12 United States Patent

US007245302B1

(10) Patent No.: US 7.245,302 B1

Donham et al. 45) Date of Patent: Jul. 17, 2007
(54) PROCESSING HIGH NUMBERS OF 6,067,643 A * 5/2000 Omtzigtovvvvervvvnnn... 714/47
INDEPENDENT TEXTURES IN A 3-D 6,215,497 B1* 42001 Leungcceeveeeeeeenne... 345/419
GRAPHICS PIPELINE 6,222,548 BL* 4/2001 Oda wovveovveeereereeeene... 345/502
. |
(75) Inventors: Christopher D. S. Donham, San 6,239,810 Bl 5/2001 Van Hook et al. 345/522
Mateo, CA (US),, Alexander L. 6,624,820 B2 * 9/2003 Ozawa ...ccovvvvvvnniennnnnn. 345/582
Minkin, Palo Alto, CA (US) 6,940,519 B2* 9/2005 Sattoetal.e........ 345/506
(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 IEEE, Proceedings 19?7 Cor.nput.er Graphics International Conf: on,
U.S.C. 154(b) by 0 days. An Advanced Graphics Chip with Bump-mapped Phong Shading
by Ikedo et al, pp. 156-165.*
21) Appl. No.: 10/696,848 . .
(21) Appl. No * cited by examiner
(22) Tled: Oct. 30, 2003 Primary Examiner—Kee M. Tung
(51) Int. Cl Assistant Examiner—Hau Nguyen
G 0;$F 1 3/14 (2006.01) (74) Attorney, Agent, or Firm—Townsend and Townsend
COGT 1/00 (200 6.0:h) and Crew LLP; J. Matthew Zigmant
Go06T 15/60 (2006.01) 57 ARSTRACT
G09G 5/00 (2006.01) (57)
(52) US.CL ..., 345/519; 345/522; 345/426;
_ _ _ 345/582 Circuits, methods, and apparatus provide for the storage of
(58) Field of Classification Search 345/501, texture descriptors in a graphics memory. Since the texture
345/506, 519, 502, 531, 522, 552, 557, 582, descriptors are stored in a graphics memory, they do not
o 345/541, 426, 418, 564, 572_: 559, 532 need to be stored in the graphics processor itself, thus
See application file for complete search history. reducing graphics processor circuitry and cost. This allows
(56) References Cited more textures to be associated with each graphics primitive,

U.S. PATENT DOCUMENTS
5,550,961 A * §/1996 Chimoto

thereby 1mproving image realism.

....... 345/571 9 Claims, 11 Drawing Sheets
700
PROVIDE INITIAL PRESENT jo
TEXTURE DESCRIPTORS TO

GRAPHICGS PIPELINE

No

l 720
GENERATE HINTS IDENTIFYING Y

NEXT TEXTURE DESCRIPTORS

l

FETCH TEXELS IDENTIFIED 730
BY PRESENT TEXTURE _—
DESCRIPTORS, USE TEXELS

i

FETCH NEXT TEXTURE 740
DESCRIPTORS IDENTIFIED _
BY HINTS

i

NEXT TEXTURE DESCRIPTORS jo
BECOME PRESENT TEXTURE
DESCRIPTORS
l' 760
PIXEL DONE __/
l Yes
770

QUTPUT TO ROP -/

US 7,245,302 B1

Sheet 1 of 11

Jul. 17, 2007

U.S. Patent

OVl

\

layng awel

L Ol

0.1
$101S 10d —

0tl

pien) soydelo \\mm;

/

peoasn -

abpugyinog | €

Emnqu_ | _v\ 9l

R

Z9
pieg jeuseyya _‘

ll

"l T = - gy T A M e TR T O

10)e18|800Y
solydels

001

Aowaiy WaisAg

L WINLIA

¢ WINIA

¢ NINIC

¥ WINICQ

H |||_\ 091
pie) oipny

US 7,245,302 B1

Sheet 2 of 11

JOLINOW

NNNH

Jul. 17, 2007

U.S. Patent

¢ Ol4 W3 LSAS
/| olany 07
YT H A
L S LNIHd
1INYIHLI e EN
: qﬂml ooL/oL | g ad1.| 3ISNow
NIAOWN
ve ¢ 404d04N Rt
ARl e
olovs I
(TYNOILLJO) ONNK
- d344M4 L 27—~
057 ms_,_qE !
- ILZ
(IVYNOILdO) m
> MOSSIADOYd le—Lt—» do1l «—3 NdD
SOIHdYYD | X8dOV Z ADH0AN
oLz 5y] 917
012
GlLZ eLZ—~
i)
AHOWIAW/| | AMOWIN
00¢
q&& N&L

U.S. Patent Jul. 17, 2007 Sheet 3 of 11 US 7,245,302 B1

FROM AGP BUS

:310 320 &345
[1 330
o HOST ;
INTERFACE
Yy
335

| GEOMETRY |/

Y

—

340
l RASTERIZER —
' GRAPHICS FRAME
MEMORY BUFFER Y Y
—> S0 I SHADER
(EXTERNAL) INTERFACE (-
CORE
|
ADDRESS M 1w T RE
CACHE
DATA | (SUBCIRCUIT)
SGOJ i
370 | SHADER
“—| BACKEND

i

RASTERIZER | S5
|
OPERATIONS |
|
385
TO SCAN OUT

FIG. 3

U.S. Patent

Jul. 17, 2007 Sheet 4 of 11 US 7,245,302 B1
BASE
ADDRESS
TD1
INDEX
TDN

GRAPRHICS MEMORY

FIG. 4A
POINTER
ADDRESS” POINTER@I » TD1
o TDN
POINTER N
GRAPHICS MEMORY
FIG. 4B
|
INDEX

POINTER & » D1

' TDN |
POINTER 1 / |

GRAPHICS MEMORY

FIG. 4C

U.S. Patent Jul. 17, 2007 Sheet 5 of 11 US 7,245,302 B1

SHADER TEXTURE PIXEL
PROGRAM DESCRIPTERS QUADS
INST @ 50 PQ
K INST 1 i PQ 1

: D 1 P : |
|
INST X' |]
l |
I

FIG. 5

U.S. Patent

Jul. 17, 2007

INSTRUCTION

610
\A

NUMBER

1

2

10

11

12

13

14

15

16

Sheet 6 of 11

US 7,245,302 B1

000

—— 0620

—~— 0630

INSTRUCTION
TEX RO, #102
TEX R1, #103
ADD R2, RO, R1 —640
TEX RO, #104
TEX R1, #105
ADD RZ, R2, R
ADD RZ, R2, R1
TEX RQ, #106
TEX R1, #107
ADD R2, RZ2, RO
ADD RZ, RZ, R1
TEX RO, #108
TEX R1, #109
ADD R2, R2, RO
ADD R2, RZ, R1
Ouft R2

F1G. 6

——~— 650

U.S. Patent Jul. 17, 2007 Sheet 7 of 11 US 7,245,302 B1

700
PROVIDE INITIAL PRESENT 510
TEXTURE DESCRIPTORS TO |
GRAPHICS PIPELINE
Y . 720
R GENERATE HINTS IDENTIFYING)
= NEXT TEXTURE DESCRIPTORS

\ 4

FETCH TEXELS IDENTIFIED 730
BY PRESENT TEXTURE

DESCRIPTORS, USE TEXELS

Y

FETCH NEXT TEXTURE 740
| DESCRIPTORS IDENTIFIED -
| BY HINTS
Y
750
NEXT TEXTURE DESCRIPTORS D

BECOME PRESENT TEXTURE

DESCRIPTORS

I
I
! Y 760

No { PIXEL DONE
l Yes
| 770

OQUTPUT TO ROP

FIG. 7

U.S. Patent

Jul. 17, 2007 Sheet 8 of 11

US 7,245,302 B1

800
PROGRAM INITIAL HINTS AND ‘_510
INITIAL PRESENT TEXTURE
DESCRIPTORS
Y
FETCH SHADER PROGRAM 80
COMMANDS USING PRESENT ;
TEXTURES AND COMMANDS
REQUIRING NEXT HINTS
Y .
FETCH TEXELS IDENTIFIED 830
BY PRESENT TEXTURE _/
DESCRIPTORS. USE TEXELS
Y
FETCH NEXT TEXTURE 840
DESCRIPTORS IDENTIFIED I
BY HINTS
Y
NEXT TEXTURE DESCRIPTORS 1_/85’0
BECOME PRESENT TEXTURE '
DESCRIPTORS
. A 860
O { PIXEL DONE? _/
Yes
Y 870

OUTPUT TO ROP

FIG. 8

US 7,245,302 B1

Sheet 9 of 11

Jul. 17, 2007

U.S. Patent

G86 —~— 8%24 dOON dOON al-Z| SUON | ¥ SSvd
“ o B B Hi
086 ~— L0190} ,,.,mS_mof, dOON -8 SUON € SSVd
G/6~— SOL'YOL_ ,,,.\.o_‘.@of 6oL'gOL<-1" "7 sy T o-- 9L-Z} Z SSYd
_ AN AN e oo 1L
0/6—~— €01'20} GOL'¥0| L0190} < c-1 h . SSVd
v v, £3
o N G-
996 —~— SUON €01‘20} GOl 'v0l SUON - HO1343¥d
HO134
a3asn m_m_% wmw_ro%m_m: NOILdINOS3A a3asn HO 134 FLIALLOY
13aX3L 0194 13x3r | FYNLXILANY | NOILONYLSNI | NOILONYLSNI
& & INIH I3HNLX3L k @
096 0G6 06 & 0£6 026 0L6
006

U.S. Patent Jul. 17, 2007 Sheet 10 of 11 US 7,245,302 B1

1000

1010 1012 1014 1016 1018 1020
[[[[[[

REG REG REG REG | REG REG
1 5 3 4 5 5
NITIAL1 INITIAL2 | NEXT 1 NEXT2 | PRESENT1 PRESENT 2
1030 102 103 | 104 105 X X
|
PRESENT 1 PRESENT 2| NEXT 1 NEXT 2
Y
f 104 105 106 107
1040
NEXT 1 NEXT2 | PRESENT 1 PRESENT 2
/A 108 109 106 107
1050
(PRESENT 1 PRESENT2| NEXT1 NEXT 2
- 108 109 X X
1060
NEXT 1 NEXT2 | PRESENT1 PRESENT 2
- 104 105 X X
1070

FIG. 10

U.S. Patent Jul. 17, 2007 Sheet 11 of 11 US 7,245,302 B1

FROM RASTERIZER

1122 —] ¢
1110 1120 Y
[1195 __| SHADER
f 1132 CORE
TEXTURE \x\\
< DESCRIPTOR | _TEXTURE 1124
S CACHE DESCRIPTOR
NTROLLER
1197 CONTRO REQUESTS 1130
1135 FIFO |
[1134
1132
f . FIFO | TEXTURE S ‘t\.1142
DESCRIPTORS
ADDRESS |17
_ TRANSLATOR
GRAPHICS | TEXTURE DATA REQUESTS |
MEMORY f1 1G5 —~—1152 Y‘*-~1144
AND TEXTURE | 1150

FRAME |TEXTURE | TEXTURE | ADDRESS| CACHE _J

BUFFER | () CACHE | MANAGER
S) 1154

INTERFACE 1156

—~—1162

Y
1160
1158 FIFO |/

VL‘\—ﬂffzuﬁl
1170

TEXTURE »

TEXTURE FILTER
DATA 7 |

;‘“—-1172 K

)
SHADER 1134

BACKEND [)
1180

—
1182
\J

FIG. 11 TO ROP

US 7,245,302 Bl

1

PROCESSING HIGH NUMBERS OF
INDEPENDENT TEXTURES IN A 3-D
GRAPHICS PIPELINE

BACKGROUND

Computer graphics images are formed by combining a
collection of primitives, otherwise known as geometries,
such as rectangles, triangles, and lines that have visibility,
color, and texture information associated with them. In
computer systems, a graphics processor operates on these
primitives and associated textures to determine the color
intensity of individual pixels on the monitor. One particular
circuit 1n the graphics processor, a shader, combines primi-
tives and their associated textures to generate fragments,
which are later converted to the individual pixels.

In conventional systems, these textures are identified by
texture descriptors that are provided to a graphics processor
via an accelerated graphics port (AGP) bus. These texture
descriptors are stored on the graphics processor, used, and
replaced by new texture descriptors as needed. As one
example, 16 texture descriptors are cached on a specific
graphics processor at a time. Fach texture descriptor typi-
cally includes texture state information such as, but not
limited to, the texture’s base address (or base addresses,
since each MIP layer may need its own), width, height,
stride, texel format, wrap properties, border properties, and
texture filter type. The textures themselves are stored n a
frame buller or graphics memory connected to the graphics
processor, and a subset of these may be cached in the
graphics processor for fast access.

There 1s a great demand on graphics processors to deliver
ever more realistic 1images. One way of achieving greater
realism 1s to use a larger number of textures in generating an
image. For example, current graphics images are now
requiring over 500 textures for each image iframe. Each
texture descriptor 1s large, (for example, there may be
several hundred bits of information per texture descriptor)
and having them available on the graphics processor
requires an increase in processor memory, thus raising the
cost of manufacturing the graphics processor.

Thus, what 1s needed are circuits, methods, and apparatus
for making greater numbers of textures available to a
graphics processor such that more realistic images may be
generated, without the need to store all the texture descrip-
tors on the graphics processor.

SUMMARY

Accordingly, embodiments of the present invention pro-
vide circuits, methods, and apparatus for increasing the
number of textures available to a graphic processor by
storing texture descriptors 1n a graphics memory. Since these
texture descriptors are stored 1n the graphics memory instead
of on the graphics processor, there can be many more
textures associated with an 1mage, thus increasing image
realism. Further, if only a subset of these texture descriptors
are cached on the graphics processor 1tself, die area 1s saved
when the graphics processor 1s on an integrated circuit.
There 1s also a reduction 1n AGP traflic since the descriptors
are stored once for several uses.

An exemplary embodiment of the present invention pro-
vides a method of generating a graphics image. This method
includes storing a plurality of texture descriptors 1n a graph-
ics memory, and retrieving the plurality of texture descrip-
tors from the graphics memory for use in a graphics pro-
CEeSSOor.

10

15

20

25

30

35

40

45

50

55

60

65

2

Another exemplary embodiment of the present invention
provides a method of generating a graphics image. This
method includes storing a plurality of texture descriptors in
a graphics memory, and retrieving the plurality of texture
descriptors from the graphics memory for use 1n a graphics
processor. The plurality of texture descriptors are stored
once 1n the graphics memory and retrieved a plurality of
times for use by the graphics processor, and a shader
program causes the retrieval of the plurality of texture
descriptors.

A Turther exemplary embodiment of the present invention
provides a method of generating a graphics image. This
method provides receiving a first texture descriptor, a first
hint, and a first command from a graphics pipeline, the first
command using the first texture descriptor, and retrieving a
second texture descriptor 1dentified by the first hint. A first
portion of a shader program 1s also retrieved. This shader
program portion includes a second command using the
second texture descriptor, and a third command using a third
texture descriptor. The third texture descriptor 1s also
retrieved.

Yet a further exemplary embodiment of the present inven-
tion provides a method of generating a graphics image. This
method 1ncludes retrieving a portion of a shader program
comprising an instruction using a texture descriptor, and
prefetching the texture descriptor from a graphics memory
betore the instruction 1s executed.

Another exemplary embodiment of the present invention
provides an integrated circuit. This integrated -circuit
includes a shader circuit, a texture circuit coupled to the
shader circuit, and a frame bufler interface coupled to the
texture circuit. The texture circuit retrieves texture descrip-
tors from a memory using the frame bufler interface.

A Turther exemplary embodiment of the present invention
provides a graphics processor. The graphics processor
includes a shader circuit, a texture circuit including a texture
cache coupled to the shader circuit, and a frame buller
interface coupled to the texture circuit. The texture circuit
retrieves a plurality of texture descriptors from an external
memory coupled to the frame bufler interface and stores
them 1n a texture cache.

A better understanding of the nature and advantages of the
present 1nvention may be gained with reference to the
following detailed description and the accompanying draw-
ngs.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

FIG. 1 1s a block diagram of a computing system that
benelits by incorporation of embodiments of the present
invention;

FIG. 2 1s a block diagram of an improved computer

system that benefits by incorporation of embodiments of the
present 1nvention;

FIG. 3 1s a block diagram of a graphics system that 1s
benefited by incorporation of embodiments of the present
imnvention;

FIGS. 4A-4C 1illustrates several examples of how texture
descriptors are 1dentified 1n embodiments of the present
invention;

FIG. 5 shows a representation of a shader program,
texture descriptors used by the shader program, and a
number of pixel quads to be processed by the shader
program;

FIG. 6 1s an example of a shader program;

US 7,245,302 Bl

3

FIG. 7 1s a flow chart showing a method of retrieving
texture descriptors from a graphics memory in accordance
with an embodiment of the present invention;

FIG. 8 1s a flow chart showing a method of retrieving
texture descriptors from a graphics memory 1n accordance
with an embodiment of the present invention;

FIG. 9 15 a table showing activities performed during the
running of the shader program shown in FIG. 6;

FIG. 10 illustrates a set of registers used by an embodi-
ment of the present invention and their contents during the
execution of the shader program of FIG. 6; and

FIG. 11 illustrates an the embodiment of the present
invention that caches texture descriptors in order to elimi-
nate the need for hints.

DESCRIPTION OF EXEMPLARY

EMBODIMENTS

FIG. 1 1s a block diagram of a computing system 100 that
benefits by incorporation of embodiments of the present
invention. Included are a Northbridge 110, graphics accel-
crator 120, Southbridge 130, frame buflier 140, central
processing unit (CPU) 150, audio card 160, Ethernet card
162, modem 164, USB card 166, graphics card 168, PCI
slots 170, and memories 105. This figure, as with all the
included figures, 1s shown for illustrative purposes only, and
does not limit either the possible embodiments of the present
invention or the claims.

The Northbridge 110 passes information from the CPU
150 to and from the memory 105, graphics accelerator 120,
and Southbridge 130. Southbridge 130 interfaces to external
communication systems through connections such as the
universal serial bus (USB) card 166 and Ethernet card 162.
The graphics accelerator 120 receives graphics information
over the accelerated graphics port (AGP) bus 125 through
the Northbridge 110 from CPU 150 and directly from
memory or frame bufler 140. The graphics accelerator 120
interfaces with the frame bufler 140. Frame builer 140 may
include a display bufler which stores the pixels to be
displayed.

In this architecture, CPU 150 performs the bulk of the
processing tasks required by this computing system. In
particular, the graphics accelerator 120 relies on the CPU to
set up calculations and compute geometry values. Also, the
audio or sound card 160 relies on the CPU to process audio
data, positional computations, and various eflects, such as
chorus, reverb, obstruction, occlusion, and the like, all
simultaneously. Moreover, the CPU remains responsible for
other instructions related to applications that may be run-
ning, as well as for the control of the various peripheral
devices connected to the Southbridge.

FIG. 2 1s a block diagram of an improved computer
system that benefits by incorporation of embodiments of the
present invention. Included are an nForce2 integrated graph-
ics processor (IGP) 210, an nForce2™ media communica-
tions processor (MCP2) 220, memory 212 and 214, CPU
216, optional graphics processor 218 and frame builer 240,
monitor 222, scanner or camera 234, mouse, keyboard, and
printer 236, hard drives 238, soft modem 242, Ethernet
connection 246, and audio system 248.

This revolutionary system architecture has been designed
around a distributed processing platform, which frees up the
CPU to perform tasks best suited to it. Speciﬁcallyj the
nForce2 IGP 210 includes a graphics processing unit (GPU)
which 1s able to perform graphics computations previously
left to the CPU. Alternately, the nForce2 IGP 210 may

interface to an external GPU which performs these compu-

10

15

20

25

30

35

40

45

50

55

60

65

4

tations. Also, nForce2 MCP2 220 includes an audio pro-
cessing unit (APU), which 1s capable of performing many of
the audio computatlons previously done by the CPU. In this
way, the CPU 1s free to perform its tasks more efliciently.
Also, by mcorporating a suite of networking and commu-
nications technologies such as USB and Ethernet 246, the
nForce2 MCP2 220 1s able to perform much of the com-
munication tasks that were previously the responsibility of
the CPU 216.

In this architecture, the nForce2 IGP 210 communicates
with memories 212 and 214 of over buses 213 and 215. The
nForce2 IGP 210 also interfaces to an optional graphics
processor 218 over an advanced AGP bus 217. In various
computer systems, this external processor may be removed,
and the monitor 222 may be dniven by the nForce2 1GP
directly. In other systems, there may be more than one
monitor, some or all of which are coupled to optional
graphics processors or the nForce2 IGP directly. The
nForce2 IGP 210 communicates with the nForce2 MCP2
220 over a Hypertransport link 221. The optional graphics
processor 218, may also interface with external memory,
which 1s not shown 1n this example. Embodiments of the
present invention may be used to improve the memory
interfaces to memories 212 and 214, from the graphics
processor 218 to its external memory, or to other optional
memories not shown here, or other memory interfaces in
other digital systems.

The nForce2 MCP2 220 contains controllers for

Ethernet
connections 246 and soft modem 242. Also included are an
interface for a mouse, keyboard, and printer 236, and USB
ports for cameras, scanners, and hard drives 234 and 238.

This arrangement allows the CPU, the nForce2 IGP, and
the nForce2 MCP2, to perform processing independently,
concurrently, and 1n a parallel fashion.

FIG. 3 1s a block diagram of a graphics system that 1s
benefited by incorporation of embodiments of the present
invention. Included are a graphics memory 310, frame builer
interface 320, host interface 330, geometry engine 335,
rasterizer 340, shader core 350, texture cache and subsystem
360, shader backend 370, and rasterizer operations circuit
(ROP) 380. In a typical embodiment, all these circuits,
except the graphics memory 310 are on an integrate circuit
chip, for example, an IGP or graphics processor integrated
circuit.

Graphics primitives, textures, and texture descriptors are
received from the AGP bus on line 345 by the host interface
330. The host iterface 330 stores the textures in the
graphics memory 310 via the frame bufler interface 320.
Conventionally, the texture descriptors are received over the
AGP bus and passed down the pipeline as they are needed.
Embodiments of the present invention provide a greater
number of available textures by having the host interface
330 store the texture descriptors in the graphics memory 310
along with the textures themselves. By storing these descrip-
tors 1n the external graphics memory, many more textures
are available to use in generating an 1mage than 11 the texture
descriptors had to be stored on the graphics processor
integrated circuit itself.

The primitives are processed by the geometry engine 335
and rasterizer 340 and passed to the shader core 350. The
shader core 350 provides data to the texture cache subsystem
360 and shader backend 370. The shader core and shader
backend textures the primitives, for example, according to a
shader program that 1s preloaded by a driver. More details on

shaders and their programs are available in U.S. patent
application Ser. No. 09/885,242, titled PROGRAMMABLE

PIXEL SHADING ARCHITECTURE, filed Jun. 19, 2001,

US 7,245,302 Bl

S

and U.S. application Ser. No. 09/885,382, titled SYSTEM,
METHOD AND COMPUTER PROGRAM PRODUCT
FOR A PROGRAMMABLE PIXEL PROCESSING
MODEL WITH INSTRUCTION SFET, filed Jun. 19, 2001,
both of which are incorporated by reference.

In a specific embodiment of the present invention, the
texture cache subsystem inspects the next several lines of the
shader program to determine which textures will be needed.
The texture cache subsystem retrieves the corresponding
texture descriptors from the graphics memory 310 using the
frame bufler interface 320. The corresponding texture
descriptors retrieved from the graphics memory 310 contain
information such as location, stride, filtering, height, width,
and other parameters necessary for the retrieval of the
textures themselves from the graphics memory. The texture
cache subsystem 360 1s then able to retrieve the textures
from the graphics memory 310 via the frame bufler interface
320. The textures may then be cached in the texture cache
subsystem 360. Specific examples of how this may be done
may be found in U.S. Pat. No. 6,629,188, titled Circuit &
Method for Prefetching Data for a Texture Cache, by Minkin
et al., and U.S. patent application Ser. No. 09/712,632, titled
Circuit & Method for Addressing a Texture Cache, by
Minkin, both of which are incorporated by reference.

The shader core 350 and shader backend 370 texture the
primitives with the retrieved textures until completion,
whereupon the shader backend 370 provides the result to the
ROP 380. The output of the ROP on bus 385 1s provided to
a scan-out engine (not shown), which 1n turn provides pixels
for display on a monitor.

When a texture descriptor that has already been stored in
the graphics memory 310 i1s needed again, the texture
descriptor 1s not sent over the AGP bus, rather a pointer,
index, or other representation of the texture descriptor is
sent. For example, a texture number referred to 1n a line of
the shader program may 1dentily a texture descriptor. These
representations are much smaller than a texture descriptor.
For example, a representation such as a pointer may be two
bytes 1n length, where as a texture descriptor may be 300 bits
in length.

FIGS. 4A-4C 1llustrate several examples of how needed
texture descriptors are 1dentified by various embodiments of
the present invention. In FIG. 4A, a base address and index
ol a required texture descriptor are passed down the pipeline
as pipeline state. The base address and index (or offset)
identily a specific texture descriptor 1n an array of texture
descriptors located 1n the graphics memory 310. That 1s, the
index 1s used to find a texture descriptor 1n an array of
texture descriptors specified by the base address. The texture
descriptor contains the location, height, width, stride, filter-
ing, and other properties needed for retrieval of the texture
itsellf.

FIG. 4B 1llustrates a method that provides an extra level
of indirection. A pointer address 1s passed down the pipeline,
and at each pointer address 1s stored a pointer that identifies
the location of a texture descriptor. The pointer address 1s
accessed and read to determine the texture descriptor loca-
tion, and the needed texture descriptor 1s retrieved.

In FIG. 4C a pointer table 1s stored in the graphics
memory. In a specific embodiment, the pointer table 1s an
array ol addresses, each address being the location of a
texture descriptor. A base address of the pointer table can be
passed down the pipeline, thus allowing the use of multiple
pointer tables. Alternately, a single or global table can be
used, thus eliminating the need for passing individual base
address. The indices are passed down the pipeline, and each
index 1s used to locate a pointer, which 1n turn identifies the

10

15

20

25

30

35

40

45

50

55

60

65

6

location of a needed texture descriptor. In another embodi-
ment of the present invention, pointers that directly identify
texture descriptors can be passed down the pipeline as
pipeline state.

The shader program may contain instructions or other
information identifying required texture descriptors, or the
required texture descriptors may be determined from the
shader program 1tself. For example, a base address may be
provided by the pipeline. When a texture having a texture
number N 1s needed by the shader program, the texture
descriptor having the address that 1s the base address plus N
times M, where M 1s the number of bits between starting
points of the texture descriptors, 1s retrieved. FIG. 5 shows
a representation ol a shader program, texture descriptors
used by the shader program, and a number of pixel quads to
be processed by the shader program. During each pass
through the shader, some number of instructions are
executed, for example K instructions may be executed, and
cach 1nstruction may require one or more textures, identified
by texture descriptors. During each pass some number of
quads, for example P, are processed, then either mnput back

into the shader core 350 for further processing, or output to
the ROP 380.

The addressing schemes 1llustrated 1n FIGS. 4A-4C can
be used by the shader program. In FIG. 4A, the base address
and index are 1in the shader program. In FIG. 4B, the pointer
address 1s 1n the program, and in FIG. 4C, the index for the
needed location 1n the pointer table i1s provided by the
program. In another embodiment, the address of the required
texture descriptor 1s 1n the shader program.

In these ways, many textures can be associated with each
primitive. For example, 11 a two-byte word 1s used as a
pointer or index in the above configurations, over 64,000
textures may be associated with each primitive. This 1s an
improvement over the prior art, where typically 2 to 16
texture descriptors are stored in the graphics processor.

When a pointer or other representation 1s received by the
texture subsystem and cache 360, a texture descriptor i1s
retrieved from the graphics memory 325, 11 1t 1s not already
in the texture cache. The latency for texture retrieval from
the graphics memory can be on the order of 200 clock
cycles. To prevent this latency from stalling pixel process-
ing, i a specific embodiment of the present 1nvention,
texture descriptors are prefetched and stored in the texture
circuit before they are needed by the shader. These
prefetches are facilitated by hints or other indications of
texture descriptors that will be required by the graphics
pipeline. These hints 1dentily textures that are to be fetched
from the graphics memory and are used to retrieve texture
descriptors 1n advance of the time that the texture descriptors
are required.

FIG. 6 1s a shader program 600 that 1s used for exemplary
purposes in the following flow charts and tables. Included
are a number of instructions identified numerically 1n col-
umn 610. In this simple example, textures are read from
memory, accumulated or added together, then output. Spe-
cifically, mstruction 1 620 reads texture 102 and stores 1t 1n
register R0. Similarly, mstruction 2 630 reads texture 103
into register R1. Instruction 3 640 directs that the contents
of R0 and R1 are added together and stored 1n register R2.
Further steps 1nclude reading other textures and accumulat-
ing the values 1n register R2. The final mstruction 16 650,
directs that register R2 be output. Again, this simplified
shader program 1s useful in explaining exemplary embodi-
ments of the present mvention.

FIG. 7 1s a flow chart 700 showing a method of retrieving
textures from a graphics memory in accordance with an

US 7,245,302 Bl

7

embodiment of the present invention. In summary, texture
descriptors and hints are provided. The hints can be gener-
ated by the pipeline or the shader program. In a specific
embodiment, two present texture descriptors and two hints
are provided. The hints are used to fetch the next texture
descriptors, while the present texture descriptors are used to
tetch the next texture values. The next hints are determined
by looking ahead 1n the shader program, either by examiming,
a specific number of instructions, for example 10 1nstruc-
tions, or by looking at enough of the program to find the next
two required textures. This continues until the processing of
the pixels 1s complete, at which time the pixels are output to
the ROP.

Specifically, 1n act 710, the first or 1nitial present textures
are provided to the graphics pipeline. Again, these may be
provided over the AGP bus. In act 720, hints identifying the
next required texture descriptors are generated. In act 730,
the textures i1dentified by the present texture descriptors are
fetched and used. The texture descriptors 1dentified by the
hints are fetched in act 740. In act 750, the next texture
descriptors become the present texture descriptors. In act
780, 1t 1s determined whether the processing of the pixels 1s
complete. If 1t 1s, the pixels are output to the ROP 1n act 770.
IT the pixel processing 1s not complete, the process repeats,
and hints 1dentifying the next texture descriptors are gener-
ated. It will be appreciated by one skilled in the art that
several of these acts may be done simultaneously, or 1n an
alternate sequence.

FIG. 8 1s a flow chart 800 showing a method of retrieving,
texture descriptors from a graphics memory 1n accordance
with an embodiment of the present invention. In FIG. 8,
texture descriptors are 1dentified by a shader program, rather
than by i1dentifiers received by the graphics pipeline.

Specifically, initial hints and 1nitial present texture
descriptors are loaded or programmed 1n act 810. In act 820,
shader program instructions are fetched. Specifically, the
shader program commands using the present textures and
those commands requiring the next hints are fetched. In act
830, the textures 1dentified by the present texture descriptors
are fetched and used. The next texture descriptors identified
by the hints are fetched in act 840. In act 850, the next
texture descriptors become the present texture descriptors.
In act 868, it 1s determined whether the pixel processing 1s
complete. If 1t 1s, the pixels are output to the ROP 1n act 870.
I not, more of the shader program i1s fetched in act 820. It
will be appreciated by one skilled in the art that several of
the acts may be done simultaneously, or in an alternate
sequence.

FIG. 9 1s a table 900 showing the activities performed
during the running of the shader program shown in FIG. 6.
Column 910 indicates the activity that 1s taking place,
column 920 indicates which instructions of the shader
program are being fetched, column 930 shows the mnstruc-
tions being used, column 940 shows the texture that 1s being
hinted and the corresponding texture description that 1s
being fetched. Also, column 950 shows the textures being
tetched using the present texture descriptors, while column
916 indicates the texture being used. In this specific
example, two texture descriptors are shown as being used by
the shader. In other embodiments, other numbers of texture
descriptors and corresponding textures may be used.

In row 965, a prefetch occurs. Specifically, mstructions 1
and 2 and of the shader program 1n FIG. 6 are fetched. Initial
texture descriptors 102 and 103 have been previously pro-
vided, for example, over the AGP bus to the graphics
pipeline, or by the shader program 1tself. The textures 102
and 103 are fetched at this time. Also, the shader program 1s

10

15

20

25

30

35

40

45

50

55

60

65

8

examined to determine the next two textures that will be
needed. In this case, as can be seen 1n FIG. 6, those textures
are 104 and 105, used 1n instruction numbers 4 and 5.

In row 970, a first pass through the shader begins. The
next instructions required are fetched. The instructions used
are mnstructions 1-3, 1n which textures 102 and 103 are read,
added, and stored 1n register R2. Again, the shader program
1s examined and the next texture descriptors that are required
are determined. In this specific example, textures 106 and
107 are needed. Also, textures 104 and 105 are fetched,
while textures 102 and 103 are used.

In row 975, a second pass through the shader program 1s
performed. Again enough of the shader program 1s fetched
to determined the next required texture descriptors. In this
pass 1nstructions 4-7 are executed, which read textures 104
and 105. These textures are added to the value already stored
in R2. Again, the next two required texture descriptors are
determined, 1n this case texture descriptors 108 and 109.
Also, the textures 106 and 107 are fetched, and the textures
104 and 105 previously fetched are used specifically by
instructions 4 and 5 1n the shader program.

In row 980, a third pass through the shader 1s performed.
Specifically, shader program instructions 8 through 11 are
executed. Textures 108 and 109 are retrieved, while textures
106 and 107 are used, specifically by shader instructions 8
and 9.

In row 985, a fourth pass through the shader 1s executed.
Specifically instructions 12 through 16 are executed. These
instructions use the textures retrieved in row 983, specifi-
cally textures 108 and 109. The result 1s output to the ROP,
as indicated by instructions 16 650 1n the shader program of
FIG. 6.

A specific embodiment uses three sets ol registers to
implement the above flow charts. In this embodiment, two
registers for each set are used 1n order to provide two texture
lookups per pass or loop through the shader. The first set
stores the mitial texture descriptors provided by the pipeline,
for example, these can be input to the pipeline by a driver.
Again, the pipeline also provides two hints, found by
looking ahead 1n the shader program, the texture descriptors
for which are retrieved and stored in the second set of
registers. When the next texture descriptors needed are
determined by inspection of the shader program, they are
retrieved from the graphics memory and stored in the third
set of registers. After that, the following textures are written
to the second and third sets of registers 1n a ping-pong or
alternating fashion. The first set of registers 1s reused when
another set of pixels or quads begin running the same shader
program, thereby receiving the same starting information
used by the first set of pixels processed by the shader
program.

FIG. 10 1s a chart showing the 6 registers used by a
specific embodiment of the present invention, and their
contents during the various passes through the shader as
shown 1n FIG. 9. The registers include a first and second
initial register 1010 and 1012, and two other pairs of
registers 1014 and 1016, as well as 1018 and 1020, which
store present and next texture descriptors in the ping-pong
fashion described above.

The first texture descriptors required are 102 and 103.
These texture descriptors are mnitialized and stored in reg-
isters 1010 and 1012. These imitial texture descriptors
remain 1n these registers throughout the running of the
shader program, such that the next quad of pixels to be
processed have these texture descriptors available to them.

As was seen 1 FI1G. 9, the next texture descriptors needed
are 104 and 105. These are fetched based on hints provided

US 7,245,302 Bl

9

to the pipeline or by the shader program, and stored in
register 3 1014 and register 4 1016.

In row 1040, texture descriptors 104 and 105 become the
present texture descriptors, while the hinted texture descrip-
tors 106 and 107 are retrieved and stored in register 5 1018
and register 6 1020. In row 1030, texture descriptors 106 and
107 become the present texture descriptors, while the next
texture descriptors 108 and 109 are retrieved and stored in
register 3 1014 and register 4 1016. In row 1060, there 1s no
next texture descriptors required, thus the contents of reg-
ister 5 1018 and register 6 1020 are not updated. In row
10770, the process begins again on the next quad of pixels.
Again, 1n this specific example, two texture descriptors and
corresponding textures are processed by the shader at a time.
In other embodiments of the present invention, a different
number of texture descriptors and corresponding textures
may be processed. For example, four, eight, sixteen, or more
texture descriptors and corresponding textures may be pro-
cessed by a shader program at a time.

FIG. 11 illustrates an the embodiment of the present
invention that caches texture descriptors in order to elimi-
nate the need for hints. Included are a graphics memory and
frame buffer interface 1110, shader core 1120, texture
descriptor cache and cache controller 1125, FIFOs 1130 and
1135, address translator 1 140, texture cache manager 1150,
texture cache 1155, FIFO 1160, texture filter 1170, and
shader backend 1180.

Pixel quads are received on bus 1122 from the rasterizer
by the shader core 1120. The shader core 1120 inspects at
least part of a shader program to determine which textures
will be needed. From this, requests for texture descriptors
are generated and provided on bus 1132 to the texture
descriptors cache controller 1125. The shader core 1120 also
provides these requests on bus 1124 to the FIFO 1130. The
texture descriptor cache controller 11235 determines whether
the needed texture descriptor 1s currently stored in the
texture descriptor cache or must be retrieved from the
graphics memory 1110. If the texture descriptor 1s not 1n
cache, 1t 1s requested from the graphics memory 1110 by the
texture descriptor cache controller 1125.

The graphics memory 1110 provides, through 1its frame
builer interface, requested texture descriptors to FIFO 1135
on bus 1132. The retrieved texture descriptors are stored 1n
FIFO 1135 and provided to the address translator 1140 on
bus 1134. The address translator receives transier descriptor
requests on bus 1142 from the FIFO 1130 and transier
descriptors on bus 1134 from the FIFO 1135. In order to
synchronize these requests and descriptors, an embodiment
of the present invention sets a tlag with each request
indicating whether the transter descriptor 1s retrieved from
memory. If the tlag 1s set, the transier descriptor 1s pulled
from FIFO 1135.

The address translator 1140 processes the texture descrip-
tor requests on bus 1142 and texture descriptors on bus 1134
and generates memory addresses which are provide on bus
1144 to the texture cache manager 1150. The texture cache
manager 1150 determines whether the texture needed 1s in
texture cache 1155 or must be retrieved from memory. In the
case ol a texture cache miss, a texture data request is
provided on bus 1152 to the graphics memory, through the
frame bufler interface 1110, which provides texture image
data on bus 1156 to texture cache 1155. In the case of a
texture cache hit, the texture cache manager provides a
texture cache address to the texture cache on bus 1154. The
texture cache 1155 provides texture data on bus 1138 to the
texture filter 1170. The texture filter 1170 filters the textures
and provides an output on bus 1172 to the shader backend

10

15

20

25

30

35

40

45

50

55

60

65

10

1180. When an individual group of pixel quads 1s finished
processing, they are provided on bus 1182 to the ROP,
otherwise they are provided to back to the shader core on bus
1184.

A specific embodiment of the present mnvention uses one
level of indirection in storing texture descriptors. That 1s, a
lookup table 1s stored, either on the graphics processor or 1n
the graphics memory. This lookup table translates texture 1ds
or representations to texture descriptor locations in the
graphics memory. In this way, texture descriptors can be
stored at any location in the graphics memory. In a specific
embodiment, this lookup table includes 512 entries. In other
embodiments, there may be a different number of entries.

In this and other embodiments, there i1s one level of
indirection 1n 1dentifying textures actively used by the
graphics pipeline. In one embodiment, there are 16 active
textures stored in cache. A lookup table 1s available to
engines in the graphics pipeline, where the lookup table
translates texture numbers used by the pipeline, such as
0-15, to active textures stored in cache. In other embodi-
ments there may be a diflerent number of active textures.

The above description of exemplary embodiments of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the mvention to the precise form described, and many
modifications and variations are possible i1n light of the
teaching above. The embodiments were chosen and
described 1n order to best explain the principles of the
invention and 1its practical applications to thereby enable
others skilled in the art to best utilize the invention 1n various
embodiments and with various modifications as are suited to
the particular use contemplated.

What 1s claimed 1s:

1. An mtegrated circuit comprising;:

a shader circuit;

a texture circuit including a texture cache coupled to the

shader circuit;

a frame buller interface coupled to the texture circuit; and

a texture descriptor cache controller coupled between the

shader and the frame bufler interface,

wherein the shader requests texture descriptors from the

frame buller interface, and a plurality of texture
descriptors are stored in a texture descriptor cache for
use by the texture circuit, and

wherein the texture descriptor cache controller receives

texture descriptor requests from the shader.

2. The integrated circuit of claim 1 wherein at least one of
the plurality of texture descriptors 1s requested a plurality of
times.

3. An integrated circuit comprising:

a graphics pipeline;

a shader circuit coupled to the graphics pipeline;

a texture circuit coupled to the shader circuit; and

a frame bufler interface coupled to the texture circuit,

wherein the shader circuit 1s configured to receive a first

texture descriptor, a first hint, and a first command from
the graphics pipeline, the first command using the first
texture descriptor,

and wherein the texture circuit 1s configured to receive a

second texture descriptor identified by the first hint
using the frame bufler interface.

4. The mtegrated circuit of claim 3 wherein the shader 1s
further configured to receive a first portion of a shader
program including a second command and a third command,
the second command using the second texture descriptor and
the third command using a third texture descriptor, and

US 7,245,302 Bl

11

wherein the texture circuit 1s further configured to receive
the third texture descriptor using the frame buller
interface.
5. The tegrated circuit of claim 4 further comprising:
a first register configured to store the first descriptor;
a second register configured to store the second descrip-
tor; and
a third register configured to store the third descriptor.
6. The integrated circuit of claim 5 wherein the shader 1s
turther configured to receive a second portion of a shader
program comprising a fourth command, the fourth command
using a fourth texture descriptor, and
wherein the texture circuit 1s further configured to receive
the fourth texture descriptor using the frame builler
interface.
7. The integrated circuit of claim 6 wherein the second
register 1s further configured to store the fourth texture
descriptor.

10

12

8. An integrated circuit comprising:

a graphics pipeline;

a shader circuit coupled to the graphics pipeline;

a texture circuit coupled to the shader circuit; and

a frame bufler interface coupled to the texture circuit,

wherein the shader circuit 1s configured to receive a
portion of a shader program including a first command,
the first command using a first texture descriptor, and

wherein the first texture descriptor 1s prefetched before
the shader executes the first command.

9. The integrated circuit of claim 8 wherein the first

texture descriptor 1s prefetched by the shader circuit.

	Front Page
	Drawings
	Specification
	Claims

