US007589741B1
a2 United States Patent (10) Patent No.: US 7.589.,741 B1
Donham et al. 45) Date of Patent: Sep. 15, 2009
(54) PROCESSING HIGH NUMBERS OF (56) References Cited
INDEPENDENT TEXTURES IN A 3-D US PATENT DOCUMENTS
GRAPHICS PIPELINE
5,550,961 A 8/1996 Chimoto
(75) TInventors: Christopher D. S. Donham, San Mateo, 5,844,576 A * 12/1998§ Wilde. etal. ..oooiiiinanl, 345/544
CA (US); Alexander L. Minkin, Los 6,067,643 A 52000 Omtzigt
Altos, CA (US) 6,201,547 B1* 3/2001 Rogersetal. 345/582
" 6,215,497 Bl 4/2001 Leung
(73) Assignee: NVIDIA Corporation, Santa Clara, CA 6,222,548 Bl 42001 Oda
US 6,239,810 Bl 5/2001 Van Hook et al.
(US) 6,624,820 B2 9/2003 Ozawa
(*) Notice: Subject to any disclaimer, the term of this 6,940,519 B2 972005 Saito et al.
: : 7,164,426 B1* 1/2007 Duluketal. 345/564
patent 1s extended or adjusted under 35
U.5.C. 154(b) by 9 days. OTHER PUBLICATIONS
(21) Appl. No.: 11/736,574 Ikedo, et al., “An Advanced Graphics Chip with Bump Mapped

Phong Shading;” IEEE; Proceedings 1997 Computer Graphics Inter-

(22) Filed: Apr. 17, 2007 national Conference; pp. 156-165.

* cited by examiner

Related U.S. Application Data _ _
Primary Examiner—Hau H Nguyen

(62) Division of application No. 10/696,848, filed on Oct. (74) Attorney, Agent, or Firm—Townsend and Townsend and

30, 2003, now Pat. No. 7,245,302. Crew LLP
(51) Int.Cl. (57) ABSTRACT
G09G 5/00 (2006.01) o _
GO6T 11/40 (2006.01) Circuits, methods, and apparatus provide for the storage of
GO6T 1/00 (2006.01) texture descriptors in a graphlc.s memory. Since the texture
H descriptors are stored 1n a graphics memory, they do not need
GO6T 15/50 (2006.01)
to be stored 1n the graphics processor itself, thus reducing
(52) US.CL ... 345/582; 345/522; 345/352; graphics processor circuitry and cost. This allows more tex-
345/426 tures to be associated with each graphics primitive, thereby
(58) Field of Classification Search 345/426, improving image realism.
345/522, 587,552, 572, 582
See application file for complete search history. 21 Claims, 11 Drawing Sheets
700
PROVIDE INITIAL PRESENT j{]
| TEXTURE DESCRIPTORS TO

GRAPHICS PIPELINE

l

720
. GENERATE HINTS IDENTIFYING .
| NEXT TEXTURE DESCRIPTORS
FETCH TEXELS IDENTIFIED 730
BY PRESENT TEXTURE B
DESCRIPTORS, USE TEXELS
FETCH NEXT TEXTURE 740
DESCRIPTORS IDENTIFIED —
BY HINTS
750
NEXT TEXTURE DESCRIPTORS »
BECOME PRESENT TEXTURE
DESCRIPTORS
\ N l 60
N0 PIXEL DONE vy
l Yas
770

{ OUTPUT TO ROP /

US 7,589,741 B1

Sheet 1 of 11

Sep. 15, 2009

U.S. Patent

)4

N

jang awel

L Ol

0¢1

L

abplLquinos

1.I_._I_.I__l.l|__l_l__l._l._li_l_..l._l__l_.l_-l..l_ll_.l.l_l..II.II..I...I..I.'-I._.I_.I._I.-I..I.. lllllllllll

J0)Bl13|800Y
sojydels)

GCl

lll

m:\ﬁ

aoEmE Emﬁ;wl

L WAIQ

¢ ININIQ

ey

¢ WNIQ

e e . e e]

P INWIC

) 0LL
S101S 10d —"

pJe) solydels) .\\m@r
991
pieD asn

— b
WapPO T Ye

pieo eueyg - ¢

—————= (gl
pieg opny

0§l
oBplquiioN | €—»| NdO —

US 7,589,741 B1

Sheet 2 of 11

Sep. 15, 2009

U.S. Patent

JOLINOW

NNNH

YAIE N3LSAS
/1 olany 067
Qb H . N
Y HILNIHd
LINYIHLT P , AHYOSAIM
x _ 00101 - , FEMEES
W3AOW N YHINYD
_ 24O
1203 . Z30W0N | HaNNVOS
SIAINA) qmmu
/T QuvH —
8eT ——
(TYNOILHO) ommw -
1 Y33dng 177~
OtZ MS_{_W_H_L. Y .
=
| m._,wzo_Eov “rc
....:ll.rmﬂummmoomn_flwl do]l > NdD
3OIHdYY | X8dOV Z 3DHOAN
a7 / S @EU
012
Glz~] €17

AHOWIN | [ASOWIN

2%

U.S. Patent

310
[

|

GRAPHICS
- 1

MEMORY
€

Sep. 15, 2009 Sheet 3 of 11 US 7,589,741 B1

FROM AGP BUS

a4

(EXTERNAL)

[320
| 330
| HOST
INTERFACE
' 335
GEOMETRY |/
‘[J
340
RASTERIZER
FRAME | ! r
SBUFFER Y ’
350 |
INTERFACE | SHADER
| CORE 4
1 l | 4
ADDRESS M ey TURE l
: CACHE
" DATA | (SUBCIRCUIT) |
" 360-] l |
370 SHADER |
BACKEND

e ikl Sl

l

FIG. 3

J RASTERIZER | 3%V
OPERATIONS

1\385

TO SCAN OUT

U.S. Patent Sep. 15, 2009 Sheet 4 of 11 US 7,589,741 B1

BASE __
ADDRESS
TD1

NDEX| | l

TDN |

GRAPHICS MEMORY

FIG. 4A

POINTER o »l] |

ADDRESS POINTER &

on ||
POINTER N b

GRAPHICS MEMORY |

FIG. 4B

INDEX l POINTER & TD1 L

' 1/[_ TON |
| POINTER 1 | - |

i GRAPHICS MEMORY

FIG. 4C

U.S. Patent Sep. 15, 2009 Sheet 5 of 11 US 7,589,741 B1

SHADER TEXTURE
PROGRAM DESCRIPTERS
INST O ™0 0
K] | _INST *
1D 1 P

DY

FIG. 5

U.S. Patent

Sep. 15, 2009

INSTRUCTION

610

S

NUMBER

1

2

10

11

12

13

14

15

16

US 7,589,741 B1

Sheet 6 of 11
600
INSTRUCTION
TEX RO, #102 — 0620
TEX R1, #103 —630
ADD R2, RO, R1 ——640
TEX RO, #104
TEX R1, #105
ADD R2, R2, R©
ADD R2, R2, R*
TEX R, #106
TEX R1, #107
ADD R2, R2, RO
ADD R2, R2, R1
TEX RO, #108
TEX R1, #109
ADD R2, R2, RO
ADD R2, R2, Rt
OQuUT R2 ——650

FIG. ©

U.S. Patent Sep. 15, 2009 Sheet 7 of 11 US 7,589,741 B1

700
PROVIDE INITIAL PRESENT 710
TEXTURE DESCRIPTORS TO
GRAPHICS PIPELINE
720

GENERATE HINTS IDENTIFYING
NEXT TEXTURE DESCRIPTORS

FETCH TEXELS IDENTIFIED } 130
BY PRESENT TEXTURE ;
DESCRIPTORS. USE TEXELS
FETCH NEXT TEXTURE /40
DESCRIPTORS IDENTIFIED
BY HINTS
50
NEXT TEXTURE DESCRIPTORS
BECOME PRESENT TEXTURE
DESCRIPTORS
N ‘1' {60
O [PIXEL DONE
l Yes
70
[OUTPUT TO ROP

FIG. 7

U.S. Patent

Nol

Sep. 15, 2009 Sheet 8 of 11 US 7,589,741 B1
800
PROGRAM INITIAL HINTS AND 810
INITIAL PRESENT TEXTURE
DESCRIPTORS
FETCH SHADER PROGRAM 890
COMMANDS USING PRESENT
TEXTURES AND COMMANDS
REQUIRING NEXT HINTS
r
} !
FETCH TEXELS IDENTIFIED . 830
BY PRESENT TEXTURE B
DESCRIPTORS, USE TEXELS 1
FETCH NEXT TEXTURE 840
DESCRIPTORS IDENTIFIED
BY HINTS
NEXT TEXTURE DESCRIPTORS 850
BECOME PRESENT TEXTURE
DESCRIPTORS
l 860
PIXEL DONE?]—J
| Yes
\J { 870
OUTPUT TO ROP —

FIG. 8

US 7,589,741 B1

Sheet 9 of 11

Sep. 15, 2009

U.S. Patent

G868 —~—- 601801 | dQON dQON QL-C
illlll.Tll!i I .
086 ~— L0L'90L_ 601'801 dOON -
516~ SOL'VOL_ ..____...Br_@of eoLgoL<« -1 T -y T
0L6~— €020l ,,,,mo?of SoveoL< T e
G96—~— SUON "~£01'201 6oL 'v0) SUON
- HO134
a3sn mmmﬁwo%m_m: NOILdIN0S3d a3asn
sENEN olad 3y | FENLIXILANY | NOILONYLSN
@ L INIH 3¥NLX3L &
096 056 Q&L 0€6
006

SUON b SSYd
1952 c SSVd
St --91-Z) Z SSVd
e
m”m HO L3434
zo_mw%wmmz_ ALIALLOV
omm¥ 016

U.S. Patent Sep. 15, 2009 Sheet 10 of 11 US 7,589,741 B1

1000

1010 1012 1014 1016 1018 1020
[[[[[f

REG REG REG REG REG REG
1 2 3 4 5 6
INITIAL 1 INITIAL2 | NEXT 1 NEXT 2 | PRESENT1 PRESENT 2
ong 102 103 104 105 X X
PRESENT 1 PRESENT 2| NEXT 1 NEXT 2
(/ 104 105 106 107
1040
NEXT 1 NEXT?2 | PRESENT1 PRESENT2
1
K 108 09 | 106 107
1050 |
PRESENT 1 PRESENT 2| NEXT 1 NEXT 2
- 108 109 X X
1060
NEXT 1 NEXT 2 | PRESENT1 PRESENT 2
ﬁ 104 105 X X
1070

U.S.

Patent

1110
[

|

MEMORY
AND
FRAME
BUFFER

INTERFACE |

Sep. 15, 2009 Sheet 11 of 11 US 7,589,741 B1
FROM RASTERIZER
1122\i [
1120
SHADER
1125
[1132| CORE
| TEXTURE
| DESCRIPTOR TEXTURE 1124

1127

g CACHE DESCRIPTOR
| CONTROLLER

| GRAPHICS {_

> FIFO

REQUESTS B30
1135 FIFO
[.

1134

TEXTURE) 1142
| DESCRIPTORS

- TEXTURE DATA REQUESTS

TEXTURE

l

DATA

\

1156

1155
[

{

~—1152 1144

ADDRESS 1140 |
TRANSLATOR I

TEXTURE 1150 |

TEXTURE ‘ADDRESSf CACHE J

CACHE |~ | MANAGER |
1154
1158
TEXTURE IDTO‘
TEXTURE ’1 FILTER |
DATA
f»ﬂ?z
SHADER | 1184
BACK END
~ 1180
1182
Fl1G. 11 TO ROP

US 7,589,741 B1

1

PROCESSING HIGH NUMBERS OF
INDEPENDENT TEXTURES IN A 3-D
GRAPHICS PIPELINE

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application 1s a divisional of U.S. patent application
Ser. No. 10/696,848, filed Oct. 30, 2003, entitled “Flexible
and Inexpensive Method for Processing High Numbers of
Independent Textures in a 3-D Graphics Pipeline,” which 1s
hereby incorporated by reference.

BACKGROUND

Computer graphics images are formed by combining a
collection of primitives, otherwise known as geometries, such
as rectangles, triangles, and lines that have visibility, color,
and texture information associated with them. In computer
systems, a graphics processor operates on these primitives
and associated textures to determine the color intensity of
individual pixels on the monitor. One particular circuit 1n the
graphics processor, a shader, combines primitives and their
associated textures to generate fragments, which are later
converted to the individual pixels.

In conventional systems, these textures are identified by
texture descriptors that are provided to a graphics processor
via an accelerated graphics port (AGP) bus. These texture
descriptors are stored on the graphics processor, used, and
replaced by new texture descriptors as needed. As one
example, 16 texture descriptors are cached on a specific
graphics processor at a time. Each texture descriptor typically
includes texture state information such as, but not limited to,
the texture’s base address (or base addresses, since each MIP
layer may need 1ts own), width, height, stride, texel format,
wrap properties, border properties, and texture filter type. The
textures themselves are stored 1n a frame buller or graphics
memory connected to the graphics processor, and a subset of
these may be cached 1n the graphics processor for fast access.

There 1s a great demand on graphics processors to deliver
ever more realistic 1images. One way of achieving greater
realism 1s to use a larger number of textures in generating an
image. For example, current graphics images are now requir-
ing over 500 textures for each image frame. Each texture
descriptor 1s large, (for example, there may be several hun-
dred bits of mnformation per texture descriptor) and having
them available on the graphics processor requires an increase
1in processor memory, thus raising the cost of manufacturing
the graphics processor.

Thus, what 1s needed are circuits, methods, and apparatus
for making greater numbers of textures available to a graphics
processor such that more realistic images may be generated,
without the need to store all the texture descriptors on the
graphics processor.

SUMMARY

Accordingly, embodiments of the present invention pro-
vide circuits, methods, and apparatus for increasing the num-
ber of textures available to a graphic processor by storing
texture descriptors 1n a graphics memory. Since these texture
descriptors are stored in the graphics memory instead of on
the graphics processor, there can be many more textures asso-
ciated with an 1image, thus increasing image realism. Further,
if only a subset of these texture descriptors are cached on the
graphics processor 1tself, die area 1s saved when the graphics

10

15

20

25

30

35

40

45

50

55

60

65

2

processor 1s on an integrated circuit. There 1s also a reduction
in AGP traffic since the descriptors are stored once for several
uses.

An exemplary embodiment of the present invention pro-
vides a method of generating a graphics image. This method
includes storing a plurality of texture descriptors in a graphics
memory, and retrieving the plurality of texture descriptors
from the graphics memory for use 1n a graphics processor.

Another exemplary embodiment of the present invention
provides a method of generating a graphics image. This
method includes storing a plurality of texture descriptors 1n a
graphics memory, and retrieving the plurality of texture
descriptors from the graphics memory for use 1n a graphics
processor. The plurality of texture descriptors are stored once
in the graphics memory and retrieved a plurality of times for
use by the graphics processor, and a shader program causes
the retrieval of the plurality of texture descriptors.

A Turther exemplary embodiment of the present invention
provides a method of generating a graphics image. This
method provides receiving a first texture descriptor, a first
hint, and a first command from a graphics pipeline, the first
command using the first texture descriptor, and retrieving a
second texture descriptor 1dentified by the first hint. A first
portion of a shader program is also retrieved. This shader
program portion includes a second command using the sec-
ond texture descriptor, and a third command using a third
texture descriptor. The third texture descriptor 1s also
retrieved.

Yet a turther exemplary embodiment of the present mven-
tion provides a method of generating a graphics 1image. This
method includes retrieving a portion of a shader program
comprising an instruction using a texture descriptor, and
prefetching the texture descriptor from a graphics memory
betore the mstruction 1s executed.

Another exemplary embodiment of the present invention
provides an integrated circuit. This integrated circuit includes
a shader circuit, a texture circuit coupled to the shader circuat,
and a frame bufler interface coupled to the texture circuit. The
texture circuit retrieves texture descriptors from a memory
using the frame butler intertace.

A Turther exemplary embodiment of the present invention
provides a graphics processor. The graphics processor
includes a shader circuit, a texture circuit including a texture
cache coupled to the shader circuit, and a frame butler inter-
face coupled to the texture circuit. The texture circuit retrieves
a plurality of texture descriptors from an external memory
coupled to the frame buffer interface and stores them 1n a
texture cache.

A better understanding of the nature and advantages of the
present invention may be gained with reference to the follow-
ing detailed description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a computing system that
benefits by incorporation of embodiments of the present
invention;

FIG. 2 1s a block diagram of an improved computer system
that benefits by incorporation of embodiments of the present
invention;

FIG. 3 1s a block diagram of a graphics system that 1s
benefited by incorporation of embodiments of the present
invention;

FIGS. 4A-4C 1llustrates several examples of how texture
descriptors are identified 1n embodiments of the present
invention;

US 7,589,741 B1

3

FIG. 5 shows a representation of a shader program, texture
descriptors used by the shader program, and a number of pixel
quads to be processed by the shader program;

FIG. 6 1s an example of a shader program;

FIG. 7 1s a flow chart showing a method of retrieving
texture descriptors from a graphics memory 1n accordance
with an embodiment of the present invention;

FIG. 8 1s a flow chart showing a method of retrieving
texture descriptors from a graphics memory 1n accordance
with an embodiment of the present invention;

FIG. 9 15 a table showing activities performed during the
running of the shader program shown 1n FIG. 6;

FIG. 10 illustrates a set of registers used by an embodiment
of the present invention and their contents during the execu-
tion of the shader program of FIG. 6; and

FIG. 11 1llustrates an the embodiment of the present inven-
tion that caches texture descriptors 1n order to eliminate the
need for hints.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 1 1s a block diagram of a computing system 100 that
benelfits by incorporation of embodiments of the present
invention. Included are a Northbridge 110, graphics accelera-
tor 120, Southbridge 130, frame buffer 140, central process-
ing unit (CPU) 150, audio card 160, Ethernet card 162,
modem 164, USB card 166, graphics card 168, PCI slots 170,
and memories 105. This figure, as with all the included fig-
ures, 1s shown for illustrative purposes only, and does not
limait either the possible embodiments of the present invention
or the claims.

The Northbridge 110 passes information from the CPU
150 to and from the memory 105, graphics accelerator 120,
and Southbridge 130. Southbridge 130 interfaces to external
communication systems through connections such as the uni-
versal serial bus (USB) card 166 and Ethernet card 162. The
graphics accelerator 120 receives graphics information over
the accelerated graphics port (AGP) bus 125 through the
Northbridge 110 from CPU 150 and directly from memory or
frame buffer 140. The graphics accelerator 120 interfaces
with the frame bufier 140. Frame butler 140 may include a
display buffer which stores the pixels to be displayed.

In this architecture, CPU 150 performs the bulk of the
processing tasks required by this computing system. In par-
ticular, the graphics accelerator 120 relies on the CPU to set
up calculations and compute geometry values. Also, the audio
or sound card 160 relies on the CPU to process audio data,
positional computations, and various effects, such as chorus,
reverb, obstruction, occlusion, and the like, all simulta-
neously. Moreover, the CPU remains responsible for other
instructions related to applications that may be running, as
well as for the control of the various peripheral devices con-
nected to the Southbridge.

FI1G. 2 1s a block diagram of an improved computer system
that benefits by incorporation of embodiments of the present
invention. Included are an nForce2 integrated graphics pro-
cessor (IGP) 210, an nForce2™ media communications pro-
cessor (MCP2) 220, memory 212 and 214, CPU 216, optional
graphics processor 218 and frame bufier 240, monitor 222,
scanner or camera 234, mouse, keyboard, and printer 236,
hard drives 238, soft modem 242, Ethernet connection 246,
and audio system 248.

This revolutionary system architecture has been designed
around a distributed processing platform, which frees up the
CPU to perform tasks best suited to it. Specifically, the
nForce2 IGP 210 includes a graphics processing unit (GPU)

10

15

20

25

30

35

40

45

50

55

60

65

4

which 1s able to perform graphics computations previously
left to the CPU. Alternately, the nForce2 IGP 210 may inter-
face to an external GPU which performs these computations.
Also, nForce2 MCP2 220 includes an audio processing unit
(APU), which 1s capable of performing many of the audio
computations previously done by the CPU. In this way, the
CPU 1s free to perform its tasks more efliciently. Also, by
incorporating a suite of networking and communications
technologies such as USB and Ethernet 246, the nForce2
MCP2 220 1s able to perform much of the communication
tasks that were previously the responsibility of the CPU 216.

In this architecture, the nForce2 1GP 210 communicates
with memories 212 and 214 of over buses 213 and 215. The
nForce2 IGP 210 also interfaces to an optional graphics pro-
cessor 218 over an advanced AGP bus 217. In various com-
puter systems, this external processor may be removed, and
the monitor 222 may be driven by the nForce2 IGP directly. In
other systems, there may be more than one monitor, some or
all of which are coupled to optional graphics processors or the
nForce2 IGP directly. The nForce2 IGP 210 communicates
with the nForce2 MCP2 220 over a Hypertransport link 221.
The optional graphics processor 218, may also interface with
external memory, which 1s not shown in this example.
Embodiments of the present invention may be used to
improve the memory interfaces to memories 212 and 214,
from the graphics processor 218 to 1ts external memory, or to
other optional memories not shown here, or other memory
interfaces 1n other digital systems.

The nForce2 MCP2 220 contains controllers for Ethernet
connections 246 and soft modem 242. Also included are an
interface for a mouse, keyboard, and printer 236, and USB
ports for cameras, scanners, and hard drives 234 and 238.

This arrangement allows the CPU, the nForce2 1GP, and
the nForce2 MCP2, to perform processing independently,
concurrently, and 1n a parallel fashion.

FIG. 3 1s a block diagram of a graphics system that 1s
benefited by incorporation of embodiments of the present
invention. Included are a graphics memory 310, frame butifer
interface 320, host mterface 330, geometry engine 335, ras-
terizer 340, shader core 350, texture cache and subsystem
360, shader backend 370, and rasterizer operations circuit
(ROP) 380. In a typical embodiment, all these circuits, except
the graphics memory 310 are on an integrate circuit chip, for
example, an IGP or graphics processor integrated circuit.

Graphics primitives, textures, and texture descriptors are
received from the AGP bus on line 345 by the host interface
330. The host interface 330 stores the textures in the graphics
memory 310 via the frame buller interface 320. Convention-
ally, the texture descriptors are received over the AGP bus and
passed down the pipeline as they are needed. Embodiments of
the present invention provide a greater number of available
textures by having the host interface 330 store the texture
descriptors 1n the graphics memory 310 along with the tex-
tures themselves. By storing these descriptors in the external
graphics memory, many more textures are available to use 1n
generating an image than 1f the texture descriptors had to be
stored on the graphics processor integrated circuit itself.

The primitives are processed by the geometry engine 335
and rasterizer 340 and passed to the shader core 350. The
shader core 350 provides data to the texture cache subsystem
360 and shader backend 370. The shader core and shader
backend textures the primitives, for example, according to a
shader program that 1s preloaded by a driver. More details on

shaders and their programs are available in U.S. patent appli-
cation Ser. No. 09/885,242, titled PROGRAMMABLE
PIXEL SHADING ARCHITECTURE, filed Jun. 19, 2001,

and U.S. application Ser. No. 09/885,382, titled SYSTEM,

US 7,589,741 B1

S

METHOD AND COMPUTER PROGRAM PRODUCT
FOR A PROGRAMMABLE PIXEL PROCESSING
MODEL WITH INSTRUCTION SET, filed Jun. 19, 2001,
both of which are incorporated by reference.

In a specific embodiment of the present invention, the
texture cache subsystem inspects the next several lines of the
shader program to determine which textures will be needed.
The texture cache subsystem retrieves the corresponding tex-
ture descriptors from the graphics memory 310 using the
frame bulfer interface 320. The corresponding texture
descriptors retrieved from the graphics memory 310 contain
information such as location, stride, filtering, height, width,
and other parameters necessary for the retrieval of the textures
themselves from the graphics memory. The texture cache
subsystem 360 1s then able to retrieve the textures from the
graphics memory 310 via the frame butler interface 320. The
textures may then be cached 1n the texture cache subsystem
360. Specific examples of how this may be done may be found
in U.S. Pat. No. 6,629,188, titled Circuit & Method {for
Prefetching Data for a Texture Cache, by Minkin et al., and
U.S. patent application Ser. No. 09/712,632, titled Circuit &
Method for Addressing a Texture Cache, by Minkin, both of
which are imncorporated by reference.

The shader core 350 and shader backend 370 texture the
primitives with the retrieved textures until completion,
whereupon the shader backend 370 provides the result to the
ROP 380. The output of the ROP on bus 3835 1s provided to a
scan-out engine (not shown), which in turn provides pixels for
display on a monitor.

When a texture descriptor that has already been stored in
the graphics memory 310 1s needed again, the texture descrip-
tor 1s not sent over the AGP bus, rather a pointer, index, or
other representation ol the texture descriptor 1s sent. For
example, a texture number referred to 1n a line of the shader
program may 1dentily a texture descriptor. These representa-
tions are much smaller than a texture descriptor. For example,
a representation such as a pointer may be two bytes in length,
where as a texture descriptor may be 300 bits in length.

FIGS. 4A-4C 1llustrate several examples of how needed
texture descriptors are 1dentified by various embodiments of
the present invention. In FIG. 4 A, a base address and index of
a required texture descriptor are passed down the pipeline as
pipeline state. The base address and index (or ofiset) identify
a specific texture descriptor in an array of texture descriptors
located 1n the graphics memory 310. That 1s, the index 1s used
to find a texture descriptor 1n an array of texture descriptors
specified by the base address. The texture descriptor contains
the location, height, width, stride, filtering, and other proper-
ties needed for retrieval of the texture 1tselif.

FI1G. 4B 1llustrates a method that provides an extra level of
indirection. A pointer address 1s passed down the pipeline,
and at each pointer address 1s stored a pointer that identifies
the location of a texture descriptor. The pointer address 1s
accessed and read to determine the texture descriptor loca-
tion, and the needed texture descriptor 1s retrieved.

In FIG. 4C a pointer table 1s stored 1n the graphics memory.
In a specific embodiment, the pointer table 1s an array of
addresses, each address being the location of a texture
descriptor. A base address of the pointer table can be passed
down the pipeline, thus allowing the use of multiple pointer
tables. Alternately, a single or global table can be used, thus
climinating the need for passing individual base address. The
indices are passed down the pipeline, and each index 1s used
to locate a pointer, which 1n turn i1dentifies the location of a
needed texture descriptor. In another embodiment of the
present invention, pointers that directly identily texture
descriptors can be passed down the pipeline as pipeline state.

10

15

20

25

30

35

40

45

50

55

60

65

6

The shader program may contain instructions or other
information 1dentifying required texture descriptors, or the
required texture descriptors may be determined from the
shader program itself. For example, a base address may be
provided by the pipeline. When a texture having a texture
number N 1s needed by the shader program, the texture
descriptor having the address that 1s the base address plus N
times M, where M 1s the number of bits between starting
points of the texture descriptors, 1s retrieved. FIG. 5 shows a
representation of a shader program, texture descriptors used
by the shader program, and a number of pixel quads to be
processed by the shader program. During each pass through
the shader, some number of instructions are executed, for
example K mstructions may be executed, and each instruction
may require one or more textures, identified by texture
descriptors. During each pass some number of quads, for
example P, are processed, then either mput back into the

shader core 350 for further processing, or output to the ROP
380.

The addressing schemes illustrated 1n FIGS. 4A-4C can be
used by the shader program. In FI1G. 4 A, the base address and
index are in the shader program. In FIG. 4B, the pointer
address 1s 1n the program, and in FIG. 4C, the index for the
needed location 1n the pointer table 1s provided by the pro-
gram. In another embodiment, the address of the required
texture descriptor 1s in the shader program.

In these ways, many textures can be associated with each
primitive. For example, 1f a two-byte word 1s used as a pointer
or index 1n the above configurations, over 64,000 textures
may be associated with each primitive. This 1s an improve-
ment over the prior art, where typically 2 to 16 texture
descriptors are stored 1n the graphics processor.

When a pointer or other representation 1s received by the
texture subsystem and cache 360, a texture descriptor 1s
retrieved from the graphics memory 323, if it 1s not already 1n
the texture cache. The latency for texture retrieval from the
graphics memory can be on the order of 200 clock cycles. To
prevent this latency from stalling pixel processing, in a spe-
cific embodiment of the present invention, texture descriptors
are prefetched and stored 1n the texture circuit before they are
needed by the shader. These prefetches are facilitated by hints
or other indications of texture descriptors that will be required
by the graphics pipeline. These hints identily textures that are
to be fetched from the graphics memory and are used to
retrieve texture descriptors in advance of the time that the
texture descriptors are required.

FIG. 6 1s a shader program 600 that 1s used for exemplary
purposes 1n the following tlow charts and tables. Included are
a number of istructions identified numerically 1n column
610. In this simple example, textures are read from memory,
accumulated or added together, then output. Specifically,
instruction 1 620 reads texture 102 and stores 1t in register RO,
Similarly, instruction 2 630 reads texture 103 1nto register R1.
Instruction 3 640 directs that the contents of R0 and R1 are
added together and stored in register R2. Further steps include
reading other textures and accumulating the values 1n register
R2. The final instruction 16 650, directs that register R2 be
output. Again, this simplified shader program 1s useful 1n
explaining exemplary embodiments of the present invention.

FIG. 7 1s a flow chart 700 showing a method of retrieving
textures from a graphics memory in accordance with an
embodiment of the present invention. In summary, texture
descriptors and hints are provided. The hints can be generated
by the pipeline or the shader program. In a specific embodi-
ment, two present texture descriptors and two hints are pro-
vided. The hints are used to fetch the next texture descriptors,
while the present texture descriptors are used to fetch the next

US 7,589,741 B1

7

texture values. The next hints are determined by looking
ahead 1n the shader program, either by examining a specific
number of instructions, for example 10 instructions, or by
looking at enough of the program to find the next two required
textures. This continues until the processing of the pixels 1s
complete, at which time the pixels are output to the ROP.

Specifically, in act 710, the first or mitial present textures
are provided to the graphics pipeline. Again, these may be
provided over the AGP bus. In act 720, hints 1dentitying the
nextrequired texture descriptors are generated. In act 730, the
textures i1dentified by the present texture descriptors are
fetched and used. The texture descriptors i1dentified by the
hints are fetched 1n act 740. In act 750, the next texture
descriptors become the present texture descriptors. In act 780,
it 1s determined whether the processing of the pixels 1s com-
plete. If 1t 1s, the pixels are output to the ROP 1n act 770. It the
pixel processing 1s not complete, the process repeats, and
hints 1dentifying the next texture descriptors are generated. It
will be appreciated by one skilled in the art that several of
these acts may be done simultaneously, or 1n an alternate
sequence.

FIG. 8 1s a flow chart 800 showing a method of retrieving
texture descriptors from a graphics memory 1n accordance
with an embodiment of the present invention. In FIG. 8,
texture descriptors are 1dentified by a shader program, rather
than by 1dentifiers received by the graphics pipeline.

Specifically, initial hints and 1nitial present texture descrip-
tors are loaded or programmed 1n act 810. In act 820, shader
program instructions are fetched. Specifically, the shader pro-
gram commands using the present textures and those com-
mands requiring the next hints are fetched. In act 830, the
textures 1dentified by the present texture descriptors are
fetched and used. The next texture descriptors identified by
the hints are fetched 1n act 840. In act 850, the next texture
descriptors become the present texture descriptors. Inact 868,
it 1s determined whether the pixel processing 1s complete. It 1t
1s, the pixels are output to the ROP 1n act 870. If not, more of
the shader program 1s fetched in act 820. It will be appreciated
by one skilled 1n the art that several of the acts may be done
simultaneously, or 1n an alternate sequence.

FIG. 9 1s a table 900 showing the activities performed
during the running of the shader program shown in FIG. 6.
Column 910 1ndicates the activity that 1s taking place, column
920 indicates which instructions of the shader program are
being fetched, column 930 shows the instructions being used,
column 940 shows the texture that 1s being hinted and the
corresponding texture description that 1s being fetched. Also,
column 950 shows the textures being fetched using the
present texture descriptors, while column 916 indicates the
texture being used. In this specific example, two texture
descriptors are shown as being used by the shader. In other
embodiments, other numbers of texture descriptors and cor-
responding textures may be used.

In row 965, a prefetch occurs. Specifically, instructions 1
and 2 and of the shader program 1n FIG. 6 are fetched. Initial
texture descriptors 102 and 103 have been previously pro-
vided, for example, over the AGP bus to the graphics pipeline,
or by the shader program itself. The textures 102 and 103 are
tetched at this time. Also, the shader program 1s examined to
determine the next two textures that will be needed. In this
case, as can be seen 1n FIG. 6, those textures are 104 and 105,
used 1n 1nstruction numbers 4 and 5.

In row 970, a first pass through the shader begins. The next
instructions required are fetched. The instructions used are
instructions 1-3, in which textures 102 and 103 are read,
added, and stored in register R2. Again, the shader program 1s
examined and the next texture descriptors that are required

5

10

15

20

25

30

35

40

45

50

55

60

65

8

are determined. In this specific example, textures 106 and 107
are needed. Also, textures 104 and 105 are fetched, while
textures 102 and 103 are used.

In row 975, a second pass through the shader program 1s
performed. Again enough of the shader program 1s fetched to
determined the next required texture descriptors. In this pass
instructions 4-7 are executed, which read textures 104 and
105. These textures are added to the value already stored 1n
R2. Again, the next two required texture descriptors are deter-
mined, 1n this case texture descriptors 108 and 109. Also, the
textures 106 and 107 are fetched, and the textures 104 and 105
previously fetched are used specifically by instructions 4 and
5 1n the shader program.

In row 980, a third pass through the shader 1s performed.
Specifically, shader program instructions 8 through 11 are
executed. Textures 108 and 109 are retrieved, while textures
106 and 107 are used, specifically by shader instructions 8
and 9.

In row 9835, a fourth pass through the shader 1s executed.
Specifically mstructions 12 through 16 are executed. These
instructions use the textures retrieved in row 985, specifically
textures 108 and 109. The result 1s output to the ROP, as
indicated by instructions 16 650 1n the shader program of
FIG. 6.

A specific embodiment uses three sets of registers to 1imple-
ment the above tlow charts. In this embodiment, two registers
for each set are used 1n order to provide two texture lookups
per pass or loop through the shader. The first set stores the
initial texture descriptors provided by the pipeline, for
example, these can be input to the pipeline by a driver. Again,
the pipeline also provides two hints, found by looking ahead
in the shader program, the texture descriptors for which are
retrieved and stored 1n the second set of registers. When the
next texture descriptors needed are determined by inspection
of the shader program, they are retrieved from the graphics
memory and stored 1n the third set of registers. After that, the
tollowing textures are written to the second and third sets of
registers in a ping-pong or alternating fashion. The first set of
registers 1s reused when another set of pixels or quads begin
running the same shader program, thereby receiving the same
starting information used by the first set of pixels processed
by the shader program.

FIG. 101s a chart showing the 6 registers used by a specific
embodiment of the present invention, and their contents dur-
ing the various passes through the shader as shown in FIG. 9.
The registers include a first and second 1nitial register 1010
and 1012, and two other pairs of registers 1014 and 1016, as
well as 1018 and 1020, which store present and next texture
descriptors 1n the ping-pong fashion described above.

The first texture descriptors required are 102 and 103.
These texture descriptors are initialized and stored 1in registers
1010 and 1012. These 1nitial texture descriptors remain 1n
these registers throughout the running of the shader program,
such that the next quad of pixels to be processed have these
texture descriptors available to them.

As was seen 1n FIG. 9, the next texture descriptors needed
are 104 and 105. These are fetched based on hints provided to
the pipeline or by the shader program, and stored 1n register 3
1014 and register 4 1016.

In row 1040, texture descriptors 104 and 105 become the
present texture descriptors, while the hinted texture descrip-
tors 106 and 107 are retrieved and stored 1n register 5 1018
and register 6 1020. In row 10350, texture descriptors 106 and
107 become the present texture descriptors, while the next
texture descriptors 108 and 109 are retrieved and stored in
register 3 1014 and register 4 1016. In row 1060, there 1s no
next texture descriptors required, thus the contents of register

US 7,589,741 B1

9

5 1018 and register 6 1020 are not updated. In row 1070, the
process begins again on the next quad of pixels. Again, 1n this
specific example, two texture descriptors and corresponding
textures are processed by the shader at a time. In other

embodiments of the present invention, a different number of 5

texture descriptors and corresponding textures may be pro-
cessed. For example, four, eight, sixteen, or more texture
descriptors and corresponding textures may be processed by
a shader program at a time.

FI1G. 11 illustrates an the embodiment of the present inven-
tion that caches texture descriptors 1n order to eliminate the
need for hints. Included are a graphics memory and frame
butifer interface 1110, shader core 1120, texture descriptor
cache and cache controller 1125, FIFOs 1130 and 1135,
address translator 1140, texture cache manager 1150, texture
cache 1155, FIFO 1160, texture filter 1170, and shader back-
end 1180.

Pixel quads are received on bus 1122 from the rasterizer by
the shader core 1120. The shader core 1120 inspects at least
part of a shader program to determine which textures will be
needed. From this, requests for texture descriptors are gener-
ated and provided on bus 1132 to the texture descriptors cache
controller 1125. The shader core 1120 also provides these
requests on bus 1124 to the FIFO 1130. The texture descriptor
cache controller 1125 determines whether the needed texture
descriptor 1s currently stored 1n the texture descriptor cache or
must be retrieved from the graphics memory 1110. If the
texture descriptor 1s not in cache, i1t 1s requested from the
graphics memory 1110 by the texture descriptor cache con-
troller 1125.

The graphics memory 1110 provides, through its frame
butiler interface, requested texture descriptors to FIFO 1135
on bus 1132. The retrieved texture descriptors are stored 1n
FIFO 1135 and provided to the address translator 1140 on bus
1134. The address translator receives transier descriptor
requests on bus 1142 from the FIFO 1130 and transier
descriptors on bus 1134 from the FIFO 1135. In order to
synchronize these requests and descriptors, an embodiment
of the present invention sets a flag with each request indicat-
ing whether the transfer descriptor 1s retrieved from memory.
If the flag 1s set, the transfer descriptor 1s pulled from FIFO
1135.

The address translator 1140 processes the texture descrip-
tor requests on bus 1142 and texture descriptors on bus 1134
and generates memory addresses which are provide on bus
1144 to the texture cache manager 1150. The texture cache
manager 1150 determines whether the texture needed 1s in
texture cache 11355 or must be retrieved from memory. In the
case of a texture cache miss, a texture data request s provided
on bus 11352 to the graphics memory, through the frame buifer
interface 1110, which provides texture image data on bus
1156 to texture cache 1155. In the case of a texture cache hit,
the texture cache manager provides a texture cache address to
the texture cache on bus 1154. The texture cache 1155 pro-
vides texture data on bus 1158 to the texture filter 1170. The
texture filter 1170 filters the textures and provides an output
on bus 1172 to the shader backend 1180. When an individual
group of pixel quads 1s finished processing, they are provided
on bus 1182 to the ROP, otherwise they are provided to back
to the shader core on bus 1184.

A specific embodiment of the present invention uses one
level of indirection 1n storing texture descriptors. That 1s, a
lookup table 1s stored, either on the graphics processor or 1in
the graphics memory. This lookup table translates texture 1ds
or representations to texture descriptor locations 1n the graph-
ics memory. In this way, texture descriptors can be stored at
any location 1n the graphics memory. In a specific embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment, this lookup table includes 512 entries. In other embodi-
ments, there may be a different number of entries.

In this and other embodiments, there 1s one level of indi-
rection 1n 1dentitying textures actively used by the graphics
pipeline. In one embodiment, there are 16 active textures
stored 1n cache. A lookup table 1s available to engines in the
graphics pipeline, where the lookup table translates texture
numbers used by the pipeline, such as 0-13, to active textures
stored 1n cache. In other embodiments there may be a differ-
ent number of active textures.

The above description of exemplary embodiments of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the invention to the precise form described, and many modi-
fications and varnations are possible 1 light of the teaching
above. The embodiments were chosen and described 1n order
to best explain the principles of the invention and 1ts practical
applications to thereby enable others skilled 1n the art to best
utilize the invention 1n various embodiments and with various
modifications as are suited to the particular use contemplated.

What 1s claimed 1s:

1. A method of generating a graphics 1mage, the method
comprising:

storing a plurality of texture descriptors 1mn a graphics

memory;

receving pixel data at a first shader unit of a graphics

Processor;
sending, from the first shader unit to the graphics memory,
a request for a first texture descriptor; and

retrieving the first texture descriptor from the graphics

memory for use in the graphics processor,

wherein the plurality of texture descriptors are stored once

in the graphics memory and retrieved a plurality of times
for use by the graphics processor, and turther compris-
ng:

recerving, at the first shader unit, address information that

specifies the location of the first texture descriptor in the
graphics memory.

2. The method of claim 1 wherein a base address and index
are received by the graphics processor for locating each
retrieved texture descriptor.

3. The method of claim 2 wherein the base address and the
index are provided by software to the graphics processor.

4. The method of claim 1 wherein an address of a pointer 1s
provided for locating each of the plurality of texture descrip-
tors.

5. The method of claim 4 wherein the address of the pointer
1s provided by software to the graphics processor.

6. The method of claim 1 wherein an index to a pointer
table 1s provided for locating each of the plurality of texture
descriptors.

7. The method of claim 6 wherein the 1ndex to the pointer
table 1s provided by soitware to the graphics processor.

8. The method of claim 1 wherein a pointer 1s provided for
locating each of the plurality of texture descriptors.

9. The method of claim 8 wherein the pointer 1s provided by
soltware to the graphics processor.

10. The method of claim 1, further comprising:
sending, from the first shader unit to an address translator
unit, the request for the texture descriptor; and
receving the requested texture descriptor at the address
translator unit, wherein the request 1s synchromized with
the texture descriptor.
11. The method claim 1, wherein storing the plurality of
texture descriptors once 1n the graphics memory includes
receiving the descriptors at the first shading circuait.

US 7,589,741 B1

11

12. The method claim 1, wherein the graphics memory 1s
on a separate integrated circuit from the graphics processor.
13. A method of generating a graphics 1mage comprising:
storing a plurality of texture descriptors 1in a graphics
memory;

receiving pixel data at a first shader unit of a graphics
Processor;

receiving, at the first shader unit, address information for

locating a first texture descriptor i the graphics
memory;

sending, {from the first shader unit to the graphics memory,
a request for the first texture descriptor; and

retrieving the first texture descriptor from the graphics
memory for use with the pixel data 1n the graphics pro-
CEeSSOr;

sending, {from the first shader unit to an address translator
unit, the request for the texture descriptor;

receiving the pixel data at the address translator unit; and

receiving the requested texture descriptor at the address
translator unit.

14. The method of claim 13 wherein the plurality of the

texture descriptors are simultaneously stored in the graphics
processor for use by the shader program.

15. The method of claim 13 wherein a base address and
index are provided by the shader program to the first shader
unit for locating each of the plurality of texture descriptors.

16. The method of claim 13 wherein an address of a pointer
1s provided by the shader program for locating each of the
plurality of texture descriptors.

17. The method of claim 13 wherein an 1ndex to a pointer
table 1s provided by the shader program for locating each of
the plurality of texture descriptors.

10

15

20

25

30

12

18. The method of claim 13 wherein a pointer 1s provided
by the shader program for locating each of the plurality of
texture descriptors.

19. The method of claim 13 wherein when at least some of
the plurality of texture descriptors are retrieved from the
graphics memory, they are prefetched.

20. The method of claim 19 wherein before a texture
descriptor 1s prefetched, the graphics processor receives an
indication to prefetch the texture descriptor from the graphics
memory.

21. A method of generating a graphics image, the method
comprising;

storing a plurality of texture descriptors in a graphics

memory;
recerving pixel data at a first shader unit of a graphics
Processor;

sending, from the first shader unit to the graphics memory,
a request for a first texture descriptor, wherein the graph-
1ICs memory 1s on a separate integrated circuit from the
graphics processor;

retrieving the first texture descriptor from the graphics

memory for use in the graphics processor,

sending, from the first shader unit to an address translator

unit, the request for the texture descriptor; and
receving the requested texture descriptor at the address
translator unit, wherein the receipt of the request 1s syn-
chronized with the receipt of the texture descriptor,
wherein the texture descriptor and the request are synchro-
mzed by setting a flag with each request indicating
whether the transfer descriptor 1s retrieved from
memory, and wherein when the flag 1s set, the transfer
descriptor 1s pulled from a memory unit between the
graphics memory and the address translator unit.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

