12 United States Patent

US007233978B2

(10) Patent No.: US 7,233,978 B2

Overton et al. 45) Date of Patent: Jun. 19, 2007
(54) METHOD AND APPARATUS FOR (358) Field of Classification Search 718/105;
MANAGING LOCATION INFORMATION IN 709/203, 206, 217, 207, 223, 226, 230, 232,
A NETWORK SEPARATE FROM THE DATA 709/235, 241, 242
TO WHICH THE LOCATION INFORMATION See application file for complete search history.
PERTAINS (56) References Cited
(75) Inventors: John K. Overton, Chicago, IL (US); U.S. PATENT DOCUMENTS
Stephen W. Bailey, Andover, MA (US) 4,553,261 A 11/1985 Froessl
. ‘ 4,636,858 A 1/1987 Hague
(73) Assignee: Econnectix, LLC, Chicago, IL (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FORFEIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 Ep 0568 161 Al 1/1997
U.S.C. 154(b) by 810 days. ‘
(Continued)
(22) Filed: Jun. 1, 2001 Communication relating to the results of the Partial International
Search Report for PCT Application No. PCT/US01/18013 dated
(65) Prior Publication Data Apr. 15, 2002,
US 2002/0032787 A1 Mar. 14, 2002 (Continued)
Primary Examiner—Paul H. Kang
Related U.S. Application Data (74) Attornev, Agent, or Firm—Brinks Hofer Gilson &
(63) Continuation-in-part of application No. 09/661,222, Lione
filed on Sep. 1%%,, 2000, now P-’at.‘No. 7,103,640, and (57) ARSTRACT
a continuation-in-part of application No. 09/503,441,
filed on Feb. 14, 2000, now abandoned, and a con- A system and method for storing and retrieving location
tinuation-in-part of application No. 09/367,461, filed information across a network 1s disclosed. The system and
on Aug. 13, 1999, now abandoned, and a continua- method utilize a transfer protocol configured to transport an
tion-in-part of application No. 09/111,896, filed on identifier/location relationship to allow one or more loca-
Tul. & 1998 now abandoned. o tions to be associated with an 1dentifier 1n the location store
j j of a location server, where the 1dentifier represents a unique
(60) Provisional application No. 60/277,408, filed on Mar. entity and the location represents a location of data pertain-
19, 2001, provisional application No. 60/209,070, ing to the identifier. The location server contains programs-
filed on Jun. 2, 2000. ming logic operative to provide responses to location queries
and capable of scaling a plurality of location servers accord-
(51) Int. CL ing to system performance and logistical requirements.
GO6F 15/16 (2006.01)
(52) US.CL ...l 709/217; 709/226; 709/232 31 Claims, 17 Drawing Sheets

___O “'%J!..-#"‘
172 @)_\"“ 7 -
/@).1?2 -~
175 \@
e %
e ‘-O .__O NDTP_PUT
184
180y / o
SHIPPING COMPANY /
S o I? ti?ﬁgnﬁ LAT /LONZ, LAT/LON |
DISPATCHER | | \n7p RESPONCES 2 | LAT/LONS, LAT /LON4
3 | LAT/LONS, LAT /LON6
/| 4 | LAT/LONY, LAT/LONS
L 182°f | 5 | LAT/LONY, LAT/LON10
170 .| 6 | LAT/LON{1, LAT/LON12
i || ' '

US 7,233,978 B2

Page 2
U.S. PATENT DOCUMENTS 6,092,189 A 7/2000 Fisher et al.

6,108,787 A 8/2000 Anderson et al.
4,728,978 A 3/1988 Inoue et al. 6,131,095 A 10/2000 Tow et al.
4,800,488 A 1/1989 Agrawal et al. 6,154,738 A 11/2000 Call
4,825,406 A 4/1989 Bean et al. 6,188,766 Bl 2/2001 Kocher
4,835,372 A 5/1989 Gombrich et al. 6,201,931 Bl 3/2001 Cipolla et al.
4,914,571 A 4/1990 Baratz et al. 6,202,070 Bl 3/2001 Nguyen et al.
5,008,700 A 4/1991 Okamoto 6,209,095 Bl 3/2001 Anderson et al.
5,124,814 A 6/1992 Takahashi et al. 6,212,280 Bl 4/2001 Howard, Jr. et al.
5,193,185 A 3/1993 Lanter 6,377,986 B1 4/2002 Philyaw et al.
5,208,623 A 5/1993 Takahashi 6,418,441 Bl 7/2002 Call
5,291,399 A 3/1994 Chaco 6,438,652 Bl * 82002 Jordan et al. 711/120
5,319,401 A 6/1994 Hicks 6,463,454 B1* 10/2002 Lumelsky et al. 718/105
5,347,600 A 9/1994 Bamnsley 6,466,980 Bl * 10/2002 Lumelsky et al. 709/226
5,384,643 A 1/1995 Inga et al. 6,578,068 B1* 6/2003 Bowman-Amuah 709/203
5,414,841 A 5/1995 Bingham et al. 6,711,408 B1* 3/2004 Raithcceoeveveveveannn.. 455/440
5,455,648 A 10/1995 Kazamu 2002/0112048 Al 82002 Gruyer et al.
5,475,817 A 12/1995 Waldo et al. _ _
5.479.654 A 12/1995 Squibb FOREIGN PATENT DOCUMENTS
5,522,077 A 5/1996 Cuthbert et al. FP 0919 912 A? 6/1999
5,537,547 A 7/1996 Chan et al. WO WO 86/05610 0/1986
5,550,981 A 8/1996 Bauer et al. WO WO 98/15910 4/199%
5,551,027 A 8/1996 Choy et al. WO WO 9%/00624 7/1998
5,560,005 A 9/1996 Hoover et al. WO WO 00/03526 1/2000
5,576,952 A 11/1996 Stutman et al.
5,579,067 A 11/1996 Wakabayashi OTHER PUBLICATTONS
g"g ig*g;g i fﬁgg; ﬁE::jﬁS;i ol Bourke D G et al: “Pr(_)granunable Module and _Circuit_ for Machine-
5j625j841 A 4/1997 Dawkins of z;,l Readable Unique Serial Number” IBM Technical Disclosure Bul-

S ‘ letin, vol. 27, No. 4A, Sep. 1, 1984 pp. 1942-1944.

0,649,247 A 71997 toh et al Klemnholz L et al: “Supporting Cooperative Medicine: The Bermed
2’22‘;"5;8 i gﬁgg; gﬁi‘s’}get y Project” IEEE Multimedia, vol. 1, No. 4, Dec. 21, 1994 pp. 44-53.
5"7 X 4" 575 A /1008 Hiover of 3:1 “Method for Network Naming and Routing” IBM Technical Dis-

e 11998 Mort t [closure Bulletin, vol. 37, No. 9, Sep. 1, 1994 p. 255.
g’ggg’gég i 2 11098 Al?lt 1;1(;11“6 el “Minimizing Locking Tp Access Global Shared Data”, IBM Tech-
55764j906 A 6/1008 Fdelstein ‘et il nical Disclosure Bulletin, pp. 619-622,_Feb* 1995,

537743670 A 6/1008 Montulli ‘ “A robust software barcode reader using the Hough transform™,

] . Muniz, R., Junco, L.; Otero, A., Abstract, 1999 Int’l Conf. On
0,781,725 A 7//{1998 Salt(? Information Intelligence and Systems (Oct. 31 to Nov. 3, 1999).
g’;gg’gfg i ; /}ggg ;Zr\ﬂ;:j ot al “In-Fab 1dentification of silicon wafers with clean, laser marked

SO ' barcodes”, Fresonke, D., Abstract, 1994 IEEFE/Semi Advanced
5,809,161 A /1998 Auty Semiconductor Manufacturing Conference and Workshop (Nov. 14
5,809,331 A 9/1998 Staats et al.

. to Nov. 16, 1994).
5,809,495 A 9j1998 Loi';uza 1 “Applications of barcode technology in automated storage and
g"gfﬁ’ggg i lg /}ggg PG?SIIIIGTOW et al. retrieval systems”, Sriram_, T.; Vishwanatha Rao, K.; Biswas, S.;
5j864j482 A /1999 Hazama Ahmed, Abstract,. Proceedings of the 1996 IEEE IECON 22°¢ Int’l
5j872ﬁ973 A /1999 Mitchell of al Conf. On Industrial Electrodes (Aug. 5 to Aug. 10, 1996).

o ‘ Claims for U.S. Appl. No. 09/111,896, filed Jul. 8, 1998 entitled
5,875,302 A 2/1999 Obhan System And Method For Establishing And Retrieving Data Based
5,903,889 A 5/1999 de la Huerga et al. On Global Indices.

2,007,837 A 5§1999 Felﬁel et al. Claims for U.S. Appl. No. 09/503,441, filed Feb. 14, 2000 entitled
g’gg’i{ig i g /}ggg Ezrp ; Aut.omated Image Archiving System. |
559T8j214 A 6/1999 Porkowsk Claims for U.S. Appl. No. 09/367,461, filed Aug. 13, 1999 entitled

SN . Automated Image Archiving System.

2,920,702 A 711999 Blel.dt et al. Callaghan V L et al., “Structures and Metrics for Image Storage and
0,940,844 A 8/1999 Cahull et al Interchange™ Journal of Electronic Imaging, vol. 2, No. 2, Apr. 1,
5,950,173 A 9/1999 Perkowski 1993, pp. 126-137.

g’ggé’gég i ig;iggg Eiﬂ;ﬁtglél “Method for Network Naming and Routing” IBM Technical Dis-
5"974’124 A 10/1999 Schlucter Jr* of al closure Bulletin, vol. 37, No. 9, Sep. 1, 1994, p. 255.

o T ‘ “Service Location in an Open Distributed Environment,” Beitz et
5,974,409 A 1071999 Sanu et al. al., Second International Workshop on Services 1n Distributed and
0,978,773 A L/1999 Hu.detz et al. Networked Environments, IEEE Comput. Soc., Jun. 1995, pp.
5,987,519 A 11/1999 Peifer et al. 2834,
g’ggg’?gg i légggg Ei{elzjflte()l'net ol Baer, Tony, “Tales from the Network™, Computerworld Healthcare

P . | Journal, www.computerworld.com/news/1996/story/
6,047,332 A 4/2000 Viswanathan et al. 0,11280,14557,00 html, pp. 1-9, Oct. 1, 1996.

6,055,544 A 4/2000 DeRose et al.
6,058,193 A 5/2000 Cordery et al. * cited by examiner

US 7,233,978 B2

Sheet 1 of 17

Jun. 19, 2007

U.S. Patent

d9NddS
INAITO NOILYOI'lddV IN3IIND

INJITO \@ \mw ﬁl\
- /b d3AH3S

\ NOLLYDddY
' HHOMLIN
N mm_zm_m dLON
/. o
)
o
INTITD
HIAYIS INTITO
NOILLYOITddY

L Old

U.S. Patent Jun. 19, 2007 Sheet 2 of 17 US 7,233,978 B2

FIG. 2

CLIENT-SERVER LOCATION
INTERACTION INTERACTION

NDTP 18

APPLICATION
SERVER

16
CLIENT-SERVER LOCATION
INTERACTION INTERACTION
- NDTP | O
APPLICATION 22
SERVER ‘524

26

PERSISTENT
STORAGE

U.S. Patent Jun. 19, 2007 Sheet 3 of 17 US 7,233,978 B2

FIG. 4

APPLICATION
SERVER
MESSAGES

=

34 46 38

T =
LOGGING m

LOCATION | 36

COMMUNICATION
NETWORK

PROTOCOL

CLIENT
MESSAGES
o
FIG. 5
12 50

SERVER 4

12 AN
SERVER

o=
Ve

SERVER 4 - SERVER 4

12

12

.‘-.I.I_l .

US 7,233,978 B2
\
\
/

Sheet 4 of 17
//f
X
/
/
-
T
“%‘l
L]
>
'
LUl
co .
\
\
N\
.

00
71 d3ANHS

Jun. 19, 2007

wm_w

55

U.S. Patent

\\an

0d y3Au3s

¢l

0V y3auas

9 Y3AY3S

LV
=]/

om mm>mmm

o, , -
e T

]
0
=
N 0/ 89
e
< ONIdavd - TENT:
2 09 V1VG
(U) HLON3TT
l 06 8. 9SS ¢Vv €21 0618/ 9S Vv eTL 0687296y e2 10
¢ Z 1 0
1YIWHO4 ONIYLS d1aN
™~ =
- 8 9l
\,
2
P,
S 000l = QI 'dSH
~ 29
o) 000Z = a1 ‘dSY
X ¢9
—
p—

o O0C=0IOR (g
000 =103 (
HIANIS vo) INTITD
21" p, 7
Sy3141LN3A 1SINOIY 40 38N

U.S. Patent

-

m - w9NIOavd - -U 31 A8 WNOLLYDOT |

m, L NOLLYOO'T

R . cbupped | }-u31AgQuOREOO]

5 8. V.LVQ QUORE00T |
(0u) HLONI Quoneco

(+ (WU)PANNOY + + ¥ + (QU)PANNOY) HLONI T YIHY ONINLS
H3141IN3Ial 1STN0AN d1aN

— | g3AY3SIY B (€) dS¥139 dLAN

s l 06 82 96V €Z 1068 L 9G¥ ezt o0628Z9GSv ez o0
,_w C ¢ L | 9/ 0

= LYWHO4 dSy™ 139 d1aN O _\ . o_ H_
S ONIQQvd J-U 3LAE ¥311INTAN

s | o7 V1va ¥314I1LN3al

= (u) HLONIT ¥3IILN3Q!

- (¥ + (UYANNOY) HLONTT Y3YY ONIYLS

| 3141LN3AI 1SINO3IH 410N

EIYERE} (2) 139 dL1aN
L 0 6 8 L 9 S ¥ €2 L 068 L 9 S Vv €L 068 219GV e L 0
€ 4 | Al

1VYWHO04 139 d10ON

6 Old

U.S. Patent

]

0

v o

X (0) HLONTT VIHY ONIYLS

0 HIIHIINIAL 1STINDIY dLaN

R a3AYISI (S) dSH LNd dLAN

Z 1l 06 8. 9G¥ €2 1L 068 L 9GS P €21 068 LN9SVEZT O
t ¢ | 08

1VIWHO4 dSH 1Nd d1aN

¢l 'Ol

I~
m ONIAAavd NOILYDOT 1-W 31A9 NOLLYDOT
E 53 VIV NOILYOOT
= - -
- _ (WHIONTINOIVIOT -
ONIQavd ¥3141LN3al 1-U 31A8 NOILLYDO
I~
—
Q 8 V.1va ¥3I141IN3a)
&N . . —— —— e e e e ——e—
= - (U) HLONTT ¥3I31INTAl |
= (¥ + (W)yANNOY + ¥ + (U)PANNOYH) HLONTT VINY ONIYLS
H3141LN3al L1SINDIY dLaN
CERVEREN (¥) Lnd dJLAN
1 0 6 8 2 9 S Vv €2 L 068 L9 SV €L 068 L9 v ez Lo
€ 4 | 08 0

1YWY04 1nd d1aN

L Ol

U.S. Patent

(0) HLONT1 Y34V ONIYLS
43141LN3AI 1SINDIY JLON
() dSY 130 dLON |

_Q3A83538 000 S 30 alGN
L 06 8L 9GSy €celL0682L9GPv EeT L 068 L\9GVECTLO

il Ol4

US 7,233,978 B2

1YIWH04 dSY 7190 d1aN

I~
v e
S ONIJAYd NOILVOO1 | J-W 31AG NOILYOOT
v o
= 5= VLVQNOILYOOT
3 26
L (w) HLONTTNOILYDOT |
ONIGavd ¥3141LN3ql o 1-U 1A NOILYDO
I~
= 3 v.1va ¥3I31LNIal
gl
X B (U)HLONITWIIdIINZAL
= (¥ + (WpyANNOY + ¥ + (UWYANNOY) HLONTT VIHY ONIYLS
- ¥3141IN3AI 1S3IN0TY dLAN B
LY ERER (9) 130 J.LQN
l 0 6 8 2 9 S ¥ €2 L 068 L 9 SV EezZ L o068 Z\9G6G¢tv g2 1 0
£ ¢ | ofs

0
1YWY04 130 dLaN .
el Old

U.S. Patent

@\
as
=
- ONIGavd NOLLYDO }-0 31A8 NOILVO01
al
' 86 V.VANOILYOOT
-
(0) HLONZT ¥3i41LN3QI
ONIJavd NOILYOOT }-U 31A8 NOILYDO1
> 75 VAVONOILYOOT
S
> (U) HLONIT NOILYOO
= ONIQavd Y¥3I4LLNIal |-W J1AE NOILYOOT
s 9
S VLvQ ¥3I41LN3AI
S (w) HLON31 ¥3141LN3al
e (¥ + (W)PANNOY + ¥ + (UYONNOY ¥ + (O)yANNOY) HLONTT VIHY ONRILS
P 8.“\ ¥3141LIN3A1 LSIND3Y d.LAN
= CENNSERER (6) adN d1QN
1 06 82 9G¥ €T 068 L9S V€T 068 L\9SGV €T O
e ¢ | C6 0

1VIWH04 adn d1aN

Gl Ol

U.S. Patent

US 7,233,978 B2

> (0) HLONTT V34V ONIMLS

S ¥3I41LIN3AI LSINDIY dLAN

—

- Q3IAYISTY _lon).

E dS¥ adN d1aN

Z L 06 8. 9GS ¥ €2Z 1L 068.L9SVveT L 068<7L9C/reT 1 0
e \ ¢ ! 001 0

S 66 LYWHO4 dS¥™adn d.1an

o a

: 9L Dl

'

—

U.S. Patent

ONIOaYd Ul d1Ad

W 15117 13S NOILVOI'ld3y

vivad } 1S11 135S NOILVOIld3d

US 7,233,978 B2

(b + (Wu)PANNOY + + ¥ + (QU)PANNOY) HLONIT + LSIT L3S NOILYOINd3Y

ONIQdvd L-wld 31A9 WHN

Sheet 11 of 17

174N YIAYIS dLAN
. ooN@AYd | Wu3Ag0RN
v1va 074N Y3IAYIS d.1aN
10} (0U) HLONTT1 074N YIAY3S dLAN
mr (¥ + (Wu)PGNNOY + " + ¥ + (QU)YANNOY) HLONIT 0 LSI1 L3S NOILYOITd3Y

(¥ + (Wu)pGNNOY + " + ¥ + (OU)YANNOY) HLONIT LSITHSVYH
H3141ENIAl 1S3ND3IY d1aAN

A3AH3SIY (8) ASH ¥Ma¥ d1aN

1 0 6 8. 9¢ v €L 068 L 9% G v EECcIL 06 8L 9 GV € ¢ L 0
£ 4 _‘ 0

Vil Dld

Jun. 19, 2007

U.S. Patent

US 7,233,978 B2

ONIaavd -U 3148 NOLLONNS
- V1vQ uonoun4ioaupsyd 1N a3zIMvIY3s
e (U) HLON3TT uooundjoalipaydd LAN d3ZIVI3S
= (¥ + (U)PANNOY) HLONTT VIHY ONIYLS
= 43141IN3Al 1SINO3Y d41aN
a3AY3ISIY (8) dSY MAY dIAN
= L 06 82 9SS Vv €211 068 L9G V€T) O068L9STPT ET L O
S ¢ 2 v 0
=) m €01 _
= .
—
: dll Ol

U.S. Patent

U.S. Patent Jun. 19, 2007 Sheet 13 of 17 US 7,233,978 B2

110

/ \
1o / NDTP SERVER \\
CONSTELLATION
| noe |
\
\
CLIENT 1 N
DATAITEM ~—————
TRANSFER
\""-———._—
G 1 9 NETWORK
110
NDTP SERVER
CONSTELLATION
1203 120b

NDTP NDTP
SERVER 0 SERVER 1
A LSS

NDTP 3
REQUEST NDTP
REQUEST
122a 2/ 122 .
NDTP NDTP

NDTP SERVER
CONSTELLATION

132b 2
1303\ NDTP

NDTP REQUEST
SERVER 0

REDIRECTION RESPONSE

/

3

NDTP
T RESPONSE
REQUEST4
1922 NDTP
RESPONSE

/

US 7,233,978 B2

Sheet 14 of 17

Jun. 19, 2007

U.S. Patent

NOILVY.LSHHOM @
Ol

901
HON]!
¢ X0

001

AD0101dvy _ AD0701dEYO _ _

901

56
0

801
x0) (wxo) (x0)
801 801
¢01 .

IVADI™MLFY Q40034 A3LNdIFLSId
ONIMOVYL 3LNSIYLSIA XOMLIAN

90} 90}

Goo-{_ o
901
AV1dSId
901

U.S. Patent Jun. 19, 2007

FIG. 22

APP.
SERVER}1 % 152

| CLIENT |
PARIS

(elf)

158

(el

SYDNEY

APP.
SERVER

156 152
[

| CLIENT |

SERVER 2
l SET B 148 1

Sheet 15 of 17 US 7,233,978 B2

140
SERVER 1

SET A 142
SET B 144

SERVER DATA

/’ 146 | 12

SET C' 150
SERVER DATA

FIG. 23

160

CLIENT

CHICAGO .
‘ APP. :I\
SERVER | 156

]
o0
v o
N . 8/l
~ ZINOT/1V1'LINOT/1V1 | 9 9/1
M OLNO1/1V1'6NOY/LYVT | S | | 281
Z BNOT/ 1Y1°ZNOT/ 1V | ¥ 1
ONOT/ LY ‘SNO1/1V1 | €
PNOT/ LY 'ENOT/ LV | 2 S3IINOdS3Y dLAN MIHILYdSIO
U NOT/ LV 'ZNOT/ LYTINOT/ 1V | | STYETTRY
. NOILYOO1 | dI ANVAWOD ONIddIHS
e
&
e
T
= _ O _ 21
7 1Nd d1aN + Ol.v _ L.c/|
G/l
I~
0 -~
— -~
2._., x..x._.,._ hmﬁ \1% »
&N A g
: ! - 2l
E i . Q./\Nt
A NN O

;

U.S. Patent

e o

<7511

el

041

v¢ Old

U.S. Patent Jun. 19, 2007 Sheet 17 of 17 US 7,233,978 B2

FIG. 25

1 >
SERVER 190 | seRVER
194
CLIENT CLIENT

196
198 \‘

IDENTIFIER

200

LOCATION

US 7,233,978 B2

1

METHOD AND APPARATUS FOR
MANAGING LOCATION INFORMATION IN
A NETWORK SEPARATE FROM THE DATA
TO WHICH THE LOCATION INFORMATION

PERTAINS

RELATED APPLICATIONS

This application claims the benefit of provisional patent
application Ser. No. 60/209,070 filed Jun. 2, 2000 and

provisional application Ser. No. 60/277,408 filed Mar. 19,
2001; and this application 1s a continuation-in-part of each
of the following non-provisional U.S. patent applications:
application Ser. No. 09/661,222 entitled NETWORK DIS-
TRIBUTED TRACKING WIRE TRANSFER PROTO-
COL, filed on Sep. 13, 2000 now U.S. Pat. No. 7,103,640;
application Ser. No. 09/503,441 enftitled AUTOMATED
SYSTEM FOR IMAGE ARCHIVING, filed Feb. 14, 2000
now abandoned; application Ser. No. 09/367,461 entltled
AUTOMATED SYSTEM FOR IMAGING ARCHIVING,
filed Aug. 13, 1999 now abandoned; and application Ser. No.
09/111,896 entltled SYSTEM AND METHOD FOR
ESTABLISHING AND RETRIEVING DATA BASED ON
GLOBAL INDICES, filed on Jul. 8,1998 now abandoned,
wherein the entirety of each of these provisional and non-
provisional applications 1s incorporated herein by reference.

FIELD OF THE INVENTION

This nvention relates generally to the storage and
retrieval of information, and in particular, to a system and
method for managing global search and retrieval of infor-
mation across a network.

BACKGROUND

Data records can reside in many different places. In
existing retrieval systems and methods, a client seeking
information sends a request to a server. Typically, only files
that are registered with that server are returned. Disadvan-
tageously, the search 1s also usually restricted to a local,
identified system. The search 1s thus conducted only where
the server knows 1n advance to look.

Another disadvantage of known retrieval systems is the
difficulty 1n accessing data in different forms. Current
retrieval systems are typically designed to search for data in
limited forms. One example 1s where a client requests files
based on a subject, like a person’s name. Search results for
this type of search may only retrieve text files of peoples’
names. Another problem in current retrieval systems 1s that
the client may receive text and image files 1n the search
results, but cannot seamlessly access the image files. Yet
another problem in current retrieval systems 1s that video
and sound files related to the request may not even be found
in the search results. For example, a doctor might be able to
retrieve medical records on a specific patient, but cannot
view MRI or X-Ray results associated with that record.

A distributed database 1s one where data 1s stored and
retrieved among multiple machines connected by a network.
Typically, each machine 1n which some portion of the data
in a distributed database may reside 1s called an application
server. One commonly asked question in an application
server environment 1s: Where 1s data associated with a
particular entity in a distributed database? The data location
1s a key question when a distributed database has highly
dynamic, and even spontaneous, data distribution properties.

10

15

20

25

30

35

40

45

50

55

60

65

2

In networked environments where there are a large num-
ber of data repositories and any particular entity does not
have data 1n all of the data repositories, a mechanism 1s
needed that would permit queries to be directed only at data
repositories with relevant information. It would also be
beneficial to permit membership in the set of data reposito-
ries itself to be highly dynamic. Such a system would
support on-the-tfly addition and removal of data repositories
from the topology of a distributed database seamlessly and
without the need to reprogram the database.

Another challenge faced 1n networked environments is
scaling system capabilities 1n a manner suflicient to handle
variable demand for resources. A system and method for
scaling resources to accommodate demands for those
resources 1s also desirable.

BRIEF SUMMARY

In view of the above, the invention provides a system and
method for managing data, using a transier protocol, 1n a
network environment. According to one aspect of the inven-
tion, a system for managing location information and pro-
viding location information to data location queries com-
prises a transier protocol configured to manipulate an
identifier, and at least one location associated with the
identifier, wherein the 1dentifier uniquely specifies an entity
and wherein each data location specifies a location of data 1n
a network pertaining to the entity. The system also 1includes
a location server contaiming location information corre-
sponding to at least one entity that 1s formatted according to
the transier protocol, where the location of data relates to an
application server 1n the network. The system further
includes programming logic stored on the location server
that 1s responsive to a location query identifying a desired
entity to return a location message. The location message
includes one or more locations associated with the desired
entity.

According to another aspect of the invention, a method of
handling location queries 1n a network having a plurality of
location servers containing location information correlating
cach of a plurality of unique identifiers with at least one
location 1s disclosed. The method includes receiving a
location query from a client requesting the location of data
relevant to an entity identified in the query. The queried
location server sends a location response message to the
client 1f the queried location server contains information
relevant to the enftity identified in the query. The location
server sends a redirect message to the client 11 1t does not
contain location information relevant to the entity identified
in the query, where the redirect message comprising a list of
location servers containing information relevant to the entity
identified 1n the query.

In another aspect of the invention, a method of scaling at
least one of location server capacity and transaction rate
capability in a system for storing and retrieving location
information over a network using a transfer protocol 1is
disclosed. The method includes providing a transter protocol
configured to transport and manipulate an i1dentifier and a
location, the location speciiying the location of data in the
network corresponding to the identifier, and providing a first
location server storing location information formatted
according to the transfer protocol. Upon receipt of an
identifier and location from a first client, where the location
represents a location of an application server in the network
containing data stored by the first client related to an entity
represented by the identifier, the location 1s stored in a
location store at the first location server. A portion of the

US 7,233,978 B2

3

identifiers and respective location associations in the first
location server are transierred to a second location server
when a performance criterion of the first location server
reaches a predetermined performance limit.

According to another aspect of the invention a database 1s
disclosed. The database includes a computer readable
medium containing a plurality of index designations, where
cach mdex designation represents of one of a plurality of
identifiers, and where each identifier uniquely 1dentifies an
entity. The database also contains a plurality of locations,
where each of the locations 1s associated with at least one of
the plurality of index designations and represents a location
ol information relevant to an identifier represented by an
index designation. A location store having a table containing
the plurality of index designations and associated locations
1s stored 1n the computer readable medium, as well as an
indexing function operative to map each of the plurality of
identifiers to a respective one of the plurality of index
designations.

These and other features and advantages of the invention
will become apparent upon a review of the following
detailed description of the presently preferred embodiments
of the mvention, when viewed in conjunction with the
appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 15 a system block diagram according to a preferred
embodiment.

FIG. 2 1s a block diagram of a location suitable for use in
the system of FIG. 1.

FIG. 3 1s a block diagram of an alternative embodiment of
the location of FIG. 2.

FIG. 4 15 a block diagram of an NDTP server suitable for
use in the system of FIG. 1.

FIG. 5 1s a block diagram of an NDTP server topology
according to a preferred embodiment.

FIG. 6 1s a block diagram of an alternative ND'TP server
topology.

FIG. 7 1s an example of multiple outstanding protocol
requests.

FIG. 8 1s a layout of one presently preferred string format.

FIG. 9 1s a layout of one presently preferred NDTP_GET
message.

FIG. 10 1s a layout of one presently pretferred NDTP_GET

RSP message.

FIG. 11 1s a layout of one presently preferred NDTP_PUT
message.

FIG. 12 1s a layout of one presently preferred NDTP
PUT_RSP message.

FIG. 13 1s a layout of one presently preferred ND'TP_DEL
message.

FIG. 14 1s a layout of one presently preferred NDTP
DEL_RSP message.

FI1G. 15 1s a layout of one presently preferred NDTP_UPD
message.

FIG. 16 1s a layout of one presently preferred NDTP
UPD_RSP message.

FIG. 17 1s a layout of one presently preferred NDTP_
RDR_RSP message, where FIG. 17(a) shows a server table
layout, and FIG. 17(b) shows a redirect function layout.

FIG. 18 1s a system diagram showing an NDTP server
constellation configuration and exemplary data flow paths.

FIG. 19 1s a system diagram showing a client-centric
NDTP server constellation approach for redirection.

FIG. 20 1s a system diagram showing a server-centric
NDTP server constellation approach for redirection.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 21 1s a system block diagram showing a multi-server
implementation environment of the transfer protocol of the
invention.

FIG. 22 1s a block diagram of a splitting process in an
NDTP server cluster.

FIG. 23 illustrates an embodiment of a content manage-
ment/object management system configuration icorporat-
ing an NDTP server network.

FIG. 24 1llustrates an embodiment of a vehicle tracking
system 1ncorporating an NDTP server.

FIG. 25 1llustrates an embodiment of a mobility manage-
ment application incorporating an ND'TP server.

FIG. 26 illustrates an embodiment of a location store
format for the NDTP server of FIG. 25.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EMBODIMENTS

The following terms are used to describe the operation of
the presently preferred distributed database system. A net-
work distributed tracking protocol (NDTP) 1s a transier
protocol having the capability to manipulate location infor-
mation used to ethiciently track the location of information
associated with an individual entity 1n the distributed data-
base system. An “‘enftity identifier” or an “identifier” 1s a
unique encoding, which may be a string 1n one embodiment,
with which zero or more data location specifiers are asso-
ciated 1n an NDTP server. A “data location” or “location” 1s
an encoding, for example a string, that 1s a member of a set
ol associations with an identifier in an NDTP server. An
“NDTP client” or a “client” 1s a network-attached compo-
nent that mnitiates add, delete, lookup and update of 1denti-
fier/location mappings, or associations, from an NDTP
server with NDTP request messages. An “NDTP server” or
a “server” 1s a network-attached component that maintains a
set of 1denfifier/location mappings that are modified or
returned 1n response to ND'TP request messages from cli-
ents. The term “Network Byte Order” 1s the ordering of
bytes that compose an integer of larger than a single byte as
defined 1n the Internet Protocol (IP) suite. Preferably, Net-
work Byte Order specifies a big-endian, or most significant
byte first, representation of multibyte itegers. In this speci-
fication a byte 1s preferably composed of eight baits.

FIG. 1 shows one basic topology of a preferred network
10 implementing a preferred embodiment of the distributed
database system. The distributed database system 10
includes at least one NDTP server 12, at least one client 14,
and, 1 one embodiment, an application server 16. An
application server 16 1s deployed for given purposes, such as
a distributed database, instant messaging, phone routing,
distributed content management, geo-location services and
ctc. As will be explained 1n greater detail below, the dis-
tributed database system preferably allows clients 14 to
ciliciently locate information through queries to the NDTP
servers 12. Using the NDTP protocol, the NDTP servers
maintain location information 1n the form of a list of location
associations with an entity. The location may be address
information for the application server(s) contaiming infor-
mation relevant to the 1dentifier or address information for
the application server(s) through which data relevant to the
identifier may be accessed. In one embodiment, when a
client queries the NDTP server for information pertaiming to
an entity, the NDTP server preferably returns a list of all
locations for the specified entity. The client then can directly
access the various locations, relieving the NDTP server of
any further involvement in the transaction and allowing the
NDTP server to handle more queries.

US 7,233,978 B2

S

Alternatively, the location may also be one or more pieces
ol data i1dentifying the physical location of the entity 1den-
tified by the identifier. In embodiments where the location on
the NDTP server 1s a physical location of the entity identi-
fied by the i1dentifier (e.g. a geo-location service), no appli-
cation servers 16 may be necessary because the location
information on the NDTP server(s) may be the endpoint of
the client query.

When the locations returned by an NDTP server to a client
are ol address information of one or more application
servers, these application servers 16 may be any type of
mechanism accessible by a client system. As shown 1n FIG.
2, a location, such as an application server 16 containing a
location-enabled service or router table, may include an
NDTP application 18 for receiving and reporting NDTP
references. The application server 16 running the location-
cnabled service or router table preferably supports the
client-server interactions. Any ol a number of existing
location-enabled services, such as Universal Resource Iden-
tifier (URI)—Universal Resource Locator (URL) mappings
in distributed content management, or router table formats
may be operated on the application server 16.

FIG. 3 illustrates an embodiment where the location 1s a
data repository 24 composed of an application server 22 and
an NDTP application 20 associated with a persistent storage
mechanism 26 such as a disk drive, for managing client-
server interaction. In an alternative embodiment, the loca-
tion 1n FIG. 2 may consist of a routing table on the
application server 16. In this alternative embodiment, the
NDTP application 18 performs location interactions and the
routing table routes services to appropriate destinations.
Similarly, the client 14 may be any mechanism capable of
communicating with the NDTP server. For example, a client
14 may consist of a PC-based computer, computer network,
personal digital assistant (PDA), telephone, car messaging,
center, and so on.

The NDTP server 12 illustrated in FIG. 1 1s preferably a
network server configured to answer the question: Where 1s
data associated with a particular entity in a distributed
database system? This 1s 1n contrast to the question of what
1s the data associated with a particular entity in the distrib-
uted database system that must be answered by a typical
distributed database mechamism. The NDTP server 1s built
upon a location store data structure. Large databases store
large amounts of data, but the NDTP server 1s only con-
cerned with the location of that data, rather than the end-
point referent data itsell.

Referring to FIG. 4, the NDTP server 12 includes a
network front end 34, RAM storage 36, and non-volatile
storage 38. The non-volatile storage 38 may be a disk drive
that 1s 1n communication with, or integral with, the NDTP
server hardware. The network front end 34 includes a
memory manager that 1s preferably logic operative to divide
a large contiguous memory area into small, fixed sized
chunks, for example 128 octets. These fixed sized chunks are
used to build both strings, with linked lists of chunks used
to represent strings that do not fit within a single chunk, and
mapping lists, with linked lists of chunks to represent
mapping lists that have more elements than fit 1n a single
chunk. The network front end also includes a transaction
protocol, such as transaction control protocol/Internet pro-
tocol (TCP/IP). The NDTP server 12 preferably maintains
the state of 1ts mappings 1n the non-volatile storage 38. An
indexed location store 1s maintained 1n RAM 36 that con-
tains a table of index designations, where the identifiers are
mapped to one or more locations 1n the location store. The
indexed location store may be indexed by a table imple-

10

15

20

25

30

35

40

45

50

55

60

65

6

mented through an eflicient function, such as hash function,
b-tree function or t-tree function. Additionally, an NDTP
server map 1dentiiying any other NDTP server locations for
the specific network and the set of associations contained in
cach respective NDTP server 1s mamntained in RAM, per-
sistent storage, or preferably both RAM and persistent
storage.

In one embodiment, a NDTP server 12 will read the state
of 1ts mapping sets from disk storage to service requests
from clients, and once it starts servicing requests, the only
action 1t will perform to disk storage 1s to record each NDTP
update transaction as 1t 1s processed. In other embodiments,
the state of the NDTP server mapping sets may be main-
tained in RAM. In yet other embodiments, the server map-
ping sets are maintained in RAM and persistent storage. The
records written to the NDTP server log file refer to associa-
tions 1 the NDTP server location store using a pointer that
defines a reference to an existing location. In one embodi-
ment, the record looks like:

typedef struct ss_ log__map {

ss_1_top; /* opcode, LOG__ MAP */
ss__1_ trec; /* rec pointer (previously allocated chunk */
ss_1_ tto; /* to pointer (string) */

b ss_log map_t;

The ss_1_t type 1s the natural unsigned integer for the
plattorm on which the NDTP server 1s being run. For
example, 1t 1s a 32-bit integer on Intel (1A32) platforms, and
a 64-bit integer on UltraSPARC platforms.

If the NDTP_PUT results in extending the linked list of

mapping pointers with a new memory chunk, the record 1s
somewhat different:

typedef struct ss_ log new__map {

ss_1_top; /* opcode, LOG__NEW__ MAP */
ss__ 1t from; /* from pointer (in string or rec) */
ss_1_trec; /* rec pointer (new rec) */

ss__1_t to; /* to pointer (string) */

} ss_log mnew__map_ t;

The log record for an NDTP_DEL update 1s similar to the
one for an NDTP_ PUT;

typedef struct ss_log unmap {
ss_1_t op;
ss_ 1t from;
ss 1 tto;

b ss_log unmap_t;

/* from pointer (key cstr) */
/* to pointer (data cstr) */

Each time a new location 1s created in the NDTP server
location store, a new string log file entry 1s written 1nto the
log file:

typedef struct ss_log string {
ss_1_t op; /* opcode, LOG__STRING */
ss_ 1t len;

ss_ 1t chunks][|;
ss_ log str ts;

' ss_log string t;

US 7,233,978 B2

7

where the ss_log_str type 1s similar to the ndtp_str_t, except
that the len field 1s an ss_1 t instead of a uint32 t:

typedef struct ss_log str t {
ss 1 tlen;
umnt8_ t data[|;

} ndtp_strt;

The transactional nature of NDTP protocol means that the
response to an update request 1s not returned until request
has completed, including being committed to nonvolatile
storage. The NDTP server 12 combines the log file writes of
multiple NDTP update transactions by adding each log file
record to a log file write buller 46 until either the bufler
becomes full, or the network front end requests that one or
all log file write buflers 46 be flushed to disk. The NDTP
server 12 preferably maintains more than one log file builer
so that its performance at high transaction rates becomes
insensitive to the high latency of individual file write opera-
tions. To prevent unbounded log file growth, the NDTP
server will periodically write 1ts entire current state to a new
log file, close the old log file, and then begin the update
logging process in the new log file.

Implementing the NDTP protocol specified below, 1t there
are a large number of data repositories and other types of
application servers in a network and any particular entity
does not have data 1n all of them, the NDTP server permits
queries to be directed only at pertinent data repositories and
appllcatlon servers. The NDTP server also preferably per-
mits membership 1n the set of repositories and application
servers 1tsell to be highly dynamic and even spontaneous.
The ND'TP server supports on-the-tly addition and removal
of data repositories and application servers from 1ts
deployed topology.

The NDTP server 12 may be implemented on any of a
number of standard computer platforms including, for
example, PC-based platforms having 64 Megabytes of
RAM, and a PENTIUM-type processor operating at 450
MHz on a 100 Mbit Ethernet connection. Additionally, as
illustrated 1 FIGS. 5 and 6, the NDTP server may be a
network of NDTP servers conﬁgured in any number of ways.
For example, FIG. 5 1llustrates a flat NDTP server topology
using clustering, or a distributed topology using replication,
where each of the NDTP servers 12 in the cluster may
contain a different portion of a pool of associated 1dentifier
and location information. In another alternative embodi-
ment, a hierarchical NDTP server topology, such as the
NDTP server tree 52 shown 1n FIG. 6, may be utilized. In the
NDTP server tree 52 topology, each node 54 may be an
individual NDTP server 12, a cluster 50 of NDTP servers, an

NDTP server tree or any combination of these arrangements.

Network Distributed Tracking Protocol (NDTP)

The Network Distributed Tracking Protocol (NDTP) efli-
ciently tracks the location of data associated with an indi-
vidual entity 1n a distributed database. NDTP 1s a transac-
tional protocol, which means that each operation within
ND'TP consists of a request message from an NDTP client to
an ND'TP server, followed by an appropriate response mes-
sage from the NDTP server to the NDTP client.

The NDTP server treats the 1dentifier as an unstructured
stream of octets, which 1s assumed to be unique to a
particular entity. The precise structure of the NDTP 1dentifier
and the mechanism for ensuring i1ts uniqueness are a func-
tion of the application in which the ND'TP server 1s used. In
a customer oriented application, the ND'TP 1dentifier might

10

15

20

25

30

35

40

45

50

55

60

65

8

be a unique customer identifier, for example, a Social
Security Number, 1n either printable or binary iteger form,
as 1s appropriate to the application. NDTP also defines a
location to specity an association with a particular identifier.
Multiple connections of locations with identifiers may be
used concurrently.

As with i1dentifiers, the NDTP server treats locations as
unstructured streams of octets. The structure of a location 1s
a function of the application 1n which the NDTP server 1s
used. For example, a location might be an Internet machine
name, and a TCP/IP port number for a relational database
server, or an HI'TP Universal Resource Locator (URL), or
some concatenation of multiple components.

The NDTP server efliciently maintains and dispenses one
to many relationships between identifiers and locations. In
other words, an 1dentifier may be associated with any
number of locations. In embodiments where the location
information relates to locations of application servers con-
tamning data or routing information for finding data, the
NDTP server 1s updated to indicate an association between
the 1dentifier and the application server’s location when data
for a particular 1dentifier 1s added to an application server.
When a query 1s performed for an identifier, the NDTP
server supplies the set of application servers in which data
may be found for that identifier.

General NDTP Mechanics

The protocol of the invention 1s designed to provide
maximum transaction throughput from both the NDTP
server and associated clients. The design goal 1s realized
through two design principles:

1. NDTP messages should preterably be as short as

possible to maximize the rate of NDTP transactions for
a given network communication bandwidth.

2. NDTP messages should preferably be structured for
ellicient processing on existing machine architectures.

Design Optimizations.

In keeping with other network protocol standards 1nclud-
ing TCP/IP, multioctet integer quantities in NDTP are pret-
erably encoded using the big endian integer interpretation
convention, as set forth above. In one embodiment, NDTP
fields are preferably represented in binary format and
aligned on 32-bit boundaries.

To overcome network latency, NDTP 1s designed to
support asynchronous operation, where many requests may
be sent to an NDTP server belore a response from any of
them 1s received.

Each NDTP message 1s preceded by a fixed size, 12-octet
header, using the preferred data structure:

typedef struct ndtp_ hdr {
unt8__t op; /* opcode */
unt® _ t pad[3];
wnt32_ t 1d; /* transaction identifier */
unt32_ t size; /* total request size
following the header */
} ndtp__hdr_t;
where:
op:
NDTP message numerical operation code.
NDTP_GET: get request

NDTP_ _GET_RSP: get response

US 7,233,978 B2

9

-continued
DTP_PUT: put request
DTP__PUT__RSP: put response
DTP_ DEL: delete request

DTP_DEL__RSP:
DTP_RDR__RSP:
DTP_UPD:

DTP_UPD__RSP:

delete response
request redirection
update

update response

72,22 7 72 7 Z

1d:

Client supplied operation request used to distinguish
responses from multiple outstanding NDTP asynchronous
requests. Each “_RSP” message echoes the 1d field of the
associated request.

S1Z€:

S1ze, 1n octets of the remainder of the NDTP message. The
s1ze field should preferably be a multiple of 4 octets.

Variably sized portions of NDTP messages are preferably
defined with a size field rather than some other delimiter
mechanism to facilitate eflicient reading of ND'TP messages.

The variably sized portions of NDTP messages are com-
posed of zero or more NDTP strings:

typedef struct ndtp_ str {
uint32_ t len;
umnt8_ t data[|;

b ndtp_str t;

Note that the C struct definitions in this document are
schematic, and not necessarily fully compliant structures in
the C programming language. Specifically, arrays denoted in
this document with “[]” imply a dimension which 1s only
known dynamically and this indefinite array size specifier 1s
not allowed 1n C struct definitions. Note also the following;:
len:

the number of significant octets of data following the len

field mn the data area.

data:
len octets of data, followed by up to 3 octets of padding,
to ensure that the total length of the NDTP string
structure 1s a multiple of 4 octets.
The padding octets are not included 1n the len field.
Because varnable sized portion NDTP messages are com-
posed of zero or more NDTP strings and NDTP records
preferably occupy an even multiple of 4 octets, this ensures
that the “size” field of NDTP message headers will prefer-
ably be a multiple of 4 octets.

Protocol Structure

An example of multiple outstanding NDTP requests and
the use of request identifiers 1s shown 1 FIG. 7. NDTP
preferably has a simple, stateless request response structure.
Each request message 60 sent by a client 14 has a corre-
sponding response message 62 returned by the server 12. To
maximize server throughput and use of available network
bandwidth, NDTP 1s asynchronous in nature. Many requests
60 from a single client 14 may be outstanding simulta-
neously, and responses 62 may or may not be returned from
the server 12 in the order in which the requests 60 were
issued. Each NDTP request 60 contains an NDTP request
identifier 64 that 1s returned in the ND'TP response 62 for the
associated request 60. An NDTP client 14 uses a unique
NDTP request 1dentifier 64 for each NDTP request 60 that
1s outstanding at the same time to an ND'TP server 12 1f 1t
wishes to correlate responses with requests.

10

15

20

25

30

35

40

45

50

55

60

65

10

There are four basic operations preferably supported by
the NDTP: add a location association, delete a location
association, get location associations, and update a location
association or associations. The response to adding a loca-
tion association 1s a simple acknowledgement. I the loca-
tion 1s already associated with the identifier, adding the
association has no eflect, but the request 10 1s still acknowl-
edged appropnately. In other words, the NDTP add opera-
tion 1s 1dempotent. The response to deleting a location
association 1s a simple acknowledgement. It the location 1s
not currently associated with the identifier, deleting the
association has no eflect, but the request 60 1s still acknowl-
edged appropnately. In other words, the NDTP delete opera-
tion 1s 1dempotent. The response to getting one or more
locations 1s a list of one or more locations presently asso-
ciated with an 1dentifier. If no location associations currently
exist, a list of length zero 1s returned. The response to
updating a location association for an i1dentifier 1s a simple
acknowledgement. As the NDTP update operation 1s func-
tionally a combination of the NDTP add and delete opera-
tions, the ND'TP update operation 1s also idempotent.

Message Formats

NDTP messages 60, 62 preferably have a regular structure
that consists of a message operation code, followed by a
request identifier 64, followed by a length (1n bytes) 66
followed by zero or more strings 68 as shown 1n FIG. 8. As
those skilled in the art will appreciate, NDTP message
formats are preferably independent of the network transport
layer used to carry them. ND'TP preferably defines mappings
of these messages 60, 62 onto TCP and UDP transport layers
(described 1n detail below), but other mappings could also be
defined and it 1s likely that these ND'TP message formats
would not require change. For example, the notation

ROUNDA4(X) means X, rounded up to the next multiple of
4.

Integer Format
Multibyte mtegers in NDTP messages are represented 1n
network byte order; using the big-endian convention. In

other words, the most significant byte of a multibyte integer
1s sent first, followed by the remainder of the bytes, 1n

decreasing significance order.

String Format

Strings 1in NDTP are represented as counted strings, with

a 32-bit length field 66, followed by the string data 68,
followed by up to 3 bytes of padding 70 to make the total
length of the string representation equal to ROUND4
(length). This layout 1s shown diagrammatically 1in FIG. 8.

NDTP GET Format

The NDTP_GET message has a message operation code
72 of 2, and a single ND'TP string 74 which 1s the identifier
string for which to get associated locations. This layout 1s
shown diagrammatically i FIG. 9.

NDTP_GET_RSP Format

The NDTP_GET_RSP message has a message operation
code 76 of 3, and zero or more strings 78 that are the
locations currently associated with the requested 1dentifier.
This layout 1s shown diagrammatically in FIG. 10.

NDTP PUT Format

The NDTP_PUT message has a message operation code
80 of 4, and two NDTP strings 82, 84. The {first string 82 1s
the 1dentifier for which to add a location association, and the
second string 84 1s the location to add. This layout 1s shown
diagrammatically 1n FIG. 11.

US 7,233,978 B2

11
NDTP_PUT_RSP Format

The NDTP_PUT_RSP message has a message operation
code 86 of 35, and zero NDTP strings. This layout 1s shown
diagrammatically in FIG. 12.

NDTP_DEL Format

The NDTP_DEL message has a message operation code
88 of 6, and two NDTP strings 90, 92. The first string 90 1s
the 1dentifier from which to delete a location association, and
the second string 92 1s the location to delete. This layout 1s
shown diagrammatically i FIG. 13.

NDTP_DEL_RSP Format

The NDTP_DFEL_RSP message has a message operation
code 94 of 7, and zero NDTP strings. This layout 1s shown
diagrammatically 1n FIG. 14.

NDTP UPD Format

The NDTP_UPD message 93 has an operation code 95 of
9 and three NDTP strings. The first string 96 1s the

identifier from which to update the location association.
The second string 97 1s the location to delete. The third
string 98 1s the location to add. This layout 1s shown
diagrammatically 1in FIG. 15.

NDTP_UPD_RSP Format

The NDTP_UPD_RSP message 99 has an operation code
100 of 10 and zero NDTP strings. This layout 1s shown
diagrammatically in FIG. 16.

A general description of the usage and operation of these
protocol messages 1s provided below.

NDTP GET Transaction

The NDTP_GFET message contains a single NDTP string
which 1s the 1dentifier for which associated data locations are

requested.

typedef struct ndtp_ get {
ndtp__hdr__t hdr;
ndtp_ str_ t key;

b ndtp__get_ t;

The NDTP_GET_RSP message contains zero or more
DTP strings which are the locations associated with the
DTP identifier:

z Z

typedef struct ndtp_ get rsp {
ndtp_ _hdr_t hdr;
uint32_ t rsps;

ndtp_ str_t values[|;
} ndtp__get rsp_t;

NDTP PUT Transaction

The NDTP_PUT messages contains two NDTP strings
which are (1) the NDTP identifier and (2) the NDTP location
which 1s to be associated with the NDTP identifier.

typedef struct ndtp_ put {
ndtp_ _hdr t hdr;
ndtp_ str_ t key;
ndtp_ str_ t data;

' ndtp_put_t;

10

15

20

25

30

35

40

45

50

55

60

65

12

The NDTP_PUT_RSP message has no NDTP strings, and
simply indicates that the requested 1dentifier/location asso-
ciation was added:

typedef struct ndtp_ put__rsp {
ndtp__hdr_ t hdr;

} ndtp put_rsp_f;

The requested 1dentifier/location association 1s added 1n
addition to any other associations already maintained by the
NDTP server. If the requested 1dentifier/location association
1s already 1n eflect, the ND'TP_PU'T still succeeds and results
in an NDTP_PUT_RSP message.

NDTP DELETE Transaction

The NDTP_DEL message contains two NDTP strings
which are (1) the ND'TP identifier and (2) the NDTP location
which 1s to be unassociated with the NDTP i1dentifier:

typedef struct ndtp_ del {
ndtp_ _hdr_t hdr;
ndtp__str_ t key;
ndtp_ str_ t data;

b ndtp_del_t;

The NDTP_DEL_RSP message has no ND'TP strings, and

simply 1ndicates that the requested 1dentifier/location asso-
ciation was deleted.

typedef struct ndtp_ del rsp {
ndtp__hdr t hdr;
} ndtp_del_rsp_t;

If the requested identifier/location association 1s not 1n
eflect, the NDTP_ DEL still succeeds and results in an
NDTP_DEL_RSP message.

NDTP_RDR_RSP Message

NDTP supports a distributed server implementation
where the ND'TP client selects the appropriate server from a
table of servers based upon a distribution function computed
from the identifier. This distribution function 1s preferably a
standard hash function, for example the hashpyw function
presented by Aho, Sethi and Ullman 1n their text Compilers,
Principles, Techniques and Tools. Alternatively, when inter-
est so dictates, NDTP allows applications to provide a
customized function as an alternative to a standard hash
function.

The NDTP client can determine the size of the NDTP server
table, which may have changed, and then update 1its local
copy of the NDTP server table and attempt the NDTP
transaction again, this time directed at the correct NDTP
server. An NDTP redirection mechanism (described in detail
below) preferably permits a client to store permanently only

a single NDTP server address, and learn the complete ND'TP
server table size and contents from the NDTP RDR RSP

message Irom the first NDTP request the client performs for
which the i1dentifier does not reside on a well-known server.

NDTP_ UDP Transaction

The NDTP_UPD message 1s functionally a combination
of the NDTP_PUT and NDTP_DEL messages described

above. The NDTP_UPD_RSP message 1s also functionally

US 7,233,978 B2

13

the same as the NDTP UPD RSP and NDTP DEIL RSP
messages, where there 1s simply an indication that an
identifier/location association update was made.

Network Front End

The NDTP server network front end preferably maxi-
mizes ND'TP transaction throughput including concurrent
NDTP requests from a single client as well NDTP requests
from multiple concurrent clients.

Network Communication Mechanism

ND'TP defines a transaction oriented protocol, which can
be carried over any of a variety of lower level network
transport protocols. TCP and UDP are currently supported,
however any of a number of other protocols are also
supportable.

TCP/IP: TCP/IP provides a ubiquitously implemented
transport which works eflectively on both local area and
wide area networks. An NDTP client using TCP/IP prefer-
ably connects with the NDTP server at an established TCP
port number, and then simply writes NDTP request mes-
sages through the TCP/IP connection to the server, which
then writes ND'TP response messages back to the client
through the same TCP/IP connection 1n the reverse direc-
tion.

UDP/IP: For 1solated ND'TP transactions, depending upon
the application and network infrastructure in use, it 1s
beneficial to have the NDTP server employ UDP/IP, which
1s a widely available connectionless datagram protocol.

However, UDP/IP does not support reliable data transier,
or any congestion control mechanism. This means that
NDTP clients using UDP/IP must implement reliability and
congestion control maintaining transaction timeouts and
performing exponential retry backoil timers, precisely
analogous to the congestion control mechanism imple-
mented by Ethernet, and other well known UDP protocols.
Those skilled 1n the art will note that the NDTP protocol 1s
stateless from the standpoint of the NDTP server, which
means that there 1s no congestion control or reliability

burden on the server; 1t 1s all implemented 1n a distributed
manner by the NDTP UDP/IP chients. Still Higher Perfor-

mance (ST): Both TCP/IP and to a lesser degree UDP/IP
suiler from high host CPU overhead. Like the relatively long
latency of TCP/IP, this host CPU consumption 1s considered
just the “cost of doing business” where TCP/IP provides
ubiquitous connectivity. If an NDTP server were running in
a more constrained environment, where ubiquitous connec-
tivity was not required, its absolute performance could be
improved substantially by using a different protocol that 1s
optimized to reduce CPU overhead and latency, such as the
Scheduled Transfer (St) protocol.

NDTP Query Processing

In one embodiment, the NDTP server network front end
preferably services NDTP query requests in a FIFO style by
reading the ND'TP_GET message, performing the lookup for
the 1identifier in the NDTP server location store, and writing,
the NDTP_GET_RSP message. Each NDTP query 1s inde-
pendent of any other NDTP transactions (other queries or
updates), so multiple NDTP queries may be processed
simultaneously on multiprocessor machines. The NDTP
server permits this by not performing multiprocessor locking
in the NDTP query processing path.

NDTP Update Processing,

To maintain high performance on NDTP updates, the
NDTP server network front end preferably supports multiple
concurrent asynchronous update transactions. Each update 1s
preferably performed automatically to avoid creating an

10

15

20

25

30

35

40

45

50

55

60

65

14

inconsistent state in the location store. All ND'TP updates are
serialized through the location store mutator critical code
sections.

When an NDTP update 1s processed, a call 1s made to the
location store mutation function, which returns immediately
indicating either that the mutation 1s complete, or that the
completion will be signaled asynchronously through a call-
back mechanism. For updates which are not immediately
completed, the network front end maintains a queue of
NDTP updates for which it 1s awaiting completion. When
completed, the network front end writes the NDTP update
response messages for all completed updates back to the
clients.

Multiple Connection Handling

The ND'TP server network front end may be conditionally
compiled to use either of two standard synchronous I/O
multiplexing mechanisms, select or poll, or to use threads to
prevent blocking the server waiting for events on individual
connections. The threaded version of the NDTP server
network front end preferably creates two threads for each
NDTP connection, one for reading and one for writing.

TCP Mapping

NDTP 1s preferably carried on TCP 1n a standard manner.
An NDTP/TCP client opens a connection with a server on a
well-known port. The well-known TCP and UDP port num-
bers can be selected arbitrarily by the mitial NDTP imple-
menter. Port numbers that do not conflict with existing
protocols should preferably be chosen. The client sends
NDTP requests 60 to the server 12 on the TCP connection,
and recerves responses 62 back on the same connection.
While 1t 1s permissible for a single client 14 to open multiple
NDTP/TCP connections to the same server 12, this practice
1s discouraged to preserve relatively limited connection
resources on the ND'TP server 12. The asynchronous nature
of NDTP should make it unnecessary for a client 14 to open
multiple NDTP/TCP connections to a single server 12.

I1 protocol errors are detected on an NDTP/TCP connec-
tion, the NDTP/TCP connection should be closed immedi-
ately. If further NDTP/TCP communication 1s required after
an error has occurred, a new NDTP/TCP connection should
be opened. Some examples of detectable protocol errors
include: Illegal NDTP message operation code; Nonzero
String Area Length in NDTP_PUT_RSP or NDTP_GET_
RSP; Inconsistent String Area Length and String Length(s)
in NDTP_GET, NDTP_GFET_RSP, NDTP_PUT, NDTP_
DEL or NDTP_UPD; and Unexpected NDTP request 1den-
tifier by client.

Due to the reliable nature of TCP, NDTP/TCP servers 16
and clients 12 need not maintain any additional form of
operation timeout. The only transport errors that can occur
will result in gross connection level errors. A client 12
should assume that any NDTP requests 10 for which 1t has
not recerved responses 14 have not been completed. Incom-
plete operations may be retried. However, whether unac-
knowledged NDTP requests 10 have actually been com-
pleted 1s implementation dependent.

UDP Mapping

Unreliable Datagram Protocol (UDP) provides connec-
tionless, unacknowledged datagram transmission. The mini-
mal protocol overhead associated with UDP can deliver
extremely high performance 1f used properly.

NDTP/UDP clients 14 send UDP datagrams with NDTP

request messages 60 to a well-known UDP port (see above).
NDTP/UDP servers 12 return ND'TP response messages 62

to the client 14 selected local UDP port indicated in the

US 7,233,978 B2

15

NDTP/UDP datagram containing the requests 60. NDTP/
UDP does not require any form of connection or other

association to be established in advance. An ND'TP inter-
change begins simply with the client request message 60.

For efliciency, the mapping of NDTP onto UDP permits
multiple NDTP messages to be sent 1n a single UDP data-
gram. UDP datagrams encode the length of their payload, so
when a UDP datagram 1s received, the exact payload length
1s available. The recipient of an NDTP/UDP datagram will
read NDTP messages from the beginning of the UDP
datagram payload until the payload 1s exhausted. Thus, a
sender of an NDTP/UDP datagram 1s free to pack as many
NDTP messages as will fit in a UDP datagram.

NDTP/UDP client 14 implementations that use the NDTP
request 1dentifier 64 for antialiasing should ignore (1.e., skip)
NDTP messages within a NDTP/UDP datagram with invalid
NDTP request identifier 64 values. Client 14 or server 12
NDTP/UDP implementations detecting any other protocol
error should also preferably discard the remainder of the
current NDTP/UDP datagram without processing any fur-
ther NDTP requests from that datagram. Some examples of

such detectable errors include: Illegal NDTP message opera-
tion code, Nonzero String Area Length in NDTP_PUT_RSP

or NDTP_GET_RSP, Inconsistent String Area Length and
String Length(s) in NDTP_GET, NDTP_GET_RSP, NDTP_
PUT Or NDTP_DEL, and Inconsistent NDTP message
length and UDP datagram length.

Because NDTP/UDP messages are limited to the length of
a single UDP datagram payload, NDTP/UDP cannot be used
to transier long NDTP messages. For example, 1t would be
difficult to send an NDTP_GET message with NDTP/UDP
for a 64 K byte 1dentifier.

Those skilled in the art will appreciate that network
congestion 1s a highly dynamic property that 1s a function of
network tratlic from all sources through a network link and
will vary over time over any given network path. An
NDTP/UDP client 14 implementation can recover irom
network congestion by switching to NDTP/TCP after sev-
eral failed retries using NDTP/UDP. Failure due to network
congestion may be indistinguishable from failure due to
UDP packet size limitations, but since the recovery strategy
1s the same 1n both cases, there 1s no need to distinguish
these cases.

NDTP Redirection

NDTP handles NDTP server scaling with the NDTP’s
redirection mechanism, which 1s managed through an NDTP
server 12, or set of such servers. This redirection mechanism
allows arbitrary distribution of the data set across com-
pletely independent machines. The set of machines manag-
ing the ND'TP server data set may be referred to as an NDTP
server cluster 50, as shown 1n FIG. 5. The NDTP redirection
mechanism exploits this by permitting the distribution of
identifiers to location mappings across members of an ND'TP
server cluster. An advantage of distributing an ND'TP server
data set across independent machines 1s that both capacity
and transaction rate scale can be increased. In one embodi-
ment, each additional machine 1n an NDTP server cluster 50
linearly increases capacity, by adding main and secondary
storage, and transaction rate, by adding processing power
and network bandwidth (assuming a properly scalable net-
work infrastructure 1s employed).

Each NDTP server 12 maintains a copy of the NDTP

server map. An NDTP server will check each request it
receives and verily that it 1s mntended for itself. It 1t 1s not,
it will respond to the client 14 with an NDTP Redirection

10

15

20

25

30

35

40

45

50

55

60

65

16

Response message (NDTP_RDR_RSP), instead of respond-
ing with the normal operation completion message.

A client may misdirect a ND'TP request because the ND'TP
server cluster may have been reconfigured since the client
last obtained a copy of the NDTP server map. Thus, the
NDTP_RDR_RSP message includes a complete copy of the
current NDTP server map with which the client may deter-
mine the correct ND'TP server for the given NDTP request.

In essence, the ND'TP server maintains authoritative cop-
ies of the NDTP server map, whereas NDTP clients may
have out-of-date copies of the NDTP server map. This
property permits eflicient reconfiguration of the NDTP
server cluster. With the redirect message, an NDTP client
can determine the size of the NDTP server table, which may
have changed, and then update 1ts local copy of the NDTP
server table, and attempt the NDTP transaction again, this
time directed at the correct ND'TP server.

The NDTP redirection mechanism permits a client per-
manently to store only a single NDTP server address, and
learn the complete NDTP server table size and contents from
the NDTP_RDR_RSP from the first ND'TP request the client
performs which the identifier does not reside on the well
known server. The NDTP backbone topology can change
dynamically 1n a similar way to application server topology.
Preferably, any time the cluster 1s reconfigured, only the
NDTP servers are updated, rather than the (potentially)
unbounded number of clients 1n the network.

The NDTP client can start out with an NDTP server map
containing a single, well known, NDTP server entry: If the
well-known NDTP server 1s not the NDTP server which 1s
managing the portion of the ND'TP server data set containing
the 1dentifier 1n the client request, an NDTP_RDR_RSP will
be returned, and the client can update 1ts local copy of the
NDTP server map. Once a client has recerved a new NDTP
server map, it will use 1t for the lifetime of the client
application, or until it recerves a new NDTP server map. The
client may also put the most current ND'TP server map into
a persistent store, so that new invocations of the client
application, or other clients of the same network, can begin
operation without even a single NDTP_RDR_RSP.

If the client’s saved NDTP server map becomes out-oi-
date, the server will return an updated ND'TP server map the
first time a chient sends a NDTP request to an incorrect
NDTP server. If a client ND'TP request times out for some
reason, this might mean that a machine in the current NDTP
server map has been removed from the NDTP server cluster.
In this case, to get the current ND'TP server map the client
may either (1) return to its base-line NDTP server map,
containing the single well known NDTP server, or (2) direct
the request to any other NDTP server 1n its current NDTP
server map. Whether received directly, or by a map update
via NDTP RDR RSP, the client will obtain the desired
location specifiers with at most two ND'TP transactions.

The ability to scale NDTP service beyond a single server
requires a mechanmism to distribute portions of the identifier/
location association set across multiple NDTP servers. The
presently preferred embodiment for accomplishing this 1s to
define a well-known function of the i1dentifier and use this
function to select from a set of NDTP servers. NDTP clients
will preferably apply this well-known function to the iden-
tifier for each ND'TP request, and send the ND'TP request to
the mdicated NDTP server. This technique will effectively
partition the set of all identifier/location associations across
the ND'TP servers. Each ND'TP server will only maintain the
portion of the total association set which corresponds to its
particular identifiers. This NDTP server redirection mecha-
nism permits construction of NDTP server clusters. It 1s

US 7,233,978 B2

17

reasonable to expect that the identifier index function will be
defined when an ND'TP server instantiation 1s implemented,

but the actual list of NDTP servers will change from
application to application and within a single application
throughout the lifetime of the system.

In one embodiment, each of the clients and NDTP servers
are programmed with a well-known function and the redi-
rection message, as shown in FIG. 17(a) carries of table of
NDTP server URLs. The NDTP_RDR_RSP message 101
has a message operation code of 8, and a description of the
system that the client should send its message to. In one
embodiment, the system 1s described by a list of strings,
where each string 1s an NDTP URL (e.g. ndtp://server.n-
ame.com:24500).

If there 1s more than one list 1n the outer list, then the
client 1s to select the appropriate inner list to send a message
to by applying the following well-known function to the
identifier and using the function result as an index into the
NDTP server table. In one preferred embodiment, the well-
known function applied is the hashpjw function presented by
Aho, Sethi and Ullman i their text Compilers, Principles,
Techniques and Tools:

unt32_ t
hash (uint¥_ t *s, wnt32_ t slen, wnt32_ t size)
{

unt32_t g;

unt32_ ti;

unit32_t h = 0;

unt8_ t ¢;

for (i = 0; 1 < slen; i++) {
¢ =s [1];
h=(h<<4)+c;
o = (h & 0xf0000000);

if (g) {,
h =g>>24
h =g

;

h

return h % size;

In the above code sequence, the parameter size 1s the size of
the hash table (the number of elements in the ND'TP server
URL table 1n the NDTP_RDR_RSP message), and 1s pret-
erably a prime number. Those skilled 1n the art will appre-
ciate that the same NDTP server may appear multiple times
in the NDTP server URL table. For example, 1 the server
URL table has 2039 elements, by putting one ND'TP server
URL 1n the first 1019 table elements, and a second NDTP
server URL 1n the second 1020 table elements, the respon-

sibility for the imndex will be split roughly in half.
- the NDTP RDR RSP function

A second variant of
mechanism specifies that a general function description will
be sent to the NDTP client in the NDTP RDR RSP mes-
sage. The NDTP client will apply this function to the
identifier and the output of the function will be the NDTP
server URL to which to send NDTP requests for the par-
ticular 1dentifier. The advantage of this technique over the
well-known function approach 1s that it allows application-
specific partitions of the identifier space. This can permait
useiul administrative control. For example, 11 General Elec-
tric manages all identifiers beginning with the prefix “GE”,
a general function can be used to make this selection
appropriately. The disadvantage of using a general function
1s 1t may be less eflicient to compute than a well-known

function.

10

15

20

25

30

35

40

45

50

55

60

65

18

There are a variety of possible mechanisms for sending
function descriptions. NDTP 1s expected to be applied 1n
environments that make extensive use of the Java program-
ming platform. Therefore the NDTP_RDR_RSP mechanism
preferably uses a feature of the Java programming language
called “serialized representation” to communicate general-
ized function 1n the NDTP_RDR_RSP message. A serialized
form of a Java object 1s a stream of bytes that represents the
precise state of the object, including its executable methods.
For example, the Java Remote Method Invocation (RMI)
mechanism uses serialized objects to send executable code
to a remote platform for execution. The NDTP_RDR_RSP
message contains the senialized form of an object imple-
menting this Java interface:

interface NDTPRedirect Function {
String selectServer(byte[| identifier);
h

The format of the NDTP_RDR_RSP message 103 with a
Java Serialized form of the NDTP redirection function 1s
specifically identified in FIG. 17(5).

After the NDTP client has received a new server list, the
client will direct further NDTP requests based on this
updated NDTP server list until the ND'TP server configura-
tion changes again. An NDTP client may even save the
current NDTP server list in non-volatile storage so that 1t can
immediately select the correct NDTP server even after
application or system restarts. Another possible alternative 1s
for a client to remember only a single, well-known NDTP
server, and update 1ts NDTP server list every time the client
restarts. These alternatives may be implemented as desired
to accommodate design goals for a particular system.

Server Constellations

The NDTP server organization also allows ND'TP servers
to be combined in various ways to build server constella-
tions that ofler arbitrary server performance scalability and
administrative control of the location of positions of the
identifier/data location relation mappings. FIG. 18 illustrates
a basic transaction flow according to a preferred embodi-
ment where a client 112 communicates NDTP protocol
messages with an NDTP server constellation 110 (which
may be one or more NDTP servers) and separately transacts
with an application server 114. The basic communication
flow 1n FIG. 18 may represent a client 112 adding, deleting,
or updating an identifier/location association(s), and 1n turn
adding, deleting, or updating corresponding data. The com-
munication tlow may represent a client 112 requesting an
identifier/location association(s) from the NDTP server,
which may be a server constellation construed in either of
two forms (see FIGS. 19 and 20), and then querying directly
based on the 1dentifier/location association(s) received from
the NDTP server. NDTP server constellations preferably
have two basic organizational paradigms: Client-Centric and
Server-Centric.

Client-Centric Approach

Referring to FIG. 19, a single client (not shown) asks a
server 120q 1n the server constellation 110 for operations
that the client desires executed (represented by arrow 1 1n
FIG. 19). As discussed above, 11 the client does not receive

the data requested, it will receive a redirection response
message (NDTP_RDR_RSP) from the contacted server
120a (arrow 2). The client then uses the mmformation it

US 7,233,978 B2

19

receives to ask another server 12056 for the operations the
client wants to imitiate (arrow 3). A successiul response from
the second server 12056 1s then sent to the client (arrow 4).

Server-Centric Approach

FIG. 20 shows the server constellation 110 characterizing,
“server-centric” functionality. In this figure, an NDTP server
130a (server0) receives a request 132q from a client (not
shown). The server 130a (server0) passes the request to a
second server 13056 (serverl), which 1s an appropnate server
for the process, and the second server 1306 returns a
response 134a to the first server 130a (server(). If the
second server 130a (serverl) was not appropnate, i1t could
pass the request to another server (not shown), and so on.
Each NDTP server 130a, » will combine the results of NDTP
requests 132a,6 it has performed of other NDTP servers
130a,b with whatever responses 134a,b 1t generates locally
for the original ND'TP request 132aq, and the combined
response 134 b will be with the appropriate response for the
original NDTP request 132 a.

An important aspect of this topology 1s that 1t pushes
processing emphasis toward servers 130q,b rather than
toward clients. Since location/identifier processing can be
centralized, administration of the indices can be adminis-
tered more conveniently 1n certain cases.

Hybrnid Constellations

The simplest NDTP server constellation 1s a single server,
and the protocol 1s designed to permit massive scale with a
single or simple server constellation. Highly configurable
installations are possible using “client-centric” or “‘server-
centric” techniques. NDTP server constellations 110 com-
posed of more than one ND'TP server may use any combi-
nation of the two approaches for performance optimization
and administrative properties. Client-centric and server cen-
tric approaches can be used to build NDTP server clusters,
NDTP server trees, NDTP server trees of NDTP server

clusters, or any other useful configuration.

Topology: Hierarchical and Clustered

Hierarchical and clustered topologies may be created
using a server-centric or client-centric approach. One illus-
tration of a cluster topology 50 1s shown 1n FIG. 5. A mixed
topology containing hierarchical and clustered elements 1s
shown 1 FIGS. 6 and 21. The primarily hierarchical topol-
ogy ol the embodiment of FIG. 21 can allow for a single
administrative entity 102 to manage the NDTP sever cluster.
An NDTP server hierarchy 100, such as illustrated in FIG.
21, permits 1dentifier/location association data to be owned
and physically controlled by many diflerent entities.

Splitting & Coalescing Data Sets

The ND'TP redirection mechanism discussed above offers
flexibility 1n NDTP server cluster configuration with pret-
erably little impact on clients. However, the NDTP server
cluster itself must execute several steps to reconfigure the
NDTP server data load. Methods for adding or removing an
NDTP server from a running NDTP server cluster include
splitting some portion of the data set from a running NDTP
server cluster into one or more ND'TP servers to be added to
the cluster; coalescing some portion of the data set to a
remaining ND'TP server cluster; and propagating updated
NDTP server maps efliciently to all NDTP servers 1 an
NDTP server cluster. Preferably, these methods minimize
interruption of service. Large batch-style updates are pret-
erably avoided using the splitting and coalescing algorithm
discussed below to handle large scale reconfiguration.

When reconfiguring NDTP server clusters, splitting and
coalescing problems for an NDTP server are handled by

10

15

20

25

30

35

40

45

50

55

60

65

20

checkpointing the current data set state and loading 1t into
another instance of an ND'TP server. In the case where a data
set will be split, a set of identifiers 1s transierred to another
NDTP server. In the case where a data set 1s coalesced,
several NDTP server states are loaded on a single NDTP
server cumulatively.

Consider an example of splitting, as shown in FIG. 22, 1n
which a given NDTP server cluster 140 having at least two
NDTP servers 12 needs to reconfigure the distribution of
identifier/location data among NDTP servers. If the identi-
fier space needs to be split, whether for local policy reasons
mitiated by an administrator, or based on automatically
monitored performance criteria such as transaction rate,
storage capacity and etc., the splitting process begins by
identifving the set of the data on Server 1, that will be
transferred to Server 2. Referring to FIG. 22, Server 1
mitially contains a total set of data consisting of Set A 142
and Set B 144. Assuming Server 1 has 1dentified Set B as the
data that needs to be split out to Server 2, Server 1 {irst
checkpoints the data 1n Set B. Server 1 continues to operate
normally with respect to Set A and will update (perform any
of the NDTP add, delete, or update functions) without
interruption. Server 1 also creates new set of data, Set C 146,
which accumulates all operations directed to Set B 144 since
the checkpoint of Set B 146 took place. Server 1 then copies
Set B 144 to Set B' 148 on Server 2. After the copying of Set
B 144 to Set B' 148 1s complete, Server 1 freezes operations
on Set C 146 and copies 1t to Set C' 150 on Server 2.
Operation on Set B' 148 and Set C' 150 1s then resumed on
Server 2 and Sets B and C 144,146 are deleted from Server
1.

Preferably, the only interruption to the NDTP server
activity 1n Server 1 or Server 2 1s limited to the Set C and
the time 1t takes to complete the copy step of Set C 146 to
Set C' 150 while Server 1 freezes operations to Set C.
Operations on the remaiming data are preferably unafiected
throughout the splitting process. NDTP lookup operations
do not affect the checkpoints that are saved or loaded.
Furthermore, 1f more than one NDTP server 1s already
operating 1n the cluster, only the affected subset of the NDTP
servers 1n an NDTP server cluster are interrupted during this
process; the remainder of the NDTP server continues to
operate undisturbed. An advantage that splitting and coa-
lescing provides 1s the redistribution of identifier space
without requiring reindexing, which 1s more expensive
computationally.

When reconfiguring an NDTP server cluster, the new
NDTP server map must be propagated to all NDTP servers
in the cluster so that accurate NDTP redirection messages
can be sent. An asynchronous mechanism 1s preferably used
to supply the new ND'TP server map. Preferably, the NDTP
server transferring the data set will broadcast the new NDTP
server map to all other NDTP servers 1n the cluster over its
network connection, such as a TCP connection. In one
embodiment, each server may maintain an internal table
holding all server locations 1n memory. Preferably, server
map size 1s selected for a likely maximum number of
machines 1n the NDTP server and 1s a prime number suitable
for use with a well-known function. In one embodiment, a
server may appear more than one time on the server map.
For example, 11 the 1mitial NDTP server map size i1s estab-
lished at 1023, and only a single NDTP server will be used
to form the NDTP server cluster so that the single NDTP
server machine appears 1023 times in the ND'TP server map.

After splitting and coalescing one method of transferring
the updated server map to other servers 1s to use a data
structure containing a list or URL’s with ranges of 1dentifiers

US 7,233,978 B2

21

associated with each URL. In another embodiment, the new
server map may be carried in a message having the same
properties and format as the NDTP_RDR_RSP message (see
FIG. 17(a)) but having a message code identifying the
contents as a server-to-server transmission.

If an NDTP server 1s added by splitting an existing portion
of the data set without changing the NDTP server map size,
only the new and old NDTP servers need immediately know
about the modification of the NDTP server map. The NDTP
servers uninvolved in the split will forward all requests for
the data set now existing on either the new or the old NDTP
server. The old NDTP server will then return an NDTP
RSP_RDR with the new NDTP server map, when respond-
ing to requests for the data set that now exists on the new
NDTP server. A new NDTP server map will eventually be
propagated to all NDTP servers using the NDTP server map
propagation mechanism. The NDTP redirection mechanism
allows this propagation to be asynchronous to the actual
NDTP server cluster reconfiguration. In one preferred
embodiment, the server map 1s transmitted from a server
involved 1n a splitting or coalescing operation to all other
servers 1n a cluster.

Removing NDTP Servers from Server Clusters

The most eflicient way to remove NDTP server machines
from an NDTP server cluster includes ensuring either send-
ing clients redirects or aliasing the NDTP server. Using
redirects, the removed NDTP server machine remains a
citizen of the NDTP server cluster, does not manage any
particular data set, and simply responds with NDTP_
RDR_RSP requests with the new NDTP server map. In
eflect, this simply returns a forwarding address. Using
aliasing, the network address of the removed NDTP server
1s assigned as an alias to a remaining, active member of the
NDTP server cluster.

The methods for splitting data on NDTP servers and
removing NDTP servers entirely permit flexibility for coa-
lescing data in NDTP servers. If, for example, an NDTP
server needs to transfer some of 1ts data due to performance
limitations (physical storage capacity limits, transaction rate
limitations, etc.), the target NDTP server for receiving the
transierred data set may already contain an active data set.
Preferably, copying a subset of data from a first server to a
second server already actively processing its own data
proceeds according to the splitting process as described
above. Utilizing the NDTP server operations and system
configuration flexibility described above, numerous appli-
cations of the preferred data location system are contem-
plated.

Content Management

Referring to FIG. 23, a geographically dispersed network
of clients 152, NDTP servers 154 and application servers
156 1s shown. Fach of the clients, NDTP servers and
application servers may each represent one or multiple
systems. The application servers 156 contain substantive
content 1n one or more forms (text, graphics, etc.) to which
the clients 152 require access. The NDTP servers may
maintain tables of identifiers, where each identifier repre-
sents one or more instances of a specific file, and the
associated location or locations of that file. The 1dentifier
may be a Umversal Resource Identifier (URI) and the
location may be a URL {for the specific application server
156 at which the substantive content may be accessed, or
any other addressing convention. A client at a Paris location
158 may request the location of information relating to an
identifier from the local NDTP cluster 154 and receive a
URL for an application server 156 residing i a Chicago

5

10

15

20

25

30

35

40

45

50

55

60

65

22

location 160. The information for the URI maintained at the
Chicago URL 1s preferably cached at the client 152 1n the
Paris location on a per instance basis such that the file 1s
available for the client in Paris for the duration of that
client’s needs. In one embodiment, the NDTP server cluster
in the Paris location preferably maintains a record of the
number of requests for that particular URI and, if the URI 1s
the subject of a predetermined number of queries, the
frequently requested content at the URL in Chicago 1is
automatically transferred to an application server 1n the Paris
location 138 or copied to an application server 1n the Paris
location. Using the NDTP delete, add, or update operations,
the NDTP server clusters in Paris and Chicago pretferably
update the location imnformation for the URI and asynchro-

nously propagate the new server maps to the remaining
NDTP servers.

Object Management

In another embodiment, the same geographical arrange-
ment of data and clients applies to object management,
where the object 1s a programming element or file. Examples
of some objects include C++ objects or portions of program-
ming toolkits that various geographically dispersed clients
may wish to access 1n executing a program. By assigning
cach object a unique 1dentifier and maintaining the location
information in NDTP servers, eflicient transfer of the object
may be achieved and accurate accounting of where the
object has been, or currently resides, i1s obtainable. In
particular, embodiments of the present invention are well
suited to handle high transaction volume for tracking the
objects.

Tracking and Sensing

The NDTP protocol and network configurations discussed
above may be applied to any one of a number of physical
object (amimal, telecommunications devices, troop location,
package, family member, part, product and etc.) tracking
applications. Referring to FIG. 24, one embodiment of a
vehicle tracking application 1s shown. A shipping company
170, which may be any number of moving company, air-
borne delivery or ground delivery services, may track com-
pany vehicles 172 in a delivery territory 174 1n order to
maintain delivery tleet status or optimize fleet deployment
to, for example, select the best vehicle to pick-up materials
at designated pick-up location 175. A dispatcher 176 may
access an NDTP server 178 having a location store 180 of
information containing 1dentifiers 182 corresponding to
individual vehicles 172 and a list of locations 184 associated
with the identifier for each vehicle. In one embodiment, the
vehicles may be automobiles and the 1dentifier assigned to
the vehicles may be the unique vehicle identification number
(VIN) assigned by automobile manufacturers to the auto-
mobiles they produce.

The location store 180 may be maintained such that only
the most recent geographic location (e.g. latitude and lon-
gitude) 1s associated with a vehicle, or the table may be
maintained to continuously receive current location infor-
mation for each vehicle at predetermined intervals so that
vehicle travel history, speed, heading and other types of
information may be obtained with the location information
for a vehicle. In one embodiment, the vehicles 172 may each
be equipped with a Global Positioning System (GPS)
receiver and a transceiver that 1s programmed to automati-
cally broadcast position information, or any other location
identifying technology. The broadcasts may be picked up
through a network, such as a cellular network 186 and
transmitted to the NDTP server 178. The broadcasts contain
the vehicle i1dentifier and geographic information, such as

US 7,233,978 B2

23

latitude/longitude or any other geographic measure, that 1s
then appended to the appropriate portion of the indexed table
180. An advantage of the NDTP server application in the
vehicle tracking example illustrated 1n FIG. 24 1s that the
NDTP server performance may be used to track large
numbers of vehicles at high update rates.

Mobility Management, With and Without Presence

In another embodiment, the NDTP protocol and network
configurations discussed above may be applied to mobaility
management applications. Additionally, the mobility man-
agement apphcatlons may include the ability to indicate
whether a device 1s available for interaction (“presence’),
where device availability 1s tracked in addition to the
physical location of a device. For example, as 1llustrated in
FIG. 25, an NDTP server 190 may maintain a set of
identiﬁer/ location associations on the physical location and
availability of portable devices belonging to a particular
user. The portable devices 192 may be, 1n one embodiment,
any type of cellular enabled device, or other wireless mobile
device, such as personal digital assistants (PDA), notebook
computers with cellular modems, mobility-enabled wrist
watches, mobile telephones, and etc. The portable devices
192 preferably include location service enabled software
193, such as standard plug-in software modified to translate
NDTP and the service protocol of the third party tracking
mechanism. In the embodiment of FIG. 25, a third party
tracking mechanism, such as a mobile network tower 194,
communicates with an NDTP server 190 to update the
whereabouts and accessibility of a person through one or
more portable devices. In FIG. 25, the mobile network tower
194 communicates with the NDTP server via the portable
device. In other embodiments, either the third party tracking
mechanism or the portable device 192 may be modified,
through a standard API, to directly communicate with the
NDTP server. In yet another embodiment, a proxy server
(not shown) may provide protocol translation functionality
to allow the third party tracking mechanism and/or the
portable device to communicate directly with the NDTP
server 190 without the need to modily the third party
tracking system or the portable device.

As 1llustrated 1n FIG. 26, the location store 196 main-
tained on the NDTP server 190 may be configured to have
identifiers 198 such as a person’s name, associated with
locations 200 which may be a device address 202 paired
with a presence (availability) 204 indicator. Whenever a
portable device 192 i1s activated, the mobile network tower
194 will inform the NDTP server 190 of the existence of the
portable device and 1ts availability. In the given example, a
“1” represents an active device and a “0” represents an
iactive device. Each time a portable device associated with
a person’s 1dentifier 1s activated (and/or deactivated depend-
ing upon implementation), the ND'TP server location store
196 will be updated by the mobile network tower 194 with
the device address. The device address may be 1n the form
of electronic address or other type of location. Using this
system, a party attempting to contact the person or entity
represented by the identifier “Alice” 1n the location store 196
may access the NDTP server to receive the address for the
most recently activated device, the address for all active
devices, and/or addresses for all devices associated with

“Alice”.

Generic Naming and Addressing

The NDTP system and protocol described above may
provide a specialized database designed to solve general
naming and addressing needs. NDTP 1s designed for use in
the larger context of a distributed database system including,
but not limited to, addressing and namespace services. As
such, i1t supports an architecture in which information about
where data associated with particular application entities can

10

15

20

25

30

35

40

45

50

55

60

65

24

be managed and obtained independently of the data itself.
One way to understand this 1s as a highly dynamic domain
name service (DNS) for data. DNS maintains a mapping
between names and machines. NDTP and 1its associated
servers maintain a mapping between identifiers and loca-
tions. The 1dentifier/location mapping maintained by NDTP
servers 1s much more dynamic (suitable for frequent
updates), than the domain name/IP address mapping main-
tamned by DNS. NDTP may be viewed 1n this respect as fully
generalized name service suitable for any kind of service
and not restricted to a specialized service.

Mobile Telephone Tracking and Dynamic Telephone Num-
bers

In other applications of the NDTP protocol and system
discussed above, mobile telephone tracking and dynamic
telephone number applications may be implemented. With
respect to mobile telephone tracking, an NDTP server loca-
tion store may use the electronic serial number (ESN) of, for
example, cellular phones as identifiers, and the cellular
tower translation encoding or latitude longitude of the phone
as the location. Advantages of tracking mobile phone loca-
tion through an NDTP server may include speed of infor-
mation access and the ability to construct an audit trail
showing where a cell phone has traveled. In another embodi-
ment, a cellular telephone customer may be mapped to a new
service provider by mapping the cell phone ESN to an
appropriate location of an instruction set that will convert
the cellular telephone customer’s telephone number to a new
service provider. In this manner, the cellular telephone
customer may switch providers without having to obtain a
new telephone number.

With respect to dynamic telephone number functionality,
a telephone system organized by NDTP would permit tele-
phone service customers to create and delete unique com-
munication roles freely, for any purpose. For example, a
customer may create a new communication role identifier to
give 1o a service provider, such as an auto mechanic, to
permit contact during the service. After service completion,
the customer may delete the communication role identifier,
thereby preventing unwanted subsequent contact, such as
telemarketing solicitation. In another embodiment, this com-
munication role identifier property can be employed to
dynamically control customer-imtiated contact. Telephone-
based service providers, such as customer relationship man-
agement, computer support, medical services, etc., can
dynamically control customer nitiated contact. For
example, a customer with an active case could dial a unique
communication role identifier which would be routed
directly to the appropriate support specialist until the inci-
dent 1s resolved. The person reached by the customer’s
unique communication role 1identifier can be changed by the
service provider as the service cycle progresses. After inci-
dent resolution, the service provider may delete the com-
munication role identifier, thereby preventing the customer
from gaining additional, mappropriate access to support
specialists. The dynamic telephone number application of
NDTP may be used on various systems, including voice over
Internet protocol (VOIP) systems, to allow users to readily
map and unmap single use, or limited use, addresses to a
desired commumnication path.

As described above, a method and system for managing
data location information 1n a network has been disclosed
having an easily scaleable architecture that permits rapid
operation and flexibility for expansion and reconfiguration
of service. The system 1s based on a Network Distributed
Tracking Protocol that runs on top of any stream (e.g. TCP)
or datagram (e.g. UDP) network transport layer. With NDTP,
the system supports a network service that efhiciently man-
ages mappings from each individual identifier (definable

US 7,233,978 B2

25

using any format, size, encoding, etc.), to one or more
locations (which are also definable using any format, size,
encoding, etc.). In one embodiment, the identifiers and
locations may be formatted as strings. ND'TP permits clients
to manipulate i1dentifier/location associations, and request
the current set of locations for an i1dentifier from protocol
servers. The servers 1n the network may be reconfigured to
change the data set currently stored in one or more servers
in response to performance goals or limitations.

Regardless of the expected system context of NDTP 1n a
distributed database, those skilled in the art will appreciate
that NDTP can be used for any application in which one-
to-one or one-to-many associations among identifier and
location associations are to be maintained and accessed on
a network.

It 1s to be understood that a wide range of changes and
modifications to the embodiments described above will be
apparent to those skilled in the art, and are contemplated. It
1s therefore intended that the foregoing detailed description
be regarded as illustrative, rather than limiting, and that i1t be
understood that 1t 1s the following claims, including all
equivalents, that are intended to define the spirit and scope
of the mvention.

We claim:

1. A system having a plurality of location servers for
managing location information and providing location infor-
mation to location queries, the system comprising:

a first location server containing a first set of location
information corresponding to at least one entity, the
location information comprising an identifier and at
least one location string associated with the i1dentifier,
wherein the 1dentifier 1dentifies an entity and the loca-
tion string specifies a location of data pertaining to the
entity

a second location server comprising a second set of
location mnformation, wherein at least a portion of the
second set of location information differs from the first
set of location information; and

programming logic stored on each of the location servers
responsive to a location query identifying a desired
entity to return a location message, the location mes-
sage comprising at least one location of data pertaining
to the desired entity, 1 the location server receiving the
location query contains location information for the
desired entity.

2. The system of claim 1, wherein the at least one location
comprises a plurality of geographic locations, each of the
geographic locations representing a position of the entity at
a different time.

3. The system of claim 1, wherein the programming logic
turther comprises logic responsive to the location query to
return one of a location message or a redirect message,
wherein the location server receiving the query returns the
location message 1f the queried location server contains
location information for the desired entity, and wherein the
queried location server returns a redirect message 1f the
queried location server lacks location mformation for the
desired entity, the redirect message comprising information
for finding a location server known to have location infor-
mation relevant to the location query.

4. The system of claim 3, wherein the information for
finding the location server known to have location informa-
tion relevant to the location query comprises a list of
location servers and a corresponding list of each of the
entities having location information on the location servers.

5. The system of claim 1, wherein each of the location
servers stores at least a portion of the location mnformation
on a persistent storage device.

10

15

20

25

30

35

40

45

50

55

60

65

26

6. The system of claim 1, wherein the location iforma-
tion 1n the location server 1s maintained in an indexed
location store indexed by a hash table.

7. The system of claim 6, wherein the location query
identifying the desired entity comprises a unique identifier
for the desired entity, and wherein the programming logic
stored on the location server further comprises programming
logic for applying an index function to the unique 1dentifier
to retrieve at least a portion of the location information
associated with the unique 1dentifier 1n the mndexed location
store.

8. The system of claim 7, wherein the location query 1s
received at a location server 1n a first node and wherein the
redirect message comprises a list of at least one other
location server 1n a node other than the first node that may
have location information relevant to the location query.

9. The system of claim 1, wherein the plurality of location
servers are arranged 1n a network topology having a plurality
of nodes organized 1n a logical hierarchy, wherein each node
comprises at least one location server and wherein each node
1s connected to at least one other node in the logical
hierarchy.

10. A system having a plurality of location servers for
managing location information and providing location infor-
mation to location queries, the system comprising:

a plurality of location servers containing location infor-
mation corresponding to a plurality of entities, the
location mformation formatted according to a transfer
protocol configured for manipulating location informa-
tion, and comprising at least one application server
address, wherein the plurality of location servers are
arranged 1n a cluster topology such that each location
server contains a unique set of location information of
an aggregate set of the location information; and

programming logic stored on each of the plurality of
location servers responsive to a location query for a
desired 1dentifier to return one of a location message,
wherein a queried location server returns a location
message 11 the queried location server contains location
information for the desired identifier, and a redirect
message 11 the queried location server does not contain
location information relevant to the desired identifier,
wherein the redirect message comprises information
for finding a location server having location informa-
tion related to the desired 1dentifier.

11. The system of claim 10, wherein the location infor-
mation comprises geographic location information.

12. The system of claim 10, wherein the location infor-
mation comprises network address information.

13. The system of claim 12, wherein the network address
information comprises a network address of a data reposi-
tory containing data pertaining to the desired identifier.

14. A method of handling location queries 1n a network,
the network comprising a plurality of location servers, each
location server containing a unique set of location informa-
tion of an aggregate set of location information correlating
cach of a plurality of 1dentifiers with at least one location, the
method comprising:

recerving a location query from a client at one of the
plurality of location servers, the location query request-
ing an entity’s location;

sending a location response message to the client 11 the
queried location server contains location information
relevant to an entity identified in the query, the location
response message comprising location information

US 7,233,978 B2

27

identifying at least one application server containing
information relevant to the entity identified in the
query; and

sending a redirect message to the client if the queried

location server does not contain data location informa-
tion relevant to the enftity identified in the query, the
redirect message comprising information for finding a
location server storing the entity identified in the query.

15. The method of claim 14, further comprising applying
information in the location query from the client to an
indexing function to determine 1f the queried location server
contains location information relevant to the entity identified
in the query.

16. The method of claim 15, wherein each of the plurality
of location servers comprises an indexed table of 1dentifiers
and associated locations, and wherein applying information
in the location query comprises applying an 1dentifier in the
location query to a hash function.

17. A method of scaling at least one of capacity and
transaction rate capability 1n a location server 1n a system
having a plurality of location servers for storing and retriev-
ing location information, wherein each of the plurality of
location servers stores unique set of location information of
an aggregate set of location imnformation, the method com-
prising:

providing a transier protocol configured to transport 1den-

tifier and location information, the location information
specifying the location of information related to the
identifier;

storing location information formatted according to the

transier protocol at a first location server;

receiving an identifier and a location relevant to the

identifier at the first location server;

storing the received location 1n a location store at the first

data location server, the location store comprising a
plurality of identifiers, each identifier associated with at
least one location, wherein the receirved location 1is
associated with the received identifier 1n the location
store; and

transferring a portion of the identifiers and associated

locations to a second data location server when a
performance criterion of the first location server
reaches a predetermined performance limit.

18. The method of claam 17, wherein receiving an 1den-
tifier and a location comprises receiving the identifier and
the location at the first location server from an application
server, wherein the location comprises an address for the
application server.

19. The method of claim 17, wherein receiving an 1den-
tifier and a location comprises receiving the identifier and
the location at the first location server from a physical
object, wherein the identifier 1dentifies the physical object
and wherein the location comprises a geographic location
for the physical object.

20. The method of claim 19, wherein the physical object
comprises a vehicle.

21. The method of claim 19, wherein the physical object
comprises a portable telecommunications device.

22. The method of claim 17, wherein transferring a
portion of the identifier and location associations comprises:

identifying a portion of i1dentifier and location associa-

tions on the first location server to be transierred to the
second location server and identifying a data set state of
the 1dentified portion at an 1nitial time;

copying a data set for the identified portion corresponding,

to the 1dentified data set state from the first location
server to the second location server and maintaiming a

10

15

20

25

30

35

40

45

50

55

60

65

28

second data set containing changes to the identified
portion since the initial time;

identifying a data set state for the second data set;

ceasing operation of the first location server with respect
to the 1dentified portion and copying the second data set
to the second location server, wherein the second data
set corresponds to the identified data set state for the
second data set; and

inmitiating operation of the second location server for the
identified portion of i1dentifiers and location associa-
tions.

23. The method of claim 17, wherein the performance
criterion comprises an amount of available persistent storage
space 1n the first location server.

24. The method of claim 17, wherein the performance
criterion comprises a transaction rate limat.

25. The method of claim 17, wherein the transaction rate
limit comprises a processor speed limut.

26. The method of claim 17, wherein the transaction rate
limit comprises a network connection bandwidth limat.

277. The method of claim 17, further comprising transmit-
ting a location server map from the first location server, the
location server map comprising information identifying the
second location server and a list of identifiers associated
with the second location server.

28. The method of claim 27, wherein the first and second
location servers are part of a location server cluster com-
prising a plurality of location servers, and wherein trans-
mitting the location server map comprises transmitting the
location server map to each of the plurality of data location
servers asynchronously.

29. The method of claiam 27, wherein transmitting a
location server map comprises transmitting the location
server map to a client 1n response to query received at the
first location server from the client regarding an identifier
that 1s not resident on the first location server.

30. The method of claam 17, wheremn transferring a
portion of the identifiers and associated locations to a second
location server when a performance criterion of the first data
location server reaches a predetermined performance limait
further comprises monitoring the performance criterion and
automatically transferring the portion of identifiers and
associated locations when the first location server reaches
the predetermined limiat.

31. A system for managing location information and
providing location information to location queries, the sys-
tem comprising:

a location server operating 1n accordance with a transfer
protocol, the transfer protocol comprising instructions
for manipulating an identifier and at least one location
associated with the identifier, wherein the identifier
uniquely specifies an entity and wherein each location
specifies a location of data 1n a network pertaining to
the entity, the location server containing location infor-
mation corresponding to at least one entity and format-
ted according to the transier protocol, and wherein the
location of data for the location comprises an applica-
tion server in communication with the network:; and

programming logic stored on the location server respon-
sive to a location query 1dentifying a desired entity to
return a location message, the location message com-
prising locations associated with the desired entity,
wherein the location server returns the location mes-
sage 11 the location server contains location information
for the desired entity.

US007233978C1

12 EX PARTE REEXAMINATION CERTIFICATE (12366th)

United States Patent

Overton et al.

US 7,233,978 C1
Aug. 17, 2023

(10) Number:
45) Certificate Issued:

(54) METHOD AND APPARATUS FOR
MANAGING LOCATION INFORMATION IN
A NETWORK SEPARATE FROM THE DATA
TO WHICH THE LOCATION INFORMATION
PERTAINS
(75) Inventors: John K. Overton, Chicago, IL (US);
Stephen W, Bailey, Andover, MA (US)

(73) Assignee: KOVE 10, INC., Chicago, IL (US)

Reexamination Request:
No. 90/019,034, Nov. 19, 2021

Reexamination Certificate for:

Patent No.: 7,233,978
Issued: Jun. 19, 2007
Appl. No.: 09/872.736
Filed: Jun. 1, 2001

Related U.S. Application Data

HO4L 69/00
HO4L 69/329

U.S. CL
CPC

(2022.01)
(2022.01)
(52)
HO4L 61/4552 (2022.05); GO6F 16/58
(2019.01); GO6F 16/9566 (2019.01); HO4L
9/40 (2022.05); HO4L 67/535 (2022.05); HO4L
67/1001 (2022.05); HO4L 67/1008 (2013.01);
HO4L 67/10015 (2022.05); HO4L 69/26
(2013.01); HO4L 69/329 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(58)

(56) References Cited

To view the complete listing of prior art documents cited
during the proceeding for Reexamination Control Number

90/019,034, please refer to the USPTO’s Patent Electronic
System.

Primary Examiner — Joshua D Campbell

63) Continuation-in-part of application No. 09/661,222,
() filed on Sep. 13,,p20005 now Pat. No. 7,103,640, and 7 ABSTRACT
a continuation-in-part of application No. 09/503,441, A system and method for storing and retrieving location
filed on Feb. 14, 2000, now abandoned, and a information across a network 1s disclosed. The system and
continuation-in-part ol application No. 09/367,461, method utilize a transfer protocol configured to transport an
filed on Aug. 13, 1999, now abandoned, and a identifier/location relationship to allow one or more loca-
continuation-in-part of application No. 09/111,896, tions to be associated with an 1dentifier in the location store
filed on Jul. 8, 1998, now abandoned. of a location server, where the 1dentifier represents a unique
.. L entity and the location represents a location of data pertain-
(60) Provisional applilciatlon No. '_50/2,77’408’ tiled on Mar. ng, tt}; the 1dentifier. Theplocation server contains pll':;gram-
19, 2001, provisional application No. 60/209,070. ming logic operative to provide responses to location queries
liled on Jun. 2, 2000. and capable of scaling a plurality of location servers accord-
(51) Int. CL ing to system performance and logistical requirements.
GO6F 15/16 (2006.01)
HO4L 61/4552 (2022.01) At the time of issuance and publication of this certificate,
GO6l 16/955 (2019.01) the patent remains subject to pending reexamination
GO6I’ 16/58 (2019.01) control numbers 90/019,109 and 90/019,162 filed Aug. 31,
HO4L 9/40 (2022.01) 2022 and Feb. 27, 2023 respectively. The claim content of
HO4L 67/50 (2022.01) the patent may be subsequently revised if a
HO4L 67/1001 (2022.01) reexamination certificate issues from the reexamination
HO4L 67/1008 (2022.01) proceedings.
Q\K/@ wl A A &
-—Q e
172 —~—A_) % """""" :,—f"’f
g ﬁ),ng\ ﬁp,-f"’f %186
175 \9
el ‘75'E:| -—) E‘l/ —0 : NDTP_PUT
180 / 1‘!34 1
SHIPPING COMPANY | DT QUERIES S TLOCATION 7
= [1 | LAT/LON1, LAT/LONZ, [AT/LON , ..
DISPATCHER NDTP RESPONCES 2 | LAT/LON3, LAT/LON4
e 3 | LAT/LONS, LAT /LONS
, [41 4 | LAT/LONT, LAT /LONE
s e ™ L1 & | AT iconth, LT Low |
de 1l :

1
EX PARTE

US 7,233,978 Cl1

REEXAMINATION CERTIFICATE

TH.

AS A RESU
DETERMIN.

The patentability of claims 3, 6, 10, 14, 17, 23, 24 and 30

-, PAT

1s confirmed.

“NT IS HEREBY AM

CND.

INDICATED BELOW.

Claims 1 and 31 are cancelled.

not reexamined.

0D AS .

LI OF REEXAMINATION, IT HAS BEEN
=D THAT:

10

Claims 2, 4, 5,79, 11-13, 15, 16, 18-22 and 25-29 were

15

US007233978C2

12 EX PARTE REEXAMINATION CERTIFICATE (12520th)

United States Patent

Overton et al.

US 7,233,978 C2
Feb. 16, 2024

(10) Number:
45) Certificate Issued:

(54) METHOD AND APPARATUS FOR
MANAGING LOCATION INFORMATION IN
A NETWORK SEPARATE FROM THE DATA
TO WHICH THE LOCATION INFORMATION
PERTAINS
(75) Inventors: John K. Overton, Chicago, IL (US);
Stephen W, Bailey, Andover, MA (US)

(73) Assignee: KOVE 10, INC., Chicago, IL (US)

Reexamination Request:
No. 90/019,109, Aug. 31, 2022

Reexamination Certificate for:

Patent No.: 7,233,978
Issued: Jun. 19, 2007
Appl. No.: 09/872.736
Filed: Jun. 1, 2001

Reexamination Certificate C1 7,233,978 1ssued Aug. 17,
2023

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/661,222,
filed on Sep. 13, 2000, now Pat. No. 7,103,640, and
a continuation-in-part of application No. 09/503,441,
filed on Feb. 14, 2000, now abandoned, and a
continuation-in-part of application No. 09/367,461,
filed on Aug. 13, 1999, now abandoned, and a

continuation-in-part of application No. 09/111,896,
filed on Jul. 8, 1998, now abandoned.

(60) Provisional application No. 60/209,070, filed on Jun.
2, 2000, provisional application No. 60/277,408, filed
on Mar. 19, 2001.
(51) Int. CL
GO6F 15/16 (2006.01)
GO6F 16/58 (2019.01)
GO6F 16/955 (2019.01)
HO4L 9/40 (2022.01)
HO4L 61/4552 (2022.01)
HO4L 67/1001 (2022.01)

HO4L 67/1008
HO4L 67/50
HO4L 69/00
HO4L 69/329

U.S. CL
CPC

(2022.0°
(2022.0°
(2022.0°
(2022.0°

)
)
)
)

(52)
HO4L 61/4552 (2022.05); GO6F 16/58
(2019.01); GO6F 16/9566 (2019.01); HO4L
9/40 (2022.05); HO4L 67/535 (2022.05); HO4L
67/1001 (2022.05); HO4L 67/10015 (2022.05);
HO4L 67/1008 (2013.01); HO4L 69/26
(2013.01); HO4L 69/329 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(58)

(56) References Cited
To view the complete listing of prior art documents cited

during the proceeding for Reexamination Control Number
90/019,109, please refer to the USPTO’s Patent Electronic
System.

Primary Examiner — Eron J Sorrell

(57) ABSTRACT

A system and method for storing and retrieving location
information across a network 1s disclosed. The system and
method utilize a transfer protocol configured to transport an
identifier/location relationship to allow one or more loca-
tions to be associated with an 1dentifier 1n the location store
of a location server, where the 1dentifier represents a unique
entity and the location represents a location of data pertain-
ing to the identifier. The location server contains programs-
ming logic operative to provide responses to location queries
and capable of scaling a plurality of location servers accord-
ing to system performance and logistical requirements.

At the time of issuance and publication of this certificate,
the patent remains subject to pending reexamination
control number 90/019,162 filed Feb. 17, 2023. The claim
content of the patent may be subsequently revised if a
reexamination certificate issues from the reexamination
proceeding.

174

SHIPPING COMPANY

NDTP QUERIES

DISPATCHER

NDTP RESPONCES

184
}

180\

/ |

LOCATION

176

170

D

1 | LAT/LON1, LAT/LON2, LAT/LON.. ..
2 | LAT/LONS, LAT/LON4

3 | LAT/LONS, LAT / LONB

4 | LAT/LON7, LAT /LONS

5 | LAT/LONS, LAT /LON10

6 | LAT/LON11, LAT/LONY2

US 7,233,978 C2

1
EX PARTE

REEXAMINATION CERTIFICATE

NO AMENDMENTS HAVE BEEN MADE TO 5
THE PATENT

AS A RESULT OF REEXAMINATION, I'T HAS BEEN
DETERMINED THAT:

The patentability of claims 17-30 1s confirmed. 10

Claims 1 and 31 were previously cancelled.

Claims 2-16 were not reexamined.

¥ ¥ e ¥ ¥

	Front Page
	Drawings
	Specification
	Claims
	Reexam Certificate

