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USING COVERAGE INFORMATION IN
COMPUTER GRAPHICS

RELATED U.S. APPLICATIONS

This Application 1s related to U.S. patent application Ser.
No. 11/301,394 by M. Toksvig et al., filed Dec. 13, 2005, and
entitled “Inside Testing for Paths Using a Derivative Mask,”
now U.S. Pat. No. 7,684,641, assigned to the assignee of the
present invention, and hereby incorporated by reference 1n its
entirety.

This Application 1s related to U.S. patent application Ser.
No. 11/305,483 by M. Toksvig et al., filed Dec. 15, 2005, and

entitled “Inside Testing for Paths,” now U.S. Pat. No. 7,408,
553, assigned to the assignee of the present invention, and
hereby incorporated by reference 1n 1ts entirety.

This Application 1s related to U.S. patent application Ser.
No. 11/643,185 by C. Donham et al., filed Dec. 20, 2006, and
entitled “Selecting Real Sample Locations for Ownership of
Virtual Sample Locations 1n a Computer Graphics System,”
now U.S. Pat. No. 7,817,163, assigned to the assignee of the
present invention, and hereby incorporated by reference 1n its
entirety.

This Application 1s related to U.S. patent application Ser.
No. 11/643,545 by E. Hutchins et al., filed Dec. 20, 2006, and
entitled “Writing Coverage Information to a Framebuiler in a
Computer Graphics System,” assigned to the assignee of the
present invention, and hereby incorporated by reference 1n its
entirety.

This Application 1s related to U.S. patent application Ser.
No. 11/643,558 by C. Donham et al., filed Dec. 20, 2006, and
entitled “A Shader that Conditionally Updates a Framebuifer
in a Computer Graphics System,” assigned to the assignee of
the present invention, and hereby incorporated by reference in
its entirety.

FIELD OF THE INVENTION

Embodiments of the present invention generally relate to
data processing. More specifically, embodiments of the
present invention relate to computer graphics systems and
graphics applications.

BACKGROUND ART

In computer graphics, it 1s oiten necessary to render (e.g.,
shade) an 1irregularly shaped surface—that 1s, a surface that 1s
not a regular geometric shape, or that has edges that curve in
different directions and/or have different radii of curvature.
Various techniques may be used to render such surfaces. In
some of these techniques, a per-pixel mask representative of
the surface 1s generated. For example, pixels that are covered
by the surface are designated as such by setting a bit per pixel,
while the bit 1s not set for pixels that are not covered by the
surface.

SUMMARY OF THE INVENTION

While a mask may be usetul for shading 1rregularly shaped
surfaces, the granularity of the mask 1s at the pixel level. This
can result 1n visual artifacts (referred to as aliasing), such as
stair-stepping of the surface’s edges. Accordingly, an eflec-
tive but computationally efficient system or method that can
increase the granularity at which irregularly shaped surfaces
can be rendered would be advantageous. Embodiments 1n
accordance with the present invention provide these and other
advantages.
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The boundary of a surface can be represented as a series of
line segments. A number of polygons (e.g., triangles) are
successively superimposed onto the surface. The polygons
utilize a common reference point (that 1s, each of the poly-
gons has a vertex that coincides with the reference point) and
cach of the polygons has an edge that coincides with one of
the line segments. A value of a coverage bit 1s changed each
time a sample location associated with the coverage bit 1s
covered by one of the polygons. Final values of the coverage
bits are bullered after all of the polygons have been processed.
The values of the coverage bits can be used when the surface
1s subsequently rendered (e.g., shaded).

In one such embodiment, there are five (5) sample loca-
tions—and therefore 5 coverage bits—associated with each
pixel. The 5 coverage bits can be used to determine what
fraction of the associated pixel 1s covered by the surface. A
pixel at the edge of the surface can be shaded based on the
fraction of the pixel covered by the surface.

In one embodiment, the stencil builer, which normally
holds an ei1ght-bit stencil value per pixel, 1s used to store the 5
coverage bits per pixel. Because 5 bits per pixel are used
instead of one bit per pixel, and because the stencil butfer can
be used to store those bits, higher quality anti-aliasing can be
achieved 1n existing hardware and without increasing storage
and bandwidth requirements. These and other objects and
advantages of the various embodiments of the present inven-
tion will be recognized by those of ordinary skill 1n the art
alter reading the following detailed description of the
embodiments that are illustrated 1n the various drawing fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated 1n
and form a part of this specification, illustrate embodiments
of the present invention and, together with the description,
serve to explain the principles of the invention.

FIG. 11s a block diagram of an exemplary computer system
upon which embodiments in accordance with the present
invention can be implemented.

FI1G. 2 1s a block diagram of an example computer graphics
system upon which embodiments in accordance with the
present invention can be implemented.

FIG. 3 illustrates pixels that include multiple sample loca-
tions 1n an embodiment according to the present invention.

FIG. 4A 1illustrates a surface that overlaps a number of
pixels that include multiple sample locations 1n an embodi-
ment according to the present invention.

FIG. 4B 1llustrates a surface represented as a series of line
segments 1 an embodiment according to the present iven-
tion.

FIG. 4C 1llustrates a first triangle superimposed onto a
surface 1in an embodiment according to the present invention.

FIG. 4D 1llustrates a second triangle superimposed onto a
surface 1n an embodiment according to the present invention.

FIG. 5 illustrates multiple coverage bits per pixel in an
embodiment according to the present invention.

FIG. 6 1s a block diagram showing a portion of a computer
graphics system in an embodiment according to the present
invention.

FIG. 7 1s a flowchart of a computer graphics method 1n an
embodiment according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Retference will now be made in detail to the various
embodiments of the present invention, examples of which are
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illustrated 1n the accompanying drawings. While the mven-
tion will be described i conjunction with these embodi-
ments, 1t will be understood that they are not intended to limit
the mvention to these embodiments. On the contrary, the
invention 1s intended to cover alternatives, modifications and
equivalents, which may be included within the spirit and
scope of the mvention as defined by the appended claims.
Furthermore, in the following detailed description of the
present mvention, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. However, 1t will be understood that the present
invention may be practiced without these specific details. In
other instances, well-known methods, procedures, compo-
nents, and circuits have not been described 1n detail so as not
to unnecessarily obscure aspects of the present invention.

Some portions of the detailed descriptions that follow are
presented 1n terms of procedures, logic blocks, processing,
and other symbolic representations of operations on data bits
within a computer memory. These descriptions and represen-
tations are the means used by those skilled 1n the data pro-
cessing arts to most effectively convey the substance of their
work to others skilled 1n the art. In the present application, a
procedure, logic block, process, or the like, 1s conceived to be
a self-consistent sequence of steps or mstructions leading to a
desired result. The steps are those utilizing physical manipu-
lations of physical quantities. Usually, although not necessar-
1ly, these quantities take the form of electrical or magnetic
signals capable of being stored, transterred, combined, com-
pared, and otherwise manipulated 1n a computer system. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as transactions, bits,
values, elements, symbols, characters, samples, pixels, or the
like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropnate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussions, 1t 1s appreciated that
throughout the present invention, discussions utilizing terms
such as “identifying,” “‘representing,” “‘superimposing,”
“using,” “changing,” “storing,” “rendering,” “determining,”
“reading,” “writing,” “combining,” “generating,” “receiv-
ing,” “setting,” “accessing,” ” “producing” or the

22 g4
- 4

e B 4 4

selecting,
like, refer to actions and processes (e.g., flowchart 700 of FI1G.
7) of a computer system or similar electronic computing
device or processor (e.g., system 100 of FIG. 1). The com-
puter system or similar electronic computing device manipu-
lates and transtorms data represented as physical (electronic)
quantities within the computer system memories, registers or
other such information storage, transmission or display
devices.

FIG. 1 1s a block diagram of an example of a computer
system 100, such as a personal computer (desktop, laptop,
notebook), video game console, personal digital assistant,
cellular phone, computer-based simulator, digital camera, or
other digital device, on which embodiments of the present
invention can be implemented.

In the example of FIG. 1, the computer system includes a
central processing umt (CPU) 105 for running soitware appli-
cations and optionally an operating system. The memory 110
stores applications and data for use by the CPU. The storage
115 provides non-volatile storage for applications and data
and may include fixed disk drives, removable disk drives,
flash memory devices, and CD-ROM, DVD-ROM or other
optical storage devices. The user input 120 includes devices
that communicate user inputs from one or more users to the
computer system and may include keyboards, mice, joy-

10

15

20

25

30

35

40

45

50

55

60

65

4

sticks, touch screens, and/or microphones. The network inter-
tace 125 allows the computer system to communicate with
other computer systems via an electronic communications
network, including wired and/or wireless communication.
The components of computer system, including the CPU,
memory, data storage, user input devices, and network inter-
face, are connected via one or more data buses 160.

In the present embodiment, a graphics system 130 1s con-
nected with the data bus and the components of the computer
system. The graphics system may be integrated with the com-
puter system motherboard or on a separate circuit board fix-
edly or removably connected with the computer system. The
graphics system may include a graphics processing unit
(GPU) 135 and graphics memory. The graphics memory may
include a display memory 140 (e.g., a framebuller) used for
storing pixel data for each pixel of an output image. In another
embodiment, the display memory and/or additional memory
145 are part of the memory 110 and are shared with the CPU
105. Alternatively, the display memory and/or additional
memory can be one or more separate memories provided for
the exclusive use of the graphics system.

Pixel data can be provided to the display memory directly
from the CPU. Alternatively, the CPU can provide the GPU
with data and/or commands defining the desired output
images, from which the GPU can generate the pixel data of
one or more output images. The data and/or commands defin-
ing the desired output images can be stored 1n the additional
memory 145. In one embodiment, the GPU can generate pixel
data for output 1images from rendering commands and data
defining the geometry, lighting, shading, texturing, motion,
and/or camera parameters for a scene to be rendered.

The graphics system periodically outputs pixel data for an
image irom the display memory for display on the display
device 150. The display device 1s any device capable of dis-
playing visual information 1n response to a signal from the
computer system. The computer system can provide the dis-
play device with an analog or digital signal.

In another embodiment, the graphics processing system
includes one or more additional GPUs 155, similar to GPU
135. In vet another embodiment, the graphics processing
system includes a graphics coprocessor 165. The graphics
coprocessor and additional GPU 155 are adapted to operate 1n
parallel with the GPU 135 or 1n place of the GPU 135. The
additional GPU 155 generates pixel data for output images
from rendering commands, similar to the GPU 133. The
additional GPU 155 can operate in conjunction with the GPU
135 to simultaneously generate pixel data for different por-
tions ol an output image, or to simultaneously generate pixel
data for different output images. In one embodiment, the
graphics coprocessor performs rendering related tasks such
as geometry transformation, shader computations, and back-
face culling operations for the GPU 135 and/or additional
GPUs 155.

The additional GPU 155 can be located on the same circuit
board as the GPU 135, sharing a connection with the GPU
135 to the data bus, or the additional GPU 155 can be located
on an additional circuit board separately connected with the
data bus. The additional GPU 155 can also be integrated into
the same module or chip package as the GPU 135. The addi-
tional GPU 155 can have 1ts own display and additional
memory, similar to the display memory 140 and the addi-
tional memory 145, or can share the memories 140 and 145
with the GPU 135. In one embodiment, the graphics copro-
cessor 1s integrated with the computer system chipset (not
shown), such as the Northbridge or Southbridge chip used to
control the data bus.
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FIG. 2 1llustrates an example of a graphics system 130 in
accordance with one embodiment of the present invention. A
graphics processing pipeline 210 recerves commands for gen-
erating graphical images from CPU 105. There may be more
than one graphics processing pipeline, operating in parallel.
The graphics processing pipeline may be disposed on a GPU
(e.g., GPU 1335 or GPU 155 of FIG. 1) and includes, for
example, a geometry processor 215, arasterizer 220, a shader
unit 225 and a texture unit 230, and a raster operations (ROP)
unit 245. The framebuffer 250 may include one or more
buifers (not shown in FIG. 2), such as a stencil builer, an
anti-aliasing butier, a depth buller, and/or an alpha bufier.

In general, the geometry processor generates primitives
from vertex data. In one embodiment, the geometry processor
receives rendering commands and data used to define the
desired rendered image or images, including geometry, light-
ing, shading, texturing, motion, and/or camera parameters for
a scene. The rendering data may include one or more vertices
defining geometric primitives. Each vertex has a position that
1s typically expressed 1n a two-dimensional or three-dimen-
sional coordinate system. In addition to a position, various
attributes are associated with each vertex. In general,
attributes of a vertex may include any property that 1s speci-
fied on a per-vertex basis. In one embodiment, the vertex
attributes include scalar or vector attributes used to determine
qualities such as the color, transparency, lighting, shading,
and animation of the vertex and its associated geometric
primitives.

In one embodiment, the geometry processor executes one
or more vertex programs on each vertex to create a trans-
formed vertex. The geometry processor 1s programmable, and
rendering applications can specily the vertex program to be
used for any given set of vertices. In one embodiment, the
vertex program transforms a vertex from a three-dimensional
world coordinate system to a two-dimensional screen coor-
dinate system. More complicated vertex programs can be
used to implement a variety of visual etlects, including light-
ing and shading, procedural geometry, and animation opera-
tions. In one embodiment, the geometry processor also culls
or discards geometric primitives and/or portions thereof that
are outside the field of view or otherwise unseen 1n the ren-
dered image, and also may assemble one or more vertices into
a geometric primitive, such as a triangle or quadrlateral.

In general, the rasterizer rasterizes primitives. In one
embodiment, the rasterizer converts each geometric primitive
into one or more pixel fragments. A pixel fragment defines a
set of one or more pixels to be potentially displayed in the
rendered 1image. In one implementation, a fragment com-
prises a two-pixel-by-two-pixel (2x2) array, referred to herein
as a quad. In alternate implementations, fragments can
include any other arrangement of fragments and pixels. Each
fragment coming out of the rasterizer includes information
defining the potential coverage of the associated geometric
primitive 1n the rendered 1image, for example 1image coordi-
nates of the pixels associated with the fragment and coverage
ol the associated geometric primitive at that pixel location.

In one embodiment, the shader uses the position informa-
tion generated by the rasterizer and associated with each pixel
fragment, as well as per-vertex and per-geometric primitive
attributes, to determine the output values (for example, color
and depth) of each fragment. A shader program 1s executed on
cach pixel fragment to determine an output color value for a
pixel. In the present embodiment, the texture unit fetches a
texture (specifically, a texel), and maps the texture to a pixel
location 1n an 1image.

The shaded fragments are then output to the raster opera-
tions unit, along with attributes such as fragment color, depth,

6

and stencil values. The raster operations unit integrates the
fragments that are output from the shader with the portion of
the rendered 1image already stored in the framebuiler. Frag-
ments can be blended or masked with pixels previously writ-
ten to the rendered 1mage in the framebuffer. Raster opera-
tions can also include anti-aliasing and discarding of
occluded primitives. The combination of each incoming frag-
ment and any previously stored pixel values in the frame-
butler 1s then output to the framebutfer as part of the rendered
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1mage.

In a coverage sampling anti-aliasing (CSAA) embodiment,
the graphics system includes a virtual sample module 260 to
calculate the fractional coverage of pixels that are overlapped.,
at least 1n part, by a primitive. CSAA may also be referred to
as virtual coverage anti-aliasing (VCAA); for simplicity of
discussion, CSAA 1s used herein. In one such embodiment,
the virtual sample module generates the primitive coverage at
virtual sample locations (see FI1G. 3). The virtual samples that
are generated may be stored 1n one or more locations, such as
in a framebutler, color butler, z-bulfer, or another memory
location. In one embodiment, a coverage update unit 240
reads the current coverage from the frame buifer, updates the
coverage based on the coverage of the real and virtual
samples, and writes the resulting coverage to the framebutler.
Although the coverage update module and virtual sample
module are illustrated at a particular location within the
graphics pipeline, they may be located elsewhere, such as 1n
the ROP 245.

FIG. 3 illustrates an array 390 of pixels that include real and
virtual sample locations according to an embodiment of the
present invention. In the present embodiment, using a pixel
300 as an example, each pixel includes a single real sample
location 310 and four virtual sample locations 305, 306, 307
and 308 (305-308). Other numbers of virtual sample locations
may be utilized, such as two (2) or eight (8) virtual sample
locations.

A bit, referred to herein as a coverage bit, 1s associated with
cach of the sample locations. Thus, in the example of FIG. 3,
there are 5 coverage bits per pixel. The values of the coverage
bits can be stored per pixel in memory such as the frame-
butfer. In one embodiment, the values of the coverage bits are
stored per pixel 1n the stencil butfer.

From this point forward, virtual sample locations and real
sample locations are simply referred to as sample locations.
The distinction between real and virtual sample locations 1s
relevant to situations in which CSAA 1s enabled. However,
according to embodiments of the present invention described
herein, pixels covered by a surface are tested to determine
how much of each of those pixels 1s covered by the surface.
During this testing, CSAA 1s temporarily disabled, and so the
distinction between real and virtual sample locations 1s less
important.

In the present embodiment, the sample location 310 1s 1n
the center of the pixel 300, and the sample locations 305-308
are distributed through the interior of the pixel. In one
embodiment, the sample locations 305-308 are arranged
along the edges of the pixel, but not necessarily at a point that
corresponds to the midpoint of the edges of the pixel. In the
example of FIG. 3, the sample location 305 1s located to the
left of the mldpomt of its corresponding edge, the sample
location 306 1s above the midpoint of 1ts corresponding edge,
the sample location 307 1s to the right of the midpoint of its
corresponding edge, and the sample location 308 1s below the
midpoint of its corresponding edge.

FIG. 4 A illustrates a two-dimensional surface 400. Gener-
ally speaking, the boundary of the surface can have any shape.
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The boundary of the surface 1s sometimes referred to as a
path. Generally speaking, the path 1s closed and 1t may inter-
sect 1itself (e.g., like a FIG. 8).

In the example of F1G. 4 A, the surface overlaps a subset of
pixels, including pixels 440 and 450. The surface overlaps
only a part of the pixel 440, covering the sample locations
442, 444 and 445, while the sample locations 441 and 443 are
not covered by the surface. The pixel 450 1s covered 1n its
entirety by the surface. The pixels and sample locations are
not shown 1n FIGS. 4B, 4C and 4D, for clarnty of illustration.

As shown 1n FIG. 4B, the surface, though having curved
edges, can be represented as a series of straight line segments,
such as segments 402 and 404. Also shown 1s a reference
point 410 (which may also be referred to as a reference
location or a reference vertex) lying outside of the surface.
The reference point may instead lie on the boundary of the
surface or mside of the surface. That 1s, in general, the refer-
ence point can be inside, outside or on the shape being ren-
dered. In addition, if two or more shapes are being rendered,
a different reference point can be used for each shape.

As shown 1n FIG. 4C, a triangle 420 can be generated by
connecting the reference point to the endpoints of the segment
404. Although a triangle 1s used 1n the examples described
herein, 1 general any polygon—specifically, any convex
polygon—can be used.

As noted above, a coverage bit 1s associated with each
sample location. According to embodiments of the present
invention, the values of the coverage bits associated with
sample locations that lie within the boundary of the triangle
420 are set (e.g., to a binary value of one), while the values of
the coverage bits associated with sample locations that lie
outside the boundary of the triangle 420 are not set.

In one embodiment, the current values of the coverage bits
are combined with their previous values using a logical opera-
tion (e.g., an XOR operation)—the result 1s then written back
to memory, 1n place of the previous values stored there. For
example, presume three (3) sample locations 461, 462 and
463 are covered by the triangle 420 (the 3 sample locations
may lie within the same pixel, or they may lie in different
pixels). If no triangles have been generated betore the triangle
420, or 1f the 3 sample locations 461-463 have not been
covered by a preceding triangle, then the coverage bit asso-
ciated with each of the 3 sample locations would still have 1ts
initial value of binary zero (0). Once the 3 sample locations
461-463 are covered by the triangle 420, their associated
coverage bits are each set to a value of binary one (1). The
previous values (0,0,0) of the coverage bits are retrieved from
memory and logically combined (e.g., using an XOR opera-
tion) with their current values (1,1,1), yielding a result (also
1,1,1, 1n this case) that 1s written back to memory 1n place of
the previous values. More specifically, the bit sequence 000
and the bit sequence 111 are used as operands 1n a logical
operation, and the resulting bit sequence 111 1s written back
t0 memory.

As shown 1n FIG. 4D, a second triangle 430 1s generated by
connecting the reference point to the endpoints of the segment
402. In this example, the triangle 430 overlaps a portion 435
of the triangle 420. As described above, the values of the
coverage bits associated with the sample locations that lie
within the boundary of the second triangle 430 are set (e.g., to
a binary value of 1), the current values of the coverage bits are
combined with their previous values using a logical operation
(e.g.,an XOR operation), and the result 1s then written back to
memory in place of the previous values stored there.

For example, presume that one of the 3 aforementioned
sample locations (e.g., sample location 462) 1s covered by the
portion 435 (the portion overlapped by the first triangle 420
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and the next triangle 430), while the other two sample loca-
tions 461 and 463 lie outside of the portion 435. As described
above, because the sample location 462 1n the portion 435 was
covered by the first triangle 420, a value of 1 was stored 1n
memory for the coverage bit associated with that sample
location. Because the sample location 462 1s now also cov-
ered by the second triangle 430, the associated coverage bit
has a current value of 1. The previous value (1) 1s retrieved
from memory and logically combined (e.g., using an XOR
operation) with the current value (1), yielding a result (0) that
1s written back to memory in place of the previous value.

The process just described 1s repeated for each possible
triangle that can be generated using a common vertex (e.g.,
the reference point 410) and each of the line segments repre-
senting the surface. The line segments can be considered 1n
any order—that 1s, 1t does not matter in what order the tri-
angles are generated. In general, as each triangle 1s generated,
the current values of the coverage bits associated with the
sample locations covered by the triangle are set (e.g., to 1),
previous values of those sample locations are read from
memory, and the current values and the previous values are
used as operands 1n a logical operation such as an XOR
operation. The result of the logical operation 1s read back to
memory in place of the previous values. In essence, each time
a sample location 1s covered by a triangle, the coverage bit
associated with that sample location 1s flipped from one
binary value to another.

Once all of the possible triangles have been generated, the
values of the coverage bits associated with sample locations
covered by the surface will have a value of 1, while the
coverage bits associated with sample locations not covered by
the surface will have a value of 0. In this manner, a mask
representing the surface 1s generated.

Instead of using an XOR operation, other types of logical
operations can be used. For example, an OR operation or a
NOR operation can be used. In contrast to the examples
above, the coverage bits associated with the sample locations
covered by the surface may have a value of 0 (instead of 1)
while the coverage bits associated with sample locations not
covered by the surface may have a value of 1 (instead of 0). In
general, coverage bits associated with sample locations cov-
ered by the surface will have a first binary value, and coverage
bits associated with sample locations not covered by the
surface will have a different binary value.

FI1G. 5 1llustrates the values of the coverage bits associated
with the sample locations 1n the pixels 440 and 450, after
completion of the testing described 1n conjunction with FIGS.
4A-4D. In one embodiment, the values of the coverage bits
are stored in the stencil butler. Typically, the stencil buifer
stores an 8-bit stencil value per pixel. Instead, during the
processing described above 1n conjunction with FIGS.
4A-4D, the stencil butler 1s used to store 5 coverage bits per
pixel.

According to the example of FIG. 5, the coverage bits
associated with the pixel 440 have values o1 0,0,1,1,1 (in no
particular order), because two of the sample locations 1n the
pixel 440 are not covered by the surface while three of the
sample locations 1n the pixel 450 are covered by the surface.
The coverage bits associated with the pixel 450 have values of
1,1,1,1,1, because all of the sample locations in the pixel 450
are covered by the surface. The values of the coverage bits
associated with a pixel can be used to approximate the frac-
tion of that pixel that 1s covered by the surface. More specifi-
cally, the number of configuration bits that have a value of 1
can be divided by the total number of configuration bits to
approximate how much of a pixel 1s covered by a surface.
Thus, 1n the example of FIG. 5, the fraction of the pixel 440
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covered by the surface 1s approximated as three-fifths, while
the fraction of the pixel 450 covered by the surface 1s 1.0.
Alternatively, a fractional value more easily represented in
binary can be arbitrarily assigned to a pixel depending on how
many of 1ts configuration bits are set to a value of 1. Also, the
individual sample locations can be weighted differently,
depending on, for example, their distance from the center of
the surface (or how close they are to 1ts edges); other weight-
ing schemes may be employed.

The fraction of a pixel that is covered by a surface (the
coverage Iraction) can be used to determine the color of that
pixel. More specifically, the coverage fraction can be used to
weight a destination color and a source color to determine a
pixel color dst', as follows:

dst’'=f-src+(1-f)-dst;

where 1 1s the coverage fraction for a pixel, src 1s the source
color (e.g., the color associated with the surface), and dst 1s
the destination color (e.g., the color associated with the area
adjacent to the surface).

If the coverage fraction of a pixel 1s zero, the pixel’s color
1s the same as the destination color (dst'=dst). When all of a
pixel’s coverage bits are 0, then 1t 1s not necessary to compute
the value of the coverage fraction for that pixel. Accordingly,
when the shader 2235 (FI1G. 2) detects a pixel in which all of the
coverage bits are 0, no further shading computation 1is
required. In one embodiment, the rasterizer 220 (FIG. 2)
tracks those pixels that are covered by the surtace, allowing
the shader to skip uncovered pixels and move directly to
pixels that are covered, 1n whole or 1n part, by the surface.

Although the examples above refer to the processing of
pixels, recall that, in one embodiment, a 2x2 array of pixels (a
quad) 1s processed. Thus, 1n the examples above, four pix-
cls—or 20 sample locations—can be processed per clock
cycle. Also, although 5 coverage bits are described 1n the
examples above, some number of coverage bits other than 5
(e.g., 2 or 8) can be used. In general, according to embodi-
ments of the present mvention, multiple coverage bits are
used per pixel istead of only a single bit per pixel. Conse-
quently, higher quality anti-aliasing can be achieved. Because
the coverage bits can be stored 1n the stencil butter 1n lieu of
an 8-bit stencil value, existing hardware can be used, and
storage and bandwidth requirements are not increased.

In the examples above, the value of a coverage bit associ-
ated with a sample location 1s, 1n essence, tlipped from one
binary value to another each time the sample location 1s
covered by a triangle. Instead of tlipping bit values, multiple
coverage bits per sample location can be used, and the value
(count) of the coverage bits can be incremented each time 1ts
associated sample location 1s covered by a triangle. In such an
approach, non-zero values, for example, could be associated
with sample locations covered by a surface and zero values
could be associated with sample locations not covered by a
surface. Other types of approaches can be used to create a
mask that represents a surface. However, by flipping bit val-
ues 1n the manner described herein, only a single bit needs to
be stored per sample location.

FIG. 6 1s a block diagram showing a rasterizer 220, a shader
225 and a framebuifer 250 in an embodiment of the present
invention. In such an embodiment, when determining the
values of the coverage bits as described above, the pixel
shader 1s disabled—data 1s not sent from the rasterizer to the
shader. Furthermore, CSAA 1s disabled—data 1s not sent to a
CSAA butfer (not shown). Coverage information is instead
sent to the stencil butier 610. After coverage mnformation 1s
determined for a bounding box of pixels (e.g., a frame or full
screen ol pixels), the shader 1s enabled and CSAA may also be
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enabled. The shader can use the coverage information con-
tained in the stencil butiler to render (color) the pixels, and the
rendered pixels are sent to the display buifer 620. In essence,
a mask 1s produced, and the mask 1s used to apply colors to the
pixels.

FIG. 7 1s a flowchart 700 of an example of a computer
graphics method according to an embodiment of the present
invention. In one embodiment, the flowchart 1s performed by

the graphics system 130 of FIG. 2. Blocks 702,704, 706, 708

and 710 may be performed by the rasterizer 220, and blocks
712, 714 and 716 may be performed by the shader 225.

As mentioned above, each pixel 1s associated with a num-
ber of coverage bits, and each of the coverage bits 1s associ-
ated with a respective sample location within a pixel.

In block 702, a surface to be rendered 1s 1dentified. Fur-
thermore, a reference point (or reference vertex or reference
location) 1s selected. As described previously herein, the ret-
erence point can be inside, outside or on the boundary of the
surface. If outside the boundary of the surface, the reference
point may be located relatively close to the surface, although
this does not have to be the case.

In block 704, the boundary of the surface 1s represented as
a series of straight line segments.

In block 706, convex polygons (e.g., triangles) are succes-
stvely superimposed onto the surface. The polygons have a
vertex 1in common—specifically, the reference point selected
above 1s used as the vertex in common. Each of the polygons
has an edge that coincides with one of the line segments.

In block 708, a value of a coverage bit 1s changed each time
a sample location associated with the coverage bit 1s covered
by one of the polygons. Although a single coverage bit 1s
referred to 1n this block, it 1s understood that 1n actual opera-
tion there may be multiple sample locations covered by each
polygon, and 11 so each of the coverage bits associated with
those sample locations 1s changed.

In one embodiment, a first value for the coverage bit asso-
ciated with a sample location is read from a buffer. A deter-
mination 1s made as to whether the sample location 1s covered
by one of the polygons. A second value associated with the
sample location 1s set depending on whether or not the sample
location 1s covered by the polygon—that 1s, the second value
has one value 11 the sample location 1s covered and another
value 1f 1t 1s not. The first value 1s combined with the second
value to produce a third value. In one such embodiment, the
first and second values are used as operands 1n a logical
operation (e.g., an XOR, OR or NOR operation). The third
value 1s written to the builer in place of the first value. In
actual operation, the approach just described 1s performed for
multiple coverage bits in parallel.

In block 710, final values of the coverage bits are stored
after all of the polygons are successively superimposed.

I1 there are multiple shapes being rendered, the steps above
can be repeated for each shape.

In block 712, coverage information 1s received for a bound-
ing box of pixels. The coverage information includes a num-
ber of bits per pixel (e.g., 5 bits per pixel). The coverage
information can be used to identify a subset of the pixels that
are covered at least partially by a surface. The rasterizer can
track those pixels that are at least partially covered by the
surface, and the tracking information may also be included 1n
the coverage information.

In block 714, for each pixel 1n the subset, the coverage
information 1s used to determine what fraction of the pixel 1s
covered by the surface.

In block 716, the coverage fractions are used to determine
the colors of the pixels 1 the subset. More specifically, the
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fractions are used to weight destination colors and source
colors 1n order to determine the colors of the pixels.

Although specific steps are disclosed 1n the flowchart of
FIG. 7, such steps are exemplary. That 1s, embodiments of the
present invention are well-suited to performing various other
steps or variations of the steps recited in the flowchart. The
steps 1n the flowchart may be performed 1n an order different
than presented. Furthermore, the features of the various
embodiments described above can be used alone or 1n com-
bination.

In summary, according to embodiments described herein, a
mask that can be used for shading irregularly shaped surfaces
1s produced. The granularity of the mask 1s increased from
one bit per pixel to multiple bits per pixel. Accordingly,
higher quality anti-aliasing can be achieved but without
increasing storage and bandwidth requirements. As such,
embodiments in accordance with the present invention pro-
vide effective but computationally efficient computer graph-
ics systems and methods.

Embodiments of the present invention are thus described.
While the present invention has been described 1n particular
embodiments, 1t should be appreciated that the present inven-
tion should not be construed as limited by such embodiments,
but rather construed according to the below claims.

What 1s claimed 1s:

1. A computer-implemented graphics method comprising:

identifying a reference vertex;

representing the boundary of a surface as a plurality of

straight line segments;

successively superimposing a plurality of polygons onto

the surface, each of the polygons having a vertex that
coincides with the reference vertex and each of the poly-
gons having an edge that coincides with one of the line
segments;

changing, using a rasterizer, a value of a coverage bit for a

pixel each time a sample location associated with the
coverage bit 1s covered by one of the polygons;

storing, 1n a buifer, a resultant value of the coverage bit

aiter the plurality of polygons are successively superim-
posed, the resultant value operable for use 1n subsequent
rendering of the surface; and

determining, using a shader, a color of the pixel using the

resultant value of the coverage bit, wherein the shader 1s
disabled in response to the rasterizer performing the
changing operation and 1s enabled 1n response to the
storing of the coverage bat.

2. The method of claim 1 wherein the changing comprises:

reading a first value for the coverage bit from the butfer,

wherein the first value 1s associated with the sample
location;
determining whether the sample location 1s covered by a
polygon of the plurality of polygons, wherein a second
value associated with the sample location 1s set depend-
ing on coverage of the sample location by the polygon;

combining the first value with the second value to produce
a third value; and

writing the third value to the buiter 1n place of the first

value.

3. The method of claim 2 wherein the combining comprises
using the first and second values as operands 1n a logical
operation, wherein the logical operation 1s selected from the
group consisting of: an XOR operation, a NOR operation, and
an OR operation.

4. The method of claim 1 wherein the pixel comprises a
plurality of sample locations and wherein each of the sample
locations 1s associated with a respective coverage bit, wherein
the method further comprises:
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accessing resultant values for coverage bits associated with
the pixel after the plurality of polygons are successively
superimposed;

using the resultant values to determine a fraction of the
pixel covered by the surface;

reading a destination color and a source color associated
with the pixel; and

determiming the color of the pixel using the destination
color, the source color and the fraction.

5. The method of claim 1 wherein the pixel comprises five

sample locations.
6. The method of claim 1 wherein the polygons are tri-

angles.

7. A system comprising:

a rasterizer operable to successively superimpose a plural-
ity of polygons onto a surface comprising a plurality of
pixels, wherein each of the polygons has a vertex that
coincides with a same reference point; and

a shader coupled to the rasterizer;

wherein the rasterizer 1s further operable to determine cov-
crage information for the plurality of pixels by 1) gener-
ating a first bit sequence that represents a number of
sample locations that are covered by a first polygon of
the plurality of polygons, 11) reading feed a second bit
sequence from a bufler, 111) combining the first bit
sequence with the second bit sequence using a logical
operation to produce a third bit sequence, and 1v) writing,
the third bit sequence back to the butifer; and wherein the
shader 1s operable for determining a color of a pixel
based on the coverage information 1n the butler; and

wherein the shader 1s disabled while the rasterizer 1s deter-
mining the coverage information for the plurality of
pixels, and wherein the shader 1s subsequently enabled
after the rasterizer determines the coverage information
for the plurality of pixels.

8. The system of claiam 7 wherein the boundary of the
surface 1s represented as a plurality of straight line segments
and wherein each of the polygons has an edge that coincides
with one of the line segments.

9. The system of claim 7 wherein the logical operation 1s
selected from the group consisting of: an XOR operation, a
NOR operation, and an OR operation.

10. The system of claim 7 wherein the shader uses the
values 1n the butler to determine a fraction of the pixel that 1s
overlapped by the surface.

11. The system of claim 10 wherein the fraction 1s used to
weilght a destination color and a source color that are associ-
ated with the pixel 1n order to determine the color of the pixel.

12. The system of claim 7 wherein the rasterizer processes
four pixels comprising 20 sample locations per clock cycle.

13. The system of claim 7 wherein the pixel comprises five
sample locations, wherein the first, second and third bit
sequences each comprise a bit per sample location.

14. The system of claim 7 wherein the polygons are tri-
angles.

15. A method comprising;:

representing a surface as a plurality of straight line seg-
ments;

successively superimposing a plurality of polygons onto
the surface, wherein each of the polygons has a vertex
that coincides with a same reference point and wherein
cach of the polygons has an edge that coincides with one
of the line segments;

receving, in a buifer in a computer system, coverage infor-
mation for a bounding box of pixels, the coverage infor-

mation comprising a plurality of bits per pixel, the cov-
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erage information operable for identifying a subset of
the pixels that are covered at least partially by the sur-
face;:

changing a respective bit value 1n the coverage information
cach time a corresponding sample location included
within one of the pixels 1n the bounding box 1s covered
by one of the polygons;

determining, using a shader that 1s executed by the com-
puter system, fractions of the pixels in the subset that are
covered by the surface using the coverage information;
and

determining, using the shader, colors of the pixels 1n the
subset using the fractions, wherein the shader 1s disabled
while the coverage information for the bounding box of
pixels 1s generated, and wherein the shader 1s enabled
alter the coverage information 1s determined for the

bounding box of pixels.

5

10

15

14

16. The method of claim 15 further comprising using the

fractions to weight destination colors and source colors that
are associated with the pixels 1n the subset 1n order to deter-
mine the colors of the pixels in the subset.

17. The method of claim 15 further comprising

reading a first bit value from memory, the bit value associ-
ated with a sample location within one of the pixels 1n
the bounding box;

setting a second bit value according to whether or not the
sample location 1s covered by one of the polygons:

producing a third bit value by combining the first and
second bit values using a logical operation; and

writing the third bit value to the memory 1n place of the first
bit value.



	Front Page
	Drawings
	Specification
	Claims

