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1

MODEL-BASED PROGNOSTICS FOR
BATTERIES WHICH ESTIMATES USEFUL
LIFE AND USES A PROBABILITY DENSITY
FUNCTION

ORIGIN OF THE INVENTION

The mnvention described herein was made in the perfor-
mance of work under a NASA contract and by an employee of

the United States Government and 1s subject to the provisions
of Public Law 96-517 (35 U.S.C. §202) and may be manu-

factured and used by or for the Government for governmental

purposes without the payment of any royalties thereon or
therefore. In accordance with 35 U.S.C. §202, the contractor
clected not to retain title.

FIELD OF THE INVENTION

This 1nvention relates to prognostics and estimation of
remaining useful life (RUL) of an object 1n use.

BACKGROUND OF THE INVENTION

Americans purchase nearly 3 billion batteries (dry-cells)
every year. On average, each person 1n the US disposes of 8
batteries every year (PKIDs, 2009). A rechargeable battery
can replace hundreds of single-use batteries over 1ts life. Also,
all batteries contain metals such as mercury, lead, cadmium,
nickel and lithium, which may contaminate the environment
if disposed of improperly, hence reducing consumption eases
the strain on natural resources.

During Operation Iraqi Freedom, the Marines used an esti-
mated average of 3,028 batteries per day, which was half the
requirement of the entire battlefield. Apart from the 1ssue of
increasing eificiency, and reducing cost and wastage,
rechargeable batteries are a key enabling technology for solv-
ing energy problems of the future. One key feature of renew-
able energy sources, such as solar, wind, tidal, hydropower,
etc. 1s that these sources are not continually available. A report
by the California ISO Board notes that, “Wind generation
energy production 1s extremely variable, and i California, 1t
often produces its highest energy output when the demand for
power 1s at a low point” (CA ISO, 2008). An energy storage
tacility coupled with these power generation sources would
make these solutions more economically feasible. Such
energy storages, comprising batteries, fuel cell or super-ca-
pacitors, would 1n turn need reliable health monitoring sys-
tems to ensure viable levels of system availability, reliability
and sustainability and to protect the assets from degradation
due to non-optimal usage. Battery health management will
also play a critical role 1n electric vehicles that will be depen-
dant on an accurate gauge for remaining electrical charge and
for trade-oifs m long-term durability and short-term usage
needs.

A primary purpose ol modeling battery aging 1s to enable
elfective battery health monitoring (BHM) applications that
ensure that the battery operation stays within design limaits
and to provide warming or mitigate damage when these limaits
are exceeded. Current BHM eflorts come in many flavors,
from the data-driven (Rufus et al., 2008) to the model-based
(Plett, 2004) and even hybrnid approaches (Goebel et al.,
2008). Implementation complexity can range from intermait-
tent manual measurements of voltage and electrolyte specific
gravity to fully automated online supervision of various mea-
sured and estimated battery parameters using dynamic mod-
els. The sophistication of the models also varies from a col-
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lection of basis functions (Stamps et al., 20035) to detailed
formulations derived from physical analysis of the cell (Hart-
ley and Jannette, 2005).

Viewing the issue from the applications perspective,
researchers 1n the acrospace domain have examined the vari-
ous failure modes of the battery subsystems. Different diag-
nostic methods have been evaluated, like discharge to a fixed
cut-oif voltage, open circuit voltage, voltage under load and
clectrochemical impedance spectrometry (EIS) (Vutetakis
and Viswanathan, 1995). In the field of telecommunications,
workers have sought to combine conductance technology
with other measured parameters like battery temperature/

differential information and the amount of float charge (Cox
and Perez-Kite, 2000).

Other workers have concentrated more on the prognostic
approach than on the diagnostic one. Statistical parametric
models have been built to predict time to failure (Jaworski,
1999). Electric and hybrid vehicles have been another fertile
arca for battery health monitoring (Meissner and Richter,
2003). Impedance spectroscopy has been used to build bat-
tery models for cranking capability prognosis (Blanke et al.,
2003). State estimation techniques, such as the Extended
Kalman Filter (EKF), have been applied for real-time predic-
tion of state-of-charge (SOC) and state-of-life (SOL) of auto-
motive batteries (Bhangu et al., 2005; Plett, 2004). A deci-
sion-level fusion of data-driven algorithms, such as
Autoregressive Integrated Moving Average (ARIMA) and
neural networks, has been 1nvestigated for both diagnostics
and prognostics (Kozlowski, 2003). As the popular cell chem-
istries changed from lead acid to nickel metal hydride to
lithium 10n, cell characterization efforts have kept pace.
Dynamic models for the lithium 1on batteries that take into
consideration nonlinear equilibrium potentials, rate and tem-
perature dependencies, thermal effects and transient power
response have been built (Gao etal., 2002; Hartmann II, 2008;
Santhanagopalan et al., 2008).

However, a need still exists for a flexible prognostics
framework that combines the sensor data from battery moni-
tors, the models developed, and the appropnate state estima-
tion and prediction algorithms, i the form of an integrated
BHM solution.

Battery Characteristics.

Batteries are essentially energy storage devices that facili-
tate the conversion, or transduction, of chemical energy 1nto
clectrical energy, and vice versa (Huggins, 2008). A battery
includes a pair of electrodes (anode and cathode) immersed 1n
an electrolyte and sometimes separated by a separator. The
chemical driving force across the cell 1s due to the difference
in the chemical potentials of i1ts two electrodes, which 1s
determined by the diflerence between the standard Gibbs free
energies the products of the reaction and of the reactants. The
theoretical open circuit voltage, E°, of a battery is measured
when all reactants are at 25° C. and at 1M concentration or 1
atm pressure. However, this voltage 1s not available during
use, due to the various passive components inside like the
clectrolyte, the separator, terminal leads, etc. The voltage
drop due to these factors can be mainly categorized as:

IR drop—This drop in cell voltage 1s due to the current

flowing across the internal resistance of the battery.

Activation polarnization—This term refers to the various

retarding factors inherent to the kinetics of an electro-
chemical reaction, like the work function that 1ons must
overcome at the junction between the electrodes and the
clectrolyte.

Concentration polarization—This factor takes into account

the resistance faced by the mass transter (e.g. diffusion)
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process by which 1ons are transported across the elec-
trolyte from one electrode to another.

FIG. 1 illustrates a typical polarization curve of a battery
with the contributions of all three of the above factors shown
as a function of the current drawn from the cell. Since, these
factors are current-dependent, 1.e. they come into play only
when some current 1s drawn from the battery, the voltage drop
caused by them usually increases with increasing output cur-
rent.

Because the output current plays such a big role 1n deter-
minming the losses inside a battery, it 1s an important parameter
to consider when comparing battery performance. The term
most often used to indicate the rate at which a battery 1s
discharged 1s the C-Rate (Huggins, 2008). The discharge rate
(C-rate) of a battery 1s expressed as C/r, where r 1s the number
of hours required to completely discharge the nominal capac-
ity of the battery. Thus, a 2 Amp-hour battery discharging at
a rate ol C/10 or 0.2 Amps would last for 10 hours. The
terminal voltage of a battery, and the charge delivered, can
vary appreciably with changes in the C-Rate. Further, the
amount of energy supplied, related to the area under the
discharge curve, 1s also strongly C-Rate dependent. FIG. 2
illustrates a typical discharge of a battery and its variation
with C-Rate. Each curve corresponds to a different C-Rate or
C/r value (the lower the r the higher the current) and assumes
constant temperature conditions.

Moving on from the theoretical aspects to the application
point of view, the relevant physical properties of a battery may
be different in different cases. Sometimes specific energy and
specific power (energy and power available per umit weight)
are 1mportant, as 1 vehicle propulsion applications. Other
times the amount of energy stored per unit volume, called the
energy density, can be more important for batteries that power
portable electronic devices, like cell-phones, laptop comput-
ers, cameras, etc., while power per unit volume, known as
power density, can be important for some uses like cordless
power tools. However, imn recent times when the use of
rechargeable batteries 1s proliferating 1n consumer products,
an 1mportant parameter to consider 1s cycle life, which 1s the
number of times a battery can be recharged before 1ts capacity
has faded beyond acceptable limits (typically about 20-30
percent).

The degradation of battery capacity with aging, as mani-
tested by the cycle life parameter, can be modeled using
Coulombic efficiency Me defined as the fraction of the prior
charge capacity that 1s available during the following dis-
charge cycle (Huggins, 2008). This depends upon a number
of factors, especially current and depth of discharge 1n each
cycle. The temperature at which batteries are stored and oper-
ated under also has a significant effect on the Coulombic
eificiency. FIG. 3 illustrates the degradation of battery capac-
ity with 1ncrease of cycles for different values of Coulombic
eificiency. Note how even a small inefliciency factor of 0.5
percent (Coulombic efficiency=0.993) can reduce the capac-
ity by about 60 percent within 100 cycles.

SUMMARY OF THE INVENTION

These needs are met by the mvention, which provides as
many as eight different battery prognostic modes for estimat-
ing, or estimating and predicting state of charge (SOC), state
of life (SOL), end of discharge (EOD) and/or end of life
(EOD) for a battery that 1s undergoing active use. Estimation
of present state of charge (SOC) 1s referred to herein as mode
A; estimation of state of life (SOL) 1s referred to herein as
mode B; rediction of end of discharge (EOD) 1s referred to
herein as mode C; and prediction of end of life (EOL) 1s
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referred to herein as mode D. Mode A must precede mode C,
and mode B must precede mode D. Ar least eight different
combinations of the modes A, B, C and D are possible: A,
A+C, B, B+D, A+B, A+C+B, A+B+D, and A+C+B+D. Dii-
ferent analyses are performed for the modes A and C (Egs.
(1)-(5), (7), (8), and optionally (11) and (12) 1n the following)
and for the modes B and D (Eqgs. (6), (9), (10) and optionally
(11) 1n the following).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a graphical view of voltage versus current for a
battery.

FIG. 2 graphically 1illustrates intluence of current density
upon a discharge curve for a battery.

FIG. 3 graphically illustrates influence of Coulombic eili-
ciency on available charge capacity during battery recycling.

FI1G. 4 exhibits a lumped parameter electrical circuit model
used for a Li-1on battery.

FIG. § graphically illustrates decomposition of a Li-ion
battery discharge profile into different contributions.

FIG. 6 graphically illustrates discharge and self-recharge
for a Li-10n battery.

FIG. 7 graphically illustrates end-of-discharge (EOD) pre-
diction according to the present invention.

FIG. 8 graphically illustrates a.-A, performance for EOD
prediction.

FIG. 9 graphically illustrates end-of-life (EOL) prediction
for a Li-10n battery that 1s cycled many times.

FIG. 10 1s a flow chart illustrating the procedure for prac-
ticing the mvention in regards to estimating SOC and predict-
ing EOD.

FIG. 11 1s a flow chart illustrating the procedure for prac-

tlcmg the imnvention i regards to estimating SOL and predict-
ing EOL.

DESCRIPTION OF BEST MODES OF TH.
INVENTION

(Ll

[.1 Ion Batteries Characteristics

Several rechargeable battery technologies are available on
the market at present, each having distinct characteristics.
However, Li-1on batteries (“LIBs”) are becoming increas-
ingly popular for a varniety of applications, from consumer
clectronics to power tools to electric vehicles and even to
space applications. Li-1on batteries have a number of impor-
tant advantages over competing technologies (Huggins,
2008):

Since the electrodes of a Li-10on battery are made of light-
weilght lithium and carbon, they are usually lighter than
other types of rechargeable batteries of the same size.
Lithium 1s also a highly reactive element; hence a lot of
energy can be stored 1n 1ts atomic bonds. This translates
into a very high energy density for Li-ion batteries as
compared to other chemistries like lead-acid or NiCd
(nickel-cadmium) or NiMH (nickel-metal hydride).

L.IBs have a low self-discharge rate so that they hold their
charge for longer periods of time. Self-discharge 1is
caused by the residual 1onic and electronic flow through
a cell even when there 1s no external current being
drawn.

L.IBs have no memory effect so they do not have to be
completely discharged before recharging in order to
retain full charge capacity, as with some battery chem-

i1stries like Ni1Cd.
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LIBs have a long cycle life. They can handle hundreds of
charge and discharge cycles without significant degra-
dation of their capacity.

However, LIBs have some disadvantages as well (Buch-

mann, 2001; Huggins, 2008):

The service life or shelf life of a Li-10n battery decreases
with aging even 1f the battery i1s not used, unlike other
battery chemistries. This means that from the time of
manufacturing, regardless of the number of times i1t was
cycled, the capacity of a Li-ion battery will decline
gradually. This 1s due to an increase 1n internal resis-
tance, which makes the problem more pronounced in
high-current applications than low-current ones.

They are more sensitive to high temperatures than most
other chemistries. Hot storage and operating conditions
causes Li-10n battery packs to degrade much faster than
they normally would.

Li-1on batteries can be severely damaged by deep dis-
charge, 1.e. by discharging them below the minimum
voltage threshold recommended by the manufacturer
(usually 2.7 Volts for a single 186350 Li-1on cell). Con-
sequently, Li-1on battery packs come with an on-board
circuit to manage the battery. This adds to the expense of
a Li-1on battery.

In general Li-10n chemistry 1s not as sate as N1Cd or N1MH
chemistry. This 1s because the anode produces heat dur-
ing use, while the cathode produces oxygen (not for all
[1-10n chemistries). Lithium, being highly reactive, can
combine with this oxygen, leading to the possibility of
the battery catching on fire.

Considering both the advantages and the drawbacks, Li-
1on batteries seem one of the more important battery technol-
ogy for the present and the foreseeable future. It 1s for this
reason that we chose them for our battery prognostics
research.

Modeling Approaches.

Modeling a Li-10n battery from {first principles of internal
clectrochemical reactions can be very tedious and computa-
tionally intractable. The various losses inside a battery, such
as the IR drop, activation polarization and concentration
polarization, are represented as impedances 1 a lumped
parameter model 1n FIG. 4. The IR drop due to electrolyte
resistance 1s denoted as R.. "

T'he activation polarization 1s
modeled as a charge transfer resistance R ~-and a dual layer
capacitance C,; 1n parallel, while the concentration polariza-
tion effect 1s encapsulated as the Warburg impedance R ;.

This lumped parameter model may be analyzed in the time
domain to derive the discharge curves of the battery or 1n the
frequency domain to derive the Nyquist plots. The latter can
be achieved by EIS measurements, and the plots can subse-
quently be used to reason about the internal degradation pro-
cesses. However, FIS measurements require specialized
equipment and measurement conditions that prevent them
from being widely used in everyday applications.
End-otf-Discharge (EOD).

The goal of this research 1s to predict the RUL for any given
discharge cycle of the battery as well as the cycle life. This 1s

a two-part problem with different physical processes affect-
ing the RUL prediction for the end-of-discharge (EOD) and

end-of-life (EOL) (Saha and Goebel, 2009). To tackle the
EOD problem, we need to predict the way the impedance
parameters change with charge depletion during the dis-
charge cycle. Since the impedance parameters are essentially
representations ol electrochemical reactions and transport
processes 1nside the battery, they are strongly affected by the
internal temperature of the battery, the current load and the
ionic concentrations of the reactants. We postulate that as
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discharge progresses the heat generated by the reactions and
the current flow causes the internal temperature to go up,
cifectively increasing the mobility of the 1ons 1n the electro-
lyte, thus decreasing R . However, decreasing R ;;-increases
the selif-discharge rate, effectively increasing the electrolyte
resistance R - of the battery. Also, the increase in temperature
results 1n faster consumption of the cell reactants causing
them to be used up rapidly near the end of the discharge
resulting 1n an increase 1n R .- and a sharp drop 1n the cell
voltage. End of discharge (EOD) 1s reached when the output
voltage hits the minimum safe voltage threshold, E ., of the
cell. For a cell current of 1, the output voltage 1s given by

E=E°-I(R,+R +R}). (1)

The variations in E” with internal temperature (Hartmann
I1, 2008) are not explicitly modeled, but accounted for by the
adaptive powers of the PF framework described later. For the
empirical charge depletion model considered here, the output
voltage 1s expressed 1n terms of the effects of the changes in
the internal parameters:

E()=E°-AE {)~-NE,4(t)-AE,, (1), (2)

where t 1s a time variable during a discharge cycle, AE_ (1) 1s
a voltage drop due to self-discharge, AE , 1s the drop due to
cell reactant depletion and AE . denotes the voltage drop due
to internal resistance to mass transier (diffusion of 1o0ns).
These 1individual effects are modeled as

AE_(t)=0 exp{-0,/1}

(3)

AE, ()=0;exp{oytt, (4)

AE, (1) =AE

(3)
where, AE . 1s the initial voltage drop when current I flows
through the initial value of the internal resistance R, at the
start of the discharge cycle, and a={a,,a,,0.5,0,,05} repre-
sents a set of model parameters to be estimated from the data.
FIG. 5 illustrates how the different voltage drop components
defined 1n eqns. (3)-(5) combine to give the Li-1on discharge
profile.

End-of-Life (EOL).

In order to effectively determine the EOL of a Li-10on bat-
tery, one needs to understand how the different operational
modes, namely charge, discharge and rest, influence the
charge capacity, C. The aging model presented 1n (Hartmann
I1, 2008) considers only the reduction in capacity with usage
while neglecting the effects of rest periods. Use of a smooth-
ing {ilter on the capacity measurements also reduces the fidel-
ity ol the prediction scheme.

In the work presented here, the combined effects of charge
and discharge cycles 1s captured by the Coulombic efliciency
factor 1, as described 1n Section 4. The remaiming factor to
be accounted for 1s the self-recharge during rest. In any bat-
tery, reaction products build up around the electrodes and
slow the reaction (HowStuffWorks, 2000). By providing rest
for the battery, the reaction products have a chance to dissi-
pate, thus increasing the available capacity for the next cycle.
For the empirical model used here, this self-recharge 1s rep-
resented as an exponential process, as suggested by data. The
equation for battery aging can then be written as

—Clsf,

it

Crr1 N cCrtPrexpL—Po/Alr}, (6)

where C, denotes the charge capacity of cycle k, At, 1s a rest
period length between cycles k and k+1, and 3, and [3, are
model parameters to be determined. FIG. 6 indicates the
validity of Egs. (2)-(6) 1n modeling the discharge and seli-
recharge processes for an actual Li-ion battery cycle.
Although the model 15 used to estimate the cell voltage during
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the self-recharge process 1n, It 1s assumed that the SOC of the
battery 1s correlated to the voltage during rest or relaxation
periods (Huggins, 2008), when no external current i1s being
drawn, so as to maintain the exponential functional form.
Particle Filtering (PF) Framework.

The formulation of a model 1s part of, but not the whole,
solution. As discussed in the preceding, a number of unknown
parameters need to be i1dentified. Even after 1dentification,
they may not be directly applicable to the test set since the
values may difler from one battery to another, or for the same
battery from one cycle to the next. Further, for any given cycle
the parameter values may be non-stationary. In general, given
a model, the task of tracking a state variable and predicting
tuture values 1s usually cast as a filtering problem. The variety
of filtering techniques published 1n literature 1s enormous,
with each approach having performance advantages over oth-
ers depending upon the application. For the task of battery
prognostics, mncluding the prediction of EOD and EOL, this
method must be reconciled with non-exact non-linear non-
stationary models with non-Gaussian noise. Particle Filtering
provides us a viable framework that allows us to explicitly
represent and manage the uncertainties inherent to our prob-
lem.

Particle Filters (Gordon et al., 1993) are a novel class of
non-linear filters that combine Bayesian learning techniques
with importance sampling to provide good state tracking
performance while keeping the computational load tractable.
The system state (in this case the battery SOC or voltage or
capacity) 1s represented as a probability density function
(pdi) that 1s approximated by a set of particles (points) rep-
resenting sampled values from the unknown state space, and
a set ol associated weights denoting discrete probability
masses. The particles are generated from an a priori estimate
of the state pdi, propagated through time using a nonlinear
process model, and recursively updated from measurements
through a measurement model. The main advantage of PFs
here 1s that model parameters can be included as a part of the
state vector to be tracked, thus performing model 1dentifica-
tion in conjunction with state estimation (Saha et al., 2009).
After the model has been tuned to retlect the dynamics of the

specific system being tracked, it can then be used to propagate
the particles till the failure (e.g. EOD or EOL) threshold to

give the RUL pdif (Saha et al., 2009).

In the case of our application, the EOD estimation problem
1s cast 1n the PF framework as follows. A state transition
model and a measurement model are adopted:

Qi1 =0 40, (=1, ..., 5), (7.1)
£ :Ef_{ﬂl,,fﬂzﬁfexp (_[127;'/ 2;) (riz)_ﬂﬁ,,iﬂﬁhiexp ({14.,.1':1')_

C15’I-}/f5+(1)1-’, (72)
Ef:Ef‘Wf: (3)

where i is a time index, f. is a sampling frequency, E. denotes
the measured cell voltage attime index 1, and w, ; J=1,. .., 5,),
m, and v, are independent zero-mean (Gaussian noise terms.

Equation 7 1s used to propagate the particles representing,
the state vector (comprised of E, and «,) through each 1tera-
tion of the particle filter. Equation 8 1s used to update the
weights of the particles using the terminal voltage measure-
ments. This simultaneously tunes the model parameters, o,
along with estimating the state. At the point where prognosis
1s desired, the tuned model parameters are substituted into
Equation 7, which 1s then computed in an iterative manner
until the state value, 1n this case the terminal voltage E,,
reaches a predetermined cut-off threshold.
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The EOL estimation problem 1s similarly recast as a state

transition model

ﬁjﬁ+1:ﬁj,k+q)jﬁ,(j:1:2): (91)

Cror1™N cCrtPB 1 eXP1—Bo /AL)+P; (9.2)

Cr=Crt s, (10)

where k is a cycle index, C, denotes charge capacity of the
battery (component) measured (as an mtegral of current over
discharge time until cell voltage reaches E,. ;) at cycle index
k, and ¢, , ¢, ¢ and 1, are independent zero-mean Gaus-
s1an noise terms. The first term on the right hand side in Eq.
(9.2) retlects the Coulombic efficiency factor, while the sec-
ond term models the capacity gain due to battery rest.

Again similar to the EOD case, equation 9 1s used to propa-
gate the particles representing the state vector (comprised of
C, and [3,) through each 1iteration ot the particle filter. Equa-
tion 10 1s used to update the weights of the particles using the
terminal voltage measurements. This simultaneously tunes
the model parameters, 3, along with estimating the state. At
the point where prognosis 1s desired, the tuned model param-
eters are substituted into Equation 9, which 1s then computed
in an iterative manner until the state value, in this case the
battery capacity C,, reaches a predetermined cut-otf thresh-
old.

Note that 1n both state equations (7) and (9), the model
parameter 1s included as part of the state vector so that the PF
can perform model identification 1n conjunction with state
tracking.

Temperature dependence ('T) of one or more of the param-
eters discussed 1n the preceding, including but not limited to
state of charge SOC, charge capacity C, hours to drain nomi-
nal capacity r, Coulombic efficiency m, electrolyte resis-
tance R ., charge transfer resistance R ., dual layer capaci-
tance C,,, Warburg resistance R, theoretical open circuit
voltage E°, voltage drop due to self-discharge AE_ , voltage
drop due to reactant depletion, AE, ,, voltage drop due to mass
transier resistance AE , mitial voltage drop during discharge
AE. ... one or more model parameters o, one or more model
parameters [, time t.,, at which voltage E reaches E. -,
EOL capacity threshold C,.,,, and cycle index k.., at which

C reaches C.;, can be represented by an Arrhenius factor

AF=A(T/Ty)exp{-(yo/TV% ), (11)

where A 1s a physical parameter in appropriate units, T 1s a
reference temperature and (y,, v,, v53) are Arrhenius param-
cters associated with the particular electrochemaical process
variable being considered.

Some of these parameters, namely the 1nitial voltage drop
during discharge AE. . and the model parameters a,, are also
dependent upon the load current I. This dependence 1s mod-
cled by a linear proportionality factor

LF=6] (12)

where 0 1s a proportionality constant whose value will be
different for the different model parameters.

It 1s also important to note that the PF framework can not
only be used for prognosis but for mission planning (deci-
sioning) as well. IT at the point of prediction the current
prognosis, either in the EOD or the EOL case, does not meet
the required usage or mission objectives, 1.e., the battery does
not have enough charge or cycle life, then a population of
different future usage conditions (including but not limited to
load current, temperature, charge and discharge duration) can
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be run through the prediction phase of the PF framework to
come up with an alternate plan.

A PROCEDURE FOR PRACTICING TH.
INVENTION

T

FI1G. 10 1s a flowchart illustrating a procedure for practic-
ing the part of the invention that relates to estimating the SOC
and predicting EOD. In step 101, a mathematical model of the
clectro-chemical processes that are active during the dis-
charge of the battery, including Eqgs. (1)-(3), (7) and (8), and
optionally Eqgs. (11) and (12), 1s formulated. In step 103,
training data are collected for a representative battery, includ-
ing operating conditions, sensor measurements like load cur-
rent and temperature, and ground truth for battery discharge,
which 1n our case 1n terminal voltage. In step 105, we extract
or identily the parameters of the underlying electro-chemaical
process models, given by Eqgs. (1)-(3), (7) and (8), and option-
ally Egs. (11) and (12), that can be combined to explain the
battery discharge behavior. We quantily the uncertainties in
the models and sensors to initialize the respective probability
distributions 1n step 107. Next, in step 109, we combine the
individual models of the different processes along with the
initial estimates of the uncertainty distributions to form the
overall discharge model of the battery. The steps described till
now are performed offline. The next steps are meant to be
performed online, but may also be performed oifline.

In step 111, we collect run-time data, including operating,
conditions of the battery, and sensor measurements like load
current and terminal voltage. Then, 1 step 113, we use the
battery model 1n a particle filtering framework, Egs. (7) and
(8), to track the variable of interest, like state-of-charge
(SOC) or terminal voltage, and simultancously tune the
model parameters. Steps 111 and 113 comprise the tracking,
phase of the PF framework and needs to be repeated until the
point where prediction 1s desired, depending upon some bat-
tery voltage threshold or some such user-determined critena.

In step 115, we start the prediction routine while the track-
ing loop continues to run. In step 117, we estimate future
usage conditions including load and temperature as well as
their uncertainties 1n terms of probability distributions. Next,
in step 119, we propagate the current distribution of the vari-
able of interest, like SOC or terminal voltage, using the tuned
model obtained in step 113, until a predetermined EOD
threshold 1s reached. In step 121, we compute the remaining
usetul life (RUL) distribution w.r.t SOC by subtracting the

time when prediction was started 1n step 115 from time when
the EOD threshold 1s reached 1n step 119. Steps 115 to 119

comprise the prognosis part of the invention as applicable to
the SOC of the battery.

The next steps indicate how the PF framework may be
additionally used to decision making 1n the SOC context. If
the RUL computed 1n step 121 does not meet usage require-
ments, 1.e. remaining battery charge 1s too low, then, 1n step
123, we re-execute the prognosis process from step 117 with
alternate future load profiles until the requirements are met.
Subsequently, 1n step 125, we prescribe the viable alternate
future usage that will satisty user requirements.

In the case of a specific application domain like vehicles
with electric propulsion based on batteries, several factors
like acceleration, trajectory gradient or drag and ambient
temperature can aifect battery performance. In such cases,
EOD prediction and decision making, steps 117-125, can be
based on future use conditions that include navigation and
route planning in conjunction with terrain and weather infor-
mation.

10

15

20

25

30

35

40

45

50

55

60

65

10

The flowchart 1n FIG. 11 that describes the procedure for
estimating SOL and predicting EOL follows the same logic as
the flowchart in FIG. 10 described above, with the steps
number 2XY corresponding to the steps numbered 1XY in
FIG. 10. There are some differences in this case which are
discussed below.

The mathematical model considered tries to encapsulate
the aging behavior of the battery as it cycles through charge,
discharge and rest or relaxation periods. The relevant electro-
chemical processes are represented by Eqgs, (6), (9), (10) and
optionally (11). The state variable of interest1s SOL or battery
capacity, C. The future usage conditions include charge and
discharge profiles, relaxation periods and temperature as well
as their uncertainties in terms of probability distributions. The
user requirements will not be 1n terms of battery charge, but in
terms of battery life or capacity. In the case of electric
vehicles, the prognosis can be conditioned on factors like
traffic patterns and diving profiles 1n addition to environmen-
tal factors like temperature.

Sample Results.

The data used to validate the above approach have been
collected from a custom built battery prognostics testbed at
the NASA Ames Prognostics Center of Excellence (PCoE).
This testbed comprises:

Commercially available Li-ion 186350 sized rechargeable

batteries,

Programmable 4-channel DC electronic load,

Programmable 4-channel DC power supply,

Voltmeter, ammeter and thermocouple sensor suite,

Custom EIS equipment,

Environmental chamber to impose various operational

conditions,

PXI chassis based DAQ and experiment control, and

MATLAB based experiment control, data acquisition and

prognostics algorithm evaluation setup.

In this testbed, Li-10n batteries were run through 3 different
operational profiles (charge, discharge and EIS) at room tem-
perature, 23° C. Charging was carried out in a constant cur-
rent (CC) mode at 1.5 A until the battery voltage reached 4.2
V and then continued 1n a constant voltage (CV) mode until
the charge current dropped to 20 mAmp. Discharge was car-
ried out at a constant current (CC) level of 2 A until the battery
voltage fell to 2.7 V. Repeated charge and discharge cycles
result 1n accelerated aging of the batteries. The experiments
were stopped when the batteries reached the EOL criteria of
30 percent fade 1n rated capacity (from 2 Amp-hour to 1.4
Amp-hour). Due to the differences in depth-oif-discharge
(DOD), the duration of rest periods and intrinsic variability,
no two cells have the same SOL at the same cycle index. The
aim 1s to be able to manage this uncertainty, which is repre-
sentative of actual usage, and make reliable predictions of
RUL 1n both the EOD and EOL contexts. Although several
(>>20) batteries were aged 1n this setup, we present the results
from a single battery. The accuracy and precision of the
predictions shown below 1s representative of the performance
on the other batteries as well.

FIG. 7 illustrates the EOD predictions generated by the PF
algorithm for an arbitrarily selected discharge cycle of a Li-
ion battery under test. The red solid line shows the measured
cell voltage, while the green patch represents the envelope of
the PF tracking performance. The battery model 1s tuned
continuously until we reach one of the predetermined predic-
tion points (denoted by blue asterisks), at which time we
freeze the model and use 1t to extrapolate the particle distri-
bution t1ll the E. ) threshold.

It 1s to be noted that we do not generate a single-valued
prediction or a mean value with confidence bounds, but a full
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EOD pdf. Predictions are made at multiple points to test the
robustness of the algorithm to model parameter drift. The pdis
generated have high accuracy and precision as can be seen
from the overlap of the blue shaded areas to the right of FIG.
7andt, ,,, marked by the vertical red broken line. Because the
pdis overlap each other, they are differentiated by varying
shades of a color (e.g., blue) with the earliest one being the
lightest and the later ones being progressively darker. Also, to
improve visibility, the pdis have been scaled by a factor of 50

and shifted to the E ., ,) threshold.

In order to better quantily the prognostic performance, we
calculate the a-A, performance metric, as defined 1n (Saxena
et al., 2008), for the prediction means computed as the
weilghted sum of the particle populations. We include several
more prediction points 1n order to compute this metric, as
shown by the asterisks in FI1G. 8. It can be seen that we achieve
90 percent accuracy (¢.=0.1) right from the first prediction
point onwards (A=0). This means that 500 seconds into the
discharge, which 1s about 55 minutes long, one can predict the
EOD point to within £4 minute confidence limits. Haltway
into the discharge we can predict to within +2 minutes 45
seconds, and so on.

The performance of the PF algorithm for EOL prediction
problem 1s shown 1n FI1G. 9. The measured capacity values are
shown by the red solid line, the PF tracking by the green patch
and the prediction points by the blue asterisks. The EOL pdis
are denoted by the blue patches, lighter shades indicating
carlier predictions. Note that modeling the capacity gain due
to rest, as shown 1n Eq. (9), allows the PF to maintain track of
the capacity during rests and make predictions accordingly.
When predicting, the planned future usage and rest conditions
are made available to the PF framework. As can be seen, the
EOL pdis do overlap the cycles where the measured capacity
crosses the EOL threshold of 1.4 Amp-hour. Further enhance-
ments of this approach will be tackled 1n future research;
however, the feasibility of this PF based prognostics method-
ology has been demonstrated.

CONCLUSION

In summary, this disclosure sets forth an empirical model
to describe battery behavior during individual discharge
cycles as well as over 1ts cycle life. The basis for the form of
the model has been linked to the internal processes of the
battery and validated using experimental data.

Subsequently, the model has been used 1n a PF framework
to make predictions of EOD and EOL effectively. Although
the model has been developed with Li-1on battery chemistries
in mind, 1t can be applied to other batteries as long as effects
specific to those chemistries are modeled as well (e.g. the
memory effect in N1—Cd rechargeable batteries).

The prediction results have been satisfactory so far, how-
ever, there remains considerable room for improvement. The
model fidelity will improve when the influence of factors like
temperature, discharge C-rate, DOD, SOC after charging,
etc., are explicitly incorporated. This requires further inten-
stve theoretical as well as experimental investigation of bat-
tery behavior. As the understanding of these factors improves,
we will be able to better take advantage of advanced filtering,
techniques like unscented PF, Rao-Blackwellized PF (Saha et
al., 2009), and others, to further refine prognostic pertor-
mance.
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Nomenclature
DOD depth-of-discharge
EOD end-of-discharge
EOL end-of-life
RUL remaining useful life
SOC state-of-charge
SOL state-of-life
C charge capacity
I load current
I hours required to drain nominal capacity
MNe Coulombic efficiency
Rz electrolyte resistance
Rer charge transier resistance
Cpr dual-layer capacitance
Ry Warburg resistance
t time variable
1 time index
k cycle index
E cell voltage
E° theoretical open circuit voltage
Ezop
AE_; voltage drop due to self-discharge
AE voltage drop due to reactant depletion
AE,,, voltage drop due to mass transfer resistance
AE, . initial voltage drop during discharge
A Arrhenius physical parameter (dependent upon process)
T battery temperature
To reference temperature (dependent upon process)
Cli_y .. .5 FEOD model parameters for charge depletion
B 1.o EOL model parameters for discharge cycles
V=1 3 Arrhenius model parameters

0 proportionality constant with respect to current I

At, length of rest period between cycles k and k + 1
W, VvV, P, Y zero-mean (Gaussian noise terms

Ezop EOD voltage threshold (e.g., 2.7 Volt)

tzon time at which E reaches E.

Cror EOL capacity threshold (e.g., 1.4 Amp-hour)
Koz cycle when C reaches Cr 7
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What 1s claimed 1s:

1. A method for estimating remaining useful life (RUL) of
a battery during discharge of the battery, the method compris-
ing providing a computer system that 1s programmed:

to provide or recerve a quantitative empirical model with at

least one associated model parameter for at least one
clectro-chemical process that 1s active during discharge
of the battery;

to recerve and use measured values provided by one or

more sensors for at least one electro-chemical process
that 1s active during discharge of the battery;
to recerve and use training data comprising at least one of:
at least one operating, condition for the battery, at least
one sensor measurement value for battery operation, and
at least one ground truth attribute for battery discharge;

to compute and incorporate at least one numerical param-
cter value for the electro-chemical process that charac-
terizes battery discharge behavior;

to i1dentily at least one uncertainty 1 the quantitative

model, including an uncertainty range for the at least one
model parameter and an uncertainty range for the at least
one measured sensor value;

to provide and incorporate at least one numerical value for

at least one probability density function (pdi) corre-
sponding to a distribution of the at least one uncertainty;
to provide at least one process model of at least one process
component with at least one estimate of an value of a
probability density function (pdi) for a distribution of at
least one uncertainty in the at least one process model, to
provide a characterization of battery discharge;
to provide or receive run-time data, including the at least
one battery operating condition and at least one sensor
measurement value; and

to apply the quantitative model of the battery 1n a particle

filtering framework to estimate at least one battery dis-
charge variable of interest, comprising at least one of
state of charge (SOC) and terminal voltage of the battery,
and to contemporaneously modify the at least one model
parameter value used in the quantitative model.

2. The method of claim 1, wherein said computer 1s further
programmed to choose said battery operating condition from
a group ol conditions comprising battery terminal voltage,
battery load current, and battery temperature.

3. The method of claim 1, wherein said computer 1s further
programmed to icorporate ambient temperature in said at
least one operating condition.

4. The method of claim 1, further comprising decomposing,
said battery discharge behavior mto a plurality of sub-pro-
cesses of said battery, with at least one sub-process compris-
ing at least one of mass-transier, battery seli-discharge, and
reactant depletion, with corresponding model parameters and
uncertainty distributions.

5. The method of claim 1, wherein said computer 1s further
programmed so that, when a user of said computer program
indicates that prediction of said battery discharge behavior 1s
desired, said computer 1s further programmed:
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to provide or receive at least one anticipated future use

condition of said battery;

to provide or recerve at least one said pdif that 1s associated

with said at least one uncertainty distribution 1n said at
least one sensor measurement value associated with
operation of said battery;

to propagate said at least one battery discharge variable of

interest to a selected time later than present time or to at
least one predetermined threshold value for said battery
discharge variable of interest being propagated; and

to estimate said RUL of said battery during discharge, said

RUL comprising time remaining until said battery
reaches an end-of-discharge (EOD) state.

6. The method of claim 5, further comprising decomposing
said battery discharge behavior into a plurality of sub-pro-
cesses of said battery, with at least one sub-process compris-
ing at least one of mass-transier, seli-discharge; and reactant
depletion, with corresponding model parameters and uncer-
tainty distributions.

7. The method of claim 6, applied to a vehicle having
partial or complete electric propulsion, where said future use
conditions comprise at least one of desired destination, terrain
information for a desired route, trajectory gradient informa-
tion for the desired route, traffic information for the desired
route, weather data, and expected temperature profile along,
the desired route.

8. The method of claim 7, turther comprising using infor-
mation on said EOD with at least one of said destination
information, said terrain information, and said traffic infor-
mation to provide at least one driving recommendation that
may extend a time at which said EOD will occur, determined
by performing a trade-oil analysis of at least two load sce-
narios for said battery.

9. A method for estimating remaining useful life (RUL) of
a battery over battery cycle life as the battery experiences a
plurality of charge, discharge, and rest periods, the method
comprising providing a computer system that is programmed:

to provide or recerve a quantitative empirical model with at

least one associated parameter to be determined from
sensor measurements, wherein the basis for the form of
the model 1s linked to at least one internal electro-chemai-
cal process of the battery that 1s active during at least one
of charge, discharge and rest period of the battery;

to receive and use at least one of said measured values

provided by one or more sensors for the at least one
clectro-chemical process that 1s active during the at least
one ol the charge, discharge and rest periods of the
battery, to infer or estimate at least one numerical param-
eter value for the model;

to recerve training data, comprising at least one of: at least

one operating condition for the battery, battery storage
condition, at least one measured sensor value for battery
operation, and at least one ground truth attribute for
battery capacity;

to 1dentify at least one uncertainty in the quantitative

model, including an uncertainty range for at least one
model parameter and an uncertainty range for at least
one measured sensor value, and to initialize at least one
probability density function (pdi) for a distribution of
the at least one uncertainty;

to provide at least one process model of at least one process
component with at least one estimate of the at least one
uncertainty pdf to provide a characterization of battery
ageing behavior;
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to provide or receive run-time data, including the at least
one battery operating condition, battery storage condi-
tion, and the at least one sensor measurement value for
battery operation; and

to apply the quantitative model of the battery 1n a particle

filtering framework to track or monitor at least one bat-
tery cycle life variable of interest, comprising at least
one of state of life (SOL) and capacity of the battery, and
to contemporaneously modify at least one model param-
cter value used 1n the quantitative model.

10. The method of claim 9, wherein said computer 1s fur-
ther programmed to choose said at least one battery operating
condition from at least one condition, comprising battery
depth of discharge (DOD), battery charge current, and battery
storage state of charge SOC.

11. The method of claim 10, wherein said battery storage
includes at least first and second battery rest periods having
different rest period lengths.

12. The method of claim 9, wherein said computer 1s fur-
ther programmed to incorporate ambient temperature in said
at least one operating condition.

13. The method of claim 9, wherein said battery ageing
behavior 1s decomposed into a plurality of sub-processes of
said battery, wherein at least one sub-process comprises at
least one of capacity loss due to Coulombic efficiency factor
and capacity recovery during rest, with corresponding model
parameters and uncertainty distributions.

14. The method of claim 9, wherein said at least one battery
cycle life variable of interest 1s based on a lumped parameter
model, 1n which at least one component, comprising electro-
lyte resistance, Warburg resistance, charge transifer resis-
tance, and dual-layer capacitance, 1s determined by electro-
chemical impedance spectroscopy (EIS) measurements.

15. The method of claim 9, wherein said computer 1s fur-
ther programmed so that, when a user of said computer pro-
gram indicates that prediction of battery life 1s desired, said
computer 1s further programmed:

to provide or receive at least one anticipated future use

condition of said battery, comprising at least one battery
charge profile, at least one battery discharge profile, and
at least one battery storage condition;

to provide or receive said at least one pdf that 1s associated

with a distribution of said at least one uncertainty in said
at least one sensor value associated with use of said
battery;

to propagate said at least one battery cycle life vanable of

interest to a selected time later than present time or to at
least one predetermined threshold value for said at least
one battery cycle life variable of interest being propa-
gated; and

to estimate said RUL of said battery, said RUL comprising

a time remaining until said battery reaches an end-of-life
(EOL) state.

16. The method of claim 15, further comprising decom-
posing battery ageing behavior into a plurality of sub-pro-
cesses of said battery, with at least one of the sub-processes
comprising at least one of capacity loss due to Coulombic
eiliciency factor, and capacity recovery during rest, with cor-
responding model parameters and uncertainty distributions.

17. The method of claim 15, wherein said at least one
battery cycle life variable of interest 1s based on a lumped
parameter model, in which at least one component, compris-
ing electrolyte resistance, Warburg resistance, charge transfer
resistance, and dual-layer capacitance, 1s determined by at
least one EIS measurement.

18. The method of claim 15, applied to a vehicle with
partial or complete electric propulsion, where said future use
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conditions comprise at least one of vehicle driving profiles,
vehicle storage conditions and vehicle maintenance sched-
ules.

19. The method of claim 18, wherein information on cli-
mate and terrain and said EO state are received or provided to
formulate at least one of storage recommendation and main-
tenance recommendation that may extend a time at which said
EOL state will occur, by performing a trade-oil analysis of at
least two use scenarios for said battery.

20. A system for estimating remaining usetul life (RUL) of
a battery during discharge of the battery, embodying a pro-
gram on instructions executable by a computer, wherein the
computer system 1s programmed:

to provide or recerve a quantitative empirical model with at

least one associated model parameter for at least one

clectro-chemical process that i1s active during discharge
of the battery;

to recerve and use measured values provided by one or

more sensors for at least one electro-chemical process
that 1s active during discharge of the battery;
to recerve and use training data comprising at least one of:
at least one operating condition for the battery, at least
one sensor measurement value for battery operation, and
at least one ground truth attribute for battery discharge;

to compute and incorporate at least one numerical param-
eter value for the electro-chemical process that charac-
terizes battery discharge behavior;

to 1dentily at least one uncertainty i1n the quantitative

model, including an uncertainty range for at least one
model parameter and an uncertainty range for at least
one measured sensor value;

to provide and incorporate at least one numerical value for

at least one probability density function (pdif) corre-
sponding to a distribution of the at least one uncertainty;
to provide at least one process model of at least one process
component with at least one estimate of a value of a
probability density function (pdi) for a distribution of at
least one uncertainty in the at least one process model, to
provide a characterization of battery discharge;
to provide or recetve run-time data, including the at least
one battery operating condition and the at least one
sensor measurement value; and

to apply the quantitative model of the battery 1n a particle

filtering framework to provide an estimate of at least one
battery discharge variable of interest, comprising state
of charge (SOC) and terminal voltage of the battery, and
to contemporaneously modily at least one model param-
cter value used 1n the quantitative model.

21. The system of claim 20, wherein said computer system
1s Turther programmed to choose said battery operating con-
dition from a group of conditions comprising battery terminal
voltage, battery load current, and battery temperature.

22. The system of claim 20, wherein said computer system
1s Turther programmed to incorporate ambient temperature 1n
at least one of said operating conditions.

23. The system of claim 20, wherein said computer system
1s further programmed to decompose said battery discharge
behavior into a plurality of sub-processes of said battery, with
at least one sub-process comprising at least one of mass-
transier, battery seli-discharge, and reactant depletion, with
corresponding model parameters and uncertainty distribu-
tions.

24. The system of claim 20, wherein when a user of said
computer system indicates that prediction of said battery
discharge behavior 1s desired, said computer system 1s further
programmed:
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to provide or receive at least one anticipated future use

condition of said battery;

to provide or receive at least one said pdf that 1s associated

with said at least one uncertainty distribution 1n said at
least one sensor measurement value associated with
operation of said battery;

to propagate said at least one battery discharge variable of

interest to a selected time later than present time or to at
least one predetermined threshold value for said battery
discharge variable of interest being propagated; and

to estimate said RUL of said battery during discharge, said

RUL comprising time remaining until said battery
reaches an end-of-discharge (EOD) state.

25. The system of claim 24, wherein said computer system
1s further programmed to decompose said battery discharge
behavior into a plurality of sub-processes of said battery, with
at least one sub-process comprising at least one of mass-
transier, self-discharge, and reactant depletion, with corre-
sponding model parameters and uncertainty distributions.

26. The system of claim 25, wherein said computer system
1s applied to a vehicle having partial or complete electric
propulsion, where said future use conditions comprise at least
one of desired destination, terrain information for a desired
route, trajectory gradient information for the desired route,
tratfic information for the desired route, weather data, and
expected temperature profile along the desired route.

277. The system of claim 26, wherein said computer system
1s Turther programmed to use information on said EOD with
at least one of said destination information, said terrain infor-
mation, and said traific information to provide at least one
driving recommendation that may extend a time at which said
EOD will occur, determined by performing a trade-oif analy-
s1s of at least two load scenarios for said battery.

28. A system for estimating remaining useful life (RUL) of
a battery over battery cycle life as the battery experiences a
plurality of charge, discharge, and rest periods, embodying a
program on instructions executable by a computer, wherein
the computer system 1s programmed:

to provide or receive a quantitative empirical model with at

least one associated parameter to be determined from
sensor measurements, wherein the basis for the form of
the model 1s linked to at least one internal electro-chemai-
cal process of the battery that 1s active during at least one
of charge, discharge and rest period of the battery;

to recerve and use at least one measured value provided by

one or more sensors for the at least one electro-chemical
process that 1s active during the at least one of the charge,
discharge and rest periods of the battery, to infer or
estimate at least one numerical parameter value for the
model;

to recerve tramning data, comprising at least one of: at least

one operating condition for the battery, battery storage
condition, at least one measured sensor value for battery
operation, and at least one ground truth attribute for
battery capacity;

to 1dentify at least one uncertainty in the quantitative

model, including an uncertainty range for at least one
model parameter and an uncertainty range for at least
one measured sensor value, and to initialize at least one
probability density function (pdi) for a distribution of
the at least one uncertainty;

to provide at least one process model of at least one process

component with at least one estimate of the at least one
uncertainty pdf to provide a characterization of battery
ageing behavior;
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to provide or recerve run-time data, including at least one of
battery operating condition, battery storage condition,
and the at least one sensor measurement value for battery
operation; and
to apply the quantitative model of the battery 1n a particle
filtering framework to provide an estimate of at least one
battery cycle life variable of interest, comprising state of
life (SOL) and capacity of the battery, and to contempo-
raneously modily at least one model parameter value
used 1n the quantitative model.

29. The system of claim 28, wherein said computer system
1s Turther programmed to choose said battery operating con-
dition from at least one condition, comprising battery depth of
discharge (DOD), battery charge current, and battery storage
state of charge SOC.

30. The system of claim 29, wherein said battery storage
includes at least first and second battery rest periods having
different rest period lengths.

31. The system of claim 28, wherein said computer system
1s Turther programmed to incorporate ambient temperature 1n
said at least one operating condition.

32. The system of claim 28, wherein said computer system
1s further programmed to decompose said battery ageing
behavior into a plurality of sub-processes of said battery,
wherein at least one sub-process comprises at least one of
capacity loss due to Coulombic efficiency factor and capacity
recovery during rest, with corresponding model parameters
and uncertainty distributions.

33. The system of claim 28, wherein said computer system
1s Turther programmed so that said at least one battery cycle
life variable ol interest 1s based on a lumped parameter model,
in which at least one component, comprising electrolyte resis-
tance, Warburg resistance, charge transfer resistance, and
dual-layer capacitance, 1s determined by electrochemical
impedance spectroscopy (EIS) measurements.

34. The system of claim 28, wherein when a user of said
computer system indicates that prediction of battery life 1s
desired, said computer system 1s further programmed:

to provide or receive at least one anticipated future use

condition of said battery, drawn from a group of condi-
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tions comprising at least one battery charge profile, at

least one battery discharge profile, and at least one bat-

tery storage condition;

to provide or receive said at least one pdf that 1s associated
with a distribution of said at least one uncertainty 1n said
at least one sensor value associated with use of said
battery;

to propagate said at least one variable of interest to a
selected time later than present time or to at least one
predetermined threshold value for said at least one bat-
tery cycle life vaniable of interest being propagated; and

to estimate said RUL of said battery, said RUL comprising

a time remaining until said battery reaches an end-of-life
(EOL) state.

35. The system of claim 34, wherein said computer system
1s further programmed to decompose said battery ageing
behavior into a plurality of sub-processes of said battery, with
at least one of the sub-processes comprising at least one of
capacity loss due to Coulombic efficiency factor, and capacity
recovery during rest, with corresponding model parameters
and uncertainty distributions.

36. The system of claim 34, wherein said computer system
1s further programmed so that said at least one battery cycle
life variable of interest 1s based on a lumped parameter model,
in which at least one component, comprising electrolyte resis-
tance, Warburg resistance, charge transfer resistance, and
dual-layer capacitance, 1s determined by at least one EIS
measurement.

37. The system of claim 34, wherein said computer system
1s applied to a vehicle with partial or complete electric pro-
pulsion, where said future use conditions comprise at least
one of vehicle driving profiles, vehicle storage conditions and
vehicle maintenance schedules.

38. The system of claim 37, wherein said computer system
1s further programmed so that information on climate and
terrain and said EOL state are received or provided to formu-
late at least one of storage recommendation and maintenance
recommendation that may extend a time at which said EOL
state will occur by performing a trade-oil analysis of at least
two use scenarios for said battery.
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