US007565490B1

a2y United States Patent (10) Patent No.: US 7.565.,490 B1
Donham et al. 45) Date of Patent: Jul. 21, 2009
(54) OUT OF ORDER GRAPHICS 1.2 CACHE 5,557,733 A * 9/1996 Hicoketal. 345/554
2001/0049771 Al* 12/2001 Tischleretal. ooovvvevn... 711/133
(75) Inventors: Christopher D. S. Donham, San Mateo, 2002/0069326 Al* 6/2002 Richardson et al. 711/122
CA (US); John S. Montrym, Los Altos 2005/0052449 A1* 3/2005 Emberlingccocve..... 345/418

Hills, CA (US); Patrick R. Marchand,

Apex, NC (US)

(73) Assignee: NVIDIA Corporation, Santa Clara, CA * cited by examiner

(US) Primary Examiner—Stephen C Elmore

Assistant Examiner—Mark A (1ardino, Jr.
(74) Attorney, Agent, or Firm—Townsend and Townsend and
Crew LLP; J. Matthew Zigmant

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 587 days.

(21) Appl. No.: 11/313,587 (57) ABSTRACT

(22) Filed: Dec. 20, 2005 Circuits, methods, and apparatus that provide an L2 cache

that services requests out of order. This .2 cache processes

S ??1(;61(*;11 200 (2006.01) requests that are hits without waiting for data corresponding
' _ _ _ to requests that are misses to be returned from a graphics

(52) US.CL ..., 711/122;°711/129;711/144; memory. A first auxiliary memory, referred to as a side pool.
_ _ 345_/537; 345/358; 345/559; 345/565 1s used for holding subsequent requests for data at a specific

(38) Field of Classification Search 711/122, address while a previous request for data at that address is

711/129, 144; 345/537, 558, 559, 565

L. _ serviced by a frame buffer intertace and graphics memory.
See application file for complete search history.

This L2 cache may also use a second auxiliary memory,
(56) References Cited referred to as a take pool, to store requests or pointers to data

that 1s ready to be retrieved from an L2 cache.
U.S. PATENT DOCUMENTS

5,555,392 A * 9/1996 Chaputetal. 711/118 19 Claims, 16 Drawing Sheets
642 MISSES Qeaz
TAG 657
> RAM - >
650
HITS
v 652
HIT
FIFO
660
HITS BFSI’:B‘FNI'E% GRAPHICS
(DATA NOT IN RAM) NTERFAGE MEMORY
664 l 580 690
HITS
SIDE POOL (DATA IN RAM)
665 562
HITS
(DATA IN RAM)
666 v v TEXELS
72
L RAM o 6 ol
670
TEXELS
674 TEXELS

692

US 7,565,490 B1

Sheet 1 0of 16

Jul. 21, 2009

U.S. Patent

| 8lnbi4
0Ll B
Sa%IAa(Gll
0G1l
dOW
091
SHIOMISN GOl
GGl
sng
Hodsuel | JadAH
0cl
AMOWB\ n_o..._“‘__‘w
wa)sAg Gel
snghoway |
GOl
sng
}SOH
001
NdO

)4
Aowa
€90
14"
sng AIOWaN

01

GeEl
310d

NdO

US 7,565,490 B1

Sheet 2 0of 16

Jul. 21, 2009

U.S. Patent

GLC

N WVdd

04C
W 1dvd

G9¢ |
Z NVHQ

GGC |

09¢
¢ 1Lavd

l Wvdd

0S¢
| LaVd

7 a1nbi4

1) 4
dva-X

0tc

N Odl

0cc

¢ Odl

v_ oz |

1 Odl

US 7,565,490 B1

Sheet 3 0of 16

Jul. 21, 2009

U.S. Patent

)43
dvd-X

o

AR
d3AYHS
Ol
S13dXdL 00¢
.
| I .
| ose
pire Nve _
S1dXdL A 776
S1S3N03IY

A
O4id

cle
S1S3N03d

¢ ainbi4
Z.€
S13ax3l
Z6¢ _ X
SEren proser s M
|
! " > O.\-m .
NvH
o z9e °t bLE
mmEI S13X3l
08¢
06€ - 09¢
| ANOWIW mw_,m“mw_m.z_ | o4l
SOIHAVYO | S - 1H
_ |
| l Nmm 4
S1IH
_ 05E
pl——— [E(M.._ rd
OV 1 _
8¢t w m
S1S3aND3IY i . Z4e
S3SSIN

J S1S3INDIY
10

SASSIN

OLE
NV

¢Ot
d3dVHS NO44

S1S3N03Y

US 7,565,490 B1

Sheet 4 of 16

Jul. 21, 2009

U.S. Patent

Vi ainbi
|

_] —
| 0LY 0EY

Wvd NV
_ 0Z¥ O4ld J8jus sjsenbay ¢

|
, _ OvY
_ Om.v _ x<mlx {
067 097
AHOWIN AvaaN 0414 | %m_m_
SOIHAVHO NV LiH | _
A
AL
S1S3ND3Y

0S¥ oL

A 1 Wvd

oVl _. LV | 9Vl

IR A4 — S3SSIN .
$1S3N03Y 20
Obb 1eg-X BIA 8490 Z7 0} JuSs 1opeys S153N0D3A

SDSSIW ‘Pa)oayod ale wmm._. e WOJ} P=Al=adal Muwmzdmﬁ_ 1

US 7,565,490 B1

Sheet Sof 16

Jul. 21, 2009

U.S. Patent

gy 2.nbi4

08¥

| JOVIHILNI

d344N83
JNVH

Z6¥
S73axX3l
'.._
o6 |
AHOW3IN
SOIHAVED _
_
1
S 4]
S1S3No3Iy

et

L .

VA 4
WV

i

'O414 WY Jaua sy Z1 °¢

$1%) 4
O4did
1IH

4174
S1IH

AS) 4
S3SSIN

—

0Sv
WV
OVL

OvP
dvd-X

|
A4y

"adeLIajul Jaynq auiel) el Alowsw
solydelb wol) pansU)al SASSIW dYded 7 7

S1S3N03Y

QYJeD 21 WO}

pajsanbal ale s|joxa) passIy |

OCy
NV

1A
O4dld

Olv
NV
OVL

US 7,565,490 B1

Sheet 6 0of 16

Jul. 21, 2009

U.S. Patent

Y @ 1NnDi . ‘Obp Jeg-X 01 papinoid s|jaxa)
Obt Jeg-X . ‘ayoed g Ul s|axa) ssadoe SliH L
0] JUSS pue ayoed Z7 ul palols 7)4
Alowsw solydeib wol} sjaxa] g aEyell
>
L
J oo | R | ocy
_ NV b NV
70 A S13X3l
| S1IH
Oy
08t | dva-X
067 09t |
adonan | | TN 04! o
SOIHAVYO SNV - 1IH
01%) 7 Ol
NVH | WV
OVl OVl

US 7,565,490 B1

Sheet 7 0f 16

Jul. 21, 2009

U.S. Patent

06V
AJOWNENN
SOIHdVYHO

‘ayoe”) Wolj panaLi}al S|axa] ‘€

_

dy @.nbi

0Lb
NV

|

08t
I9V4HILNI %wm_
y344n4g e
INVHS
- os
NVY
OV
R

A Y
S1S3N03d

AN 4
i , S 1dXdl
i |
—
144 |
 ST1IXdL
‘ayoen
| Ul palo}s
SEXCT M)
Ovv
dva-X
Ocv
O4dld
]
‘0414 woJj abiawa sjsenbay ¢
| o |
NV
OVL

U.S. Patent

Texture Cache

Receive request

for texel 505

o

Check tag RA_M E_r_

hit/miss 510

!

Send misses to L2

cache 515

Misses

Jul. 21, 2009

L2 Cache

Sheet 8 0f 16

‘ Hits and
v Mis_s_es

Send requests to
FIFO 520

Receilve and store
texels 560

>

Check tag RAM for
hitmiss 525

v

US 7,565,490 B1

Graphics Memory

i< A

!

Receive and store
texels 565

Send misses to Misses [-~ ..
. Retrieve texels
graphics memory | > 535
| __5_1_7_ r —
Hits
Y
Send hits to
Hit-FIFO 530
I !
Retrieve texels Send to L2 cache
550 540
Send to texture
cache 555

h 4

Send to texture

\

!

Returns can be

-

Retrieve texels
2/0

out of order

Figure 5

cache 545

US 7,565,490 B1

Sheet 9 0of 16

Jul. 21, 2009

U.S. Patent

269 g alnbi4
SaENE b9
. S713X3lL
p > —\ﬁ/““m.u_ >
2.9
S13x3L A A 990
| | (WvY NI V.LVQ)
S1IH
| [_
299
G99
(NWVY NI V1vQ)
089 !
069 $99
AHOWIN e | (WYY NI LON V.1vQ)
T |
SOIHJVYO | _ e | S1IH
| 099
04l
| | 1IH
ZS9 4
S1IH
059

< < NV
| _

/G9 OV1

¢89 - S3SSIN - v
S153N03d S1S3NO3Y

US 7,565,490 B1

Sheet 10 0of 16

Jul. 21, 2009

U.S. Patent

06.
| AHOW3N
SOIHAVYO

L

"20edUI Jaynq awel} 0} passed ssiw

‘ayoeo Z] Ui paio)s jou si ejeq ‘zZ

99/
100d 34AIS

/. 8inbi 4
0..
NV
08/
JOV44d31NI
d344N4g
dNVd
09.
O4ld
11K
0G.
— NV
OVl
M I Nmm. —
0l SSJHAAVY
d04d SSIN

'POAISDAI
Ol Ssaippe ejep 10} 1sanbay |

A4

0l $S34AAV 404
1S3N03Y 1Sl

‘AJowawl

US 7,565,490 B1

Sheet 11 of 16

Jul. 21, 2009

U.S. Patent

soiydelb o) passed paaladal (| d./ m._Dm_n_
ssalppe }e elep Joj }sanbaijsii{ ¢
|
| 0.4
WV
| —
|
|
| N
|
GO/
100d 3dIS
062 08. o
ANOWIN JOV4d4ANI 1Y Se pajeal} pue paAlsdal (|
3IIHdYHO d4d444N4g — ssalppe ejep Joj }sanbai puodseg 7
dNVY
09.L -
. 04l "
1H E S| G SSaJppe Je ejep Joj }sanbay ‘|
|
7 cql
1IH SV
d31v3dl 1S3N03H
0G.
NV g —_—
¢8.L OVl cv. lv.
0l SSIANAAV LV VIV(0} SSJdd4AdAdY d04 G SS34AAV
HO4 1S3INOIAY L1SYHIH 1S3AN03H ANOD3IS 404 1S4N03d

US 7,565,490 B1

Sheet 12 of 16

Jul. 21, 2009

U.S. Patent

Alowaw D/ w.:._m_n_
WOJ) paAal}al Q| ssalppe Joj ejeq ‘¢

| N 0.2
<7 Nvd
S1dX3dl / W
JOPIO JO JNO PadINISS
| G SSaIppe e ejep Joj }sanbay ‘|
| €9.L
| (WYY NI VLvQ)|
| S1liH GO/
| 100d 3ais|
_
062 m_o<m_m_hm¢z_ — "
AHOWIN B (WvY NI LON V1vQ)
SOIHAVHO b B S1IH
- IV |
t 092 -|jood apIs si9JUd JIY ‘Auowaw wo.y
w_.“____._n_ pPaUIN}al JOU (] SSAIPPE 0} B}eq 2
_
0GL
NV
OVL

US 7,565,490 B1

Sheet 13 0f 16

Jul. 21, 2009

U.S. Patent

L

061

ANOWIN |
SOIHAYYO |

A/ ainbi

084
JOVd4d3LNI
d344Nd
JANVd

cll
S13XdL

V..
S13Xdl
0LL >
NV
' 111
(WvY NI V.1va)
S1IH
|]
| GO/.
100d JdIS
‘ayoed
31N}x3) 0] papIAoid ‘2] WOl passadoe
Ol SSaippe 10} ejep |9x3d] ‘¢
092
n._u.n____._“_ 'aYyoed Wol} eyep ssaodoe
pue [00d apIs }JIXa ued Yy ‘ayoed
_ 271 Ul MOU ()] Ssalppe Jojeleq 7
13pJO JO N0 aYded aIN)Xa)
0G/ 0} papinoid G ssalppe 10} ejeq |
NV
OVL

U.S. Patent Jul. 21, 2009 Sheet 14 of 16 US 7,565,490 B1

Receive request for data at address 10, data not in L2 cache 810

_ '

Request data for address 10 from graphics memory 820 l

L e A

_ I S

Receive request for data at address 5, data in L2 cache 830

— — e ¥

Receive second request for data at address 10 840 .

_ — —

Treat second request for data at address 10 as hit 850

Accesé J;g for address 5 from L2 cache, send to t;;ure cache
out of order 860

. - _

= "Has data for address 10 returned from memory? 870 —a—

T
NO

I
YES - * o

Store hit for second address 10 request in side pool 880 —

Access data for address 10 from“L2 ;aéh-e, send to texture cache
in response to first request for data at address 10 890
Access data for address 10 from L2 cache, send to textL-Jre cache
in response to second request for data at address 10 895

P

Figure 8

US 7,565,490 B1

Sheet 15 0f 16

Jul. 21, 2009

U.S. Patent

086
40V44d31NI
d344N4d
dNvdd

Ov6
Jva-X

6 2inbi4
. 9.6
| S1dXdl
996 "
o S1aXdl /6 |
P
Y o6 thwn_ mhwm_:om_m_
rg= ...w._.wm_DOm_w._ IV L
986 |
P
> 19X4d ¢96 L6 |
S1IH SH3LNIOd
096
O4dld
1IH
256 4
S1liH
056
¢ INYY o
OVL A4S
156 $1S3NO3y
SISSIN

26
HIAVHS
Ol
S1ax3al
_ .
v
bv6 |
S13axX3l 776
S1S3Nd3IY
026
o4
L6
s1S3Nb3y
_ 0L6 _
o NV
/16 OVl
-~ S3SSIN
206
H¥IAVHS
NOYA
S1S3ND3H

US 7,565,490 B1

Sheet 16 0of 16

Jul. 21, 2009

U.S. Patent

0801
JOV4441NI
dd34N49
dNVa4

¥801

>

S13X3l

0l 8Inbi4

8.0l

\

0.0}

S1dX3dl N

NG/0L

WVY

LL0}
S1S3N03Y

_ N 100d
; ANVL

g

9901 S'1aXdlL

o201 S1S3N0O3IY

dG6/01

L 100d
INVL

————p

9¢0}l SH31LNIOd

¢

990} S13X3L |

gv/0l S1S3IND3IY

VG0l

0 100d
v_ VL

¢901l
S1IH

.‘

d¢/0l S431NIOd

V9.0l S13X3L

v#20l S1SINOIY

vZ.0L S¥ILINIOJ

Ov0l
dva-X

US 7,565,490 Bl

1
OUT OF ORDER GRAPHICS L2 CACHE

BACKGROUND

The present mvention relates to data caching 1n general,
and more particularly to a second-level (LL.2) cache that ser-
vices read requests out of order.

Modern graphics processing circuits process incredible
amounts of data to generate detailed graphics images for
games and commercial applications. Textures are one type of
this data. Textures are the surface patterns on structures in a
graphics image. They are made up of individual texels, and
often several texels contribute to each pixel of an 1mage.

Texels are processed 1n a graphics processor by texture
filters and shaders. A texture cache stores textures until
needed by a filter and shader. But memory space 1s limited;
these caches cannot store every texel that may be needed.
Accordingly, a higher level cache 1s used; this 1s referred to as
a second-level or L2 cache. If the texture cache does not have
a needed texel, i1t requests 1t from the L2 cache. But the L2
cache 1s also limited; when 1t does not have a requested texel,
it retrieves 1t from a graphics memory. When a texture cache
requests data from the L2 cache, 11 the data 1s present, the
result 1s an L2 cache hiat. If the data 1s absent from the L
cache, an L2 cache miss 1s said to occur.

When an L2 miss occurs, the L2 cache requests data from
the graphics memory via a frame bufler interface. The return
trip for this request can be hundreds of clock cycles. By
comparison, a hit can be serviced very quickly since the data
1s already present in the L2 cache. But conventional texture
cache designs require data to be returned 1n 1its requested
order. Since the time to service a miss 1s long, subsequent hits
may be stalled behind an earlier miss. Because of this, many
cache circuits artificially slow the response to a hit, or use
complicated logic to reorder requests to their original
sequence.

For example, a first request may be a miss. While the first
request 1s retrieved from a graphics memory, a second request
that 1s a hit may be received. It 1s undesirable to have the
second request delayed unnecessarily. This 1s particularly
true when an L2 cache 1s used to service requests from more
than one texture cache; different texture caches may have
made the first and the second requests. In such a case, the
texture cache making the second request has no reason to wait
tor the first request to be serviced.

Thus, what 1s needed 1s an 1.2 cache that can service
requests 1 an out-of-order fashion.

SUMMARY

Accordingly, what 1s needed are circuits, methods, and
apparatus that provide an L2 cache that services requests out
of order. An exemplary embodiment of the present invention
processes requests that are hits without waiting for data for
requests that are misses to be returned from a graphics
memory.

One exemplary embodiment of the present mvention uti-
lizes a first auxiliary memory, referred to as a side pool, for
holding subsequent requests for data at a specific address
while a previous request for data at that address 1s serviced by
a Trame buller interface and graphics memory.

Specifically, i1t a first request for data at an address 1s amiss,
a subsequent request for data at that address 1s treated as a hit
and placed 1n a queue. If the subsequent request emerges from
the queue before data for the first request 1s retrieved, the

5

15

20

25

30

35

40

45

50

55

60

65

2

subsequent request 1s placed in the side pool. After data for the
first request 1s stored in cache, the second request exits the
side pool and 1s serviced.

Another exemplary embodiment of the present invention
provides a second auxiliary memory for storing requests or
pointers to data that 1s ready to be retrieved from an L2 cache.
This memory, referred to as a take pool, provides circuitry
acting as an intermediary between one or more texture caches
and an L2 cache with information regarding the number of
requests that have been serviced and the age of one or more of
those requests.

In a specific embodiment of the present invention, each of
a first number of L2 caches provides data for a second number
ol texture caches. The first number and second number may
be different, and one or both need not be integer powers of
two. Each L2 cache provides data to a second number of take
pools, one take pool per texture cache. An intermediary cir-
cuit, referred to as a crossbar, selects data from the 1.2 cache
via the take pools and provides 1t to the texture caches. The
crossbar circuitry may arbitrate between the take pools. The
criteria for arbitration may be age, which may be defined as
the time since the L2 cache received a request, and urgency,
which may be defined as how close a requesting texture cache
1s to needing 1ts requested data. Various embodiments of the
present mvention may incorporate these and the other fea-
tures described herein.

-

A better understanding of the nature and advantages of the
present invention may be gained with reference to the follow-
ing detailed description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a computing system that 1s
improved by incorporating an embodiment of the present
imnvention;

FIG. 2 1s a block diagram of a portion of a graphics system
including a first number of texture pipeline caches commu-
nicating with a second number of memory partitions via a
crossbar according to an embodiment of the present imnven-
tion;

FIG. 3 1s a block diagram of a single texture pipeline cache

communicating with an .2 cache 1n a partition via a crossbar
according to an embodiment of the present invention;

FIGS. 4A-D 1illustrate the transfer of data in the block
diagram of FIG. 3;

FIG. 5 1s a flowchart illustrating the operation of a texture
cache and L2 cache according to an embodiment of the
present invention;

FIG. 6 illustrates the use of an auxiliary memory for hold-
ing subsequent data requests to an address while a previous
data request to the address 1s processed;

FIGS. 7A-D illustrate the transter of data in an 1.2 cache
when the auxiliary memory of FIG. 6 1s utilized;

FIG. 8 1s a flowchart of an .2 cache utilizing an auxiliary

memory for holding subsequent data requests to an address
while a previous data request to the address 1s processed;

FI1G. 9 1s a block diagram illustrating the use of an auxiliary
memory for holding pointers to data that 1s ready to be
retrieved from an 1.2 cache; and

US 7,565,490 Bl

3

FIG. 10 1s a more detailed block diagram illustrating the
use of a number of auxiliary memories for holding data
retrieved from an L.2 cache until 1t 1s provided to a requesting,
texture cache.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 1 1s a block diagram of a computing system that 1s
improved by incorporating an embodiment of the present
invention. This block diagram includes a central processing
unit (CPU) or host processor 100, system platform processor
(SPP) 110, system memory 120, graphics processing unit
(GPU) 130, frame buifer, local, or graphics memory 140,

MCP 150, networks 160, and internal and peripheral devices
170.

The CPU 100 connects to the SPP 110 over the host bus
105. The SPP 110 1s 1n communication with the graphics
processing unit 130 over an advanced graphics port (AGP) or
peripheral component interconnect express (PCIE) bus 135.
The SPP 110 reads and writes data to and from the system
memory 120 over the memory bus 125. The MCP 150 com-
municates with the SPP 110 via a high-speed connection such
as a HyperTransport bus 155, and connects network 160 and
internal and peripheral devices 170 to the remainder of the
computer system. The graphics processing unit 130 receives
data over the AGP or PCIE bus 135 and generates graphic and
video 1mmages for display over a momitor or other display
device (not shown). The graphics processing unit 130 may
make use of a frame buffer or graphics memory 140—via the
memory bus 145—as well as the system memory 120.

The CPU 100 may be a processor, such as those manufac-
tured by Intel Corporation or Advanced Micro Devices, more
likely the former, or other supplier, and are well-known by
those skilled in the art. The SPP 110 and MCP 150 are
commonly referred to as a chipset. The memory 120 1s often
a number of dynamic random access memory devices

arranged 1n a number of the dual 1n-line memory modules
(DIMMs). The graphics processing unit 130, SPP 110, and

MCP 150 are preferably manufactured by NVIDIA Corpora-
tion of Santa Clara, Calif.

Embodiments of the present mvention may be used to
improve the graphics processing unit 130. Also, other systems
are 1mproved by the icorporation of embodiments of the
present mvention. For example, the GPU 130 and SPP 110
may be combined as an integrated graphics processor or IGP.
This device 1s stmilarly improved by the incorporation of
embodiments of the present invention. Moreover, other types
of processors, such as video, audio, or general purpose pro-
cessors, and other types of processors and circuits may be
improved by the incorporation of embodiments of the present
invention. Also, while embodiments of the present invention
are well suited to texel storage, other types of data in graphics,
video, audio, or other applications may be similarly
improved. Further, other types of circuits will be developed,
or are currently being developed, and these may also be
improved by the incorporation of embodiments of the present
invention.

FI1G. 2 15 a block diagram of a portion of a graphics system
including a first number of texture pipeline caches commu-
nicating with a second number of memory partitions via a
crossbar according to an embodiment of the present mven-
tion. Each partition stores and retrieves data from a memory
or DRAM. Typically, the texture pipeline caches, crossbar,
and partitions are formed on an integrated circuit, while the
DRAMs are one or more separate mtegrated circuits. The
texture caches, crossbar, and partitions may be part of a

10

15

20

25

30

35

40

45

50

55

60

65

4

graphics processing unit, or they may be part of an integrated
circuit that includes graphics processing circuitry. This and
the other included figures are shown for exemplary purposes
only, and do not limait either the possible embodiments of the
present invention or the claims.

Specifically, this figure 1ncludes texture pipeline caches
210-230, crossbar 240, partitions 1 250 through N 270, and

DRAM 1 255 through N 275. The number of texture caches
and the number of partitions may be equal or unequal. In a
specific embodiment of the present invention, there are eight
texture pipeline caches and 6 partitions. In other embodi-
ments of the present mvention, other numbers of texture
caches and partitions may be used, and these numbers may be
powers ol 2 or non powers of 2, that 1s, they may be numbers
that are or are not found by 27X, where X is an integer and
1s a symbol meaning “to the power o1.”

In this configuration, each texture cache may receive data
from any partition via the crossbar 240. In other embodiments
ol the present invention, the partitions that can be accessed by
any particular texture cache may be limited. A texture cache
stores texels for use 1n a graphics pipeline. ITneeded texels are
not available 1n the texture cache, the texture cache requests
those texels from the partitions via the crossbar 240. The
crossbar 240 directs the request to the appropriate partition.
Each partition includes a second-level cache that supplies the
texels, 1f available 1n the L2 cache. If the requested texels are
not available 1n the L2 cache, the partition requests the texels
from 1ts corresponding DRAM. Once the partition has
received the requested texels, the partition provides the texels
to the texture cache via the crossbar 240.

Conventionally, texture caches allocate space for needed
texels as they are received from the partitions. Accordingly,
the texture caches require texel data to be returned in the order
the requests are made. IT texels are returned out of order, there
may not be proper locations for each texel to be stored in the
texture cache. Often, long delays or complex logic circuits are
implemented to reorder texels to ensure that they are provided
to texture caches in the requested sequence.

Accordingly, embodiments of the present invention utilize
texture caches that allocate space for texels as they are
requested from the partitions. This “allocate on miss™ con-
figuration requires the texture caches to be larger 1n si1ze since
space 1s reserved for a texel before it 1s received from the
partitions. This configuration can simplify partition design
and allow the partitions to supply texels to the texture caches
as soon as they become available, as opposed to waiting for
texels to be reordered. A more detailed block diagram of a
texture cache and a partition that 1s consistent with an
embodiment of the present invention 1s shown in the follow-
ing figure.

FIG. 3 1s a block diagram of a single texture pipeline cache
communicating with an .2 cache 1n a partition via a crossbar
according to an embodiment of the present ivention. This
figure 1includes a texture cache 300 that includes a tag RAM
310, latency FIFO or other buifer 320, RAM 330, a crossbar
340, and a partition including a second-level cache 301 that
includes tag RAM 350, hit FIFO 360, and RAM 370, as well
as a frame bulfer interface 380 that communicates with a
graphics memory 390. Typically, several texture caches com-
municate with several partitions via the crossbar 340, though
only one texture cache 300 and one partition are shown for
simplicity.

Requests for texels are recerved from the shader on line 302
by the tag RAM 310. The tag RAM 310 determines whether
the needed texels are stored 1n the texture cache 300 or need
to be retrieved from the partitions. If the needed texels are not
stored 1n the texture cache 300, the tag RAM 310 provides the

US 7,565,490 Bl

S

request on line 317 to the crossbar 340. The tag RAM 310
provides each request, hit or miss, on line 312 to the latency
FIFO 320.

The latency FIFO 320 delays the requests, giving the par-
titions time to provide missing texels on line 344 to the RAM
330. As requests emerge from the latency FIFO 320 on line
322, the appropriate texels are read from the RAM 330 and
provided to the shader on line 322.

Requests for missing texels are provided by the crossbar
340 to the appropriate partition on line 342. The tag RAM 350
receives the requests on line 342 and determines whether the
needed texels are available 1n the L2 cache. If the texels are
not available 1n the L2 cache, the tag RAM 350 requests the
data from the frame builer interface 380. If the data 1s avail-
able in the second-level cache 301, the tag RAM 350 provides
the request to a hit FIFO 360 on line 352.

Frame buffer interface 380 provides requests on line 382 to
the graphics memory or DRAM 390, which provides texels
back to frame bufler interface 380 on line 392. The frame
butiler interface provides these texels to the RAM 370 and
directly to the crossbar 340 on line 372. In this way, the
crossbar 340 does not need to wait for data to be read from the
RAM 370. Requests that are hits emerge from the hit FIFO
360 on line 362, and corresponding texels are read from the
RAM 370 and provided on line 374 to the crossbar 340.
Again, the crossbar 340 provides the texels to the appropriate
texture cache on line 344.

FIGS. 4A-D 1illustrate the transfer of data in the block
diagram of FIG. 3. In FIG. 4A, requests are received from the
shader by the tag RAM 410 on line 402. Requests enter the
FIFO 420 on line 412. Requests for data that 1s not stored 1n
the RAM 430 are provided to the crossbar 440 on line 417 by
the tag RAM 410. The crossbar 440 directs the request to the

appropriate partition and provides the request on line 442 to a
tag RAM 450.

In FIG. 4B, texels are requested from the L2 cache on line
442. The tag RAM 450 determines whether the needed texels
are stored in the second-level cache memory, RAM 470, or
need to be retrieved from the graphics memory 490. Miss
requests are provided to the frame builer interface 480 on line
457. The frame bullfer intertace 480 provides requests on line
482 to the graphics memory 490 and receives texels on line

492. The requests recerved by the tag RAM 450 that are hits
are provided to the hit FIFO 460 on line 452.

In FIG. 4C, requests that were hits emerge from the hit
FIFO 460 on line 462 and are received by the RAM 470. The
hit requests access data in the RAM 470 and provided texels
on line 472 to crossbar 440. Texels requested from the graph-
ics memory 490 are stored in the RAM 470 and provided to
the crossbar on line 472. This provides texels from the frame
butler interface 480 available to the crossbar 440 sooner than
if they had to be stored 1n the RAM 470 and then read and
provided on line 474.

In FIG. 4D, texels are provided by the crossbar 440 on line
444 and stored in the texture cache RAM 430. Requests
emerge from the FIFO 420 on line 422 and are read by the
RAM 430. Texels are read from the RAM 430 and provided
from the texture cache on line 432.

In this way, an L2 cache provides texels on an “as avail-
able” basis rather than reordering them into the requested
sequence. This allows greater utilization of the crossbar 440.
A flowchart of this methodology 1s shown 1n the next figure.

FI1G. 5 15 a flowchart illustrating the operation of a texture
cache and L2 cache according to an embodiment of the
present invention. This flowchart shows the activities and
decisions performed by a texture cache, a level 2 cache, and
graphics memory. Again, as texels are requested, 1t 1s deter-

10

15

20

25

30

35

40

45

50

55

60

65

6

mined whether the texels are currently stored 1n the texture
cache, 1f they are not, they are retrieved from the level 2 cache.
If the level 2 cache 1s not currently storing the texels, they are
requested from the graphics memory and provided to the
texture cache.

Specifically, 1n act 505 a request for texels 1s received. In
act 510, the tag RAM checks whether the requestis a hitor a
miss, that 1s whether the required data 1s stored 1n the texture
cache or needs to be retrieved from the partitions. If the
request 1s a miss, the request 1s sent to the L2 cache. All
requests are sent to the texture cache FIFO 1n act 515.

The level 2 cache recetves requests for missed data and
checks its tag RAM to determine whether the request 1s a hit
or a miss at this level. That 1s, 1n act 525, 1t 1s determined
whether the needed texels are stored in the level 2 cache
memory or need to be retrieved from the graphics memory. In
act 517, the requests that are misses are sent to the graphics
memory, while 1n act 530, the hits are sent to a FIFO.

In act 550, texels are retrieved from the level 2 cache
memory, and sent to the texture cache 1n act 555. In act 560,
the texture cache receives and stores these texels.

Requests that were a miss at the level 2 cache in act 517 are
provided to the graphics memory, and 1in act 5335, the texels are
retrieved. In act 540, the texels are sent to the level 2 cache and
stored, and 1n act 545, the texels are sent to the texture cache.
In act 565, the texels are received and stored 1n the texture
cache. In act 570, the needed texels are retrieved from the
texture cache memory.

In this way, the L2 cache can return texels 1n an out of order
manner. Specifically, texels provided by the L2 cache and
those provided by the graphics memory can be provided to a
crossbar circuit as soon as they are available.

A complication can arise in the circuitry FIG. 3. For
example, a request 1s recerved on line 342 for texels that are
not currently in the RAM 370, so a request for the texels 1s
made to the frame buffer interface 380. If a second request for
the same texel 1s recerved on line 342 by the tag RAM 350, 1t
1s undesirable and redundant to send another request for the
same data to the frame buflfer interface 380. Accordingly,
embodiments of the present invention treat the second request
as a hit, and the tag RAM 350 provides the request to the hit
FIFO 360, but not to the frame buffer interface 380. However,
the request 1s not actually a hit since the data 1s not yet 1n the
RAM 370. If the request 1s output by the hit FIFO 360 on line
362 before the data 1s written to the RAM 370 by the frame
builer interface 380, the proper data 1s notread from the RAM
370. To avoid this, the request is stalled at the FIFO 360 until
the needed data 1s written to the RAM 370. But stalling the
FIFO 360 prevents upstream requests from being serviced.

Accordingly, embodiments of the present invention utilize
an auxiliary memory to hold these requests until the needed
texel data 1s provided by the frame butler intertace 380 to the
RAM 370. At this time, the auxiliary memory provides the
request to the RAM 370, and proper texel data 1s provided on
line 374 to the crossbar 370. This auxiliary memory may be
referred to as a side pool. Embodiments of the present inven-
tion may incorporate both a side pool and one or more take
pools as described 1n figures below. The operation of a side
pool 1s shown 1n more detail 1n the following figures.

FIG. 6 illustrates the use of an auxiliary memory for hold-
ing subsequent data requests to an address while a previous

data request to the address 1s processed. This figure includes
a second-level cache including tag RAM 6350, hit FIFO 650,

sidepool 675, RAM 670, as well as frame butler interface 680
and a graphics memory 690.

Requests are recerved on line 642 by the tag RAM 650. It
the data requested 1s not stored 1n the level 2 cache, and the

US 7,565,490 Bl

7

data 1s not currently being retrieved by the frame buller inter-
face 680, the request 1s directed to the frame builer interface
680 on line 657. If the requested data 1s currently stored 1n the
second-level cache, or 1 the data 1s currently being retrieved
by the frame buffer interface 680, then the request is treated as
a hit and provided on line 652 to the hit FIFO 660.

As hit requests are output by the FIFO 660, they are either
directed on line 664 to the side pool 675 or on line 662 to the
RAM 670. The request hits are directed to the side pool i1 the
requested texels have not yet been written to the RAM 670 by
the frame butler interface 680. The hits are provided by the hit
FIFO 660 to the RAM 670 11 the needed data has already been
stored 1n the RAM 670. Once the requested data 1s received
and written to the RAM 670, corresponding requests are
provided by the side pool 675 on line 666 to the RAM 670.
Texels from the RAM 670 are provided on line 674 to the
crossbar (not shown).

In various embodiments of the present mnvention, the side
pool 675 may be a memory, or a number of registers or other
storage circuits. In a specific embodiment of the present
invention, the side pool 675 has a depth of the 4 entries,
though 1n other embodiments of the present invention, other
depths such as 6, 8, 16, or other numbers of entries may be
used.

FIGS. 7A-Dllustrate an example of a transfer of data in an
[.2 cache when the auxiliary memory of FIG. 6 1s utilized.
This 1s one exemplary sequence of events; it will be appreci-
ated by one skilled 1n the art that many possible sequences of
events may occur consistent with embodiments of the present
invention.

In FIG. 7A, a request for data at address 10 1s received by
the tag RAM 750. This data 1s not stored 1n the level 2 cache,

so the miss request 1s passed to the frame bulfer interface 780.

In FIG. 7B, arequest for data at address 5 1s received by the
tag RAM 750. The data at this address 1s stored 1n the second-
level cache, so the request 1s provided to the hit FIFO 760. At
the same time, the request for data at address 10 1s being
retrieved from the graphics memory 790.

In FIG. 7C, the request for data at address 5 1s provided to
the RAM 770. In this example, the data for address 10 has not
returned from the graphics memory, so the request enters the
side pool 765. Meanwhile, data for address 10 i1s being
returned from the graphics memory 790.

In FIG. 7D, data for address 10 1s now stored 1n the level 2
cache memory, so the hit request can exit the side pool and
access data from the RAM 770. Texel data at address 10 1s
accessed from the .2 cache and provided to the texture cache.

In this example, the use of this architecture allows the
request for data at address 5 and at address 10 to be serviced
out of order. Specifically, the first request for data at address
10 precedes the request for data at address 5, however, the
data at address 5 1s provided by the level 2 cache ahead of the
data at address 10.

Also, it should be noted that 1n practical systems, each level
of memory, texture cache, L2 cache, and graphics memory
uses 1ts own physical addresses. These addresses are trans-
lated from virtual addresses by lookup tables such as transla-
tional lookaside buifers. These addressing schemes are
ignored for simplicity in these examples.

FIG. 8 1s a flowchart of an .2 cache utilizing an auxiliary
memory for holding subsequent data requests for data at an
address while a previous request for data at the address 1s
processed. Again, this sequence of requests 1s shown for
exemplary purposes only.

In act 810, arequest for data at address 10 1s received by the
[.2 cache. The L2 cache determines that the requested data 1s

[l

5

10

15

20

25

30

35

40

45

50

55

60

65

8

not currently stored 1n the L2 cache. Accordingly, 1n act 820,
this data 1s requested from the graphics memory.

A request for data at address 5 1s recerved 1n act 830. It 1s
determined that the 1.2 cache 1s currently storing this data, so
the request 1s not set to the graphics memory. In act 840, the
[.2 cache recetves a second request for data at address 10.
Again, 1t would be redundant to make a second request for this
data from the graphics memory. Accordingly, 1in act 850, this
second request 1s treated as a hait.

In act 860, the data for address 5 1s accessed and provided
to the texture cache. In act 870, 1t 1s determined whether the
data for address 10 has returned from the graphics memory. If
it has not, the request 1s stored 1n a side pool 1n act 880. If 1t
has, then the data can be accessed {from the level 2 cache and
provided to the texture cache in response to the first request
for data at address 10 1n act 890. I the request is stored in the
side pool 1n act 880, once the data for address 10 has been
retrieved from the graphics memory in act 860, the request
may be provided to the second-level cache memory in act
890. After data 1s provided to the texture cache 1n response to
the first request for data at address 10 1n act 890, data can be
provided to the texture cache in response to the second
request for data at address 10 1n act 895.

Again, each L2 cache 1n each partition supplies texels for
cach of a number of texture caches via a crossbar circuits. It 1s
desirable that the crossbar remain utilized to the fullest extent
possible. Accordingly, embodiments of the present invention
provide an auxiliary memory where requests or pointers indi-
cating that data 1s available 1n the L2 cache can be held until
the crossbar 1s able to provide the data from the .2 cache to
the approprate texture cache. The following figure illustrates
the use of this auxiliary memory.

FI1G. 9 1s a block diagram illustrating the use of an auxiliary
memory for holding pointers to data that 1s ready to be
retrieved from an L.2 cache until 1t 1s provided to a requesting,
texture cache. This auxiliary memory may be appropriately
referred to as a take pool, since the crossbar may take texels
from the L2 cache via these auxiliary memories.

This figure includes a texture cache including a tag RAM
910, FIFO 920, and RAM 930, a crossbar 940, a partition that

includes an L.2 cache including a tag RAM 950, hit FIFO 960,
RAM 970, take pool 975, and a frame butifer interface 980.

The take pool 975 stores requests or other pointers that
indicate what data 1s available 1n the RAM 970 for retrieval by
the crossbar 940. The crossbar 940 services a request from a
texture cache by requesting data corresponding to one of the
pointers 1n the take pool 975. In various embodiments of the
present invention, the crossbar 940 may read the pointers and
send the request either to the take pool 975 or directly to the
RAM 970. In one embodiment of the present invention, the
request 1s made to the take pool 975. The take pool 975 then
requests texel data from the RAM 970 and provides i1t to the
crossbar 940.

In a specific embodiment of the present invention, hit
requests emerge from the hit FIFO 960 and are stored 1n the
take pool 975. Alternately, the request may be translated into
another type of pointer, which 1s stored in the take pool 975.
The crossbar 940 services requests by surveying the pointers
on line 972 provided by the take pool 975. The crossbar sends
a request on line 974 to the take pool 975 for data correspond-
ing to one of the pointers on line 972. The take pool 975 passes
the request on line 964 to the RAM 970, which retrieves the
requested data and provides 1t on line 966 to the take pool 975.
The take pool 975 then passes the data on line 976 to the
crossbar 940. The crossbar 940 provides the data to the origi-
nally requesting texture cache pipeline.

US 7,565,490 Bl

9

The take pool 975 may be a memory, a number of registers,
or other storage circuits. In a specific embodiment of the
present 1vention, the take pool 975 1s four entries deep,
though 1n other embodiments of the present invention the take

10

2. The integrated circuit of claim 1 wherein the tag ram
provides a first read request to the frame buffer interface 1
data requested by the first read request 1s not stored 1n the
second-level cache and has not been requested from the frame

pool may have different depths. The crossbar 940 may further 5 buller interface,

include an arbiter circuit (not shown). The take pool 975 may
provide pointer or requests on line 976 as well as the age of the
oldest pointer or request 1n the take pool 975. This and other
information may be used by the arbiter 1n crossbar 940 1n
determining which texels to provide to a texture cache on a
given clock cycle.

FIG. 10 1s a more detailed block diagram 1illustrating the
use of a number of auxiliary memories for holding data
retrieved from an L2 cache until 1t 1s provided to requesting,
texture caches. This figure includes a crossbar 1040, L2 cache
memory 1070, frame buifer interface 1080, and take pools 0
1075A through N 1075N. Embodiments of the present inven-
tion may also incorporate both the take pools shown and a side
pool as shown 1n previous figures.

Again, hit requests emerge from a hit FIFO (not shown)
and are stored (or converted to pointers that are stored) 1n the
take pools 1075A-1075N. The crossbar 1040 can review the
requests or pointers on lines 1072A-1072N. The crossbar

1040 sends requests for corresponding data on lines 1074 A-
1074N to the take pools 1075A-1075N, which pass the
requests on line 1077 to the RAM 1070. The RAM 1070
provides the requested data to the appropriate take pool
1075A-1075N, which 1n turn passes 1t on lines 1076 A-1076N
to the crossbar 1040. The crossbar 1040 then passes the texel
data to the originally requesting texture cache pipeline.

The crossbar 1040 can arbitrate among the take pools
1075A-1075N by considering several criteria. Some of these
criteria include the number of entries 1n any one take pool, the
age of the oldest request 1n a take pool, and the urgency of a
request that has resulted in data 1n a take pool. Age can be
measured as the time that the .2 cache has had the request, or
by how long 1t has been since a texture cache made the
request. Urgency can be measured by how near the recipient
texture cache 1s to needing data. In various embodiments of
the present invention, these or other criteria can be used in
arbitrating among the take pools 1075A-1075N.

The above description of exemplary embodiments of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the mvention to the precise form described, and many modi-
fications and variations are possible in light of the teaching
above. The embodiments were chosen and described 1n order
to best explain the principles of the invention and 1ts practical
applications to thereby enable others skilled 1n the art to best
utilize the invention 1n various embodiments and with various
modifications as are suited to the particular use contemplated.

What 1s claimed 1s:

1. An integrated circuit including a first number of memory
interface partitions, each partition including a second-level
cache, each second-level cache comprising;:

a tag ram configured to receive read requests for data and to
determine whether data requested by a read request 1s
stored 1n the second-level cache;

a frame bufler imnterface configured to recerve read requests
from the tag ram;

a first-in-first-out memory configured to receirve read
requests from the tag ram;

a first auxiliary memory configured to receive read requests
from the first-in-first-out memory; and

a second-level cache memory configured to recetve read
requests from the first auxiliary memory and the first-

in-first-out memory.

10

15

20

25

30

35

40

45

50

55

60

65

the tag ram provides a second read request to the first-in-
first-out memory 1f data requested by the second read
request 1s not stored 1n the second-level cache and has
been requested from the frame builer interface, and

the tag ram provides a third read request to the first-in-first-
out memory 1f data requested by the third read request 1s
stored 1n the second-level cache.

3. The integrated circuit of claim 2 wherein the first-in-
first-cut memory provides the second read request to the first
auxiliary memory 11 data requested by the second read request
1s not stored 1n the second-level cache,

the first-in-first-out memory provides the second read
request to the second-level cache memory 1f data
requested by the second read request 1s stored in the
second-level cache, and

the first-in-first-out memory provides the third read request
to the second-level cache memory.

4. The mtegrated circuit of claim 3 wherein the auxihiary
memory provides the second read request to the cache
memory 1 data requested by the second read request 1s stored
in the second-level cache.

5. The itegrated circuit of claim 1 further comprising a
second number of second auxiliary memories configured to
receive data from the second-level cache memory.

6. The integrated circuit of claim 3 further comprising an
arbitration circuit configured to receive data from the second
number of second auxiliary memories, and further configured
to provide data to a second number of texture caches.

7. Anntegrated circuit including a first number of memory
interface partitions, each partition mcluding a second-level
cache, each second-level cache comprising:

a tag ram configured to recerve read requests for data and to
determine whether data requested by a read request 1s
stored 1n the second-level cache;

a frame bulfer interface configured to receive read requests
from the tag ram;

a first-in-first-out memory configured to receive read
requests from the tag ram;

a second-level cache memory configured to receive read
requests from the first-in-first-out memory; and

a second number of first auxiliary memories configured to
receive data requested by read requests from the second-
level cache memory and further configured to provide
data requested by read requests to a second number of
texture caches.

8. The integrated circuit of claim 7 wherein the tag ram
provides a first read request to the frame bufler interface i
data requested by the first read request 1s not stored 1n the
second-level cache and has not been requested from the frame
butter interface,

the tag ram provides a second read request to the first-in-
first-out memory 1f data requested by the second read
request 1s not stored 1n the second-level cache and has
been requested from the frame butler interface, and

the tag ram provides a third read request to the first-in-first-
out memory 1f data requested by the third read request 1s
stored 1n the second-level cache.

9. The integrated circuit of claim 8 wherein the first-in-
first-out memory provides the second read request to the
second-level cache memory 11 data requested by the second
read request 1s stored in the second-level cache, and

US 7,565,490 Bl

11

the first-in-first-out memory provides the third read request
to the second-level cache memory.

10. The ntegrated circuit of claim 9 wherein each of the
first auxiliary memories provide data and age information
relating to the data to an arbaiter.

11. The integrated circuit of claim 10 further comprising a
second auxiliary memory configured to receive read requests
from the first-in-first-out memory and further configured to
provide read requests to the second-level cache memory.

12. The mtegrated circuit of claim 11 wherein the first-1n-
first-out memory provides the second read request to the
auxiliary memory 1f data requested by the second read request
1s not stored in the second-level cache.

13. The integrated circuit of claim 12 wherein the second
auxiliary memory provides the second read request to the
cache memory 1f data requested by the second read request 1s
stored 1n the second-level cache.

14. An imtegrated circuit including a first number of
memory interface partitions, each partition including a sec-
ond-level cache, each second-level cache comprising:

a tag ram configured to recerve read requests for data and to
determine whether data requested by a read request 1s
stored 1n the second-level cache;

a frame buller imnterface configured to recerve read requests
from the tag ram;

a first-in-first-out memory configured to receive read
requests from the tag ram;

a second-level cache memory to recerve read requests from
the first-in-first-out memory and to provide data
requested by the read requests; and

a first auxiliary memory configured to receive read requests
from the first-in-first-out memory when the requested
data 1s not available 1n the second-level cache memory
and to provide read requests to the second-level cache
memory once the requested data 1s available 1n the sec-
ond-level cache memory.

5

10

15

20

25

30

35

12

15. The integrated circuit of claim 14 wherein the tag ram
provides a first read request to the frame buffer interface 1
data requested by the first read request 1s not stored 1n the
second-level cache and has not been requested from the frame
bufter intertace,

the tag ram provides a second read request to the first-1n-
first-out memory 1f data requested by the second read
request 1s not stored 1n the second-level cache and has
been requested from the frame butler interface, and

the tag ram provides a third read request to the first-in-first-
out memory 1f data requested by the third read request 1s
stored 1n the second-level cache.

16. The integrated circuit of claim 15 wherein the first-in-
first-out memory provides the second read request to the first
auxiliary memory 11 data requested by the second read request
1s not stored 1n the second-level cache,

the first-in-first-out memory provides the second read
request to the second-level cache memory 1f data
requested by the second read request 1s stored in the
second-level cache, and

the first-in-first-out memory provides the third read request
to the second-level cache memory.

17. The integrated circuit of claim 16 wherein the auxiliary
memory provides the second read request to the cache
memory 1f data requested by the second read request 1s stored
in the second-level cache.

18. The integrated circuit of claim 14 further comprising a
second number of second auxiliary memories configured to
receive data from the second-level cache memory.

19. The integrated circuit of claim 18 further comprising an
arbitration circuit configured to receive data from the second
number of second auxiliary memories, and further configured
to provide data to a second number of texture caches.

	Front Page
	Drawings
	Specification
	Claims

