US008694963B2
a2y United States Patent (10) Patent No.: US 8.694.963 B2
Hinchey et al. 45) Date of Patent: Apr. 8, 2014
(54) SYSTEMS, METHODS AND APPARATUS FOR (51) Imt. CL.
DEVELOPING AND MAINTAINING GO6F 9/45 (2006.01)
EVOLVING SYSTEMS WITH SOFTWARE (52) U.S. CL
PRODUCT LINES USPC e, 717/122
(38) Field of Classification Search
(75) Inventors: Michael G. Hinchey, Bowie, MD (US); USPC oottt 717/122

James L. Rash, Davidsonville, MD
(US); Joaquin Pena, Sevilla (ES)

(73) Assignee: The United States as represented by
the Administrator of the National
Aeronautics Space Administration,

Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 83 days.

(21) Appl. No.: 13/305,932

(22) Filed: Novw. 29, 2011
(65) Prior Publication Data
US 2012/0096436 Al Apr. 19, 2012

Related U.S. Application Data

(62) Davision of application No. 11/536,378, filed on Sep.
28, 2006, now Pat. No. 8,082,538.

(60) Provisional application No. 60/805,484, filed on Jun.
22, 2006, provisional application No. 60/811,147,
filed on May 15, 2006.

202 -
\ GENERATE
DOMAIN

204

REQUIREMENTS

ANALYZE
DOMAIN

DOMAIN

208

ENGINEER

S S/

ENGINEER
APPLICATION

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,562,346 B2* 7/2009 Jhanwaretal. 717/120
8,397,223 B2* 3/2013 Chiangcoocoeeeeenin, 717/145
2002/0138320 Al* 9/2002 Robertsonetal. 705/8
2003/0097365 Al* 5/2003 Sticklercccocoeeeeenei 707/100
2005/0065970 Al1* 3/2005 Kingetal 707/102
2008/0250389 Al* 10/2008 Hincheyetal. 717/107

* cited by examiner

Primary Examiner — John Chavis

(57) ABSTRACT

Systems, methods and apparatus are provided through which
an evolutionary system 1s managed and viewed as a soltware
product line. In some embodiments, the core architecture 1s a
relatively unchanging part of the system, and each version of
the system 1s viewed as a product from the product line. Each
soltware product 1s generated from the core architecture with
some agent-based additions. The result may be a multi-agent
system software product line.

8 Claims, 14 Drawing Sheets

_ 200

U.S. Patent Apr. 8, 2014 Sheet 1 of 14 US 8,694,963 B2

102
ENGINEER DOMAIN OF
REUSABLE CORE ASSETS
104 y

ENGINEER APPLICATION
OF THE REUSABLE CORE
ASSETS

FIG. 1 kmo

U.S. Patent

FIG. 2

Apr. 8, 2014 Sheet 2 of 14

202)
\ GENERATE
DOMAIN

REQUIREMENTS

ANALYZE
DOMAIN

206 , L
\ ENGINEER
DOMAIN

2038
\ ENGINEER

APPLICATION

US 8,694,963 B2

\ 200

US 8,694,963 B2

Sheet 3 of 14

Apr. 8, 2014

U.S. Patent

£ Old

00t ./

d41LNdNOO

J10N3H

Oce

DIN

0zZ€ 301A3d @/
auvOgAIN —
ONILNIOJ - QLE 1€

8Ct ;

NWNOD
S 1o OlL€
_m@<mokm
SSYIA
H 0l€
ANOY
80¢
NV %5 A
AN 14%5 d4MOd _ 306
N — NdD
NV g k e
0€E .
HIAMVYIJS _ YIMVYIdS H AVIdSIa W 20€
9Z¢ ZAD 228

US 8,694,963 B2

Sheet 4 of 14

Apr. 8, 2014

U.S. Patent

a

119903dvOS3
[(((3AONLSY)QIHSIN
-1434NSYIN HILIGHO] J 119490 LHOd TN
1194903dvOSs3 e
[(13A0OWLSVY)A3HSIN SIYNSYIN
FJHNSYIW H3LIgdg] FANSVIN 14043y
NET > ONILIgHO
_
IJHNSYIN
COb [1S1a>(SOd3aAILY13HAl

-OY31LSY 'SOd3IAILY13Y)LSId]

1194015 Nrav

400

[((WLIGHO HILIGHO 'SOdIAILY 1Y HAL
-19H0) LI9H403AISNIINY H3LIGH0) LON]

FIG. 4

U.S. Patent Apr. 8, 2014 Sheet 5 of 14 US 8,694,963 B2

002
TRIMMINGSAILS
S TA RT I N G 32
—> sy
PROTECTIONs | | PROTECTING
N

504 OFFSUBSYS

FIG. 5 ksoo

US 8,694,963 B2

Sheet 6 of 14

Apr. 8, 2014

U.S. Patent

_ - R ™
\\,,mm o N & A o . ~
) IBOOWLSY
O OMIMNTS SO LS \ HAAFDEN |SY HILIHHO / \ L0 ‘N /
1300
E ST3CONA0LSI LAO Ni mMﬁmuJGmai,ﬁm ‘NA3LLVd .\
” _ \ELINS3Y ALNGIHLSIC V0D
3000 NOLLYHOEYTIO0
199 'SWO09 RN > NYILLVY o . pgdoisnray o
T3AON MONM! L - wo ¥09- -
09 370] i sLifsas e _ 219
_ h & _ alnamLsiavos / 8 _
EAEREL 019 - mwm_mww.w__ﬁ y 008 (T300N18Y SERSIEERGSIED
219 = N 08:(1300WLIBHO SO LIBNOIAISNIIAY
~ ~ SHNSYIN- [LNGNDXZHNASY I
S/ W THAON(FENSYIN WV LYASSIOO N
200 NLHO wLEy A1 (ALIEH0 SOdIAILY 138 LISMO LSO aY
¥3LEHO WIISA- \ “ 13C0NLSY - 12A0N1SY
ﬁt g9 | OWLIEHO YiVOLISY ViIVOLSY
1n0 N o SOd ‘SOBALVIIIQIONTLSY
L | o S
e :
. NOLVHOBV IOV | 1 T30ONLISNO ALISHO
| TICONLIBHO(YLYOaIO -
MFLSVILIGHOIIVINOWDL Aif \jeyo 180438 7TvoD / Zh4 LIGHO 3HL 139 V09 SLIGHO i
| THaoWLIgNo wugdo| /S & T —————— 14 THAONLED YOO IUNSYIN RN
VIVOGIOUSLVYIVAISY @ N\ us¥o / . TMNSYIN
- ™ 1¥0d43y .~ A ANy LISHO NIVINIVI 1909 370
ST1R00W] P B
1EH0 ONIS '$TVO9 18I -~ ~ U3 LIFHO
S 11840 7 m U LIENO
FLVINQIVO TTVOY JT08| “\ 503
HATAUONLIH0 TACOWLSY M /\ e 3 —
\ | SOJIALYTIHOION \\ AL TSN
~$19 -Bmm{mﬁmﬁ 315y mmbmmﬂz_ wmm// HALIGHO \
- 1 ino N

FOHES

IN IVINSWNOYIANS “NY3LLV3
N OI0¥31SY 34NSYIN V0D /

BUNa350dd-4735 'NHT 1LV

VIYVOViv(d

0o
S0d 'SOdIALLY IS - i OO NY 3dv0ST YOS
ﬁ.m__ﬁu AH........E!.....E whersreerererere e .I(luu.\... E /n_lw.||l‘.|1., NINRIPPUS Y TI BUFSERI \\U&
QIoMILSY IHNSYIN - L “ |
| <<INTWNOHIANT>> S~ VAR LHEOIdY 953~

US 8,694,963 B2
\
ﬁ

P e N
™~
/ d /
/ / 70/
/ ALISNILNINHOLS DSD310Hd413S ,\
| HOLDIAWHOLS DSDIL0OHd413S
:1NO ‘NI |

\ 3YNAID0Hd-413S :NY3ILLVd \
M \ / O.m..ru
- \ STIVS WIYL V0D S
~ N\ %Qo\
& ~ _ STIVSONINWIEL -~
79 ~a— -
-
y—
~
gl
"
O :
< P ALISNIINN __ L3P

y NYMOLSOSO3IL0Yd4TaS N A0

:1NO ‘NI o
N 39NA30049d-413S :NY31L1Vd

/ m.,_>_m_._.w>wm3w n_u_OW_m_>>On_ |_<OO \ ./
~ w>mm3mn_u_O ¢0.

U.S. Patent

k 700

ﬁ 90/

1V3dd - ALISNdLNIWHOLS
edO1L03dA - dOLOINNHOLS

STVS WNIHL -STIIVSONINNIEL [dIN
NHOLS av'10S WO 44

104104dd 1vVO9O SASENS440 1IN
NOILO310dd-414S -TVOO 310

[0S0310¥dd13s |

FIG. 7

U.S. Patent Apr. 8, 2014 Sheet 8 of 14 US 8,694,963 B2

[ISTMEASURER.SOLARSTORMRISK()>K]

SorBITING U {FPROTECT FROM SOLAR STORMS}

- A
802 4) " ORBITING — “/ 304
\ ORBITING —
PROTECTING
NORMAL
FROM SOLAR
OPERATION iy
\ Y _ Y,
A
_ /

ISTMEASURER.SOLARSTORMRISK()<=K]

SPROTECTING FROM SOLAR STORMS \ 1FPROTECT FROM SOLAR STORMS}

FIG. 8 \—800

U.S. Patent Apr. 8, 2014 Sheet 9 of 14 US 8,694,963 B2

902

+++++++++++++
rrrrrrrr
aaaaaaaaa

++++++++++++++++++++

LI LI S I n
rrrrrrrrrrr
A el T AT AT LT
I RN P MO I
T T T T T
...........
A4 F + -4 - A+
rrrrrrrrrr

|||||||
+++++++++++++++

SolarStormRisk

FIG. 9 ‘Lgoo

US 8,694,963 B2

Sheet 10 of 14

Apr. 8, 2014

U.S. Patent

%

kmoo

SddALNHOLS -ddALNHOLS
1V3dd - ALISNdLNINGOLS
£dOLOdN - HOLOIANHOLS

ANJ0O1S dVv10S 104144 -1VOO
ASIA SINHOLS JV10S [dIN

SNHOLS JHNSYJIN -TVOD 3704

HIHNSYINLS
- HIHNSYINLS 9001
- —_ T T —
" — 4
o~
e | N
HOLOIANHOLS OSDIL0Hd413S ALISNIININYOLS'IOVAS N
1ISNILNINHOLS OSD3L0Hd413S HOLOIANHOLS IOVIS
:1NO NI \
INJNNOHIANT ISNIS :NY3L1vd

~ MSIH WHOLS FUNSYIN V0D
~~ — __ SIHAYOLSHVIOS - — N
T T T T A0VdS \
AN 00}
200}

VA4 ALISNILNINGOLS
edOLOdAN

-HOLOJAWHOLS

40VdS
<<INJANOHIANI>>

FIG. 10

U.S. Patent Apr. 8, 2014 Sheet 11 of 14 US 8,694,963 B2

oY 612 706

Th—
~ESCAPEORBIT ~_
SELFPROTECTORBITER

GOAL: ESCAPE AN ORBIT\
OUTy ROLE GOAL: MAINTAIN ORBIT AND

ATTERN: SELF-PROCEDUR
IN:

\. ORBITER. MEASURE ORBITER
QRBITM MRI MEASURE GOAL: GETMODEL 1.
~ MRI ORBITS GOAL: GET THE ORBIT o

- 1..N

602 j ORBITER

MODEL ORBITER

MRI OFFSUBSYS GOAL: PROTECT FROM LS e
SOLAR STORM

MRI TRIMMINGSAILS: TRIM SAILS

ORBITM: ORBITMODEL
RELATIVEPOS: POS

ASTEROIDRELATIVEPOS: POS SELFPROTECSC
ASTDATA: ASTDATA 1N
ASTMODEL: ASTMODEL (c)

1100 ——» STORMVECTOR: VECTORS3 SELFPROTECSC

1N
STORMINTENSITY : REAL o

ADJUSTORBIT(RELATIVEPOS,ORBITM) |ORBITER
PPROCESSDATA(M:MEASURE)::MODEL |1..N
PMEASUREX(INPUT)::PMEASURE e
AMIINSIDEORBIT(POS,ORBITMODEL)::BO

oL SELFPROTECSC

MEASUREFINISHED(ASTMODEL)::BOOL |1..N o

1.N/" ORBITER

- T —
~~ ADJUSTORBIT

‘GOAL: DISTRIBUTE RESULTSN
(PATTERN: SELF-PROCEDURE

OUT: /\
RECEIVER. 504

ASTMODEL /
— FIG. 11

IN:
\ ORBITER.
‘QRBITIVI

™~

\-..,._

U.S. Patent Apr. 8, 2014 Sheet 12 of 14 US 8,694,963 B2

e — 614
- MEASURE ~™ —_
~"GOAL: MEASURE ASTEROID \\
ERN: ENVIRONMENTAL TN

ASTEROID

<<ENVIRONMENT>>
ASTEROID

1.N A -
ORBITER.ASTE- OMEASSU- / RELATIVEPOS: POS
\ROIDRELATIVE:’OS Y, 1.N |PDATA:DATA
606 ~ RER.ASTMODEL -
e —— — - ey
“REPORT™ 616
7 orBIT N\

/ GOAL: REPORT ORB\ SELFPROTECTORBITMO
fPATTER———— DELER
. 1.N 5 ROLE GOAL: CALCULATE

COLLABORATION

N ORBITS AND SELF

IN: OUT: : PROTECTOR

ORBITMO MRI GOALS: SEND ORBIT
608 DELLER. ORBITER./ MEASURER MODELS

NRBITM ORBITN/

ASTDATA'ATEROIDDATA
~ ORBITM: ORBITMODEL

CALCULATEORBIT(ASTER
OIDDATA)::ORBITMODEL

SELFPROTECTSC 1 N
— — — — SELFPROTECSC
.~ OFFSUBSYS - 1..N
_~ ~ GOAL: POWER OFF SUBSYSTEMS ™ e
1..N

PATTERN: SELF-PROCEDURE

IN-
«_ SELFPROTECSC STORM /

249 JNTENSITY _

e

h_#

1.N| SELFPROTECSC

0

FIG. 12

U.S. Patent Apr. 8, 2014 Sheet 13 of 14 US 8,694,963 B2
R e~
- TRIMMINGSAILS N

GOAL: TRIM SAILS \
PATTERN: SELF-PROCEDURE \
() N ’

SELFPROTECSC.STORMVECTOR
\SELFF’ROTECSC.STORMINTENSITY / N

Y / SELFPROTECTSC

N
~

704

——— e————— -—”
SELFPROTECTSC

SELFPROTECTREC

-‘-_

RECEIVER

— -

610 -~ N
\7 / REPORT \
MEASURES \

GOAL: DISTRIBUTE \

RESULTS
PATTERN:
ORBITER \

COLLABORATION
IN: OUT:

RECEIVER/
ASTMOD

EL_

\ ORBITER.AS

NJIODEL
1300 J

~
FIG. 13

618

ROLE GOAL.:
KNOW MODEL
MRI GOALS: GET

MODEL

MRI OFFSUBSYS
GOAL: PROTECT
FROM SOLAR
STORM

MRI
TRIMMINGSAILS:
TRIM SAILS

LISTOFMODELS:M
ODEL
LISTOFSENDERS:S
ENDER
STORMVECTOR:
VECTORS3
STORMINTENSITY
REAL

706

US 8,694,963 B2

Sheet 14 of 14

Apr. 8, 2014

U.S. Patent

120)°] J

OFFSUBSYS

STHVSONINNIAEL

4 STIVSONIAWINL \NS A g X
v , =5
4 N ™ k =
NYO1S
| ONHFLOEA 1 uvios J0 dsie [
119490148043y
\ L /| S3NSVYANLHOd3
Bi<OMSIYNSEOLS 7)
-HVY10S HIHNSYINLS]
\ V
\. -/ \1 j\ 4017
1194903dvos3 STuNSYIN
_jm_oo_\,_hwsﬂ__._w_z_ SMASYAN 1 MOQTY
-1439NSYIAN HILIGHO
Ol N g e) ONILIGHO
\
Ny \ Ny J
¢O¢L ﬁ J C
JHNSYIN 1194901snray

-0431SV'SOd3IAILY13H)1SIdl

L1SIA>(SOd3aAILY13HAl

119903dvOS3(MTTA0NLSY)AIHSIN-I4THNSYINW HI LIFGHO]

[(NLIGHO
H3LIgHO

'SOd3aAILY 13
H3ALI9H0)

1194903AISNIINY

H3119490) 10N

US 8,694,963 B2

1

SYSTEMS, METHODS AND APPARATUS FOR
DEVELOPING AND MAINTAINING
EVOLVING SYSTEMS WITH SOFTWARE
PRODUCT LINES

RELATED APPLICATION

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/805,484, filed Jun. 22, 2006, and U.S.

Provisional Application Ser. No. 60/811,147, filed May 15,
2006, under 35 U.S.C. 119(e).

ORIGIN OF THE INVENTION

This imnvention was made by employees of the United States
Government and may be manufactured and used by or for the
Government for governmental purposes without the payment
of any royalties thereon or therefor.

FIELD OF THE INVENTION

This invention relates generally to computer systems soit-
ware development, and more particularly to version control
systems.

BACKGROUND OF THE INVENTION

In computer systems development, the system evolves over
time 1n response to changes 1n system requirements. When

dealing with complex systems, and in particular systems
exhibiting any form of autonomy or autonomic properties, 1t
1s unrealistic to assume that the system will be static. Com-
plex systems evolve over time, and the architecture of an
evolving system will change, even at run time, as the system
implements self-configuration and self-adaptation, and meets
the challenges of 1ts environment. An evolving software sys-
tem 1s typically a system that will likely run for a long period
of time, and which likely will be corrected and enhanced and
changed over a period of time.

In many systems, some portions of the system change very
little, 1f at all, over time, and yet, other portions of the system
can change significantly. For example, a tax form preparation
program, such as TurboTax® by Intuit, Inc., changes 1n large
measure every year in response to annual changes in the tax
laws.

An evolving system can be viewed as multiple versions of
the same system. That 1s, as the system evolves 1t essentially
represents multiple 1nstances of the same system, each with
its own variations and specific changes. With sulficiently
significant changes, the resulting new version might even be
identified and marketed separately from the earlier versions.
In the example of TurboTax®, each annual change prompts
suificiently significant changes in the software to package and
market the tax preparation software as a different version
from the tax preparation software of earlier years.

Conventional software change management systems, such
as Revision Control System (RCS), are problematic 1n that
creation of particular builds of the system requires huge
amounts of computing resources. For example, with large
systems, such as telecommunication management systems,
created by Lucent Technologies, or spacecrait control sys-
tems, the creation of a build often takes over twelve hours
even with complete dedication of the resources of a high-
powered server system.

Similar approaches have appeared also 1n the object-ori-
ented field, but all of these approaches use role models with

10

15

20

25

30

35

40

45

50

55

60

65

2

the same purpose, namely, representing features of the system
in 1solation from the final enterprise architecture.

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled 1n the art
upon reading and understanding the present specification,
there 1s a need 1n the art for an architecture of development of
a complex software system that 1s likely to involve many
interacting components, that affords uses of state-oi-the-art
software engineering techniques and reduces the resource
requirements in generating a build from the system.

BRIEF DESCRIPTION OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
problems are addressed herein, which will be understood by
reading and studying the following specification.

In some embodiments, an evolving soitware system can be
architected as a plurality of software products that are sub-
stantially similar, or which have substantially similar content.
For example, flight software for different missions can be
viewed as a line of products that fulfills this purpose, with
many of the products having similarities, or 1n extreme cases
being very similar with a few specializations.

In other embodiments, an evolving system may include a
plurality of products 1n a product line. Different versions or
releases of the system may be as different “products™ that are
substantially similar, which may provide a context and archi-
tecture of developing a complex system that 1s likely to
involve many interacting components for development as a
product line, which can be developed with state-oi-the-art
soltware engineering techniques.

In yet other embodiments, a development architecture of
evolving software systems may include core components that
are common to an entire system and non-core components
that change more frequently than the core components, and
wherein the architecture uses a multi-agent approach that
provides for easier composition of components and provides
for a more autonomous system. In some embodiments, the
core components can change infrequently, 1f at all, from one
product to another product, and the non-core components can
change frequently, 11 not always, from one product to another
product, to yet another product. This architecture can provide
use of state-oi-the-art software engineering techniques and
can reduce the resource requirements in generating a build
from the system.

In still other embodiments, an architecture may be pro-
vided of an evolving software product line that will likely run
for a long period of time, and which must have corrections,
enhancements and changes made to 1t over a period of time,
from which different versions or releases of the system may
be different products that are substantially similar. The prod-
uct line may include software products that are substantially
similar, or which have substantially similar content and are
distinguished from products 1n a line of products that the
organization develops. For example, flight software for dii-
ferent missions can be viewed as a line of products that fulfills
this purpose, with many of the products having similarities, or
in extreme cases being very similar with a few specializa-
tions. The architecture can provide for developing a complex
system that 1s likely to involve many interacting components
for development as a product line, which can be developed
with state-oi-the-art software engineering techmaques.

In further embodiments, different versions/releases of a
system can be viewed as being a distinct product within a
product line. The new version of a software system may be
viewed as a product and may be amenable to state of the art
techniques for the development of product lines.

US 8,694,963 B2

3

In yet a further embodiment, a product-oriented architec-
ture of evolving systems can provide development of a
plethora of tools to support development.

Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the
aspects and advantages described in this summary, further

aspects and advantages will become apparent by reference to
the drawings and by reading the detailed description that
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an overview of a method to
develop software, according to an embodiment;

FIG. 2 1s a block diagram of an overview of a method to
develop software, according to an embodiment;

FIG. 3 1s a block diagram of a hardware and operating
environment in which different embodiments can be prac-
ticed;

FIG. 4 and FIG. § are block state diagrams of an acquain-
tance sub-organization as a set of roles collaborating by use of
several multi-role interactions, according to embodiments;

FIG. 6 and FIG. 7 are block diagrams of behavior of
acquaintance organization, according to embodiments;

FIG. 8, FIG. 9 and FIG. 10 are block diagrams of an
evolution plan, according to embodiments measuring solar
storm risk; and

FI1G. 11, FIG. 12, FIG. 13 and FIG. 14 are block diagrams
of evolution from one plan to another plan, according to
embodiments.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, reference 1s made to
the accompanying drawings that form a part hereotf, and in
which 1s shown, by way of illustration, specific embodiments
that may be practiced. These embodiments are described in
suificient detail to enable those skilled 1n the art to practice the
embodiments, and 1t 1s to be understood that other embodi-
ments may be utilized and that logical, mechanical, electrical
and other changes may be made without departing from the
scope of the embodiments. The following detailed descrip-
tion 1s, therefore, not to be taken 1n a limiting sense.

The detailed description 1s divided into five sections. In the
first section, a system level overview is described. In the
second section, embodiments of methods are described. In
the third section, a hardware and operating environment in
conjunction with which embodiments may be practiced 1s
described. In the fourth section, a conclusion of the detailed
description 1s provided.

System Level Overview

FIG. 1 1s a block diagram of an overview of a method 100
to develop software, according to an embodiment. Method
100 may solve the need in the art for an architecture of
development of complex software systems that involves
many interacting components and that affords use of state-oi-
the-art soltware engineering techniques and reduces the
resource requirements in generating a build from the system.

In some embodiments of method 100, an evolving system
may be viewed as a product line of systems, where the core
architecture of the product line 1s fixed (i.e., the substantial
part of the system that does not change), and each version of
the evolving system may be viewed as a particular product
from the product line. Similarly, an enterprise architecture
may be designed to include a core architecture that i1s

10

15

20

25

30

35

40

45

50

55

60

65

4

unchanging, and various specializations of the architecture
(as the enterprise evolves) may implement various products

of the product line.

Method 100 may include domain engineering 102 of reus-
able core assets. The domain engineering 102 can provide
reusable core assets or components that are exploited during
application engineering when assembling or customizing
individual applications.

Method 100 may also include application engineering 104
of the reusable core assets or components.

The reusable core assets and the application engineered
portions may be suitable for state-of-the-art software engi-
neering techniques. Thus, method 100 may solve the need for
an architecture of development of a complex soitware system
that 1s likely to mvolve many interacting components that
alfords uses of state-of-the-art software engineering tech-
niques and reduces the resource requirements 1n generating a
build from the system.

In some embodiments, the specialization to various prod-
ucts (versions of the system) can be viewed as agent-based
additions. The result can be an evolving system that may be a
soltware product line of multi-agent systems (MAS).

The method and architecture of FIG. 1 may scale to enter-
prise architectures and software architectures for two reasons.
First, a multi-agent system (MAS) can be an appropriate way
of representing an enterprise and the interactions and coop-
cration between agents 1n the MAS, as a result of an organi-
zational metaphor that architects the system and retlects the
real enterprise organization. In addition, differences between
the enterprise architecture and the software architecture can
be mitigated through the addition of architectural concepts at
the running platform. MAS platforms may be able to manage
architectural evolutions and support architectural concepts at
the implementation level. In particular, method 100 can fac-
torize a complex system into a set of stmpler systems, such as
storing and managing how to evolve from product one to
another product. Tests of a product that are based on formal
methods may be more feasible since the product to be
checked may require less storage space and the test may be
less complex.

FIG. 2 shows an embodiment of method 100 in which
actions 102 and 104 are divided into requirements, analysis,
design, and implementation (e.g. a typical software develop-
ment lifecycle). FIG. 2 1s described 1n more detail below.

The system level overview of the operation of some
embodiments 1s described in this section of the detailed
description. Some embodiments can operate 1n a multi-pro-
cessing, multi-threaded operating environment on a com-
puter, such as computer 302 1n FIG. 3. The operating envi-
ronment of FIG. 3 1s discussed 1n more detail below.

While the method 100 1s not limited to any particular
domain engineering 102 and application engineering 104, for
sake of clarity, sismplified domain engineering 102 and appli-
cation engineering 104 are described.

Method Embodiments

In the previous section, a system level overview of the
operation of an embodiment 1s described. In this section,
some embodiments of methods are described by reference to
a series of flowcharts. Describing the methods by reference to
a flowchart can enable one skilled 1n the art to develop pro-
grams, firmware, and hardware, including instructions to
carry out the methods on suitable computers, and executing
the nstructions from computer-readable media. Similarly,
the methods performed by the server computer programs,
firmware, or hardware can also be composed of computer-

US 8,694,963 B2

S

executable 1nstructions. Methods 100-200 can be performed
by a program executing on, or performed by firmware or
hardware that 1s a part of a computer, such as computer 302 in
FIG. 3.

FI1G. 2 1s a block diagram of an overview of a method 200
to develop soltware, according to an embodiment. Method
200 may solve the need 1n the art for an architecture of
development of complex software systems that involves
many interacting components and that atfords uses of state-
of-the-art software engineering techmques and reduces the
resource requirements in generating a build from the system.

Method 200 may include generating 202 domain require-
ments. Generating 202 domain requirements can provide a
description of the requirements of the complete family of
products, highlighting both the common and variable features
across the family. In generating 202 the domain requirements,
commonality analysis can assist 1n distinguishing between
commonalities and variations. Models may use generating
202 domain requirements for specilying features such as
when a feature 1s optional, mandatory or alternative in the
family. Such models may be called feature models. A feature
could be a characteristic of the system that 1s observable by
the end user, which in essence represents the same concept as
a system goal, as shown previously.

Method 200 may also include domain analysis 204. Ana-
lyzing 204 the domain can produce architecture-independent
role models, 1.e. acquaintance organization models that define
the features of the family and the domain of application. In a
software product line of multi-agent systems (MAS-PLs),
role models can represent the interfaces and interactions
needed to cover certain functionality, such as a feature or a set
of features, independently. In regards to acquaintance orga-
nization models, an acquaintance organization can be mod-
cled orthogonally to its structural organization. Such orthogo-
nal modeling can provide change to the system goals that are
enabled 1n the system by changing the parts of the acquain-
tance organization present in the structural organization.
Changing the parts of the acquaintance organization can be an
important aspect of both software product lines and MAS-
PLs.

This software product line paradigm (SPL) may augur the
potential of developing a core architecture from which cus-
tomized products can be rapidly generated, reducing time-to-
market, costs, and so forth, while simultaneously improving
quality by making greater effort in design, implementation
and testing more financially viable, as this effort can be amor-
tized over several products.

In a MAS-PL, the enterprise architecture of the system can
be observed from at least two different points of view. These
two views are as follows:

First, an acquaintance point of view can show the organi-
zation as the set of interaction relationships between the roles
played by agents 1n models called role models. The acquain-
tance point of view can focus on the interactions within the
system and also on representing how a functionality desig-
nated by a system goal can be achieved.

Second, the structural point of view can show agents as
artifacts that belong to sub-organizations, groups and teams.
In this view, agents may be structured into hierarchical con-
structions showing the social structure of the system. The
structural point of view can show which agents may be play-
ing which roles 1n the acquaintance organization, and thus
may show how system goals can be achieved by the interac-
tion of agents.

Method 200 may also include domain engineering 206. In
domain engineering 206, a core archutecture of the family can
be produced, which may be termed the core structural orga-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

nization of the system. The core architecture can be formed as
a composition of the role models corresponding to the more

stable features 1n the system.

In some embodiments of method 200 of generating 202 the
domain requirements, analyzing 204 the domain, and engi-
neering 206 the domain may comprise domain engineering
102 of reusable core assets of FIG. 1.

Method 200 may also include application engineering 208.
Application engineering 208 can build/generate concrete
products.

The reusable core assets and the application engineered
portions may be suitable for state-of-the-art software engi-
neering techniques. Thus, method 100 may solve the need for
an architecture of development of a complex soitware system
that 1s likely to mvolve many interacting components that
alfords uses of state-of-the-art software engineering tech-
niques and reduces the resource requirements 1n generating a
build from the system.

In some embodiments, methods 100-200 may be imple-
mented as a computer data signal embodied 1n a carrier wave
that represents a sequence ol instructions, which, when
executed by a processor, such as processor 304 1n FIG. 3,
cause the processor to perform the respective method. In other
embodiments, methods 100-200 may be implemented as a
computer-accessible medium having executable instructions
capable of directing a processor, such as processor 304 1n
FIG. 3, to perform the respective method. In varying embodi-
ments, the medium may be a magnetic medium, an electronic
medium, or an optical medium.

Hardware and Operating Environment

FIG. 3 1s a block diagram of a hardware and operating
environment 300 1n which different embodiments can be
practiced. The description of FIG. 3 provides an overview of
computer hardware and an example of a suitable computing
environment i conjunction with which some embodiments
can be implemented. Embodiments are described in terms of
a computer executing computer-executable instructions.
However, some embodiments can be implemented entirely 1n
computer hardware 1 which the computer-executable
instructions are implemented in read-only memory. Some
embodiments can also be implemented in client/server com-
puting environments where remote devices that perform tasks
are linked through a commumnications network. Program mod-
ules can be located 1n both local and remote memory storage
devices 1n a distributed computing environment.

Computer 302 may include a processor or CPU 304, com-
mercially available from Intel, Motorola, Cyrix and others.
Computer 302 may also include random-access memory
(RAM) 306, read-only memory (ROM) 308, and one or more
mass storage devices 310, and a system bus 312, that opera-
tively couples various system components to the processing
unmit 304. The memory 306, 308, and mass storage devices,
310, may be types of computer-accessible media. Mass stor-
age devices 310 can be more specifically types of nonvolatile
computer-accessible media and can include one or more hard
disk drives, floppy disk drives, optical disk drives, and tape
cartridge drives. The processor 304 may execute computer
programs stored on the computer-accessible media.

Computer 302 can be communicatively connected to the
Internet 314 via a communication device 316. Internet 314
connectivity 1s well known within the art. In one embodiment,
a communication device 316 can be a modem that responds to
communication drivers to connect to the Internet via what 1s
known 1n the art as a “dial-up connection.” In another embodi-
ment, a communication device 316 can be an Ethernet® or

US 8,694,963 B2

7

similar hardware network card connected to a local-area net-
work (LAN) that 1tself 1s connected to the Internet via what 1s
known 1n the art as a “direct connection™ (e.g., T1 line, etc.).

A user can enter commands and information into the com-
puter 302 through 1nput devices such as a keyboard 318 or a
pointing device 320. The keyboard 318 can permit entry of
textual information into computer 302, as known within the
art, and embodiments are not limited to any particular type of
keyboard. Pointing device 320 can permit the control of the
screen pointer provided by a graphical user interface (GUI) of
operating systems such as versions of Microsolt Windows®.
Embodiments are not limited to any particular pointing
device 320. Such pointing devices may include mice, touch
pads, trackballs, remote controls and point sticks. Other input
devices (not shown) can include a microphone, joystick,
game pad, satellite dish, scanner, or the like.

In some embodiments, computer 302 may be operatively
coupled to a display device 322. Display device 322 can be
connected to the system bus 312. Display device 322 can
permit the display of information, including computer, video
and other information, for viewing by a user of the computer.
Embodiments are not limited to any particular display device
322. Such display devices may include cathode ray tube
(CRT) displays (monitors), as well as flat panel displays such
as liquid crystal displays (LCD’s). In addition to a monitor,
computers can typically include other peripheral input/output
devices such as printers (not shown). Speakers 324 and 326
can provide audio output of signals. Speakers 324 and 326
may also be connected to the system bus 312.

Computer 302 may also include an operating system (not
shown) that 1s stored on the computer-accessible media RAM
306, ROM 308, and mass storage device 310, and 1s and
executed by the processor 304. Examples of operating sys-
tems may include Microsoit Windows®, Apple MacOS®,
Linux®, UNIX®. Examples are not limited to any particular
operating system, however, and the construction and use of
such operating systems are well known within the art.

Embodiments of computer 302 are not limited to any type
of computer 302. In varying embodiments, computer 302 can
comprise a PC-compatible computer, a MacOS®-compatible
computer, a Linux®-compatible computer, or a UNIX®-
compatible computer. The construction and operation of such
computers are well known within the art.

Computer 302 can be operated using at least one operating
system to provide a graphical user interface (GUI) including
a user-controllable pointer. Computer 302 can have at least
one web browser application program executing within at
least one operating system, to permit users of computer 302 to
access an intranet, extranet or Internet world-wide-web pages
as addressed by Umversal Resource Locator (URL)
addresses. Examples of browser application programs
include Netscape Navigator® and Microsoit Internet
Explorer®.

The computer 302 can operate 1n a networked environment
using logical connections to one or more remote computers,
such as remote computer 328. These logical connections can
be achieved by a communication device coupled to, or a part
of, the computer 302. Embodiments are not limited to a par-
ticular type of communications device. The remote computer
328 can be another computer, a server, a router, a network PC,
a client, a peer device or other common network node. The
logical connections depicted 1n FIG. 3 include a local-area
network (LAN) 330 and a wide-area network (WAN) 332.
Such networking environments are commonplace 1n offices,
enterprise-wide computer networks, intranets, extranets and
the Internet.

10

15

20

25

30

35

40

45

50

55

60

65

8

When used 1n a LAN-networking environment, the com-
puter 302 and remote computer 328 can be connected to the
local network 330 through network interfaces or adapters
334, which 1s one type of communications device 316.
Remote computer 328 may also include a network device or

NIC 336. When used 1n a conventional WAN-networking

environment, the computer 302 and remote computer 328 can
communicate with a WAN 332 through modems (not shown).
The modem, which can be internal or external, may be con-
nected to the system bus 312. In a networked environment,
program modules depicted relative to the computer 302, or
portions thereotf, can be stored 1n the remote computer 328.

Computer 302 can also include a power supply 338. Each
power supply can be a battery.

Apparatus for Analyzing Complex Multiagent Systems
Implementations

In FIGS. 4-12, particular implementations are described in

conjunction with the system overview i FIG. 1 and the
methods described 1n conjunction with FIGS. 1 and 2. FIGS.
4-12 use the Unified Modeling Language (UML) 2.0, which

1s an industry-standard language to specily, visualize, con-
struct, and document the object-oriented artifacts of software
systems. Composition can define the attributes of an instance
of a class as containing an nstance of one or more existing
instances of other classes 1n which the composing object does
not inherit from the object(s) 1t 1s composed of.

In FIGS. 4-12, some embodiments of an evolutionary MAS
are modeled. As discussed above, each product in a MAS-PL
can be defined as a set of features. Given that all the products
present a set of features that may remain unchanged, the core
architecture can be defined as the part of all of the products
that implement these common features. Thus, a system can
evolve by changing, or evolving, the set of non-core features.

A product or a state 1n an evolutionary system may be
defined as a set of features with the following relationships,
by way of example. Let F={fl . .. fn} be the set of all features
of a MAS-PL. Let cF <F be the set of core features and
ncF=F\cF bethe set of non-core features. A valid state S of the
system may be defined as the set of core features and a set of
non-core features, that 1s to say, S=cFUsF, where sF < ncF 1s
a subset of non-core features.

Thus, the evolution from one state S,_; to another S, can be
characterized as: S, =S,_,Unk, , \dF,, ; where nF,, , ©nck 1s
the set of new features and dFF,,_; @ ncF i1s the set of deleted
teatures. A, , , can describe the variation or change between
the product of the state 1—1 and the product of the state 1, that
is to say, nF; , \dF,, ;.

In some embodiments, a feature may correlate with a role
model. Thus, for a system to evolve from one state to another,
the role models 1n nF and dF may be composed or decom-
posed. Specifically, the role models may be composed corre-
sponding to the features 1 nF with the role models corre-
sponding to the features that remain unchanged from the
initial state S;_,, that 1s to say S\dF, ;. Decomposition can be
used for role models that must be eliminated.

In FIGS. 4-12, some embodiments of role models and the
operations for composition and decomposition are described.
In the 1llustrated embodiments, the Methodology for Analyz-
ing Complex Multiagent Systems (MaCMAS) methodology
1s implemented, although one skilled 1n the art will recognize
that other methodologies may be implemented that fall within
the scope of this mvention. MaCMAS 1s an agent-oriented
soltware engineering (AOSE) methodology. MaCMAS 1s
specially tailored to model complex acquaintance organiza-
tions. MaCMAS 1s implemented herein by way of example
because MaCMAS provides explicit support for MAS-PLs.

US 8,694,963 B2

9

A static acquaintance organization view can show the static
interaction relationships between roles in the system and the
knowledge processed by the roles. In this category there may
be models for representing the ontology managed by agents,
models for representing their dependencies, and role models.

FIGS. 4-12 can be used by way of example to describe a
swarm ol pico-spacecraft that may be used to prospect or
explore the asteroid belt. The enterprise architecture of the
system may change at run-time depending on the environ-
ment and the state of the swarm. From all the possible evo-
lutions, only two states of the system are shown in FIGS.
4-12.

FIG. 4 1s a block state diagram that describes a plan 400 of
a role model, for example the role model described 1n FIG. 6.
Plan 400 shows the order of execution of a multi-Role Inter-
action (mRI). In FIG. 4, a first state 402, depicts a swarm
orbiting an asteroid in order to analyze the asteroid; in a
second state, a solar storm occurs 1n the environment and the
system changes 404 the state of the system to protect itsell.

FI1G. 5 15 a block state diagram that describes a plan 500 of
a role model, for example the role model described in FIG. 7.
Plan 500 shows an order of execution of a mRI, according to
an embodiment. In FIG. 5, examples of role models for both
states are shown and an example of composition of both
states, since both features of the system may not be com-
pletely orthogonal. To protect from a solar storm the space-
cralft may take two basic actions: (a) orient 1ts solar sails to
mimmize the area exposed to the solar storm particles (e.g.
trim sails 502), and (b) power-oif 504 all possible electronic
components. Action 502 can mimimize the forces from
impinging solar-storm particles, which could affect the
spacecrait’s orbit. Both actions 502 and 504 can minimize
potential damage from the charged particles 1n the storm,
which can degrade sensors, detectors, electronic circuits, and
solar energy collectors.

FI1G. 6 and FIG. 7 are block diagrams of static acquaintance
sub-organizations as a set of static roles 600 and 700, respec-
tively. Roles 600 and 700 may collaborate by use of several
multi-Role Interactions (mRI), according to embodiments.
Roles 600 and 700 show all roles, in comparison to plans 400
and 500 that show the order of execution of multi-Role Inter-
actions (mRI). Such mRIs can be used to abstract the acquain-
tance relationships among roles in the system. As mR1Is allow
abstract representation of interactions, these models can be
implemented at one or more levels.

In FIG. 6, static role model 600 represents how a swarm of
spacecralt may orbit an asteroid and measure the asteroid,
according to an embodiment. In FIG. 7, static role model 700
represents how a swarm of spacecrait may protect from a
solar storm while the swarm spacecrait continues 1n orbit,
according to an embodiment. In FIG. 6 and FIG. 7, interfaces,
shown as boxes, can represent the static features of roles
showing their goals, the knowledge managed, and the ser-
vices provided. The mRIs, shown as dashed ellipses and
circles, canrepresent the interactions between the roles linked
to them, showing the goal when collaborating, the pattern of
collaboration, and the knowledge consumed, used, and
obtained from the collaboration. Static role model 600 may
include mRIs EscapeOrbit 602, AdjustOrbit 604, Measure
606, ReportOrbit 608 and ReportMeasures 610. Static role
model 600 may {further include roles Orbiter 612,
<<Environment>>Asteroid 614, OrbitModeler 616, and
Receiver 618. Static role model 700 may include mRIS OfT
Subsys 702 and TrimmingSails 704. Static role model 700
may also include role SeltProtectSC 706. These roles can be
part of an object. Descriptions of the system at different levels
of abstraction may provide simplification of the tests based on

10

15

20

25

30

35

40

45

50

55

60

65

10

formal methods, for example performing tests at a high level
ol abstraction and descending to a lower level of abstraction
when one of these tests fails.

FIG. 6 and FIG. 7 are block diagrams of examples of
behavior of acquaintance organization view. The behavioral
aspect ol an organization can show the sequencing of mRIs 1n
a particular role model. The role model may be represented by
two equivalent models.

A plan of a role separately can represent the plan of each
role 1n a role model showing how the mRIs of the role
sequence. By way of example, the plan 1s represented herein
using UML 2.0 ProtocolStateMachines. ProtocolStateMa-
chines can be used to focus on a certain role, while 1gnoring
others.

In FIGS. 8 and 9, plans 800 and 900, respectwely, of role
models are shown to represent the order of mRIs 1n a role
model with a centralized description. The plan of the role
model 1s herein represented using UML 2.0 StateMachines.
StateMachines can be used to facilitate easy understanding of
the whole behavior of a sub-organization.

Adding a new model to MaCMAS can represent the evo-
lutions of the system. This model can be called the evolution
plan.

FIG. 8, FIG. 9 and FIG. 10 are block diagrams of an
evolution plan, according to embodiments, measuring solar
storm risk. The evolution plan may be represented by a UML
state machine where each state represents a product, and each
transition represents the addition or elimination of a set of
features, that 1s to say, A. In addition, the conditions 1in the
transitions can represent the properties that must hold 1n the
environment and in the system 1n order to evolve to the new
product.

In FIG. 8, a part of the evolution plan 1s shown. In FIG. 8,
cach role model 1s represented by state machines of system
evaluation for adding system protection from solar storms. In
FIG. 8, two products are represented, one product 802 repre-
senting the swarm when orbiting an asteroid under normal
conditions, and another product 804 representing the swarm
when orbiting and protecting from a solar storm. As can be
seen, features can be added or deleted corresponding to pro-
tection from a solar storm depending on whether or not the
swarm 1s under risk of solar storm, which can be measured by
the feature represented in the role model of FIG. 9 and FIG.
10.

FIG. 9 1s a state diagram that describes a plan 900 of arole
model, for example the role model described 1n FIG. 10. Plan
900 shows the order of execution of a multi-Role Interaction
(mRI), according to some embodiments. In plan 900, a first
state 902, depicts measuring an asteroid 1n order to analyze
the asteroid. FIG. 10 depicts static acquaintance sub-organi-
zations as a set of static roles 1000. Static role 1000 may
include mRI SolarStormRisk 1002. Static role 1000 may also
include role
<<Environment>>Space 1004 and role STMeasurer 1006.

FIG. 11, FIG. 12, FIG. 13 and FIG. 14 are block diagrams
of an evolution from one plan to another plan, according to
embodiments. Evolution from one plan to another plan can
involve two general actions, namely, composing role models
and decomposing role models. FIGS. 11-14, depicting evolv-
ing plans 1100, 1200, 1300 and 1400, respectively, 1llustrate
the roles and plans of the embodiments of FIGS. 4-10.

The composition of role models may be used to map an
acquaintance organization onto a set of agents, or 1n other
words, a structural organization. This mapping may not
always be orthogonal between all role models; applying two
related features to a product may require their integration. The
composition of a role model can be the process required to

US 8,694,963 B2

11

perform this integration. In the case of having orthogonal
teatures, and thus orthogonal role models, only the prescribed
roles can be assigned to the corresponding agents.

When composing several role models that are not indepen-
dent, artifacts such as emergent roles and mRIs, can appear 1n
the composition that do not belong to any of the nitial role
models. Composed roles and mRIs, the roles and mR1Is 1n the
resultant models that represent several 1initial roles or mRIs as
a single element, and, unchanged roles and mRIs, can be left
unchanged and imported directly from the initial role models.

Once the role models have been determined, the core archi-
tecture can be completed by composing those role models.
Composing role models may also be performed to obtain a
certain product. Importing an mRI or a role may require only
its addition to the composite role model. The following shows
an example of how to compose roles and plans.

In some embodiments, when several roles are merged 1n a
composite role model, their elements can be merged as fol-
lows:

GOAL OF THE ROLE: The new goal of the role may
abstract all the goals of the role to be composed. This 1nfor-
mation can be found in requirements hierarchical goal dia-
grams or this information can be added as the ‘and’ (conjunc-
tion) of the goals to be composed. In addition, the role goal for

cach mRI can be obtained from the goal of the initial roles for
that mRI.

CARDINALITY OF THE ROLE: This can be the same as
in the 1nitial role for the corresponding mRI.

INITIATOR(S) ROLE(S): If mRI composition 1s not per-
formed, as 1n the 1nstant exemplary case, this feature may not
change.

INTERFACE OF A ROLE: All elements 1n the 1nterfaces
of roles to be merged can be added to the composite interface.
Notice that there may be common services and knowledge in
these interfaces. When this happens, the common services
and knowledge can be mncluded only once in the composite
interface, or renamed, depending on the composition of their
ontologies.

GUARD OF A ROLE/MRI: The new guards can be the
‘and’ (conjunction) of the corresponding guards 1n 1nitial role
models 1f roles composed participate 1n the same mRI. Oth-
erwise, guards may remain unchanged.

Evolution from the product Maintain Orbit And Measure,
that may also have the feature Measure Storms, to the product
Protect From Solar Storm may require the addition of the
feature to protect from a solar storm. This may be true for at
least two reasons. First, the features Maintain Orbit And
Measure, and Measure Storms, may belong to the core archi-
tecture, and second, the Protect From Solar Storm can happen
in any moment, and the last-made measurements of the aster-
o1d must, 1n some embodiments, be reported before power-
ing-off subsystems. Thus, as these role models may not be
orthogonal, a composition of the roles models can be per-
formed. This composition, represented in FIG. 11, can be
done following the merged elements, or rules, prescribed
above. As can be observed, all the mRIs and most roles can be
imported. In addition, a composition of roles Self-ProtecSC
and the rest 1n the role model Maintain Orbit And Measure
may have been performed.

The composition of plans may include setting the order of
execution of mRIs 1n the composite model and using the role
model plan or role plans. One of several algorithms can be
implemented to assist 1n this task, for example, extraction of
a role plan from the role model plan and vice versa, and
aggregation of several role plans.

Because of these algorithms, both plan views may be main-
tained as consistent without any prompting. Depending on the

10

15

20

25

30

35

40

45

50

55

60

65

12

number of roles that have to be merged, the composition of
the plan of the composite role model can be based on the plan
of roles or on the plan of the role model. Several types of plan
composition can be used for role plans and for role model
plans, for example:

SEQUENTIAL: The plan can be executed atomically in
sequence with others. The .nal state of each state machine can
be superimposed with the initial state of the state machine that
represents the plan that 1s to be executed, except the nitial
plan that maintains the 1nitial state unchanged and the final
plan that maintains the final state unchanged.

INTERLEAVING: To interleave several plans, a new state
machine can be built where all mRIs 1n all plans are taken into
account. Notice that usually the order of execution of each
plan to be composed can be preserved. Algorithms can be
implemented to check behavior inheritance to ensure that this
constraint can be preserved, since to ensure this property, the
composed plan may inherit from all the initial plans.

The composition of role model plans can be performed
following one of the plan composition techniques described
previously. Later, 11 the plan of one of the composed roles, as
itmay be needed to assign the new plan to the composed roles,
may be of interest, the plan can be extracted using the algo-
rithms mentioned previously.

A composition of role plans can be performed following
one of the techniques to compose plans described previously.
Later, 1f there 1s interest in the plan of the composite role
model, for example for testing, the plan can be obtained using
the algorithms mentioned previously.

In each of FIG. 12, FIG. 13 and FIG. 14, a composed plan
1s shown, according to embodiments. This exemplary plan 1s
shown to follow an interleaving composition in which the
mRI Report Orbit 608 can measure before starting the Protect
From Solar Storm. Notice that when finishing the solar storm,
the system can evolve to the other product deleting the feature
Protect From Solar Storm. Then, the plan of the feature Main-
tain Orbit and Measure can start from its 1nitial state, thus
restarting the exploration of the asteroid.

Decomposing role models can be simpler than composi-
tion. When the role model to be eliminated 1s orthogonal to
the rest, only the corresponding roles may be deleted from the
agents that are playing the roles. In the case where the role
model 1s dependent with others, the elements of role models
can be deleted and all the interactions that refer to the role
models are eliminated. Given that, in the software architec-
ture described herein, the system can support the role concept
and i1ts changes at run-time, the above-mentioned changes can
be made easily with a lower impact on the system.

However, features may appear whose role models mvolve
a dependency. In these cases, some roles may have to be
decomposed. These roles can be those whose mR1Is belong to
the scope of therole model(s) that may be eliminated. In these
cases, the role can be decomposed into several roles 1n order
to 1solate the part of the role to be deleted.

In addition, the mRI(s) of the role model(s) can be elimi-
nated from the role model plan or the role plans. This may be
done starting from the plan of the mitial dependent role mod-
¢ls. Each separate role model usually can maintain the order
of execution of mRIs determined 1n the initial model, but
executes only a subset of mRIs of the initial role models. The
behavior of the role model to be deleted can be extracted
automatically. This algorithm may allow the extraction of the
plan of remaining role models from the 1nitial ones constrain-
ing this to the set of mRIs that remains 1n the model.

Apparatus components of the FIGS. 4-12 can be embodied
as computer hardware circuitry or as a computer-readable
program, or a combination of both. In another embodiment,

US 8,694,963 B2

13

components 1n FIGS. 4-12 can be implemented 1n an appli-
cation service provider (ASP) system.

More specifically, in the computer-readable program
embodiment, the programs can be structured 1n an object-
orientation using an object-oriented language such as Java,
Smalltalk or C++, and the programs can be structured 1n a
procedural-orientation using a procedural language such as
COBOL or C. The software components can communicate 1n
any of a number of ways that are well-known to those skilled
in the art, such as application program interfaces (API) or
inter-process communication techniques such as remote pro-
cedure call (RPC), common object request broker architec-
ture (CORBA), Component Object Model (COM), Distrib-
uted Component Object Model (DCOM), Distributed System
Object Model (DSOM) and Remote Method Invocation
(RMI). The components can execute on as few as one com-
puter as 1 computer 302 1 FIG. 3, or on at least as many
computers as there are components.

CONCLUSION

A software product line of multi-agent systems 1s
described. Although specific embodiments have been 1llus-
trated and described herein, 1t will be appreciated by those of
ordinary skill 1n the art that any arrangement which 1s calcu-
lated to achieve the same purpose may be substituted for the
specific embodiments shown. This application 1s intended to
cover any adaptations or variations. For example, although
described in object-oriented terms, one of ordinary skill in the
art will appreciate that implementations can be made 1n a
procedural design environment or any other design environ-
ment that provides the required relationships.

In particular, one of skill in the art will readily appreciate
that the names of the methods and apparatus are not intended
to limit embodiments. Furthermore, additional methods and
apparatus can be added to the components, functions can be
rearranged among the components, and new components to
correspond to future enhancements and physical devices used
in embodiments can be introduced without departing from the
scope of embodiments. One of skill 1in the art will readily
recognize that embodiments are applicable to future commu-
nication devices, different file systems, and new data types.

The terminology used in this application 1s meant to
include all object-oriented, database and communication
environments and alternate technologies which provide the
same functionality as described herein.

We claim:

1. A non-transitory storage medium from which to generate
a software product line for a multi-agent system, the medium
comprising;

a plurality of software products substantially similar to
cach other software product, each software product
being a different implementation of each other software
product, each software product being generated by an
automated code generator;

a domain of reusable core assets, the reusable core assets
being soitware components considered common to the
soltware products 1n the software product line;

10

15

20

25

30

35

40

45

50

14

a plurality of software-asset requirements; and

at least one agent,

wherein the at least one agent 1s a seli-directed autonomous
module within the multi-agent system that performs 1ts
predetermined function within the multi-agent system,

wherein a software asset 1s an implementation of one or
more of the plurality of software-asset requirements, and
wherein a soitware product line specification comprises
a specification and an architecture of each product in the
soltware product line 1n relation to a plurality of soft-
ware assets.

2. The non-transitory storage medium of claim 1, wherein
the software product line specification 1s a format specifica-
tion mechanically generated from informal requirements by
mathematically inferring a process-based specification that 1s
mathematically equivalent to a trace-based specification.

3. The non-transitory storage medium of claim 1, wherein
the plurality of software products further comprise:

flight software.

4. The non-transitory storage medium of claim 1, wherein
the medium provides use of state-oi-the-art software engi-
neering techniques and reduces resource requirements 1n gen-
erating a build of the software product line from the domain of
reusable core assets and the at least one agent.

5. The non-transitory storage medium of claim 1, wherein
the medium further comprises executable instructions
capable of directing a processor to perform:

producing a core archutecture of a family of software prod-
ucts, wherein the core architecture comprises architec-
ture common to the software products in the family, the
core architecture being formed as a composition of role
models corresponding to the reusable core assets,
wherein a role model comprises intended behaviour of
the at least one agent.

6. The non-transitory storage medium of claim 1, wherein

the multi-agent system further comprises:

a plurality of cooperating agents.

7. A non-transitory storage medium from which to generate
a software product line for a multi-agent system, the medium
comprising;

a domain of reusable core assets, the core assets being
soltware components considered common to the soft-
ware products 1n the product line; and

at least one agent, wherein builds of an executable system
from the reusable core assets and the at least one agent
are distinct products within a software product line,
wherein the at least one a ent 1s a self-directed autono-
mous module within the multi-agent system that per-
forms its predetermined function within the multi-agent
system, wherein the software products are generated by
an automated code generator.

8. The non-transitory storage medium of claim 7, wherein

the multi-agent system further comprises:
a plurality of cooperating agents.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

