has a simple, stateless request/response structure.
Each request message 10 sent by a client 12 has a corre-
sponding response message 14 returned by the server 16. To
maximize server 16 throughput and use of available network
bandwidth, NDTP 1s asynchronous in nature. Many requests
10 from a single client 12 may be outstanding simulta-
neously, and responses 14 may or may not be returned from
the server 16 in the order in which the requests 10 were
issued. Each NDTP request 10 contains an NDTP request
identifier 18 that 1s returned in the NDTP response 14 for the
associated request 10. An NDTP client 12 uses a unique
NDTP request 1dentifier 18 for each NDTP request 10 that
1s outstanding at the same time to an ND'TP server 16 1f 1t
wishes to correlate responses with requests.

There are four operations preferably supported by the
protocol:

Add a location association to an i1dentifier.
Delete a location association tfrom an identifier.
Get all locations associated with an 1dentifier.

Provide a redirect instruction to identily an alternative
Server.

The response to adding a location association to an
identifier 18 1s a simple acknowledgement. If the location 1s
already associated with the i1dentifier 18, adding the asso-
ciation has no eflect, but the request 10 1s still acknowledged
appropriately. In other words, the NDTP add operation 1s
idempotent. The response to deleting a location association
from an identifier 18 1s a simple acknowledgement. If the
location 1s not currently associated with the i1dentifier 18,
deleting the association has no eflect, but the request 10 1s
still acknowledged appropnately. In other words, the NDTP
delete operation 1s idempotent. The response 14 to getting all
locations associated with an identifier 18 1s a list of the
locations presently associated with an identifier 18. If no
locations are currently associated with an 1dentifier 18, a list
of length zero 1s returned.




US 7,103,640 Bl

7

Message Formats

NDTP messages 10, 14 preferably have a regular structure
that consists of a message operation code, followed by a
request 1dentifier 18, followed by a string area length (in
bytes) 20, followed by zero or more strings 22, as shown in
FIG. 2. As those skilled 1n the art will appreciate, NDTP
message formats are preferably independent of the network
transport layer used to carry them. NDTP preferably defines
mappings of these messages 10, 14 onto TCP and UDP
transport layers (described in detail below), but other map-
pings could also be defined and 1t 1s likely that these NDTP
message formats would not require change. For example, the
notation ROUND4(x) means X, rounded up to the next
multiple of 4.

Integer Format

Multibyte integers in NDTP messages are represented in
network byte order; using the big-endian convention. In
other words, the most significant byte of a multibyte integer
1s sent first, followed by the remainder of the bytes, 1n
decreasing significance order.

String Format

Strings 1n NDTP are represented as counted strings, with
a 32-bit length field 20, followed by the string data 22,
tollowed by up to 3 bytes of padding 24 to make the total
length of the string representation equal to ROUNDA4
(length). This layout 1s shown diagrammatically in FIG. 2.

NDTP GET Format

The NDTP_GET message has a message operation code
30 of 0, and a single NDTP string 32 which 1s the identifier

string for which to get associated location strings. This
layout 1s shown diagrammatically in FIG. 3.

NDTP GET RSP Format

The NDTP_GET_RSP message has a message operation
code 40 of 1, and zero or more strings 42 that are the
locations currently associated with the requested 1dentifier.
This layout 1s shown diagrammatically in FIG. 4.

NDTP PUT Format

The NDTP_PUT message has a message operation code
50 of 2, and two NDTP strings 52, 54. The first string 52 1s
the 1dentifier for which to add a location association, and the

second string 34 1s the location to add. This layout 1s shown
diagrammatically in FIG. 5.

NDTP PUT RSP Format

The NDTP_PUT_RSP message has a message operation
code 60 of 3, and zero NDTP strings. This layout 1s shown
diagrammatically 1n FIG. 6.

NDTP DEL Format

The NDTP_DEL message has a message operation code
70 of 4, and two NDTP strings 72, 74. The first string 72 1s

the 1dentifier from which to delete a location association, and
the second string 74 1s the location to delete. This layout 1s
shown diagrammatically i FIG. 7.

NDTP DEL RSP Format

The NDTP_DEL_RSP message has a message operation
code 80 of 35, and zero NDTP strings. This layout 1s shown
diagrammatically in FIG. 8.

NDTP RDR RSP Format

The NDTP_RDR_RSP message has a message operation

code 90 of 6, and one or more NDTP strings 92, 94. Two
layouts apply, which are shown diagrammatically in FIGS.
9(a) and 9(b).

10

15

20

25

30

35

40

45

50

55

60

65

8

A general description of the usage and operation of these
protocol messages 1s provided below.

NDTP GET Transaction

The NDTP_GET message contains a single NDTP string,
which 1s the entity key for which associated data locations
are requested.

typedef struct ndtp_get {

ndtp_hdr_t hdr;
ndtp_str_t key;

} ndtp_get_t;

The NDTP_GET_RSP message contains zero or more
NDTP strings which are the data location specifiers associ-
ated with the NDTP entity key:

typedef struct ndtp_get_rsp {

ndtp_hdr_t hdr;
uint32_t rsps;
ndtp_str_t values| |;

} ndtp_get_rsp_t;

NDTP PUT Transaction

The NDTP_PUT messages contains two NDTP strings
which are (1) the NDTP enftity key and (2) the NDTP data
location specifier which 1s to be associated with the NDTP
entity key.

typedef struct ndtp_put {

ndtp_hdr_t hdr;
ndtp_str_t key;
ndtp_str_t data;

Indtp_put_t;

The NDTP_PUT_RSP message has no NDTP strings, and
simply 1ndicates that the requested entity key/data location
specifier association was added:

typedef struct ndtp_put_rsp {

ndtp_hdr_t hdr;

} ndtp_put_rsp_t;

The requested entity key/data location specifier associa-
tion 1s added 1n addition to any other associations already
maintained by the NDTP server. If the requested entity
key/data location specifier association 1s already 1n eflect,

the NDTP PUT still succeeds and results in an NDTP
PUT_RSP message.

NDTP DELETE Transaction
The NDTP_DEL message contains two NDTP strings
which are (1) the NDTP enftity key and (2) the NDTP data
location specifier which 1s to be unassociated with the NDTP
entity key:
typedef struct ndtp_del {
ndtp_hdr_t hdr;
ndtp_str_t key;
ndtp_str_t data;
} ndtp_del_t;
The NDTP_DEL_RSP message has no ND'TP strings, and

simply indicates that the requested entity key/data location
specifier association was deleted.

typedef struct ndtp_del_rsp {
ndtp_hdr_t hdr;
} ndtp_del_rsp_t;
If the requested entity key/data location specifier associa-
tion 1s not 1n effect, the NDTP DEL still succeeds and
results in an NDTP_DEL_RSP message.

NDTP RDR RSP Message

NDTP supports a distributed server implementation for
which two principle redirection methods apply: (1) embed-
ded redirection links, and (2) passed functions. The passed
functions method in turn has two variants: (a) a well-known




US 7,103,640 Bl

9

function, and (b) a communicated function. (These methods
and variants are described in further detail below.)

Network Front End

The NDTP server network front end preferably maxi-
mizes NDTP transaction throughput including concurrent
NDTP requests from a single client as well NDTP requests
from multiple concurrent clients.

Network Communication Mechanism

ND'TP defines a transaction oriented protocol, which can
be carried over any of a variety of lower level network
transport protocols. For example:

TCP/IP: TCP/IP provides a ubiquitously implemented

transport which works eflectively on both local area
and wide area networks. An NDTP client using TCP/IP
preferably connects with the NDTP server at an estab-
lished TCP port number, and then simply writes ND'TP
request messages through the TCP/IP connection to the
server, which then writes NDTP response messages
back to the client through the same TCP/IP connection
in the reverse direction. TCP/IP implementations per-
form buflering and aggregation of many small mes-
sages 1nto larger datagrams, which are carried more
elliciently through the network infrastructure. Running
NDTP on top of TCP/IP will take advantage of this
behavior when the NDTP client 1s performing many
NDTP requests. For example, a data repository which
1S undergoing rapid addition of data records associated
with various entities will perform many rapid NDTP_
PUT operations to the NDTP server that can all be
carried on the same NDTP TCP/IP connection.

UDP/IP: If an NDTP client only performs occasional,
1solated ND'TP operations, or there are a vast number of
clients communicating with an NDTP server, TCP/IP
will not offer the best possible performance because
many traversals of the network are required to establish
a TCP/IP connection, and yet more network traversals
are required to transier actual NDTP messages them-
selves. For such 1solated NDTP transactions, depending,
upon the application and network infrastructure 1n use,
it 1s beneficial to have the NDTP server employ UDP/
IP, which 1s a widely available connectionless datagram
protocol.

However, UDP/IP does not support reliable data transfer,
or any congestion control mechanism. This means that
NDTP clients using UDP/IP must implement reliability and
congestion control maintaining transaction timeouts and
performing exponential retry backoil timers, precisely
analogous to the congestion control mechanism imple-
mented by Ethernet, and other well known UDP protocols.
Those skilled 1n the art will note that the NDTP protocol 1s
stateless from the standpoint of the NDTP server, which
means that there 1s no congestion control or reliability

burden on the server; it 1s all implemented 1n a distributed
manner by the NDTP UDP/IP clients.

Still Higher Performance (ST): Both TCP/IP and to a
lesser degree UDP/IP sufler from high host CPU over-
head. Like the relatwely long latency of TCP/IP, this
host CPU consumption 1s considered just the “cost of
doing business” where TCP/IP provides ubiquitous
connectivity. If an NDTP server were running in a more
constrained environment, where ubiquitous connectiv-
ity was not required, its absolute performance could be
improved substantially by using a different protocol
that 1s optimized to reduce CPU overhead and latency,
such as the Scheduled Transfer (St) protocol.

10

15

20

25

30

35

40

45

50

55

60

65

10

None of these network implementation 1ssues are particu-
larly unique to NDTP, however. All similar protocols face
similar tradeofls, and what art exists to improve the perfor-
mance ol such protocols applies fully to NDTP as well.

NDTP Query Processing

Servicing NDTP query requests does not require high
latency operations, such as disk 1I/O. Therefore, the NDTP
server network front end preferably services NDTP query
requests 1n a FIFO style by reading the NDTP_GET mes-
sage, performing the lookup for the entity key in the NDTP
server string store, and writing the NDTP_GET_RSP mes-
sage. Bach ND'TP query 1s independent of any other NDTP
transactions (other queries or updates), so it 1s possible to
process multiple NDTP queries simultaneously on multipro-
cessor machines. The NDTP server permits this by not
performing multiprocessor locking in the NDTP query pro-
cessing path.

The current prototype ND'TP server preferably does not
create multiple read service threads per ND'TP connection,
so multiprocessing will only occur while processing queries
from different NDTP connections. Nonetheless, the NDTP
server could be extended to support multiprocessing of
NDTP queries from a single ND'TP connection i1 this turned
out to be advantageous.

NDTP Update Processing,

Unlike NDTP queries, processing NDTP updates requires
the high latency operation of committing the change to
nonvolatile storage. To maintain high performance on NDTP
updates, the NDTP server network front end preferably
supports multiple concurrent asynchronous update transac-
tions. Also, each update 1s preferably performed atomically
to avoid creating an inconsistent state in the string store.
Currently, the string store supports only a single mutator
thread, which means that all NDTP updates are serialized
through the string store mutator critical code sections. As 1s
traditional 1n transactional systems, the string store mutation
mechanism 1s implemented as a split transaction.

When an NDTP update 1s processed, a call 1s made to the
string store mutation function, which returns immediately
indicating either that the mutation 1s complete, or that the
completion will be signaled asynchronously through a call-
back mechanism. The mutator function might indicate an
immediate completion on an NDTP_PUT operation 1f the
entity key/data location specifier mapping was already
present 1n the database. In this case, the network front end
will immediately write the update response message back to
the client.

For updates which are not immediately completed, the
network front end maintains a queue of NDTP updates for
which 1t 1s awaiting completion. When the completion
callback 1s called by the string store log file update mecha-
nism, the network front end writes the NDTP update
response messages for all completed updates back to the
clients. If no new NDTP update requests are arriving from
NDTP clients, and there are some incomplete updates 1n the
update queue, the network front end preferably calls the
string store log bufler flush function to precipitate the
completion of the mcomplete updates in update queue.

Multiple Connection Handling

Handling multiple clients 1n a single server process
requires that the server process not block waiting for events
from a single client, such as newly received data forming an
NDTP request message, or clearing a network output bufler
so an ND'TP response message can be written. The NDTP
server network front end may be conditionally compiled to




US 7,103,640 Bl

11

use eitther of two standard synchronous I/O multiplexing
mechanisms, select or poll, or to use threads to prevent
blocking the server waiting for events on individual con-
nections. The select and poll interfaces are basically similar
in their nature, but diflerent in the details. When compiled
for synchronous I/O multiplexing, the ND'TP server network
front end maintains an mput bufler for each connection. The

multiplexing function 1s called to determine 11 any of the
connections have iput available, and 11 so, 1t 1s read into the
connection’s mput butler. Once a complete NDTP request 1s
in the bufler, 1t 1s acted upon. Similarly, the network front
end maintains an output bufler for each connection, and 1f
there 1s still a portion of an ND'TP response message to send,
and the connection has some output bufler available, more
of the ND'TP response message 1s sent.

The threaded version of the NDTP server network front
end preferably creates two threads for each NDTP connec-
tion, one for reading and one for writing. While individual
threads may block as input data or output builer 1s no longer
available on a connection, the thread scheduling mechanism
ensures that 11 any of the threads can run, they will. The
threaded version of the NDTP server 1s most likely to offer
best performance on modern operating systems, since 1t will
permit multiple processors of a system to be used, and the
thread scheduling algorithms tend to be more eflicient than
the synchronous I/O multiplexing interfaces. Nonetheless,
the synchronous I/O multiplexing versions of ND'TP server
will permit 1t to run on operating systems with poor or
nonexistent thread support.

A more detailed description of the mapping operation 1n
both a TCP and UDP environment appears below.

TCP Mapping

As those skilled 1n the art will appreciate, the Transmis-
sion Control Protocol (TCP) 1s a connection-oriented pro-
tocol that 1s part of a universally implemented subset of the
Internet Protocol (IP) suite. TCP provides reliable, bi-direc-
tional stream data transter. TCP also implements adaptive
congestion avoidance to ensure data transfer across a het-
erogeneous network with various link speeds and traflic
levels.

NDTP 1s preferably carried on TCP 1n the natural way. An
NDTP/TCP client opens a connection with a server on a
well-known port. (The well-known TCP (and UDP) port
numbers can be selected arbitrarily by the mitial NDTP
implementer. Port numbers that do not contlict with existing
protocols should preferably be chosen.) The client sends
NDTP requests 10 to the server 16 on the TCP connection,
and receives responses 14 back on the same connection.
While 1t 1s permissible for a single client 12 to open multiple
NDTP/TCP connections to the same server 16, this practice
1s discouraged to preserve relatively limited connection
resources on the ND'TP server 16. The asynchronous nature
of NDTP should make 1t unnecessary for a client 12 to open
multiple NDTP/TCP connections to a single server 16.

If protocol errors are detected on an NDTP/TCP connec-
tion, the NDTP/TCP connection should be closed immedi-
ately. If turther ND'TP/TCP communication 1s required after
an error has occurred, a new NDTP/TCP connection should
be opened. Some examples of detectable protocol errors
include:

Illegal NDTP message operation code;

Nonzero String Area Length imn NDTP_PUT_RSP or
NDTP_GET_RSP;

Inconsistent String Area Length and String Length(s) in
NDTP_GET, NDTP_GET_RSP, NDTP_PUT or
NDTP_DEL;

Unexpected NDTP request identifier by client.

10

15

20

25

30

35

40

45

50

55

60

65

12

Due to the reliable nature of TCP, NDTP/TCP servers 16
and clients 12 need not maintain any additional form of
operation timeout. The only transport errors that can occur
will result in gross connection level errors. A client 12
should assume that any NDTP requests 10 for which 1t has
not received responses 14 have not been completed. Incom-
plete operations may be retried. However, whether unac-
knowledged NDTP requests 10 have actually been com-
pleted 1s implementation dependent. Any partially recerved
NDTP messages should also be 1gnored.

UDP Mapping

As those skilled 1n the art will appreciate, the Unreliable
Datagram Protocol (UDP) 1s a best-eflort datagram protocol
that, like TCP, 1s also part of the umiversally implemented
subset of the IP suite. UDP provides connectionless, unac-
knowledged datagram transmission. The minimal protocol
overhead associated with UDP can deliver extremely high
performance 11 used properly.

NDTP/UDP clients 12 send UDP datagrams with NDTP
request messages 10 to a well-known UDP port (see above).
NDTP/UDP servers 16 return ND'TP response messages 14
to the client 12 selected local UDP port indicated in the
NDTP/UDP datagram containing the requests 10. NDTP/
UDP does not require any form of connection or other
association to be established 1n advance. An NDTP inter-
change begins simply with the client request message 10.

For efliciency, the mapping of NDTP on to UDP permits
multiple NDTP messages to be sent 1n a single UDP data-
gram. UDP datagrams encode the length of their payload, so
when a UDP datagram 1s received, the exact payload length
1s available. The recipient of an NDTP/UDP datagram will
read NDTP messages from the beginning of the UDP
datagram payload until the payload 1s exhausted. Thus, a
sender of an NDTP/UDP datagram 1s free to pack as many
NDTP messages as will {it 1n a UDP datagram.

The largest possible UDP datagram payload is presently
slightly smaller than 64 K bytes. In addition, there may be
a performance penalty sending UDP datagrams that are
larger than the maximum datagram size allowed by the
physical network links between the sender and intended
recipient. IP provides mechanisms for discovering this maxi-
mum transfer size, called the Path Maximum Transfer Unit
(Path MTU), but a discussion of these mechanisms 1s
beyond the scope of this specification. An implementation of
NDTP/UDP should preferably respect these datagram size
limitations.

Unlike TCP, UDP does not provide reliable data delivery.
Theretore, an NDTP/UDP client 12 implementation should
implement a timeout mechanism to await the response for
cach outstanding ND'TP request 10. The exact duration of
this response timer 1s implementation dependent, and may
be set adaptively as a client 12 receives responses from a
server 16, but a reasonable default maximum wvalue 1s
preferably 60 seconds. If a response 14 1s not received
within the response timeout, the client 12 may retransmit the
request 10. NDTP/UDP servers 16 need not maintain any
timeout mechanisms.

Depending upon the exact timeout values selected, the
client 12 retry mechanism may place some requirements on
a client’s 12 use of the NDTP request identifier 18 field. If
the response timer 1s shorter than the maximum lifetime of
a datagram 1n the network, 1t 1s possible that a delayed
response will arrive after the response timer for the associ-
ated request has expired. An NDTP/UDP client 12 1mple-
mentation should ensure that this delayed response 1s not
mistaken for a response to a diflerent active NDTP request
10. Distinguishing current responses from delayed ones 1s




US 7,103,640 Bl

13

called antialiasing. One presently preferred way to perform
antialiasing 1n NDTP/UDP 1s to ensure that NDTP request
identifier 18 values are not reused more frequently than the
maximum datagram lifetime.

NDTP/UDP client 12 implementations that use the NDTP
request 1dentifier 18 for antialiasing should 1gnore (1.e., skip)

NDTP messages within a NDTP/UDP datagram with invalid
NDTP request identifier 18 values. Client 12 or server 16
NDTP/UDP implementations detecting any other protocol
error should also preferably discard the remainder of the
current NDTP/UDP datagram without processing any fur-
ther ND'TP requests from that datagram. Some examples of
such detectable errors include:

Illegal NDTP message operation code;

Nonzero String Area Length m NDTP_PUT_RSP or
NDTP_GET_RSP;

Inconsistent String Area Length and String Length(s) in

NDTP_GET, NDTP_GET_RSP, NDTP_PUT or

NDTP_DEL;

Inconsistent ND'TP message length and UDP datagram
length.

Because NDTP/UDP messages are limited to the length of
a single UDP datagram payload, NDTP/UDP cannot be used
to transier long NDTP messages. For example, 1t would be
very difficult to send an NDTP_GET message with NDTP/
UDP for a 64 K byte identifier string. This case 1s avoidable
by a client 12 realizing that an NDTP message 1s too long to
send as a UDP datagram and using NDTP/TCP 1nstead.
However, a greater limitation 1s that NDTP currently pro-
vides no mechanism for an NDTP server 16 to indicate that
a response 1s too large to fit in a UDP datagram. In this case,
the NDTP server 16 should not send a response 14, and 1t
may or may not chose to complete the request 10. The
recovery mechanism in this case preferably is, after several

unsuccessiul attempts to use NDTP/UDP, a client 12 may try
again with NDTP/TCP.

Because UDP does not provide any form of congestion
avoidance 1t 1s possible that the simple retry strategy speci-
fied for NDTP/UDP can create network congestion. Net-
work congestion can cause a severe degradation in the
successiul delivery of all network traflic (not just NDTP
traflic, nor just the tratlic from the particular client/server 12,
16 pair) through a congested network link. Congestion will
occur when an NDTP/UDP implementation 1s sending data-
grams faster than can be accommodated through a network
link. Sending a large number of NDTP/UDP datagrams all
at once 1s the most likely way to trigger such congestion.
Sending a single NDTP/UDP datagram, assuming it 1s
smaller than the Path MTU, and then waiting for a response
14 1s unlikely to create congestion. Therefore, the use of
NDTP/UDP should be confined to contexts where clients 12
send few outstanding requests at a time, or where network
congestion 1s avoided through network engineering tech-
niques.

Those skilled in the art will appreciate that network
congestion 1s a highly dynamic property that 1s a function of
network tratlic from all sources through a network link and
will vary over time over any given network path. An
NDTP/UDP client 12 implementation can recover irom
network congestion by switching to NDTP/TCP after sev-
eral failed retries using ND'TP/UPD. Failure due to network
congestion may be indistinguishable from failure due to
UDP packet size limitations, but since the recovery strategy
1s the same 1n both cases, there 1s no need to distinguish
these cases.

10

15

20

25

30

35

40

45

50

55

60

65

14

NDTP/UDP Congestion Avoidance

(G1ven the stateless, transactional nature of NDTP, NDTP/
UDP generally performs much better than NDTP/TCP. This
performance 1mprovement 1s measurable both in terms of
the maximum sustainable transaction rate of an NDTP server
16, and the latency of a single response to an NDTP client
12. In the same way as the Domain Name Service (DNS),
NDTP fits naturally in the UDP model. It 1s a working
assumption of NDTP (and DNS) that for every NDTP
transfer, there will be an associated transter of real data that
1s an order of magnitude or more greater in size than the
NDTP protocol tratlic. This property will naturally limait the
amount of NDTP tratlic on a network. However, in appli-
cations where ND'TP tratlic reaches high levels, particularly
at network ‘choke points’ which are not within the control of
network engineers, it may be desirable to support a conges-
tion avoidance mechanism for NDTP/UDP.

However, those skilled in the art will appreciate that the
other main future requirement of ND'TP, security (described
below), implies an existing, durable association between
NDTP clients 12 and NDTP servers 16. This association 1s
much like (and 1n the case of SSL, 1t 1s) a network connec-
tion. Therefore, depending upon what security technology 1s
applied, developing a congestion avoidance mechanism for
NDTP/UDP may be an irrelevant exercise.

Server Redirection Mechanism

NDTP provides two mechanisms for server redirection.
The redirection mechanisms allow cluster and hierarchical
topologies, and mixtures of such topologies (described in
detail below). The first redirection mechanism supported by
NDTP, embedded redirection links, uses an application
specific convention to return redirection pointers as NDTP
data location strings. For example, if location strings are
W3C URLs, a URL with the schema ndtp: could be a server
indirection pointer. An NDTP_GET_RSP message may con-
tain any mixture of real data location strings and NDTP
server redirection pointers. In this case, the client must 1ssue
the same NDPT_GET query message to other ND'TP servers
indicated by the redirection pointers. The total set of data
location strings associated with the supplied 1dentifier string
1s the collection of all the data location strings returned from
all the NDTP servers queried. The embedded redirection
link technique does not require any specific ND'TP protocol
support. Therefore, 1t could be used within the NDTP
protocol as 1s, and does not require further description 1n this
specification.

The second redirection mechanism, which 1s specified as
a future extension of NDTP, 1s having the server return an
NDTP_RDR_RSP message 1n response to an NDTP request
for which the ND'TP server has no ownership of the supplied
identifier string. Those skilled 1n the art will note that unlike
the embedded redirection links mechanism, the NDTP
RDR_RSP mechanism applies to all ND'TP requests, not just
NDTP_GET.

As mentioned above, the second redirection mechanism
has two variants. The first variant of the NDTP RDR RSP
function mechanism specifies a well-known function that all
NDTP server and client implementations know when they

are programmed, and the NDTP_RDR_RSP message carries
a table of NDTP server URLs. The format of the NDTP

RDR_RSP message with an NDTP server URL table 1is
shown 1n FIG. 9(a).

The appropriate NDTP server 1s selected from the table 1n
the NDTP_RDR_RSP message by applying a well-known
function to the i1dentifier string and using the function result
as an index into the NDTP server table.




US 7,103,640 Bl

15

The well-known function preferably applied i1s the hash-
piw lTunction presented by Aho, Sethi and Ullman 1n their
text Compilers, Principles, Technigues and 1ools:

uint32_ t
hash (unt® t *s, wint32_ t slen, uint32_ t size)
{

unt32_ t g;

unt32_ t 1;

unit32_th = 0;

unt8  tc;

for (i = 0; 1 < slen; i++) {
s[i];
(h << 4) + ¢;
(h & 0x{0000000);
)

return h % size;

In this case, the size parameter 1s the number of elements

in the NDTP server URL table returned in the NDTP
RDR_RSP message. For the hashpyw function to behave
correctly, the size parameter must be a prime number,
therefore the NDTP server URL table must also have a prime
number of elements. Those skilled in the art will appreciate
that the same NDTP server may appear multiple times 1n the
NDTP server URL table. For example, if the server URL
table has 2039 elements, by putting one NDTP server URL
in the first 1019 table elements, and a second NDTP server
URL 1n the second 1020 table elements, the responsibility
for the index string space will be split roughly 1n half.

The second variant of the NDTP RDR RSP function
mechanism specifies that a general function description will
be sent to the NDTP client in the NDTP RDR RSP mes-
sage. The NDTP client will apply this function to the
identifier string and the output of the function will be the
NDTP server URL to which to send NDTP requests for the
particular identifier string. The advantage of this technique
over the well-know function approach 1s that it allows
application-specific partitions of the identifier string space.
This can permit usetul administrative control. For example,
if General Flectric manages all identifiers beginning with the
prefix “GE”, a general function can be used to make this
selection approprately. The disadvantage of using a general
function 1s 1t may be less eflicient to compute than a
well-known function.

There are a variety of possible mechanisms for sending
function descriptions. NDTP 1s expected to be applied 1n
environments that make extensive use of the Java program-
ming platform. Therefore the NDTP_RDR_RSP Mechanism
preferably uses a feature of the Java programming language
called “serialized representation” to communicate general-
ized functions i the NDTP_RDR_RSP message. A seral-
1zed form of a Java object 1s a stream of bytes that represents
the precise state of the object, including its executable
methods. For example, the Java Remote Method Invocation
(RMI) mechanism uses serialized objects to send executable
code to a remote platform for execution. The NDTP_
RDR_RSP message contains the serialized form of an object
implementing this Java interface:

interface NDTPRedirectFunction {
String selectServer(byte[ | 1dentifier);

j

10

15

20

25

30

35

40

45

50

55

60

65

16

The format of the NDTP_RDR_RSP message with a Java
Serialized form of the NDTP redirection function 1s specifi-
cally identified 1n FIG. 9(b).

The NDTP server redirection mechanism also permits
construction of ND'TP server clusters (described below). It 1s
expected that the identifier string hash function will be
defined at the time NDTP 1s implemented, but the actual list
of NDTP servers 90 will change from application to appli-
cation and within a single application throughout the life-
time of the system. Therefore, 1t 1s necessary for clients to
be able to discover updated ND'TP server lists, and any other
relevant dynamic parameters of the server selection function
as these mnputs change.

Hierarchical Server Topology

While the NDTP server topology supported by the server
redirection mechanism described above and shown in FIGS.
9(a) and 9(H) 1s an extremely powertul and general scaling
technique, suitable for diverse topology deployments, some
applications might still benefit from a specifically hierarchi-
cal server topology. An NDTP server hierarchy 100, such as
that shown 1n FIG. 10, permits identifier/location association
data to be owned and physically controlled by many difler-
ent enftities. An ND'TP server cluster should be managed by
a single admimstrative entity 102, and the distribution of
data can be for performance and scaling purposes. Further-
more, a server hierarchy would provide some fault 1solation
so portions of the identifier/location association data can be
accessed and updated 1n the presence of failures of some
NDTP servers 104. Finally, an NDTP server hierarchy can
localize NDTP update operations (NDTP_PUT and NDTP_
DEL), which can improve performance and reduce network
load.

A hierarchical NDTP server topology also allows orga-
nizations to maintain theirr own local NDTP server 104 or
NDTP server cluster 102 that manages associations to data

locations that are within the organizations’ control. Upper
tier NDTP servers 108 would be used to link the various leaf
NDTP servers 104.

Server Constellations

The NDTP server organization also allows NDTP servers
to be combined 1n various ways to build server constella-
tions that offer arbitrary server performance scalability and
administrative control of the location of portions of the
identifier/data location relationship mappings. FIG. 11 1llus-
trates an NDTP server constellation 110 as it relates to a
client 112 and a data repository 114. In FIG. 10, the client
112 and data repository 114 of FIG. 11 were merged into the
single client entity 106 for ease of discussion. Their distinc-
tion can now be separated and identified in order to illustrate
the storage and retrieval of data 1n a distributed data col-
lection.

As shown i FIG. 11, a client 112 consults the server
constellation 110, which may be construed 1n either of two
forms (see FIGS. 12 and 13), and which returns location
strings 1n response to a client 112 request. Once the client
112 has the location string for a particular unit of data, the
client 112 contacts and retrieves information directly from
the data repository 114. In one embodiment, 11 the client 112
contains a data repository 114, internal application logic
would facilitate this interaction. Those skilled i the art will
appreciate that the term “data collection” 1s being employed
rather than the term “database” because database frequently
invokes 1mages of Relational Database Systems (which 1s
only one application of the protocol); an NDTP data collec-
tion could just as easily be routing tables as 1t could be files
or records 1n a RDBS database.




US 7,103,640 Bl

17

NDTP server constellations 110 preferably have two basic
organizational paradigms: Client-Centric and Server-Cen-
tric. NDTP supports both by design, and both approaches
apply to all aspects of managing the relationships between
identifiers and locations, such as data retrieval, index
manipulation, and server redirection. Each will be discussed
separately below.

Client-Centric Approach

The first basic pattern that NDTP supports 1s driven by the
client 112, and can be called “client-centric”. Referring to
FIG. 12, a single client (not shown) asks a server 1204 1n the
server constellation 110 for operations that the client desires
executed (represented by arrow 1 1n FIG. 12). I the client
doesn’t receive the data requested, 1t will receive a redirec-
tion response message (NDTP_RDR_RSP) from the con-
tacted server 120aq (arrow 2). The client then uses the
information 1t receives to ask another server 1205 for the
operations the client wants to iitiate (arrow 3). A successiul
response from the second server 12056 1s then sent to the
client (arrow 4).

This design constructs operating patterns for (1) redirec-
tion, (2) index operations, and (3) hierarchical or cluster
topologies. The important point 1s that the Network Distrib-
uted Tracking Protocol 1s designed to support highly con-
figurable methods for processing index-related operations.

NDTP supports two specific redirection mechanisms,
which are not mutually exclusive and may be combined in
any way within a single ND'TP server constellation 110. This
formation may increase performance when many clients (not
shown) participate, since client processing 1s emphasized
rather than server processing. The first NDTP redirection
mechanism uses a distinctively encoded location string for
each NDTP server 120q,5 that contains additional location
strings associated with the identifier string supplied in the
NDTP request 1224, b. This 1s an embedded redirection link.
For example, if location strings are some form of HITTP
URL, a URL with the schema specifier ndtp: would indicate
a redirection. Using this scheme, the location strings asso-
ciated with an 1dentifier string may be spread among mul-
tiple NDTP servers 120q,b. In addition to redirection, in
FIG. 12, all index manipulation operations continue to apply,
but they are directed at the correct NDTP server 11056 for
which they apply: NDTP_GET, NDTP_PUT, NDTP_DEL.

The second NDTP redirection mechanism uses a NDTP_
RDR_RSP message to indicate that the server 120a to which
the NDTP request 122a was directed does not contain any of
the location strings associated with the identifier string
supplied 1n the NDTP request 122a. The NDTP_RDR_RSP
message contains all the information required for the origi-
nator of the NDTP request 122a to reissue the original
NDTP request 1225 to a different ND'TP server 1205 that
does have location strings associated with the identifier
string supplied in the NDTP request 1225. This information
may be an array of NDTP server hosts from which one 1s
selected by applying a well-known function to the identifier
string supplied 1n the NDTP request 1225, or the commu-
nicated function to apply as well as a list or other description
of the NDTP server hosts from which to choose, as described
above.

FI1G. 12 1llustrates a cluster topology for client interaction
with NDTP servers 120. A single client queries a first server
120a (Server0), learns of a new index location (Serverl),
and then contacts that server 1206 (Serverl) for the opera-
tions 1t wishes to execute on the index that the client
identifies. The basic 1dea 1s that a client asks a server 120a
to process an mdex operation. If the contacted server 120a

10

15

20

25

30

35

40

45

50

55

60

65

18

does not have all the information, as for example 1n a
redirect, then it passes the request to another server 1205. 1T
the second server 1205 1s appropriate 1t responds appropri-
ately, or 1t passes the request on to another server (not
shown), and so on. FIG. 12 could also illustrate a hierar-
chical topology 1f a client (not shown) contacted another
client 1n a handofl as shown 1n FIG. 10, where a client 106
“asks up” to another client 106, and so on.

Behind the scenes, the server constellation 110 could also
be using a hierarchical organization or a cluster orgamzation
for managing indices. The important point of this topology
1s pushing processing emphasis toward clients (not shown)
rather than toward servers 120a,b. Such protocol design has
scale implications as the number of participating machines/
mechanisms 1ncreases, since it distributes aggregate pro-
cessing.

Server-Centric Approach

The second basic pattern that the Network Distributed
Tracking Protocol provides 1s a “Server-Centric Approach”.
FIG. 13 shows the server constellation 110 characterizing
“server-centric” functionality. In this figure, an NDTP server
130a (Server0) receives a request 132a from a client (not
shown). The server 130a (Server0) passes the request to a
second server 13056 (Serverl), which 1s an appropriate server
for the process, and the second server 1306 returns a
response 134a to the first server 130a (Server0). It the
second server 130a (Serverl) was not appropriate, it could
pass the request to another server (not shown), and so on.
Each NDTP server 1304, b will combine the results of NDTP
requests 132a,6 1t has performed of other NDTP servers
130a,b with whatever responses 134a, b 1t gene rates locally
for the original NDTP request 132q, and the combined
response 134b6 will be the appropriate response for the
original NDTP request 132a.

This design constructs operating patterns for (1) index
operations and (2) hierarchical or cluster topologies. The
important point 1s that the Network Distributed Tracking
Protocol 1s designed to support highly configurable methods
for processing index-related operations, but this method
emphasizes server-processing rather than client-processing.
In FIG. 13, all index manipulation operations continue to

apply, but they are directed at the correct NDTP server
130a,b for which they apply: NDTP_GET, NDTP_PUT,

NDTP_DEL.

FIG. 13 illustrates an hierarchical topology for client
interaction with ND'TP servers 130. A single client queries a
first server 130a (Server0), which 1s not appropnate, and so
the first server 130a (not the client) itsell contacts an
appropriate server 1306 (Serverl) for operations it “passes
through™ to execute on the index that the client has identi-
fied. Alternatively, FIG. 13 could illustrate a cluster topology
if a server 130a contacted another server 1306 1n a what 1s
known as a “peer” handoil. The important point of this
topology 1s that i1t pushes processing emphasis toward serv-
ers 130q, b rather than toward clients. Since index processing
services can be centralized, administration of the indices can
be adminmistered more conveniently in certain cases.

The simplest NDTP server constellation 110 1s a single
server 130, and the protocol 1s designed to permit massive
scale with a single or simple server constellation. Highly
configurable 1nstallations are possible using “client-centric”
or “server-centric” techniques. ND'TP server constellations
110 composed of more than one NDTP server may use any
combination of the two approaches for performance opti-
mization and data ownership properties. Client-centric and
server-centric approaches can be used to build NDTP server




US 7,103,640 Bl

19

clusters, NDTP server trees, NDTP server trees of NDTP
server clusters, or any other usetul configuration.

NDTP design thus explicitly addresses the emerging
“peer-to-peer” topologies called “pure” and “hybrnid”. The
“pure” peer-to-peer approach emphasizes symmetric coms-
munication among peers, and 1s achievable through the
“server-centric” approach. The “hybrid” peer-to-peer
approach emphasizes asymmetric communication among
non-peer participants, and 1s achievable through the “client-
centric” approach. Beyond the pure and hybrid approaches
that ND'TP allows, as described above, NDTP permits any
additional mixtures between client-centric and server-cen-

tric approaches to provide superior configurability and per-
formance tuning.

Security
ND'TP preferably has no provisions for security. Three
key features of security should therefore be provided:
Data privacy (encryption)
Client 12 authentication
Client 12 authorization

NDTP/TCP will be extended using SSL/X.509 to support
these security features i a straightforward, ‘industry stan-
dard” way.

Adding security to NDTP/UDP also requires technology
other than SSL. For example, IPSec supports securing all IP
traflic, not just TCP between two endpoints. IPSec 1s a
somewhat more heavyweight technology than SSL, and the
rate of adoption 1n industry 1s somewhat slow. Nonetheless,
it can provide the relevant capabilities to NDTP/UDP.

Additional Transport Layers

The early-adopter portion of the industry 1s 1n a state of
turmoil regarding network transport protocols. On one hand,
TCP has provided decades of solid service, and 1s so widely
implemented that the mainstream computer industry could
not imagine using another protocol to replace it. On the other
hand, TCP lacks several features that may be necessary to
ecnable the next step in network applications. In particular,
the TCP design assumed pure software implementations by
relatively powertul host computer computers. However,
developments 1n network technology have increased the
packet rate that a TCP mmplementation must handle to
deliver full network speed beyond the capabilities of even
increasingly powertul host computers. To take the next step,
much of the packet processing work must be ofl-loaded to
hardware, and TCP’s design makes this very difficult.

It 1s unclear whether 1t will become possible to implement
the relevant portions of TCP 1n hardware 1n a timely fashion.
I1 this does not happen, one of the many new transport layers
currently under development (ST, SCTP, VI, etc.) may
emerge as a market leader 1n high performance networking.
In this case, a layering of NDTP on top of a new hardware
accelerated transport would permit NDTP servers to deliver
greatly increased transaction rates. Even with the use of a
hardware accelerated transport layer, however, the only
benefit to a typical NDTP client would be lower cost of
service due to cheaper NDTP server platiform requirements.
On the flip side, NDTP clients could likely still use a cheaper
software implementation of the new transport because of
individual clients” modest performance demands.

As can be seen, the Network Distributed Tracking Pro-
tocol 1s a networking protocol that runs on top of any stream
(e.g. TCP) or datagram (e.g. UDP) network transport layer.
The goal of NDTP 1s to support a network service that
ciliciently manages mappings from each individual key
string, an 1dentifier, to an arbitrary set of strings, locations.

10

15

20

25

30

35

40

45

50

55

60

65

20

NDTP permits protocol participating clients to add and
remove 1dentifier/location associations, and request the cur-
rent set of locations for an 1dentifier from protocol servers.

NDTP 1s designed for use in the larger context of a
distributed data collection. As such, 1t supports an architec-
ture, 1n which information about where data associated with
particular application entities, can be managed and obtained
independently of the data itself. One way to understand this
1s as a highly dynamic DNS for data. DNS maintains a
mapping between names and machines. NDTP and its
associated servers maintain a mapping between entity 1den-
tifiers and data locations. The identifier/location mapping,
maintained by ND'TP servers 1s much more dynamic (more
frequent updates), than the domain name/IP address map-
ping maintained by DNS. NDTP 1s designed to support very
fast, very diverse, and very large scale mapping manipula-
tions.

Regardless of the expected system context of NDTP in a
distributed data collection, those skilled 1n the art will
appreciate that NDTP can be used for any application 1n
which one-to-zero or one-to-many associations among
strings are to be maintained and accessed on a network. In
applications of ND'TP other than distributed databases, the
term 1dentifier 1s likely to make sense 1n most cases, but the
term location may not. In any context, however, although
NDTP supports identifier and location strings of up to 2°*—4
bytes 1n length, 1t 1s a general assumption that the strings are
typically short.

Those skilled in the art will note that the invention
provides for the management and manipulation of indices
and their associated relationships.

Even more importantly, 1t 1s the manipulation of dynamic
and spontancous relationships between indices and loca-
tions, not the indices and locations, that 1s the core signifi-
cance. The Network Distributed Tracking Protocol was
written to manipulate these relationships, of which indices
(1dentifiers) and locations are components of the aggregate
solution.

It 1s to be understood that a wide range of changes and
modifications to the embodiments described above will be
apparent to those skilled 1n the art, and are contemplated. It
1s therefore intended that the foregoing detailed description
be regarded as illustrative, rather than limiting, and that 1t be
understood that it 1s the following claims, including all
equivalents, that are intended to define the spirit and scope
of the invention.

We claim:

1. A method for retrieving data location information for
data stored 1n a distributed network, comprising the steps of:

a) recerving at a first client a data query for retrieving data
associated with an i1denftification string, wherein the
data 1s stored at a data repository and wherein a location
string associated with the identification string of the
data 1s stored in at least one of a plurality of data
location servers:

b) transmitting a data location request from the first client
to a server to retrieve the location string associated with
the identification string in the data query, the data
location request including the identification string;

¢) 1f the server 1s not a data location server, then operating
the server as a next client and transmitting the data
location request from the next client to a server logi-
cally associated with the next client;

d) repeating ¢) until the data location request 1s transmit-
ted to a data location server, wherein a communication
path 1s defined between the first client and the data
location server; and




US 7,103,640 Bl

21

¢) 1f the data location server does not possess the location
string, transmitting a redirect message to the first client
over the communication path, the redirect message
containing information with which the first client 1s
configured to determine a location of a second data
location server, wherein the second data location server
contains the location string.

2. The method of claim 1, wherein transmitting the
redirect message comprises transmitting a data location
server table to the first client.

3. The method of claim 2, further comprising;:

1) calculating at the first client the location of the second
data location server with a function commonly known
to the data location server and the first client and based
on the 1dentification string and the data location server
table.

4. The method of claim 3, wherein the function comprises
a hash function and wherein the first client applies the hash
function to the identification string and the data location
server table to obtain the location of the second data location
Server.

5. The method of claim 1, wherein transmitting the
redirect message comprises transmitting a function to the
first client.

6. The method of claim 3, further comprising:

1) calculating at the first client the location of the second
data location server with the transmitted function.

7. The method of claim 6, wherein calculating at the first
client the location of the second data location server com-
prises applying the transmitted function to the identifier
string.

8. The method of claim 7, wherein applying the transmit-

ted function generates a URL of the second data location
SErver.

9. The method of claim 1, wheremn a length of the
identification string and the location string each 1s variable.

10. A method for retrieving data location information for
data stored 1n a distributed network, comprising the steps of:

a) receiving at a first client a data query for retrieving data
associated with an i1dentification string, wherein the
data 1s stored at a data repository in the distributed
network and wherein a location string associated with
the 1dentification string of the data 1s stored 1n at least
one of a plurality of data location servers;

b) transmitting a data location request from the first client
to a first data location server to retrieve the location
string associated with the i1dentification string 1n the
data query, the data location request including the

identification string;

¢) 1f the first data location server does not possess the
location string, transmitting a redirect message to the
first client, the redirect message containing information
for use by the first client to calculate a location of a
second data location server, wherein the second data
location server contains the location string;

d) calculating the location of the second data location
server at the first client; and

¢) transmitting the data query from the first client to the
second data location server.

11. The method of claim 10, wherein transmitting the
redirect message comprises transmitting a data location
server table to the first client.

12. The method of claim 11, wherein calculating the
location of the second data location server comprises cal-
culating the location of the second data location server with

10

15

20

25

30

35

40

45

50

55

60

65

22

a Tunction commonly known to the first data location server
and the first client and based on the data location server table
and the i1dentification string.

13. The method of claim 12, wherein the function com-
prises a hash function and wherein the first client applies the
hash function to the identification string and the data loca-
tion server table to obtain the location of the second data
location server.

14. The method of claim 10, wherein transmitting the
redirect message comprises transmitting a function to the
first client.

15. The method of claim 14, wherein calculating at the
first client the location of the second data location server
comprises applying the transmitted function to the identifier
string.

16. The method of claim 15, wherein applying the trans-
mitted function generates a URL of the second data location
SErver.

17. A system for retrieving data location mformation for
data stored 1n a distributed network, the system comprising:

a plurality of data repositories configured to store data,
wherein the data 1s associated with a respective 1den-
tifier string 1n each data repository;

a data location sewer network having a plurality of data
location servers, each of the plurality of data location
servers containing location strings associated with
respective 1dentifier strings and each of the plurality of
data location servers having computer executable code
configured to execute the following steps:

in response to receiving a data location request from a
client to retrieve a location string associated with an
identification string provided in the data location
request, transmitting a redirect message to the client if
the 1dentification string 1s not associated with a location
string at the data location server, wherein the redirect
message contains information for use by the client to
calculate a location of a different data location server 1in
the plurality of data location servers, wherein the
different data location server contains the location
string.

18. A system lor retrieving data location information for

data stored 1n a distributed network, the system comprising:

a data repository configured to store data, wherein the data
1s associated with an i1dentifier string;

a client responsive to a data query to query a data location
server for location information associated with the
identifier string;

a data location server network comprising a plurality of
data location servers, at least one of the plurality of data
location servers contaiming location information asso-
ciated with the identifier string, wherein each of the
plurality of data location servers comprises computer
executable code configured to execute the following
steps 1n response to receiving a data location request
from the client:

1f the data location server contains the location string
associated with the 1dentification string provided 1n the
data location request, the data location server transmits
location information for use by the client to calculate a
location of the data associated with the identification
string;

if the data location server does not contain the location
string associated with the identification string, the
location server transmits a redirect message to the
client, wherein the redirect message contains redirect
information for use by the client to calculate a location
of a different data location server 1n the plurality of data




US 7,103,640 Bl

23

location servers, wherein the diflerent data location
server contains the location string.

19. The system of claim 18, wherein the client and the
plurality of data location servers each comprise a function
commonly known to the client and the plurality of data
location servers and wherein the client 1s configured to apply
the commonly known function to the location information or
redirect information.

20. The system of claim 19, wherein the redirect message
comprises a data location server table.

21. The system of claim 20, wherein the commonly
known function comprises a hash function and wherein the
client 1s configured to apply the hash function to the i1den-
tification string and the data location server table to obtain
the location of the different data location server.

22. The system of claim 19, wherein the redirect message
comprises a transmitted function for use by the client.

10

15

24

23. The system of claim 22, wherein the client 1s config-
ured to calculate the location of the different data location
server by applying the transmitted function to the identifier
string.

24. The system of claim 18, wherein the location infor-
mation comprises a portion of a hash table distributed over
the plurality of data location servers.

25. The system of claim 18, further comprising a plurality
of servers related 1n a logical hierarchy between the client
and the data location servers, wherein each of the plurality
of servers 1s configured to function as a next client and
retransmit the data location request to a next logically
associated server until a data location server receives the
data location request.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,103,640 Bl Page 1 of 1
APPLICATION NO. : 09/661222

DATED . September 5, 2006

INVENTORC(S) . John K. Overton and Stephen W. Bailey

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

On Title Page, Item (60) Pat No. 7,103,640 B1, Related to U.S. Application Data should
be changed from:

“Provisional application No. 60/153,709, filed on Sep. 14, 1999.”; to

--U.S. Provisional App. No. 60/153,709, filed Sep. 14, 1999, and U.S. Pat. App.
No. 09/111,896, filed Jul 8, 1998.--

Signed and Sealed this

Third Day of April, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office



US007103640C1

12 EX PARTE REEXAMINATION CERTIFICATE (12178th)

United States Patent

Overton et al.

US 7,103,640 C1
Dec. 1, 2022

(10) Number:
45) Certificate Issued:

(54) NETWORK DISTRIBUTED TRACKING
WIRE TRANSFER PROTOCOL

(75) Inventors: John K. Overton, Chicago, IL (US);
Stephen W, Bailey, Chicago, IL (US)

(73) Assignee: KOVE 10, INC., Chicago, IL (US)

Reexamination Request:
No. 90/019,036, Nov. 19, 2021

Reexamination Certificate for:

Patent No.: 7,103,640
Issued: Sep. 5, 2006
Appl. No.: 09/661,222
Filed: Sep. 13, 2000

Certificate of Correction 1ssued Apr. 3, 2007
Related U.S. Application Data

(60) Provisional application No. 60/153,709, filed on Sep.

14, 1999.
(51) Int. CL

GO6F 16/182 (2019.01)

GOGF 16/14 (2019.01)

HO4L 61/4552 (2022.01)
(52) U.S. CL

CPC ... HO4L 61/4552 (2022.05); GOGF 16/148

(2019.01); GO6F 16/182 (2019.01)

f?f?,

Client 10

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

To view the complete listing of prior art documents cited

during the proceeding for Reexamination Control Number
90/019,036, please refer to the USPTO’s Patent Flectronic

System.

Primary Examiner — Peng Ke

(57) ABSTRACT

A network distributed tracking wire transfer protocol for
storing and retrieving data across a distributed data collec-
tion. The protocol includes a location string for specifying
the network location of data associated with an entity in the
distributed data collection, and an identification string for
speciiying the i1dentity of an entity in the distributed data
collection. According to the protocol, the length of the
location string and the length of the identification string are
variable, and an association between an identification string
and a location string can be spontaneously and dynamically
changed. The network distributed tracking wire transier
protocol 1s application independent, organizationally inde-
pendent, and geographically independent. A method for
using the protocol 1n a distributed data collection environ-
ment and a system for implementing the protocol are also

provided.

1¢
o (

Server

Req, Id=7000

YIO

Rsp, Id=2000

18
Req 10=2000"

'y

]

Rsp, Id=71000

Use Of Request Identifiers



UsS 7,103,640 Cl1
1

EX PARTE
REEXAMINATION CERTIFICATE

NO AMENDMENTS HAVE BEEN MADE TO 5

TH.

5, PATENT

AS A RESULT OF REEXAMINATION, I'T HAS BEEN

DETERMINED THATI:

The patentability of claims 17, 18 and 24 1s confirmed.

10

Claims 1-16, 19-23 and 25 were not reexamined.

¥ H H ¥ ¥



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages
	Reexam Certificate

