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OPTIMAL CACHING FOR VIRTUAL
COVERAGE ANTIALIASING

FIELD OF THE INVENTION

The present mvention 1s generally related to hardware
accelerated graphics computer systems.

BACKGROUND OF THE INVENTION

Recent advances 1in computer performance have enabled
graphic systems to provide more realistic graphical images
using personal computers, home video game computers,
handheld devices, and the like. In such graphic systems, a
number of procedures are executed to “‘render” or draw
graphic primitives to the screen of the system. A “graphic
primitive” 1s a basic component of a graphic picture, such as
a point, line, polygon, or the like. Rendered images are
formed with combinations of these graphic primitives. Many
procedures may be utilized to perform 3-D graphics render-
ng.

Specialized graphics processing units (e.g., GPUs, etc.)
have been developed to optimize the computations required
in executing the graphics rendering procedures. The GPUs
are configured for high-speed operation and typically incor-
porate one or more rendering pipelines. Each pipeline
includes a number of hardware-based functional units that are
optimized for high-speed execution of graphics instructions/
data, where the instructions/data are fed into the front end of
the pipeline and the computed results emerge at the back end
of the pipeline. The hardware-based functional units, cache
memories, firmware, and the like, of the GPU are optimized to
operate on the low-level graphics primitives (e.g., comprising
“points”, “lines”, “triangles™, etc.) and produce real-time ren-
dered 3-D images.

The real-time rendered 3-D 1mages are generated using
raster display technology. Raster display technology 1s
widely used 1n computer graphics systems, and generally
refers to the mechanism by which the grid of multiple pixels
comprising an 1mage are mnfluenced by the graphics primi-
tives. For each primitive, a typical rasterization system gen-
erally steps from pixel to pixel and determines whether or not
to “render,” or write a given pixel into a frame butler or pixel
map, as per the contribution of the primitive. This, 1n turn,
determines how to write the data to the display buifer repre-
senting each pixel.

Various traversal algorithms and various rasterization
methods have been developed for computing from a graphics
primitive based description to a pixel based description (e.g.,
rasterizing pixel to pixel per primitive) 1n a way such that all
pixels within the primitives comprising a given 3-D scene are
covered. For example, some solutions involve generating the
pixels 1n a unidirectional manner. Such traditional unidirec-
tional solutions mvolve generating the pixels row-by-row 1n a
constant direction. This requires that the sequence shift across
the primitive to a starting location on a first side of the primi-
tive upon finishing at a location on an opposite side of the
primitive.

Other traditional methods involve utilizing per pixel evalu-
ation technmiques to closely evaluate each of the pixels com-
prising a display and determine which pixels are covered by
which primitives. The per pixel evaluation involves scanning,
across the pixels of a display to determine which pixels are
touched/covered by the edges of a graphics primitive.

Once the primitives are rasterized into their constituent
pixels, these pixels are then processed in pipeline stages sub-
sequent to the rasterization stage where the rendering opera-
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tions are performed. Generally, these rendering operations
assign a color to each of the pixels of a display 1n accordance

with the degree of coverage of the primitives comprising a
scene. The per pixel color 1s also determined 1n accordance
with texture map information that 1s assigned to the primi-
tives, lighting information, and the like.

Various traversal algorithms have been developed for mov-
ing from pixel to pixel in a way such that all pixels within the
primitive are covered. For example, some solutions mvolve
generating the pixels 1 a unidirectional manner. Such tradi-
tional unidirectional solutions 1nvolve generating the pixels
row-by-row 1n a constant direction. This requires that the
sequence shift across the primitive to a starting location on a
first side of the primitive upon finishing at a location on an
opposite side of the primitive. Fach time this shift 1s executed,
pixels or texture values are stored which were not positioned
adjacent to pixels or texture values processed immediately
betorehand. Therefore, such distant pixels or texture values
have a greater chance of belonging to different memory
access blocks, making such access netficient.

Less ellicient access imposes a number of performance
penalties on the graphics rendering system. Operating on
distant pixels or distant texture values leads to a large number
of pixel data fetches or texture data fetches from the frame
buifer memory. This causes a correspondingly large amount
of frame buffer memory bandwidth traih

ic. The excess frame
buifer memory traffic contends with other graphics function
units that need to access the frame builer memory. The per-
formance penalty 1s even more severe in those cases where
anti-aliasing 1s implemented. For example, many anti-alias-
ing techniques utilize a plurality of subpixel sample points 1n
order to more accurately determine fragment coverage per
pixel. What 1s particularly problematic 1s the fact that the
multlple number of sample points per pixel can greatly
increase the amount of excess frame buffer memory traffic.

Thus, a need exists for a rasterization process that can
ensure needed graphics rendering data (e.g., texture values,
normal maps, etc.) can be maintained 1n memory for an etfi-
cient access by the GPU.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide a method
and system for a rasterization process that can scale as graph-
ics application needs require and provide added performance
without incurring penalties such as increased power con-
sumption and/or reduced fabrication yield.

In one embodiment, the present invention 1s implemented
as a method for caching pixel data 1n a graphics pipeline of a
graphics processor. The method includes receiving a graphics
primitive (e.g., triangle) for rasterization 1n a raster stage of a
graphics processor and rasterizing the graphics primitive to
generate a plurality of tiles of pixels (e.g., four pixels per tile,
etc.) related to the graphics primitive. Generally, a tile 1s
related to the graphics primitive 1f 1t has at least some degree
of coverage by the graphics primitive. A subpixel sample
group related to each of the plurality of tiles 1s also deter-
mined. The plurality of tiles and the corresponding plurality
of subpixel sample groups are stored into a frame buller
memory. A set of tiles and a set of corresponding subpixel
sample groups from the frame buller memory are stored 1n a
rasterization cache, wherein the rasterization cache 1s config-
ured for access by the raster stage to enable a subpixel anti-
aliasing operation.

In this manner, the rasterization cache 1s configured to
maximize locality of reference advantages by keeping ire-
quently accessed pixel data at hand 1 low latency cache
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memory. For example, the rasterization cache can function in
conjunction with particular traversal algorithms to maximize
the probability that needed pixel data (e.g., subpixel sample
points, etc.) will reside within the rasterization cache as
opposed to the frame butler. For example, the set of tiles and
the set of corresponding subpixel sample groups that are
stored 1n the rasterization cache can be selected to maximize
access to the rasterization cache as opposed to access to the
frame buller memory during the subpixel anti-aliasing opera-
tion. Additionally, the rasterization cache can utilize intelli-
gent cache line eviction policies 1n order to provide an opti-
mal benefit from a limited amount of storage space.

In one embodiment, the present invention 1s implemented
as a computer system configured for optimal caching for
virtual coverage anti-aliasing. The computer system includes
a system memory, a central processor unit coupled to the
system memory, and a graphics processor unit communica-
tively coupled to the central processor unit. A set-up unit 1s
included within the graphics processor unit for generating
polygon descriptions of a graphics primitive, and a rasterizer
unit 1s coupled to the set-up unit for generating a plurality of
tiles of pixels related to the graphics primitive and determin-
ing a subpixel sample group related to each of the plurality of
tiles. A rasterization cache 1s coupled to the rasterizer unit for
storing a set of tiles and a set of corresponding subpixel
sample groups, wherein the rasterization cache 1s configured
for access by the raster stage to enable a virtual coverage
anti-aliasing operation. The set of tiles and the set of corre-
sponding subpixel sample groups that are stored in the ras-
terization cache are selected to maximize access to the ras-
terization cache as opposed to access to the frame builer
memory during the virtual coverage anti-aliasing operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying,
drawings and 1n which like reference numerals refer to similar
clements.

FIG. 1 shows a computer system 1n accordance with one
embodiment of the present invention.

FIG. 2 shows a diagram depicting a grid of pixels being
rasterized using a traversal pattern 221 1n accordance with
one embodiment of the present invention.

FI1G. 3 shows a diagram of a triangle against a rasterization
pattern for a raster unit of the GPU 1n accordance with one
embodiment of the present invention.

FIG. 4 shows adiagram of the triangle against a grid of tiles
as they are examined by the first level rasterization process 1n
accordance with one embodiment of the present invention.

FIG. 5 shows a diagram of the exemplary tile including a
plurality of subpixel sample points 1n accordance with one
embodiment of the present invention.

FI1G. 6 shows a diagram of the exemplary tile including the
neighboring pixels and their associated subpixel sample
points 1 accordance with one embodiment of the present
ivention.

FIG. 7 shows the exemplary tile and a subpixel sample
group related to the tile 1n accordance with one embodiment
of the present invention.

FIG. 8 illustrates the attribute of the rasterization cache
whereby the pixels of one tile are shared by two other tiles in
accordance with one embodiment of the present invention.

FIG. 9 shows a diagram depicting a graphics pipeline in
accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred
embodiments of the present invention, examples of which are
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illustrated 1n the accompanying drawings. While the mven-
tion will be described in conjunction with the preferred
embodiments, 1t will be understood that they are not intended
to limit the invention to these embodiments. On the contrary,
the invention 1s intended to cover alternatives, modifications
and equivalents, which may be included within the spirit and
scope of the mvention as defined by the appended claims.
Furthermore, in the following detailed description of embodi-
ments of the present invention, numerous specific details are
set forth in order to provide a thorough understanding of the
present invention. However, 1t will be recognized by one of
ordinary skill in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, components, and circuits
have not been described 1n detail as not to unnecessarily
obscure aspects of the embodiments of the present invention.
Notation and Nomenclature:

Some portions of the detailed descriptions, which follow,
are presented 1n terms ol procedures, steps, logic blocks,
processing, and other symbolic representations of operations
on data bits within a computer memory. These descriptions
and representations are the means used by those skilled in the
data processing arts to most effectively convey the substance
of their work to others skilled in the art. A procedure, com-
puter executed step, logic block, process, etc., 1s here, and
generally, conceived to be a self-consistent sequence of steps
or instructions leading to a desired result. The steps are those
requiring physical manipulations of physical quantities. Usu-
ally, though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, trans-
terred, combined, compared, and otherwise manipulated 1n a
computer system. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as

bits, values, elements, symbols, characters, terms, numbers,
or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussions, 1t 1s appreciated that
throughout the present invention, discussions utilizing terms
such as “processing” or “accessing’ or “‘executing” or “stor-
ing” or “rendering” or the like, refer to the action and pro-
cesses ol a computer system (e.g., computer system 100 of
FIG. 1), or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)
quantities within the computer system’s registers and memo-
ries 1into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

Computer System Platform:

FIG. 1 shows a computer system 100 1n accordance with
one embodiment of the present invention. Computer system
100 depicts the components of a basic computer system 1n
accordance with embodiments of the present invention pro-
viding the execution platform for certain hardware-based and
soltware-based functionality. In general, computer system
100 comprises at least one CPU 101, a system memory 115,
and at least one graphics processor unit (GPU) 110. The CPU
101 can be coupled to the system memory 1135 via a bridge
component/memory controller (not shown) or can be directly
coupled to the system memory 1135 via a memory controller
(not shown) internal to the CPU 101. The GPU 110 1s coupled
to a display 112. One or more additional GPUs can optionally
be coupled to system 100 to further increase 1ts computational

power. The GPU(s) 110 1s coupled to the CPU 101 and the
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system memory 115. System 100 can be implemented as, for
example, a desktop computer system or server computer sys-

tem, having a powerful general-purpose CPU 101 coupled to
a dedicated graphics rendering GPU 110. In such an embodi-
ment, components can be included that add peripheral buses,
specialized graphics memory, 10 devices, and the like. Simi-
larly, system 100 can be implemented as a handheld device
(e.g., cellphone, etc.) or a set-top video game console device
such as, for example, the Xbox®, available from Microsoit
Corporation of Redmond, Wash., or the PlayStation3®, avail-
able from Sony Computer Entertainment Corporation of
Tokyo, Japan.

It should be appreciated that the GPU 110 can be imple-
mented as a discrete component, a discrete graphics card
designed to couple to the computer system 100 via a connec-
tor (e.g., AGP slot, PCI-Express slot, etc.), a discrete inte-
grated circuit die (e.g., mounted directly on a motherboard),
or as an integrated GPU included within the integrated circuit
die of a computer system chipset component (not shown).

Additionally, a local graphics memory 114 can be included
tor the GPU 110 for high bandwidth graphics data storage.

Embodiments of the Invention

Embodiments of the present invention implement a method
and system for caching pixel data 1n a graphics pipeline of a
graphics processor (e.g., GPU 110) to facilitate virtual cov-
erage anti-aliasing. The method includes recetving a graphics
primitive (e.g., triangle) for rasterization 1n a raster stage of
the graphics processor 110 and rasterizing the graphics primi-
tive to generate a plurality of tiles of pixels (e.g., four pixels
per tile, etc.) related to the graphics primitive. Generally, a tile
1s related to the graphics primitive if 1t has at least some
degree of coverage by the graphics primitive. A subpixel
sample group related to each of the plurality of tiles 1s also
determined. The plurality of tiles and the corresponding plu-
rality of subpixel sample groups are stored 1nto a frame buiier
memory (e.g., local graphics memory 114). A set of tiles and
a set of corresponding subpixel sample groups from the frame
buifer memory 114 are stored 1n a low latency high bandwidth
rasterization cache, wherein the rasterization cache 1s config-
ured for access by the raster stage to enable a subpixel anti-
aliasing operation. Embodiments the present invention and
their benefits are further described below.

FIG. 2 shows a diagram of a rasterization process for a
triangle 201 1n accordance with one embodiment of the
present invention. The FIG. 4 embodiment shows a traversal
pattern 221 where the raster unit visits all tiles/pixels on a 2D
area of the triangle 201 by sequentially scanning the lines of
an upper left quadrant (e.g., lines 0 through 7), an upper right
quadrant (e.g., lines 8 through 15), a lower left quadrant (e.g.,
lines 16 through 23), and a lower right quadrant (e.g., lines
24-31).

The objective of the rasterization process 1s to determine
which pixels have at least some degree of coverage by a given
primitive. These pixels are then passed on to the subsequent
stages of the graphics pipeline to be rendered 1nto the appro-
priate fragment data and stored into the frame buifer memory
for display.

In one embodiment, as depicted 1n FIG. 2, the traversal
pattern 221 shows a boustrophedonic pattern of traversal,
where the term “boustrophedonic” refers to a traversal pattern
which visits all pixels on a 2D area by scanning back and forth
along one axis as each pass moves farther along on the
orthogonal axis, much as a farmer would plow or mow a field.

Thus, as depicted 1n FIG. 2, the rasterization pattern imple-
ments a serpentine pattern that folds back and forth along a
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predominant axis. In the FIG. 2 example, the predominant
axis 1s vertical. Consequently, the lower-level axis shows a
case where the rasterization 1s left-to-right for rows of 8
tiles/pixels. The higher level motion 1s along the predominant
vertical axis, where row to row scanning proceeds vertically,
for example, from row 0 to row 7. For the first column (e.g.,
upper left quadrant), the row to row motion 1s downward
vertical. For the second column (e.g., upper right quadrant),
the row to row motion 1s upward vertical. In this manner, FIG.
2 shows an example of a vertical boustrophedonic sequence
using the folded path described above to ensure that an aver-
age distance from a generated pixel to recently previously
generated pixels 1s relatively small.

In the present embodiment, the traversal pattern 221 1s
implemented on a tile-by-tile basis (e.g., from one generated
tile to the next generated tile) although 1t should be noted that
the traversal pattern can be implemented on a pixel-by-pixel
basis.

The optimized traversal pattern 221 has advantages for
maintaining a cache of relevant data and reducing the
memory requests required for frame bulfer access. For
example, generating pixels that are near recently generated
pixels 1s important when recent groups of pixels and/or their
corresponding depth values, stencil values, and the like are
kept 1n memories of a limited size (e.g., cache memories,
etc.).

FIG. 3 shows a diagram of a triangle 301 against an exem-
plary rasterization pattern 321 for a raster unit of the GPU 110
in accordance with one embodiment of the present invention.
As shown 1n the FIG. 3 embodiment, a raster unit of the GPU
110 traverses the triangle 301 and stamps out tiles that have at
least some coverage with respect to the triangle 301. The
resulting tiles are subsequently sent down the graphics pipe-
line for further processing.

FIG. 4 shows a diagram of the triangle 301 against a grid of
tiles as they are examined by the first level rasterization pro-
cess 1n accordance with one embodiment of the present inven-
tion. In FIG. 4, each of the illustrated squares represents a tile
comprised of pixels (e.g., 16x16, 8x8, 4x4, etc.). Thus, 1n a
case where each tile comprises 2x2 pixels, the raster unit of
the GPU 110 can stamp out a 4 pixel tile each clock cycle. The
generation of such tiles can be considered as a form of coarse
rasterization, where comparatively large groups of pixels are
considered at one time to quickly determine which pixels of a
large screen area (e.g., 1920x1200, 1024x768 etc.) are rel-
evant and which pixels of the screen area can be discarded.
The comparatively large tiles can be examined 1n detail 1n a
subsequent stage, where each pixel of the tile 1s examined to
determine a more fine degree of coverage by the triangle 301.

In this manner, a coarse rasterization 1s intended to quickly
determine which pixels of the screen area relate to a given
graphics primitive. Accordingly, groups of pixels (e.g., tiles)
are examined at a time 1n order to quickly find those pixels
that relate to the primitive. The process can be compared to a
reconnaissance, whereby the coarse raster unit quickly scans
a screen area and finds tiles that cover the triangle 301. Thus
the pixels that relate to the triangle 301 can be discovered
much more quickly than a traditional prior art process which
utilizes a single level of rasterization and examines much
smaller numbers of pixels at a time, 1n a more fine-grained
mannet.

FIG. 5 shows a diagram of the exemplary tile 401 including
a plurality of subpixel sample points 1n accordance with one
embodiment of the present invention. As depicted in FIG. 5,
the tile 401 1ncludes four pixels, with each pixel including
four subpixel sample points.
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As described above, received graphics primitives are ras-
terized to generate a plurality of tiles related to the graphics
primitive, where a given tile 1s related to the graphics primi-
tive 11 1t has at least some degree of coverage by the graphics
primitive. To facilitate a more fine degree of coverage deter-
mination, subpixel sample points are implemented. Subpixel
sample points are used to more precisely determine the area of
coverage ol a given fragment. Generally, the more subpixel
sample points that are covered by a primitive, the larger the
pixel area assigned to the fragment. Subpixel sample points
are used 1n anti-aliasing algorithms, such as, for example,
virtual coverage anti-aliasing operations.

FIG. 6 shows a diagram of the exemplary tile 401 including
the neighboring pixels and their associated subpixel sample
points 1n accordance with one embodiment of the present
invention. As depicted in FIG. 6, the exemplary tile 401 1s
shown by the dotted box. Each of the pixels are shown with
their constituent sub pixel sample points, in this case, four
sample points per pixel.

Referring to the FIG. 6 embodiment, when the raster stage
determines which tiles are related to the primitive (e.g., tile
401), the raster stage also determines a subpixel sample group
related to each of the plurality of tiles. In the case of the tile
401, a subpixel sample group related to tile 401 refers to the
tact that the values of the subpixel samples of the pixels that
are neighboring tile 401 are needed 1n order to compute pixel
attributes for the tile 401. For example, 1n order to compute
depth values for the pixels comprising the tile 401, informa-
tion from each of the neighboring pixels (e.g., from each of
the subpixel samples of the neighboring pixels) must be read
from memory. This information 1s then used to compute the
depth values for the pixels comprising the tile 401. When the
new depth values are computed, the pixels of the tile 401 are
updated by storing the computed information back into
memory.

Thus, 1n a general sense, 1n order to update all the pixels of
the tile 401, information of all the neighboring pixels must be
read for memory. Embodiments of the present invention
implement an optimized rasterization cache that minimizes
the memory bandwidth impact of such a read modity write
operations.

FI1G. 7 shows the exemplary tile 401 and a subpixel sample
group related to the tile 401 1n accordance with one embodi-
ment of the present invention. As depicted in FIG. 7, the tile
401 1s indicated by the dotted line. The neighboring 12 pixels
are also shown. Of the neighboring 12 pixels show 1n FIG. 7,
the pixels 701-705 comprise the subpixel sample group
related to the tile 401 and are indicated by their diagonal
hashing. For the purposes of clarity and to avoid unnecessar-
1ly obscuring aspects of the present invention, the individual
subpixel samples are not shown.

The FIG. 7 embodiment 1llustrates how intelligent deci-
s1ons are made as to the storing of the tile 401 and 1ts associ-
ated related subpixel sample group. The decisions take advan-
tage of the fact that the tile 401 can be stored within memory
along with a related subpixel sample group 1n order to best
take a vantage of an optimized traversal algorithm (e.g., tra-
versal pattern 221 of FIG. 2) as implemented by the raster
stage. In the present embodiment, the tile 401 1s stored as a
“3x3” where the tile 401 1s stored with the related subpixel
sample points of the pixels 701-705.

The raster stage takes advantage of the orientation of the
tile 401 and the related pixels 701-705 by implementing the
optimized traversal pattern 221. For example, 1n the present
embodiment, the related pixels 701-703 are on top and to the
left of the tile 401. To take advantage of this fact, the traversal
pattern 221 proceeds from top down and from leit to right, as
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shown 1n FIG. 2. Thus, using such a pattern, proceeding from
top to bottom, as each tile 1s rasterized, approximately 50% of
the data needed to evaluate the tile has been previously
accessed during the prior pass. This attribute 1s advanta-
geously utilized by the rasterization cache of the embodi-
ments of the present mvention.

The rasterization cache 1s designed to take advantage of the
fact that the location of the related subpixel sample group
with respect to the tile 401 can be controlled to maximize the
locality of reference of memory accesses. As each successive
tile 1s rasterized and evaluated (e.g., depth butlering, stencil
testing, etc.), a large portion of the needed data 1s already
resident within the rasterization cache and does notneed to be
fetched again from the frame buffer memory. By utilizing a
set of specific optimizations, the benefit provided by the ras-
terization cache can be further increased. These optimizations
are now described.

A primary optimization involves the use of the optimized
traversal pattern (e.g., boustrophedonic traversal) as
described above. The optimized traversal pattern folds back
and forth along a predominant axis, where, for example, the
pattern generates all the pixels within a primitive triangle that
are on one row from top to bottom, and then the next row
bottom to top, and so on. This ensures that an average distance
from a generated pixel to recently previously generated pixels
1s relatively small, and the beneficial impact of the rasteriza-
tion cache 1s maximized. The optimized traversal pattern also
minimizes the number of “cold starts” which must be under-
taken, wherein rasterization commences without any relevant
data within the rasterization cache.

Other optimizations mvolve the manner 1n which the ras-
terization cache eviction policy 1s implemented. For example,
embodiments of the present ivention produce a compara-
tively large benefit without requiring an overly large cache
size by implementing a carefully planned eviction policy.
This policy chooses particular cache lines for eviction when
new space 1s needed.

FIG. 8 shows an example where the rasterization cache
uses the pixel y-coordinate to select cache lines for replace-
ment 1n accordance with one embodiment of the present
invention. As depicted 1n FIG. 8, 4 adjacent tiles 801-804 are
shown. In this example, each of the tiles 801-804 comprise
2x2 pixels.

In the FIG. 8 embodiment, the rasterization cache uses the
pixel y coordinate to select cache lines for replacement. For
replacement, wherein the pixel y-coordinate will indicate
those cache lines that are not on the same row as the tile that
1s currently being rasterized and evaluated. This rule takes
advantage of the fact that the rasterization pattern predomi-
nately moves 1n a vertical direction, which makes 1t more
likely that an unused cache line will be furthest away in the
vertical direction.

FIG. 8 1illustrates the attribute of the rasterization cache
whereby the pixels of the tile 803 are shared by the tile 801
and tile 803. The pixels of the tile 802 are shared by the tile
801 and tile 802. However, the sample points within the
dotted area 805 are shared by all 4 quads. To take advantage
of this characteristic, the rasterization cache tries the hardest
to keep the tile 803 and sample points 805 in the cache. Next
it tries to keep the tile 802 in the cache. Thus, for example,
when rasterizing downward, the rasterization cache can take
advantage of the fact that the top row ol pixels will notbe used
again and that the pixels of the tile 802 will be used again
shortly.

Accordingly, it should be understood that one of the moti-
vations for using the rasterization cache 1s the fact that to
render a 2x2 tile when VCAA 1s turned on, information that
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overlaps between the tiles 1s needed. When VCAA 15 off, the
tiles are all independent and no such overlap occurs. Thus, the
rasterization cache provides an exceptional benefit 1n those
situations where a pixel’s value 1s used 1n rendering its neigh-
bor’s values.

In another embodiment, the rasterization cache can use the
direction of rasterization to replace cache lines that are fur-
thest away in the direction opposite to direction a rasteriza-
tion. Thus, for example, the uppermost cache lines can be
replaced when the rasterizer 1s moving downward. Similarly,
the lowermost cache lines can be replaced when rasterizer 1s
moving upward. This rule takes advantage of the fact that the
rasterizer 1s less likely to require access to cache lines that it
has passed and 1s moving away from.

In another embodiment, the rasterization cache can incor-
porate an optimization whereby a single set of tags can be
used for multiple surfaces that are stored within the rasteriza-
tion cache. The multiple surfaces refers to the fact that differ-
ent types of sampling data are stored within the cache (e.g.,
depth, stencil, anti-aliasing, etc.). These multiple surfaces,
however, are each accessed in the same manner. The raster-
ization cache can be optimized by using a common tag
mechanism to save transistor count and semiconductor die
area.

In another embodiment, the rasterization cache can be con-
figured to flush its contents (e.g., clear) between the process-
ing of primitives. For example, once the rasterization of one
primitive 1s finished, the rasterization cache can be cleared
prior to the commencement of rasterizing the new primitive.
This mechanism can ensure coherence in the rendering pro-
cess and affording a potential read modity right hazards.

In another embodiment, the rasterization cache i1s 1mple-
mented as a read-only cache. This actually takes advantage of
the fact that the rasterization cache can be configured to
interface with and function alongside an L2 cache also
included within the GPU 110. Hardware for writing back to
the frame bulfer memory can be incorporated within the L2
cache. This allows the hardware of the rasterization cache to
be streamlined and fast functioning, and takes advantage of
the fact that the rasterization cache can be flushed to maintain
coherence.

FIG. 9 shows a diagram depicting a graphics pipeline in
accordance with one embodiment of the present invention.

The FIG. 9 embodiment illustrates exemplary internal
components comprising a pipeline of the GPU 110. As shown
in FIG. 9, the GPU 110 includes a setup unit 901 and a
rasterizer unit 902. Generally, the set up unit 901 functions by
converting descriptions based on vertices to descriptions
based on edge descriptions. The rasterizer unit 902 subse-
quently converts these edge descriptions into filled areas
comprising actual pixel descriptions (e.g., pixel areas, pixel
sub-samples, etc.). The pixel descriptions are subsequently
passed along to other units within the GPU 110 for further
processing and rendering.

The raster cache 906 includes a tag unit 921, a FIFO 922,
and a RAM 923. The tag unit 921 1s used to keep track of
which particular pixel data 1s within the RAM 923. The RAM
923 provides the actual storage for the pixel data. The FIFO
922 keeps track of in-tflight memory access requests and
functions by hiding the latency between the requests of data
and the actual return of the data.

The pixel test unit 907 is coupled to receive the tiles gen-
crated by the raster unit 902. The pixel test unit 907 functions
by performing a number of different parameter evaluation
processes on the pixels comprising the tiles recerved from the
raster unit 902. The parameter evaluation process can be one
of the number of different evaluation processes, or pixel tests,
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which determine the degree to which the tiles from a given
primitive influence pixel colors in the frame butier 910. For
example, 1n one embodiment, the parameter evaluation pro-
cess can be a depth evaluation process, where, for example,
depth values for the tiles passed from the raster unit 902 are
tested against the depth values for those pixels are already
residing within the frame buffer 910. Those pixels which are
occluded by primitives already rendered into the frame buifer
can be discarded.

Similarly, 1n one embodiment, the parameter evaluation
process can be a transparency evaluation, where a transpar-
ency value for the tiles passed from raster unit 902 are tested
against the pixels already in the frame butffer. Those pixels
which have 100% transparency will have no effect on the
colors already rendered into the frame buffer and can be
discarded.

In yet another embodiment, the parameter evaluation pro-
cess can be a stencil evaluation, where a stencil 1s processed
against the pixels comprising the primitive. Those pixels
which are stenciled out by the stencil process will not be
rendered 1nto the frame buffer and can be discarded.

In each case, the objective 1s to identily pixels of tiles
which will not ultimately be drawn 1nto the frame butfer 910
and discard them prior to transmission to the shader unit 907
to save processing bandwidth. For example, 1n a case where
the parameter comprises a depth value, the objective 1s to
identify those tiles which are behind other primitives, or are
otherwise occluded, and discard them prior to transmission to
a subsequent stage of the pipeline.

The L2 cache 925 functions by providing a larger amount
of memory for storing pixel data in comparison to the raster
cache 906. The L2 cache 925 also includes logic for main-
taining coherence between the frame butler 910 and the other

memories of the graphics pipeline.

With respect to the frame buifer 910, 1t should be noted that
the frame butter 910 can be implemented as a portion of the
local graphics memory 114 shown in FIG. 1, or alternatively,
as a portion of the system memory 115.

The shader unit 908 performs pixel shader processing for
cach of the pixels comprising the tiles. The shader unit 908
typically receives the tiles 1n a piecemeal manner as pixel
“quads” (e.g., groups of 2x2 pixels) and operates on the quads
in accordance with the parameters iterated across each of the
pixels.

The foregoing descriptions of specific embodiments of the
present invention have been presented for purposes of illus-
tration and description. They are not intended to be exhaus-
tive or to limit the ivention to the precise forms disclosed,
and many modifications and variations are possible in light of
the above teaching. The embodiments were chosen and
described 1n order to best explain the principles of the mnven-
tion and 1ts practical application, to thereby enable others
skilled 1n the art to best utilize the invention and various
embodiments with various modifications as are suited to the
particular use contemplated. It 1s intended that the scope of
the invention be defined by the claims appended hereto and
their equivalents.

What 1s claimed 1s:
1. In a graphics pipeline of a graphics processor, a method
for caching pixel data, comprising:

receving a graphics primitive for rasterization in a raster
stage ol a graphics processor;

rasterizing the graphics primitive to generate a plurality of
tiles of pixels related to the graphics primitive;

determining a subpixel sample group related to each of the
plurality of tiles;



US 8,325,203 Bl

11

storing the plurality of tiles and the corresponding plurality
of subpixel sample groups 1nto a frame bufier memory;
and

storing a set of tiles and a set of corresponding subpixel
sample groups from the frame buflfer memory 1n a ras-
terization cache, wherein the rasterization cache 1s con-
figured for access by the raster stage to enable a subpixel
anti-aliasing operation.

2. The method of claim 1, wherein the subpixel anti-alias-

ing operation 1s a virtual coverage anti-aliasing operation.

3. The method of claim 1, wherein each of the plurality of
tiles comprises four pixels.

4. The method of claim 3, wherein each of the correspond-
ing subpixel sample groups comprises nine pixels, wherein
cach of the nine pixels includes a plurality of subpixel sample
points.

5. The method of claim 1, wherein the set of tiles and the set
of corresponding subpixel sample groups that are stored 1n the
rasterization cache are selected to maximize access to the
rasterization cache as opposed to access to the frame builer
memory during the subpixel anti-aliasing operation.

6. The method of claim 5, wherein the raster stage 1s con-
figured to rasterize the graphics primitive in an alternating
pattern to avoid accesses to corresponding subpixel sample
groups that are not stored in the rasterization cache.

7. The method of claim S, wherein the raster stage 1s con-
figured to use a pixel y coordinate from each of the plurality
of tiles to select a cache line of the rasterization cache for
replacement.

8. The method of claim 5, wherein the raster stage 1s con-
figured to use a direction of rasterization to select a cache line
of the rasterization cache for replacement.

9. The method of claim 5, wherein the rasterization cache 1s
configured to use a common set of tags for multiple surfaces
that are stored within the rasterization cache.

10. The method of claim 5, wherein the raster stage is
configured to clear the rasterization cache after completing
the rasterization of the graphics primitive and before begin-
ning the rasterization of a new graphics primitive.

11. The method of claim 1, wherein the rasterization cache
1s a read-only cache.

12. The method of claim 11, wherein the rasterization
cache 1s configured to interface with an L2 cache that is
coupled to the frame builer memory.

13. A GPU (graphics processor unit), comprising:

a set-up unmit for generating polygon descriptions of a

graphics primitive;

a rasterizer unit coupled to the set-up unit for generating a
plurality of tiles of pixels related to the graphics primi-
tive and determining a subpixel sample group related to
cach of the plurality of tiles; and

a rasterization cache coupled to the rasterizer unit for stor-
ing a set of tiles and a set of corresponding subpixel
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sample groups, wherein the rasterization cache 1s con-
figured for access by the rasterizer unit to enable a virtual
coverage anti-aliasing operation.

14. The GPU of claim 13, wherein the set of tiles and the set
of corresponding subpixel sample groups that are stored in the
rasterization cache are selected to maximize access to the
rasterization cache as opposed to access to the frame builer
memory during the subpixel anti-aliasing operation.

15. The GPU of claim 13, wherein the raster stage 1s con-
figured to rasterize the graphics primitive in an alternating
pattern to avoid accesses to corresponding subpixel sample
groups that are not stored in the rasterization cache.

16. The GPU of claim 13, wherein the raster stage 1s con-
figured to use a pixel y coordinate from each of the plurality
of tiles to select a cache line of the rasterization cache for
replacement.

17. The GPU of claim 13, wherein the raster stage 1s con-
figured to use a direction of rasterization to select a cache line
of the rasterization cache for replacement.

18. A computer system, comprising;:

a system memory;

a central processor unit coupled to the system memory; and

a graphics processor unit communicatively coupled to the
central processor unit;

a set-up unit within the graphics processor unit for gener-
ating polygon descriptions of a graphics primitive;

a rasterizer unit coupled to the set-up unit for generating a
plurality of tiles of pixels related to the graphics primi-
tive and determining a subpixel sample group related to
cach of the plurality of tiles; and

a rasterization cache coupled to the rasterizer unit for stor-
ing a set of tiles and a set of corresponding subpixel
sample groups, wherein the rasterization cache 1s con-
figured for access by the rasterizer unit to enable a virtual
coverage anti-aliasing operation, and wherein the set of
tiles and the set of corresponding subpixel sample
groups that are stored in the rasterization cache are
selected to maximize access to the rasterization cache as
opposed to access to the frame butfer memory during the
virtual coverage anti-aliasing operation.

19. The computer system of claim 18, wherein the raster
stage 1s configured to rasterize the graphics primitive 1n a
boustrophedonic pattern to avoid accesses to corresponding
subpixel sample groups that are not stored in the rasterization
cache.

20. The computer system of claim 18, wherein the raster
stage 15 configured to use a pixel y coordinate from each o the
plurality of tiles to select a cache line of the rasterization
cache for replacement, and wherein the raster stage 1s config-
ured to use a direction of rasterization to select a cache line of
the rasterization cache for replacement.
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