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NONDETERMINISTIC PIXEL LOCATION
AND IDENTIFICATION IN A RASTER UNIT
OF A GRAPHICS PIPELINE

FIELD OF THE INVENTION

The present mvention i1s generally related to hardware
accelerated graphics computer systems.

BACKGROUND OF THE INVENTION

Recent advances 1in computer performance have enabled
graphic systems to provide more realistic graphical images
using personal computers, home video game computers,
handheld devices, and the like. In such graphic systems, a
number of procedures are executed to “‘render” or draw
graphic primitives to the screen of the system. A “graphic
primitive” 1s a basic component of a graphic picture, such as
a pomt, line, polygon, or the like. Rendered images are
formed with combinations of these graphic primitives. Many
procedures may be utilized to perform 3-D graphics render-
ng.

Specialized graphics processing units (e.g., GPUs, etc.)
have been developed to optimize the computations required
in executing the graphics rendering procedures. The GPUs
are configured for high-speed operation and typically incor-
porate one or more rendering pipelines. Each pipeline
includes a number of hardware-based functional units that are
optimized for high-speed execution of graphics 1nstructions/
data, where the instructions/data are fed into the front end of
the pipeline and the computed results emerge at the back end
of the pipeline. The hardware-based functional units, cache
memories, firmware, and the like, of the GPU are optimized to
operate on the low-level graphics primitives (e.g., comprising
“points”, “lines”, “triangles™, etc.) and produce real-time ren-
dered 3-D images.

The real-time rendered 3-D 1mages are generated using
raster display technology. Raster display technology 1s
widely used 1n computer graphics systems, and generally
refers to the mechanism by which the grid of multiple pixels
comprising an image are influenced by the graphics primi-
tives. For each primitive, a typical rasterization system gen-
erally steps from pixel to pixel and determines whether or not
to “render,” or write a given pixel into a frame butler or pixel
map, as per the contribution of the primitive. This, 1n turn,
determines how to write the data to the display bullfer repre-
senting each pixel.

Various traversal algorithms and various rasterization
methods have been developed for computing from a graphics
primitive based description to a pixel based description (e.g.,
rasterizing pixel to pixel per primitive) 1n a way such that all
pixels within the primitives comprising a given 3-D scene are
covered. For example, some solutions involve generating the
pixels 1n a unidirectional manner. Such traditional unidirec-
tional solutions mvolve generating the pixels row-by-row in a
constant direction. This requires that the sequence shift across
the primitive to a starting location on a first side of the primi-
tive upon finishing at a location on an opposite side of the
primitive.

Other traditional methods involve utilizing per pixel evalu-
ation techniques to closely evaluate each of the pixels com-
prising a display and determine which pixels are covered by
which primitives. The per pixel evaluation involves scanning,
across the pixels of a display to determine which pixels are
touched/covered by the edges of a graphics primitive.

Once the primitives are rasterized into their constituent
pixels, these pixels are then processed in pipeline stages sub-
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sequent to the rasterization stage where the rendering opera-
tions are performed. Generally, these rendering operations
assign a color to each of the pixels of a display in accordance
with the degree of coverage of the primitives comprising a
scene. The per pixel color 1s also determined 1n accordance
with texture map information that 1s assigned to the primi-
tives, lighting information, and the like.

A problem exists however with the ability of prior art 3-D
rendering architectures to scale to handle the increasingly
complex 3-D scenes of today’s applications. Computer
screens now commonly have screen resolutions of 1920x
1200 pixels or larger. Traditional methods of increasing 3-D
rendering performance, such as, for example, increasing
clock speed, have negative side effects such as increasing
power consumption and increasing the heat produced by the
GPU integrated circuit die. Other methods for increasing
performance, such as incorporating large numbers of parallel
execution units for parallel execution of GPU operations have
negative side effects such as increasing integrated circuit die
s1ze, decreasing yield of the GPU manufacturing process,
increasing power requirements, and the like.

Thus, a need exists for a rasterization process that can scale
as graphics application needs require and provide added per-

formance without ncurring penalties such as increased
power consumption and/or reduced fabrication yield.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide a method
and system for a rasterization process that can scale as graph-
ics application needs require and provide added performance
without incurring penalties such as increased power con-
sumption and/or reduced fabrication yield.

In one embodiment, the present mvention 1s implemented
as a method for determining pixel location subsequent to
rasterization 1n a graphics pipeline of a graphics processor
(e.g., a GPU). The method includes receiving a graphics
primitive (e.g., a triangle) for rasterization 1n a raster stage of
the graphics processor and rasterizing the graphics primitive
to generate a plurality of tiles related to the graphics primitive,
where each tile comprises a plurality of pixels (e.g., 16x16
pixel tiles, 8x8 pixel tiles, etc.). The method further includes
performing a parameter evaluation on each of the plurality of
tiles to eliminate noncontributing pixels and to generate a
plurality of pixels related to the graphics primitive. The
parameter evaluation can be, for example, a depth test or a
stencil test. A starting location 1s generated for a first of the
plurality of pixels. For each subsequent pixel of the plurality
of pixels, a vector to a starting location for each subsequent
pixel 1s generated. Shader processing 1s performed on the
plurality of pixels 1n a shader stage of the graphics processor
by using the start location for the first pixel and the vector for
cach subsequent pixel.

In so doing, the shader stage only receives pixels that are
related to the graphics primitive and that have not been elimi-
nated by the parameter evaluation. Pixels which will not
contribute to the rendered scene (e.g., as determined by the
parameter evaluation) are not sent to the shader stage. By
using the start location for the first pixel and the vector for
cach subsequent pixel, the shader stage can reliably process
the pixels received from the rasterization process even though
these pixels may be discontiguous and/or arrive in a nonde-
terministic fashion. By only spending time processing those
pixels which will actually contribute to the rendered scene,
the rasterization process can scale as graphics applications
need without unnecessary duplication of hardware.
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BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying,
drawings and 1n which like reference numerals refer to similar
clements.

FIG. 1 shows a computer system in accordance with one
embodiment of the present invention.

FIG. 2 shows a diagram depicting a grid of pixels being
rasterized in a boustrophedonic pattern 1n accordance with
one embodiment of the present invention.

FIG. 3 shows a diagram of a triangle polygon against a
rasterization pattern for a raster unit of a GPU in accordance
with one embodiment of the present invention.

FI1G. 4 shows a diagram of the triangle against a grid of tiles
as they are being examined by the rasterizer unit 1n accor-
dance with one embodiment of the present invention.

FIG. 5 shows a diagram depicting a graphics pipeline in
accordance with one embodiment of the present invention.

FIG. 6 shows a diagram 1illustrating a line of 16 pixels from
one tile where some of the 16 pixels fail depth testing 1n
accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred
embodiments of the present invention, examples of which are
illustrated 1n the accompanying drawings. While the mven-
tion will be described 1n conjunction with the preferred
embodiments, 1t will be understood that they are not intended
to limait the invention to these embodiments. On the contrary,
the invention 1s intended to cover alternatives, modifications
and equivalents, which may be included within the spirit and
scope ol the mvention as defined by the appended claims.
Furthermore, 1n the following detailed description of embodi-
ments of the present invention, numerous specific details are
set forth 1n order to provide a thorough understanding of the
present invention. However, 1t will be recognized by one of
ordinary skill in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, components, and circuits
have not been described in detail as not to unnecessarily
obscure aspects of the embodiments of the present invention.

Notation and Nomenclature:

Some portions of the detailed descriptions, which follow,
are presented 1n terms ol procedures, steps, logic blocks,
processing, and other symbolic representations of operations
on data bits within a computer memory. These descriptions
and representations are the means used by those skilled 1n the
data processing arts to most effectively convey the substance
of their work to others skilled 1n the art. A procedure, com-
puter executed step, logic block, process, etc., 1s here, and
generally, concetved to be a self-consistent sequence of steps
or instructions leading to a desired result. The steps are those
requiring physical manipulations of physical quantities. Usu-
ally, though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, trans-
terred, combined, compared, and otherwise manipulated 1n a
computer system. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
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apparent from the following discussions, 1t 1s appreciated that
throughout the present invention, discussions utilizing terms
such as “processing’ or “accessing’ or “executing’” or “stor-
ing” or “rendering” or the like, refer to the action and pro-
cesses of a computer system (e.g., computer system 100 of
FIG. 1), or similar electronic computing device, that manipu-
lates and transtorms data represented as physical (electronic)
quantities within the computer system’s registers and memo-
ries 1into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

Computer System Platform:

FIG. 1 shows a computer system 100 in accordance with
one embodiment of the present invention. Computer system
100 depicts the components of a basic computer system 1n
accordance with embodiments of the present ivention pro-
viding the execution platform for certain hardware-based and
soltware-based functionality. In general, computer system
100 comprises at least one CPU 101, a system memory 115,
and at least one graphics processor unit (GPU) 110. The CPU
101 can be coupled to the system memory 1135 via a bridge
component/memory controller (not shown) or can be directly
coupled to the system memory 115 via a memory controller
(not shown) internal to the CPU 101. The GPU 110 1s coupled
to a display 112. One or more additional GPUs can optionally
be coupled to system 100 to further increase 1ts computational
power. The GPU(s) 110 1s coupled to the CPU 101 and the
system memory 115. System 100 can be implemented as, for
example, a desktop computer system or server computer sys-
tem, having a powertul general-purpose CPU 101 coupled to
a dedicated graphics rendering GPU 110. In such an embodi-
ment, components can be mncluded that add peripheral buses,
specialized graphics memory, 10 devices, and the like. Simi-
larly, system 100 can be implemented as a handheld device
(e.g., cellphone, etc.) or a set-top video game console device
such as, for example, the Xbox®, available from Microsoit
Corporation of Redmond, Wash., or the PlayStation3®, avail-
able from Sony Computer Entertainment Corporation of
Tokyo, Japan.

It should be appreciated that the GPU 110 can be imple-
mented as a discrete component, a discrete graphics card
designed to couple to the computer system 100 via a connec-
tor (e.g., AGP slot, PCI-Express slot, etc.), a discrete inte-
grated circuit die (e.g., mounted directly on a motherboard),
or as an integrated GPU included within the integrated circuit
die of a computer system chipset component (not shown).
Additionally, a local graphics memory 114 can be included
for the GPU 110 for high bandwidth graphics data storage.

EMBODIMENTS OF THE INVENTION

Embodiments of the present invention implement a method
and system for determining pixel location subsequent to ras-
terization in a graphics pipeline of a graphics processor (e.g.,
a GPU). The method includes receiving a graphics primitive
(e.g., a triangle) for rasterization in a raster stage of the
graphics processor and rasterizing the graphics primitive to
generate a plurality of tiles related to the graphics primitive,
where each tile comprises a plurality of pixels (e.g., 16x16
pixel tiles, 8x8 pixel tiles, etc.). The method further includes
performing a parameter evaluation on each of the plurality of
tiles to eliminate noncontributing pixels and to generate a
plurality of pixels related to the graphics primitive. The
parameter evaluation can be, for example, a depth test or a
stencil test. A starting location 1s generated for a first pixel of
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the plurality of pixels. For each pixel of the plurality of pixels,
a vector to a starting location for each subsequent pixel 1s
generated. Shader processing 1s performed on the plurality of
pixels 1n a shader stage of the graphics processor by using the
start location for the first pixel and the vector for each subse-
quent pixel. Embodiments the present invention and their
benefits are further described below.

FIG. 2 shows a diagram depicting a grid of pixels being
rasterized in a boustrophedonic pattern in accordance with
one embodiment of the present invention.

In one embodiment, as depicted 1n FIG. 2, a raster stage of
the GPU 110 utilizes a boustrophedonic pattern for traversing
a graphics primitive. As depicted 1n FIG. 2, the boustrophe-
donic pattern 1s indicated by the dotted line 221. In such an
embodiment, each pixel of the grid of pixels 1s traversed in the
order indicated by the line 221. The line 221 shows a bous-
trophedonic pattern of traversal, where the term “boustrophe-
donic” refers to a traversal pattern which visits all pixels on a
2D area by scanning back and forth along one axis as each
pass moves farther along on the orthogonal axis, much as a
tarmer would plow or mow a field. The term boustrophedonic
generally means “as the oxen plows” as 1n, for example, a

field.

Thus, as depicted 1in FIG. 2, this boustrophedonic raster-
1zation refers to a serpentine pattern that folds back and forth
along a predominant axis. In the FIG. 2 example, the pre-
dominant axis 1s horizontal. A horizontal boustrophedonic
sequence, for example, may generate all the pixels within a
primitive triangle that are on one row from leit to right, and
then generate the next row right to left, and so on. Such a
tolded path ensures that an average distance from a generated
pixel to recently previously generated pixels 1s relatively
small. Additionally, 1t should be noted that the boustrophe-
donic traversal pattern can be implemented on a tile-by-tile
basis (e.g., from a generated tile to a recently previously
generated tile) as opposed to a pixel-by-pixel basis.

The boustrophedonic pattern has advantages for maintain-
ing a cache of relevant data and reducing the memory requests
required for frame buffer and texture access. For example,
generating pixels that are near recently generated pixels 1s
important when recent groups of pixels and/or their corre-
sponding texture values are kept in memories of a limited size
(e.g., cache memories, etc.). Additional details regarding
boustrophedonic pattern rasterization can be found i US

Patent Application “A GPU HAVING RASTER COMPO-
NENTS CONFIGURED FOR USING NESTED BOUS-
TROPHEDONIC PATTERNS TO TRAVERSE SCREEN
AREAS” by Franklin C. Crow et al., Ser. No. 11/304,904,
filed on Dec. 15, 2003, which 1s incorporated herein 1n 1ts
entirety.

It should be noted that although embodiments of the
present invention are described in the context of boustrophe-
donic rasterization, other types of rasterization patterns can
be used. For example, the algorithms and GPU stages
described herein for rasterizing tile groups can be readily
applied to traditional left-to-right, line-by-line rasterization
patterns.

FIG. 3 shows a diagram of a triangle 301 against a raster-
1ization pattern 321 for a raster unit of the GPU 110 1n accor-
dance with one embodiment of the present invention.

As described above, the line 321 shows a boustrophedonic
pattern of traversal, where the raster unit visits all pixels on a
2D area of the triangle 301 by scanning along one axis as each
pass moves farther along on the orthogonal axis. As shown in
the FIG. 3 embodiment, a raster unit of the GPU 110 traverses
the triangle 301 and stamps out tiles that have at least some
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coverage with respect to the triangle 301. The resulting tiles
subsequently sent down the graphics pipeline for further pro-
cessing.

FIG. 4 shows a diagram of the triangle 301 against a grid of
tiles as they are examined by the first level rasterization pro-
cess 1n accordance with one embodiment of the present inven-
tion. In FIG. 4, each of the illustrated squares represents a tile
comprised of pixels (e.g., 16x16, 8x8, etc.). FIG. 4 shows a
case where the rasterization process performed by the raster
unit of the GPU 110 produces tile groups comprised of four
tiles each, such as the exemplary tile group 401. Thus, 1n a
case where each tile comprises 16x16 pixels, the raster unit of
the GPU 110 can stamp out a 1024 pixel tile group each clock
cycle. The generation of such large tile groups can be consid-
ered as a form of coarse rasterization, where large groups of
pixels are considered at one time to quickly determine which
pixels of a large screen area (e.g., 1600x1200, 1920x1200
etc.) are relevant and which pixels of the screen area can be
discarded. The large tile groups can be examined 1n detail 1n
a subsequent stage, where each pixel, or small group of pixels
(e.g., 2x2 pixels), of the large tile group 1s examined to deter-
mine a more fine degree of coverage by the triangle 301.

In this manner, a coarse rasterization 1s intended to quickly
determine which pixels of the screen area relate to a given
graphics primitive. Accordingly, relatively large groups of
pixels (e.g., tiles) are examined at a time 1n order to quickly
find those pixels that relate to the primitive. The process can
be compared to a reconnaissance, whereby the coarse raster
umt quickly scans a screen area and finds tiles that cover the
triangle 301. Thus the pixels that relate to the triangle 301 can
be discovered much more quickly than a traditional prior art
process which utilizes a single level of rasterization and
examines much smaller numbers of pixels at a time, in a more
fine-grained manner.

FIG. 5 shows a diagram depicting a graphics pipeline 1n
accordance with one embodiment of the present invention.

The FIG. 5 embodiment illustrates exemplary internal
components comprising a pipeline of the GPU 110. As shown
in FIG. 5, the GPU 110 includes a setup unit 501 and a
rasterizer unit 502. Generally, the set up unit 501 functions by
converting descriptions based on vertices to descriptions
based on edge descriptions. The rasterizer unit 502 subse-
quently converts these edge descriptions into filled areas
comprising actual pixel descriptions (e.g., pixel areas, pixel
sub-samples, etc.). The pixel descriptions are subsequently
passed along to other units within the GPU 110 for further
processing and rendering.

The pixel test unit 506 1s coupled to recerve the tiles gen-
crated by the raster unit 502. The pixel test unit 506 functions
by performing a number of different parameter evaluation
processes on the pixels comprising the tiles recerved from the
raster unit 502. The parameter evaluation process can be one
of the number of different evaluation processes, or pixel tests,
which determine the degree to which the tiles from a given
primitive influence pixel colors in the frame buffer 510. For
example, 1n one embodiment, the parameter evaluation pro-
cess can be a depth evaluation process, where, for example,
depth values for the tiles passed from the raster unit 302 are
tested against the depth values for those pixels are already
residing within the frame buffer 510. Those pixels which are
occluded by primitives already rendered into the frame butifer
can be discarded.

Similarly, 1n one embodiment, the parameter evaluation
process can be a transparency evaluation, where a transpar-
ency value for the tiles passed from raster unit 502 are tested
against the pixels already in the frame buffer. Those pixels
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which have 100% transparency will have no effect on the
colors already rendered into the frame buffer and can be
discarded.

In yet another embodiment, the parameter evaluation pro-
cess can be a stencil evaluation, where a stencil 1s processed
against the pixels comprising the primitive. Those pixels
which are stenciled out by the stencil process will not be
rendered 1nto the frame buffer and can be discarded.

In each case, the objective 1s to identily pixels of tiles
which will not ultimately be drawn 1nto the frame buifer 510
and discard them prior to transmission to the shader unit 507
to save processing bandwith. For example, 1n a case where the
parameter comprises a depth value, the objective 1s to 1dentify
those tiles which are behind other primitives, or are otherwise
occluded, and discard them prior to transmission to a subse-
quent stage of the pipeline.

With respect to the frame butfer 510, it should be noted that
the frame builer 510 can be implemented as a portion of the
local graphics memory 114 shown in FIG. 1, or alternatively,
as a portion of the system memory 115.

The shader unit 507 performs pixel shader processing for
cach of the pixels comprising the tiles. The shader unit 507
typically receives the tiles 1n a piecemeal manner as pixel
“quads” (e.g., groups ol 2x2 pixels) and operates on the quads
in accordance with the parameters 1terated across each of the
pixels.

In accordance with embodiments of the present invention,
the shader unit 507 1s advantageously configured to handle
noncontiguous pixel streams and/or non-deterministically
arriving pixel streams as they arrive from the pixel test unit
506.

As used herein, a noncontiguous pixel stream refers to
pixels which may arrive without any contiguous relationship
to one another. For example, 1n a conventional prior art pipe-
line, a rasterizer follows a standard order when generating the
pixels or groups of pixels covered by a particular primitive.
For example, it might stmply go left to right across scan lines,
or 1t might follow a more complicated (but deterministic)
space filling curve such as a Hilbert curve. A typical system
might pass the starting location for a scan line or Hilbert
curve, and then subsequent logic could regenerate the current
position by knowing how many pixels/quads have been
drawn since the starting location was provided. Such a system
relies on the contiguity of the pixel stream to determine the
pixel location; deleting a pixel from the middle of the pixel
stream would cause all subsequent pixels to have an incorrect
location. One drawback of such a system 1s that by following
such a deterministic/contiguous pixel stream pattern, pixel
data 1s sent to subsequent stages of the graphics pipeline even
though that pixel data may not be related to the graphics
primitive or be relevant to the ultimately rendered scene.
Another typical system might pass the location of each quad
with the quad so that the position 1s always known. Such
systems can handle pixels 1n an arbitrary order and can toler-
ate deletions from anywhere in the pixel stream, but have the
cost of sending the full-precision location of each pixel
throughout the pipeline.

In contrast, embodiments in the present invention employ
one or more pixel evaluation tests (e.g., performed by the
pixel test unit 506) to discard noncontributing pixels prior to
passing them on to the shader unit 507.

In the graphics pipeline 500 embodiment, the rasterization
process 1s immediately followed by the pixel tests for depth
and stencil as performed by the pixel test unit 506. As a resullt,
the output recerved by the shader unit 507 after these tests
does not follow a predictable pattern since pixels which fail
one or more pixel evaluation tests (e.g., depth, stencil, etc.)
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are not transmitted from the pixel test umit 506. Thus, a
graphics pipeline 500 embodiment avoids passing the starting
location for a string of pixels, which would be very ietficient
since there will often be small sequences of contiguous pix-
cls. Similarly, a graphics pipeline 500 embodiment avoids
passing the location of each pixel group, which would be
costly due to the area required to represent this information
throughout the pipeline.

Instead, the graphics pipeline 500 embodiment optimizes
its performance by generating the starting location for a
stream of pixels/quads. Then, for each subsequent pixel/quad,
the distance to the following pixel/quad 1s provided with the
pixel/quad. For example, 11 the first pixel 1s at X, Y location
(10, 10), and then the next pixel 1s at location (15, 11), the
output from the pixel test unit 506 would be “START (10, 10),
PIXEL(+5, +1)...” Inthis manner, gaps in the pixel sequence
are allowed, yet storage for the full (X, Y) location 1s not
required throughout the pipeline.

In one embodiment, the graphics pipeline 500 1s further
optimized by transmitting four pixels in sequence. For
example, since the four pixels 1n a quad are transmitted 1n
sequence back-to-back, the delta information, which essen-
tially functions as a vector to the next starting point, can be
spread across multiple cycles further reducing the number of
bits required. Additionally, in an embodiment optimized to
render quads rather than individual pixels, a further cost
reduction 1s obtained since a quad delta 1s transmitted rather
than a pixel delta.

In so doing, the shader stage only receives pixels that are
related to the graphics primitive and that will not be elimi-
nated by the parameter evaluation. Pixels which will not
contribute to the rendered scene (e.g., as determined by the
parameter evaluation) are not sent to the shader stage. By
using the start location for the first pixel and the vector, or
delta, for each subsequent pixel, the shader stage can reliably
process the pixels received from the rasterization process
even though these pixels may be discontiguous and/or arrive
in a nondeterministic fashion. By only spending time process-
ing both pixels which will actually contribute to the rendered
scene, the rasterization process can scale as graphics appli-
cations need without unnecessary duplication of hardware.

In the embodiments described above, each pixel, or quad,
was transmitted with the vector for the subsequent pixel or
quad. In another embodiment, each pixel or quad has the
vector relative to the previous pixel or quad. In such an
embodiment, 1f the pixel or quad data 1s transmitted 1n mul-
tiple clocks, the location of the pixel or quad may not be
known until some or all of the pixel data was recetved. For
example, 1 a system where a 2x2 pixel quad 1s processed
atomically and where 1 pixel 1s transmaitted with each clock,
i the vector contained with each quad provides the distance
from the previous quad, and 1f the vector 1s transmitted 1n
pieces with each clock 1n the quad, then the location of the
current quad 1s not known until all 4 clocks of the quad have
been recerved. In contrast, in an embodiment which transmits
the location from the current quad to the next quad, the
location of each quad 1s known from the very first clock cycle
for the quad. Consequently, it may be possible to begin pro-
cessing the quad before all 4 cycles have arrived. In this
embodiment, the location of the first quad may be transmaitted
prior to the first quad. The performance and area trade-oif for
cach implementation will guide the proper choice.

In the embodiments described above, each quad contains a
vector from the previous quad or to the next quad 1n daisy-
chain fashion. In another embodiment, each quad contains a
vector from a common starting location. In this embodiment,
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the starting location may be transmitted prior to the first quad.
Then each quad may contain a vector or address relative to the
starting location.

FIG. 6 shows a diagram 1llustrating a line of 16 pixels from
one tile where some of the 16 pixels fail depth testing. As 5
depicted 1n FIG. 6, the 16 pixels are 1llustrated as a row of
squares and typically comprise one row of a 16x16 pixel tile.
The 16 pixels are shown traversing a first polygon 601 and
have at least some coverage of the first polygon 601. A second
polygon 602 and a third polygon 603 which have been ren- 10
dered prior to polygon 601 are shown. In this example, both
polygon 602 and polygon 603 are 1n front of polygon 601,
obscuring polygon 601 from view where overlaps occur. Con-
sequently, the pixels 611 and 612 and the pixel 613 are
occluded, fail depth test evaluation performed by the pixel 15
test unit 506, and are discarded. The remaining pixels of line
are then sent to the shader unit 307 for further processing.
Since the pixels 611, 612, and 613 have been removed, the
remaining pixels of the line will arrive non-contiguously, and
may arrive non-deterministically. However, since the pixel 20
start position and the vector positions are sent, the remaining
pixels of line can be reliably processed by the shader unit 507
as described above.

The foregoing descriptions of specific embodiments of the
present invention have been presented for purposes of illus- 25
tration and description. They are not intended to be exhaus-
tive or to limit the invention to the precise forms disclosed,
and many modifications and variations are possible 1n light of
the above teaching. The embodiments were chosen and
described 1n order to best explain the principles of the mven- 30
tion and 1ts practical application, to thereby enable others
skilled 1n the art to best utilize the invention and various
embodiments with various modifications as are suited to the
particular use contemplated. It 1s intended that the scope of
the invention be defined by the claims appended hereto and 35
their equivalents.

What 1s claimed 1s:
1. In a graphics pipeline of a graphics processor, a method
for determining pixel location subsequent to rasterization,

comprising;

receiving a graphics primitive for rasterization in a raster

stage ol a graphics processor;

rasterizing the graphics primitive to generate a plurality of

pixels related to the graphics primitive;

performing a parameter evaluation on each of the plurality

of pixels to eliminate noncontributing pixels;
generating a starting location for a first of the plurality of
pixels;

tor each subsequent pixel of the plurality of pixels, gener-

ating a vector to a starting location for each subsequent
pixel from a current pixel;

performing shader processing on the plurality of pixelsin a

shader stage of the graphics processor by using the start
location for the first pixel and the vector tor each subse-
quent pixel.

2. The method of claim 1, wherein the starting location for
the first pixel comprises an x y-coordinate for the first pixel.

3. The method of claim 1, wherein the vector to the starting
location for the subsequent pixel comprises an X and vy dis- 4
tance to the subsequent pixel.

4. The method of claim 1, wherein the parameter evaluation
performed comprises a depth test evaluation.

5. The method of claim 1, wherein the parameter evaluation
performed comprises a stencil test evaluation. 65
6. The method of claim 1, wherein the parameter evaluation

performed comprises a transparency test evaluation.
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7. The method of claim 1, wherein at least one of the
plurality of pixels 1s a noncontiguous pixel.
8. The method of claim 1, wherein the plurality of pixels
received by the shader stage are received in an arbitrary order.

9. A GPU (graphics processor unit), comprising:

a set-up umit for generating polygon descriptions of a
graphics primitive;

a rasterizer unit coupled to the set-up unit for generating a
plurality of pixels related to the graphics primitive;

a pixel test unit coupled to the rasterizer unit for performing,
a parameter evaluation on each of the plurality of pixels
to eliminate noncontributing pixels and to generate a
plurality of pixel groups related to the graphics primi-
tive, and for generating a starting location for a first of
the plurality of pixel groups, and for each subsequent
pixel group of the plurality of pixel groups, generating a
vector to a starting location for each subsequent pixel
group {rom a current pixel group;

a shader unit coupled to the pixel test unit for performing
shader processing on the plurality of pixel groups by

using the start location for the first pixel group and the
vector for each subsequent pixel group.

10. The GPU of claim 9, wherein the pixel groups comprise
2x2 pixels.

11. The GPU of claim 9, wherein the starting location for
the first pixel group comprises an X y-coordinate for the first
pixel group.

12. The GPU of claim 9, wherein the vector to the starting

location for the subsequent pixel group comprises an X and y
distance to the subsequent pixel group.

13. The GPU of claim 9, wherein the parameter evaluation
performed comprises a depth test evaluation.

14. The GPU of claim 9, wherein the parameter evaluation
performed comprises a stencil test evaluation.

15. The GPU of claim 9, wherein the parameter evaluation
performed comprises a transparency test evaluation.

16. The GPU of claim 9, wherein at least one of the plu-
rality of pixel groups 1s a noncontiguous pixel group.

17. The GPU of claim 9, wherein the plurality of pixel
groups recerved by the shader stage are recerved 1n an arbi-
trary order.

18. A computer system, comprising;:
a system memory;

a central processor unit coupled to the system memory; and

a graphics processor unit communicatively coupled to the
central processor unit;

a set-up unit within the graphics processor unit for gener-
ating polygon descriptions of a graphics primitive;

a rasterizer unit coupled to the set-up umit for generating a
plurality of tiles related to the graphics primitive;

a pixel test unit coupled to the rasterizer unit for performing
a parameter evaluation on each of the plurality of tiles to
climinate noncontributing pixels and to generate a plu-
rality of pixel groups related to the graphics primitive,
and for generating a starting location for a first of the
plurality of pixel groups, and for each subsequent pixel
group of the plurality of pixel groups, generating a vec-
tor to a starting location for each subsequent pixel group;

a shader unit coupled to the pixel test unit for performing
shader processing on the plurality of pixel groups by
using the start location for the first pixel group and the
vector for each subsequent pixel group.

19. The computer system of claim 18, wherein the starting
location for the first pixel group comprises an X y-coordinate
tfor the first pixel group.
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20. The computer system of claim 19, wherein the vector to
the starting location for the subsequent pixel group comprises
an X and y distance to the subsequent pixel group.

21. In a graphics pipeline of a graphics processor, a method
for determining pixel location subsequent to rasterization, 5
comprising;

12

22. In a graphics pipeline of a graphics processor, a method
for determining pixel location subsequent to rasterization,
comprising;

recerving a graphics primitive for rasterization in a raster

stage ol a graphics processor;

rasterizing the graphics primitive to generate a plurality of

receiving a graphics primitive for rasterization in a raster
stage ol a graphics processor;

rasterizing the graphics primitive to generate a plurality of

pixels related to the graphics primitive;

performing a parameter evaluation on each of the plurality
of pixels to eliminate noncontributing pixels;

pixels related to the graphics primitive; 10  generating a starting location for a first pixel of the plurality
performing a parameter evaluation on each of the plurality of pixels;

of pixels to eliminate noncontributing pixels; transmitting the starting location to the shader;
generating a starting location for a first of the plurality of for each subsequent pixel, transmitting a vector to the start

pixels; location for the subsequent pixel from the start location
transmitting the starting location to the shader; 15 of the first pixel;

for each subsequent pixel, transmitting a vector to the start
location for the next pixel of the plurality of pixels;

performing shader processing on the plurality of pixels in a
shader stage of the graphics processor by using the start

location for the first pixel and the vector for each subse- 20

quent pixel.

performing shader processing on the plurality of pixelsin a
shader stage of the graphics processor by using the start

location for the first pixel and the vector for each subse-
quent pixel.
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