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Methods are provided to produce new mechanoresponsive
healing systems. Additionally, various embodiments provide
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tic damage.) The various embodiments provide the mecha-
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MECHANORESPONSIVE HEALING
POLYMERS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The 1invention described herein was made by employees
of the United States Government and may be manufactured
and used by or for the Government of the United States of
America for governmental purposes without the payment of
any rovyalties thereon or therefore.

BACKGROUND OF THE INVENTION

Exploration, and 1n particular space exploration, 1s an
intrinsically risky and expensive proposition, therefore there
1s great incentive to look for ways to achieve exploration
safely and affordably. Typically it requires about $10,000 per
pound to launch mass into orbit. Therefore, there 1s great
interest 1n finding 1nnovative ways to reduce mass of objects
to be sent into orbit. Weight savings may be realized by
using more damage tolerant systems to avoid carrying extra
weight for replacement sections and repair components.
Self-healing materials provide for improved damage toler-
ance 1n load bearing structures, and a means of self-mitiga-
tion, or self-reliability for overall vehicle health and dura-
bility. The self-healing phenomaterials capable of puncture
healing upon 1mpact show great promise for space explora-
tion applications wherein an internal structural breach
caused by micrometeoroid impacts, which could be cata-
strophic for the astronaut crew, would be self-contained to
allow the retention of air pressure to the greatest extent
possible. This approach 1s also applicable to other pressure
vessel type structures which may have critical requirements
with regard to a contained fluid (e.g. fuel tanks).

Self-healing materials display the unique ability to miti-
gate 1ncipient damage and have built-in capability to sub-
stantially recover structural load transierring ability after
damage. In recent years, researchers have studied different
“self-healing, mechanisms™ 1n materials as a collection of
irreversible thermodynamic paths where the path sequences
ultimately lead to crack closure or resealing. Crack repair in
polymers using thermal and solvent processes, where the
healing process 1s triggered with heating, or with a solvent,
have been studied. A second approach involves the auto-
nomic healing concept, were healing 1s accomplished by
dispersing a microencapsulated healing agent and a catalytic
chemical trigger within an epoxy resin to repair or bond
crack faces and mitigate further crack propagation. Another
related approach, the microvascular concept, utilizes brittle
hollow glass fibers (in contrast to microcapsules) filled with
epoxy hardener and uncured resins in alternating layers,
with fluorescent dye. An approaching crack ruptures the
hollow glass fibers, releasing heating agent into the crack
plane through capillary action. A third approach utilizes a
polymer that can reversibly re-establish its broken bonds at
the molecular level by either thermal activation (i.e., based
on Diels-Alder rebonding), or ultraviolet light. A fourth
approach utilizes structurally dynamic polymers, which are
materials that produce macroscopic responses from a change
in the materials molecular architecture without heat or
pressure. A {ifth approach involves imntegrating seli-healing
resins mnto fiber reinforced composites producing seli-heal-
ing fiber reinforced composites. Various chemistries have
been used in the atorementioned approaches.

The atorementioned seli-healing approaches address the
repair, or mitigation, of crack growth and various damage
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2

conditions 1n materials, but have the following disadvan-
tages: 1) Slow rates of healing; 2) Use of foreign mnserts in

the polymer matrix that may have detrimental effects on
composite fiber performance; 3) Samples have to be held 1n
direct contact, or under load and for fused together under
high temperature for long periods of time 4) Do not address
damage 1ncurred by ballistic or hypervelocity impacts; and/
or 5) May not be considered a structural load bearing
material.

Materials that are capable of puncture healing upon
impact show great promise for space exploration applica-
tions wherein an internal breach caused by micrometeoroid
impacts which would normally be considered catastrophic
would now be self-contained. This type of matenial also
provides a cross-cutting route for improved damage toler-
ance 1n load bearing structures and a means of self-mitiga-
tion or seli-reliability in respect to overall vehicle health and
aircraft durability. In puncture healing materials, healing 1s
triggered by the ballistic or damage event. (Ballistics tests
are used to simulate micro-meteoroid damage in lab tests).
The force of the bullet on the material and the materials
response to the bullet (viscoelastic properties) activates
healing 1n these materials. Polymers such as DuPont’s
Surlyn®, Dow’s Athmty™ EG8200G, and INEO’s Barex™
210 IN (PBG) have demonstrated healing capability follow-
ing penetration of fast moving projectiles—velocities that
range from 9 mm bullets shot from a gun (~300 m/sec) to
close to micrometeoroid debris velocities of 3-5 km/sec.
Unlike other self-healing methodologles described above,
these materials inherently self-heal 1n microseconds due to
their molecular demgn For example, Surlyn® 1s an 1onomer
that contains 1onic groups at low concentrations (<15 mol
%) along the polymer backbone. In the presence of oppo-
sitely charged 1ons, these 10nic groups form aggregates that
can be activated by external stimuli1 such as temperature or
ultraviolet 1rradiation. Surlyn®, undergoes puncture reversal
(seli-healing) following high velocity ballistic penetration
(300 m/s-5 km/sec). The heat generated from the damage
event triggers self-healing 1n this material. However,
DuPont’s Surlyn®, 1s not considered a load bearing material
and INEO’s Barex 210 IN 1s not puncture healing at tem-
peratures lower than 50° C. These materials were not
originally designed to be seli-healing. However, their punc-
ture-healing behavior 1s a consequence of the combination
ol viscoelastic properties under the conditions induced by
projectile penetration.

BRIEF SUMMARY OF THE

INVENTION

Various embodiment methods are provided to produce
new mechanoresponsive healing systems. Additionally, vari-
ous embodiments provide a two tier self-healing material
system concept that provides a non-intrusive method to
mitigate 1mpact damage in a structure ranging from low
velocity impact damage (e.g., crack damage) to high veloc-
ity 1mpact damage (e.g., ballistic damage.) The various
embodiments provide the mechanophore linked polymer
PBG-BCB-PBG. The various embodiments provide meth-
ods for synthesizing PBG-BCB-PBG.

One embodiment of the invention 1s a self-healing mecha-
nophore linked polymer including PBG-BCB-PBG.

Another embodiment of the mvention 1s a method of
making a self-healing mechanophore linked PBG-BCB-
PBG polymer by combiming acrylonitrile with methacrylate
to form poly(methacrylate-co-acrylonitrile), end-capping
the poly(methacrylate-co-acrylonitrile) with bromobenzocy-
clobutene to form end-capped poly(methacrylate-co-acrylo-
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nitrile), combining, acrylonitrile with butadiene to torn
poly(butadiene-co-acrylonitrile), and block grafting the poly
(butadiene-co-acrylonitrile) to the end-capped poly(meth-
acrylate-co-acrylonitrile) to from the PBG-BCB-PBG poly-
mer.

Another embodiment of the mvention 1s a method of
making a self-healing mechanophore linked PBG-BCB-
PBG polymer by epoxidizing an alkene bond on a grafted
poly(butadiene-co-acrylonitrile) on a PBG polymer back-
bone, ring opening the resulting epoxide by chlorosilanes,
and performing living anionic polymerization with the PBG
tunctionalized with chlorosilane groups and coupling 1t with
living anions of poly(butadiene) and end-capping it with
bromocyclobutene to form the PBG-BCB-PBG polymer.

Yet another embodiment of the invention 1s a Method of

making a self-healing mechanophore linked PBG-BCB-
PBG polymer by free radical polymerization or crosslinking/
vulcanization of a PBG polymer, wherein a targeted group
1s an alkene on a grafted poly(butadiene-co-acrylonitrile)
clastomer of the PBG polymer and the PBG polymer 1s
initiated with a free radical initiator bis(triethoxysilylpropyl)
disulfide 1n a solvent N-methylpyrrolidone NMP at 125° C.
under a flow of nitrogen; and end-capping the polymerized
or crosslinked/vulcanized PBG with bromocyclobutene to
terminate the polymerization and form the PBG-BCB-PBG
polymer.

These and other features, advantages, and objects or the
present mnvention will be further understood and appreciated
by those skilled 1n the art by reference to the following
specification, claims, and appended drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and constitute part of this specification, illustrate
exemplary embodiments of the invention, and together with
the general description given above and the detailed descrip-
tion given below, serve to explain the features of the
invention.

FIG. 1 1s a schematic diagram 1llustrating casimir forces
on parallel plates;

FIG. 2 1s a schematic diagram illustrating thermoplastic
puncture repair healing polymers;

FIG. 3 1s a scheme showing synthesis of a benzocy-
clobutene mechanophore-linked polymer PBG-BCB-PBG
and a subsequent mechanochemical reaction;

FIG. 4 1llustrates a method of synthesizing PBG-BCB-
PBG according to an embodiment;

FIG. 5 1s a flow chart describing the method illustrated in
FIG. 4;

FIG. 6 1illustrates a method of synthesizing PBG-BCB-
PBG using side-group chemistry of a hydrosilylation reac-
tion and living amionic polymerization according to an
embodiment;

FI1G. 7 1s a flow chart describing the method illustrated in
FIG. 6;

FIG. 8 illustrates a method of synthesizing PBG-BCB-
PBG using side-group chemistry of vulcanization or cross
linking according to an embodiment; and

FI1G. 9 1s a flow chart describing the method illustrated in
FIG. 8.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

For purposes of description herein, it 1s to be understood
that the specific devices and processes 1llustrated in the
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4

attached drawings, and described in the following specifi-
cation, are simply exemplary embodiments of the inventive
concepts defined in the appended claims. Hence, specific
dimensions and other physical characteristics relating to the
embodiments disclosed herein are not to be considered as
limiting, unless the claims expressly state otherwise.

For purposes of description herein, the terms ‘“upper,”
“lower,” “night,” “left,” “rear,” “front,” “vertical,” “horizon-
tal,” and derivatives thereof shall relate to the invention as
oriented 1n FIG. 1. However, 1t 1s to be understood that the
invention may assume various alternative orientations and
step sequences, except where expressly specified to the
contrary. It 1s also to be understood that the specific devices
and processes 1llustrated in the attached drawings, and
described 1n the following specification, are simply exem-
plary embodiments of the inventive concepts defined in the
appended claims. Hence, specific dimensions and other
physical characteristics relating to the embodiments dis-
closed herein are not to be considered as limiting, unless the
claims expressly state otherwise.

The word “exemplary” 1s used herein to mean “serving as
an example, 1mstance, or illustration.” Any implementation
described herein as “exemplary” 1s not necessarily to be
construed as preferred or advantageous over other 1mple-
mentations.

The various embodiments will be described 1n detail with
reference to the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts. References
made to particular examples and implementations am for
illustrative purposes, and are not intended to limit the scope
of the invention or the claims.

The various embodiments use an unconventional polymer
synthetic route to develop lightweight, self-healing struc-
tural materials to enable more damage tolerant systems.
Various embodiments involve the molecular design of poly-
mers with compositions that contain mechanoresponsive
chemical functional groups and the determination of syn-
thetic conditions—chemical and mechanical force—needed
to induce reactions to form polymers with properties that can
support the requirements for structural components.

The various embodiments describe how to develop novel
lightweight self-healing system where self-repair 1s induced
by the forces imparted by the damage event itself. The
seli-healing may result because damage 1s induced by an
energetic source (e.g., high velocity projectile impact). By
designing the molecular composition of a polymer to contain
mechanoresponsive functional groups, the various embodi-
ments 1nduce self-healing through the transformation of
such chemical groups to a state where mechanical properties
of the structure are almost completely restored, within
fractions of seconds after the damage event occurs. Such a
fast recovery rate may be based on the existence of non-
engineered puncture healing materials capable of sealing a
hole resulting from projectile penetration within microsec-
onds of the event. The forces imparted by the damage event
may be used to enable healing or repair of the structure. The
ability of the materials of the various embodiments to
autonomically react to changes 1n their environment lends
itsell to potential applications that mitigate some of the risks
that have been 1dentified for long duration human explora-
tion beyond low Earth orbit (“LEO”). In this regard, the
various embodiments provide a mechanoresponsive healing
polymer matenial, capable of not only repairing puncture
damage, but also crack damage. The various embodiment
materials may be developed by incorporating the mechano-
phore, bromocyclobutene, into the backbone of the puncture
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healing polymer, Barex™ 210 IN (PBG). The various
embodiments provide several synthetic routes to prepare the
new polymer.

Various embodiment methods are provided to produce
new mechanoresponsive healing systems. Additionally, vari-
ous embodiments provide a two tier self-healing material
system concept that provides a non-intrusive method to
mitigate impact damage in a structure ranging from low
velocity impact damage (e.g., crack damage) to high veloc-
ity impact damage (e.g., ballistic damage.)

The various embodiments provide self-healing structural
materials that offer better mechanical properties than current
self-healing materials. As examples, the various embodi-
ments provide self-healing structural materials that provide
healing capability at elevated temperatures compared with
current self-healing materials, faster healing rates (e.g., less
than 100 microseconds) than current self-healing matenals,
healing without the need of foreign inserts or fillers, and/or
healing at a wider damage regime (e.g., from microcrack
damage to ballistic puncture damage) than current seli-
healing materials.

The various embodiments provide self-healing structural
materials to enable damage tolerant systems for aerospace
and aviation having applications to NASA missions includ-
ing, but not limited to: 1) secondary or primary structures 1n
aircralt or spacecrait; 2) micrometeoroid and orbital debris
(“MMOD™) protection; 3) cost eflicient repairable wind
power blades; and 4) wire msulation material.

Exploration beyond LEO subjects both humans and space
vehicles/infrastructure to risks, such as space radiation expo-
sure and orbital debris impact damage, the latter of which
can prove to be catastrophic. Aflordable solutions to mitigate
these risks include lightweight solutions such as polymeric
seli-healing materials, specifically materials capable of high
rates of self-healing from high velocity micrometeoroid
debris 1mpacts. An approach for the realization of seli-
healing spacecrait may include incorporation of seli-healing,
materials mto 1ts structural components.

Self-healing materials display the unique ability to miti-
gate incipient damage and have built-in capability to sub-
stantially recover structural load transierring ability follow-
ing the damage event. Certain chemical functional groups
may react i response to the application of external forces to
ellect chemical transformations.

The various embodiments may take advantage of external
forces to induce chemical changes 1n a material designed to
regain 1ts structural integrity in response to what would
normally be damaging forces. Such forces may be harnessed
during chemical reactions to induce interesting chemaistries.
For example, applied force (Casimir, ultrasound, etc.) may
be used to facilitate chemical transformation 1n polymers.
All chemical reactions, whether facilitated by thermal, pho-
tochemical, or mechanical stimuli, proceed via the lowest
energy pathway. Polymer mechanochemistry may selec-
tively alter the reaction coordinate along the pathway to a
desired product (e.g., through the stabilization of the tran-
sition state). By introducing mechanically sensitive chemi-
cal groups or mechanophores into polymer strands, the
directional nature of mechanical forces may selectively
break and re-form covalent bonds. Micro-crack formation
and propagation 1in composite structures (on the atomistic
level) may be the result of the breaking of covalent bonds.
By incorporating mechanophores into the chains of a poly-
mer, the forces that ultimately lead to crack formation and
de-laminations 1n composite structures, may now contribute
to crack healing and the realization of more damage tolerant
systems. In this regard, several polymer mechanophores
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systems may be utilized. For example, cyclobutane bearing
acrylate polymers exhibit enhanced scission Kinetics under
the application of pulsed ultrasound leading to the produc-
tion of functional chain-end acrylates 1n a net [2+2] cyclo-
reversion. Others nonscissile mechanophores may include
benzocyclobutenes, atropisomeric biaryls, epoxides, spiro-
pyrans, pyrophospates and oxanobonadiene.

Current structural materials (epoxies) are not healable,
making 1t necessary to depend on complicated and poten-
tially destructive repair methods and long down times. The
vartous embodiment seli-healing structural materials are
lightweight, robust, and durable. The healability of the
materials 1s a function of inherent physical properties of the
created matrix and not foreign inserts. The various embodi-
ments take advantage of what 1s otherwise a destructive
force and based on the embodiment designs of the material
composition react positively (e.g., covalent bond formation)
rather than negatively (e.g., bond-breaking) to this external
force.

The various embodiments provide a polymer that may be
used 1n structural applications providing a solution to miti-
gate risks from catastrophic micrometeoroid damage and
cnabling safer long duration exploration. The wvarious
embodiments provide self-healing materials with molecular
designs that yield the necessary combination of viscoelastic
properties to enable healing. In this manner, the various
embodiments may shorten the time required for develop-
ment of the molecular design and synthesis prototyping of
mechanoresponsive materials. Additionally, the self-healing
behavior of the various embodiment materials may address
and mitigate damage regimes other than projectile impact
damage, such as crack growth.

FIG. 1 illustrates Casimir forces acting on parallel plates
in a vacuum. The Casimir forces, similar to van der Waals
force, arise when materials are placed 1n close proximity to
cach other, e.g. a few nanometers, such as less than 5
nanometers. The Casimir forces, van der Waals force, and
thermal energy, alone or in combination, may be harnessed
to drive the seli-healing behavior of the embodiment mate-
rials discussed 1n more detail below. FIG. 2 illustrate the
puncture healing concept Puncture healing in the various
embodiment materials may be the result of the synergistic
combination of viscoelastic properties that the polymers
possess. Self-healing behavior may occur upon projectile
puncture whereby energy must be transferred to the material
during impact both elastically and inelastically thus estab-
lishing two requirements for puncture healing to occur: 1)
The need for the puncture event to produce a local melt state
in the polymer material; and 2) The molten material has to
have suflicient melt elasticity to snap back and close the
hole. Ballistic testing studies have revealed that Surlyn®
materials heated to a temperature of ~98° C. during projec-
tile puncture (3° C. higher than Surlyn’s® melting tempera-
ture) may display self-healing behavior. Additional ballistic
testing studies conducted revealed that Surlyn® materials
heated to a temperature ~240° C. during projectile puncture
may display self-healing behavior. The temperature increase
produces a localized flow state and the melt elasticity to snap
back, thus closing the hole (as 1llustrated 1n FIG. 2 1n which
images 200, 201, 202, 203, 204, 205, 206, 207, and 208
show the material before, during, and after projectile punc-
ture). In studies conducted at NASA Langley Research
Center, high speed video recording was used to capture
footage of the puncture healing mechanism at the puncture
site during a ballistics test conducted at various temperatures
for various self-healing polymers. The mechanism of heal-
ing for the respective polymers begins by the tip of the bullet
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punching a hole through the panel as it penetrates the panel
(image 201 of FIG. 2), while pushing out polymer material
through the exit of the panel before 1t exits. The strong force
of the impact may cause acoustic modal waves to propagate
through the material. There may be no pulling of the
material, but there may be a viscoelastic stress wave
response in the radial direction of the bullet, where the
modal wave may push the material uniformly mmward and
outward. The heat generated by the penetration of the
projectile facilitates self-healing, when the local matenal
around the penetration site melts and flows to close the hole
(1mages 204 to 208 of FIG. 2).

The various embodiments provide molecular design of
polymers with compositions that include mechanorespon-
stve chemical functional groups and the determination of
synthetic conditions—chemical and mechanical force—
needed to mnduce reactions to form polymers with properties
that may support the requirements for structural compo-
nents. More specifically, by chemically introducing mecha-
nophores into the structure of a puncture healing resin, the
various embodiments may provide seli-healing resins cre-
ated with the ability to autonomically react to mechanical
stimuli over a wider damage regime (e.g., from cracks up to
ballistic puncture). Thus, the various embodiments utilize
this transformation to provide a new class of seli-healing
polymers, while previous eflorts have only sought to dem-
onstrate the viability of mechanophores or to broadly screen
for putative mechanophore activity.

The various embodiment mechanophore—Ilinked poly-
mers are based on the mechanophore, bromocyclobutene,
and the puncture healing resin INEO’s Barex 210 IN (PBG).
INEO’s Barex 210 IN may demonstrate puncture healing
when shot at a temperature of 50° C. and above. Puncture
healing has been observed to occur within 300 microseconds
in Barex 210 IN materials. INEO’s Barex 210 IN has a
reported tensile modulus of 3.3 GPA, which makes it attrac-
tive for structural applications as a carbon fiber remnforced
composite matrix resin material. The mechanophore, bro-
mocyclobutene, has been demonstrated to undergo a mecha-
nochemical induced electrocyclic ring opening when sub-
jected to pulsed sonication and in the presence N-(1-pyrme)
maleimide.

An embodiment mechanophore linked polymer, PBG-
BCB-PBG (308) and subsequent mechanochemical reaction
1s shown 1n FIG. 3. FIG. 3 1llustrates the chemical structure
of benzocyclobutene (302) and Barex™ 210 IN (PBG) (304)
which may be used in the various embodiments. For
Barex™ 210 IN (PBG) (304), x may range from 5-15 mol
%, vy may range from 75-85 mol %, and z may range from
15-25 mol %. The chemical structures for the mechanophore
bromobenzocyclobutene (306) and the mechanophore
linked polymer (PBG-BCB-PBG) (308) are shown 1n FIG.
3. Also shown 1n FIG. 3 are potential seli-healing pathways
and the resulting chemical structures (310) and (312). As
force 1s applied to the PBG-BCB-PBG system (308) or as
the material undergoes some damage event, two pathways
may be followed. Pathway 1 may lead to chain scission or
covalent bond breaking resulting in chemical structure
(310). Pathway 2 may lead to a subsequent mechanochemi-
cal reaction or covalent bond formation resulting 1n chemi-
cal structure (312). As the polymer undergoes applied force
or a damage event, instead of damage being incurred by the
material (308), the material (308) rather uses the damage
event involved to heal itselt or reform bonds, thus main-
taining integrity of the material or structure (312).

In an embodiment mechanophore addition may be per-
formed via end-group chemistry (e.g., emulsion polymer-
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izations). FIG. 4 1illustrates a scheme showing synthesis of
PBG-BCB-PBG according to an embodiment. This syn-
thetic route may mvolve use of a modified emulsion polym-
erization, such as the modified emulsion polymerization by
Standard Oil of Ohio. The process may use two separate
copolymerizations. The modification includes the copoly-
mer poly(methacrylate-co-acrylonitrile) being end-capped
with bromobenzocyclobutene. A subsequent step includes
both copolymers, poly(methacrylate-co-acrylonitrile) and
poly(butadiene-co-acrylonitrile) being grafted by chain
extension. The first copolymer may comprises 65-85 wt/wt
% acrylonitrile and 15-35 wt/wt % methacrylate, such as
70-80 wt/wt % acrlonitrile and 20-30 wt/wt % methacrylate,
such as 75 wt/wt % acrylonitrile and 25 wt/wt % methacry-
late. The second copolymer may comprise 55-85 wt/wt %
butadiene and 15-45% acrylonitrile, such as 60-80 wt/wt %
butadiene and 20-40% acrylonitrile, such as 70 wt/wt %
butadiene and 30 wt/wt % acrylonitrile. These two copoly-
mers may be block grafted in the ratio of 13:1, respectively,
to form the mechanophore linked polymer PBG-BCB-PBG.

FIG. 5 summarizes the method 3500 for synthesizing
PBG-BCB-PBG illustrated 1n FIG. 4. In step 502 acryloni-
trile may be combined with methacrylate to form poly
(methacrylate-co-acrylonitrile). In step 504 the poly(meth-
acrylate-co-acrylonitrile) may be end-capped with
bromobenzocyclobutene. In step 506 acrylonitrile may be
combined with butadiene to form poly(butadiene-co-acry-
lonitrile). In step 508 the poly(butadiene-co-acrylonitrile)
may be block grafted to the bromobenzocyclobutene end-
capped poly(methacrylate-co-acrylonitrile) to form PBG-
BCB-PBG.

FIG. 6 1llustrates a scheme showing side-group chemistry
of a hydrosilylation reaction and living amionic polymeriza-
tion according to an embodiment. In an embodiment syn-
thesis of PBG-BCB-PBG, 1n a first reaction may involve an
epoxidation of the alkene bond on the grafted copolymer,
poly(butadiene-co-acrylonitrile) on the PBG polymer back-
bone. The reagents Bu'O,H and [MoO,Cl,(3-diethoxyphos-
phorylcamphor)] may be utilized 1n the epoxidising reaction.
In a second reaction, the epoxide may be ring opened by
chlorosilanes. A living anionic polymerization may be car-
ried out with the PBG functionalized with chlorosilane
groups which may be coupled with living anions of poly
(butadiene) and end-capped with the mechanophore, bro-
mocyclobutene to yield the corresponding PBG-BCB-PBG
mechanophore linked polymer. In the corresponding PBG-
BCB-PBG mechanophore linked polymer, x may range from
5-15 mol %, v may range from 73-85 mol %, and z may
range from 15-25 mol %.

FIG. 7 summarizes the method 700 for synthesizing
PBG-BCB-PBG illustrated in FIG. 6. In step 702 the alkene
bond on the grafted copolymer, poly(butadiene-co-acrylo-
nitrile) on the PBG polymer backbone may be epoxidized.
In step 704 the resulting epoxide may be ring opened by
chlorosilanes. In step 706 the living anionic polymerization
may be performed on the PBG functionalized with chlorosi-
lane groups. In step 708 the polymer may be coupled with
living anions of poly(butadiene). In block 710 the polymer
may be end capped with the mechanophore, bromocy-
clobutene to yield the corresponding PBG-BCB-PBG.

FIG. 8 1llustrates a scheme showing side-group chemistry
of vulcanization or cross linking according to an embodi-
ment. The main goal of the scheme 1llustrated 1n FIG. 8 may
be maintain the puncture healing properties of the PBG resin
while adding the mechanophore to the resin in approprate
quantities to acquire desired bond forming properties. In the
vulcanization or crosslinking embodiment of the method of



US 9,908,962 B2

9

forming PBG-BCB-PBG, a first step may involve a free
radical polymerization or crosslinking/vulcanization of the
PBG polymer. The targeted group may be the alkene on the
grafted poly(butadiene-co-acrylonitrile) elastomer of the
PBG polymers. The PBG polymer may be mnitiated with the
free radical imitiator bis(triethoxysilylpropyl)disuliide 1n the
solvent N-methylpyrrolidone NMP at 125° C. under a stron
flow of nitrogen (e.g., a positive flow of nitrogen where
nitrogen 1s flowing out of the system so as to not allow air
or moisture into the system). The mechanophore, bromocy-
clobutene, may be added as an end-capper to terminate the
polymerization. In the resulting PBG-BCB-PBG mechano-
phore linked polymer, X may range from 5-15 mol %, y may
range from 75-85 mol %, and z may range from 15-25 mol
%.

FIG. 9 1s a flow chart summanzing the method 900 for
synthesizing PBG-BCB-PBG illustrated 1n FIG. 8. In step
902 the PBG polymer may undergo free radical polymer-
ization or crossliking/vulcanization with the initiator bis
(triethoxysilypropyl)disulfide 1n a solvent of N-methylpr-
rolidone NMP at 125° C. under a strong flow of mitrogen. In
step 904 the resulting polymer may be end-capped with the
mechanophore, bromocyclobutene to yield the correspond-
ing PBG-BCB-PBG.

The preceding description of the disclosed embodiments
1s provided to enable any person skilled 1n the art to make
or use the present invention. Various modifications to these
embodiments will be readily apparent to those skilled in the
art, and the generic principles defined herein may be applied
to other embodiments without departing from the spirit or
scope of the mvention. Thus, the present mvention 1s not
intended to be limited to the embodiments shown herein but
1s to be accorded the widest scope consistent with the
following claims and the principles and novel features
disclosed herein.

All cited patents, patent applications, and other references
are incorporated herein by reference in their entirety. How-
ever, 1f a term 1n the present application contradicts or
contlicts with a term 1n the incorporated reference, the term
from the present application takes precedence over the
conflicting term from the icorporated reference.

All ranges disclosed herein are inclusive of the endpoints,
and the endpoints are independently combinable with each

other. Each range disclosed herein constitutes a disclosure of

any point or sub-range lying within the disclosed range.

The use of the terms “a” and “an” and *“‘the” and similar
referents 1n the context of describing the mvention (espe-
cially i the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. “Or” means “and/or,” As used herein, the term “and/or”
includes any and all combinations of one or more of the
associated listed items. As also used herein, the term “com-
binations thereof” includes combinations having at least one
of the associated listed 1tems, wherein the combination can
further include additional, like non-listed items. Further, the
terms “first,” “second,” and the like herein do not denote any
order, quantity, or importance, but rather are used to distin-
guish one element from another. The modifier “about” used
in connection with a quantity 1s inclusive of the stated value
and has the meaning dictated by the context (e.g., 1t includes
the degree of error associated with measurement of the
particular quantity).

Reference throughout the specification to “‘another
embodiment”, “an embodiment”, “exemplary embodi-
ments”, and so forth, means that a particular element (e.g.,
feature, structure, and/or characteristic) described in con-
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nection with the embodiment 1s included in at least one
embodiment described herein, and can or cannot be present
in other embodiments. In addition, it 1s to be understood that
the described elements can be combined in any suitable
manner in the various embodiments and are not limited to
the specific combination 1n which they are discussed.

What 1s claimed 1s:

1. A PBG-BCB-PBG polymer comprising:

two polybutadiene-graft-poly(methyl acrylate-co-acrylo-
nitrile) polymer (PBG) molecules bonded to a ci1s-1,2-
bis(a.-bromopropionyl)-1,2-dihydroxbenzocy-
clobutene (BCB) molecule to form the PBG-BCB-PBG
polymer;

wherein the PBG-BCB-PBG polymer i1s a self-healing
mechanophore linked polymer.

2. The polymer of claim 1, wherein the PBG-BCB-PBG
polymer comprises:

/

\

PBG
O}/J‘\
O
O
O)ﬁ/.
PBG
3. The polymer of claim 1, wherein the PBG-BCB-PBG
polymer comprises:

wherein 15 mol %=x=235 mol %, 75 mol %=y=85 mol %,
and 5 mol %=z=<15 mol %.

4. The polymer of claim 1, wherein the PBG-BCB-PBG
polymer comprises:

H;CO O
CN
Y Z
0
.x >_O
CH;—Si
CH; \

wherein 5 mol %=x=<15 mol %, 15 mol %=y=235 mol %,
and 75 mol %=z<85 mol %.
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5. The polymer of claim 1, wherein the PBG-BCB-PBG
polymer comprises:

H,CO 0 ;
CN

~ ( S ;

S
O
O”“‘_ ,\/\/
/ > O
O
\/o X
\ ®)
OHH!'SI\O
S
// k O 20
=
¥
CN 25
H;CO O

wherein 5 mol %=x=<15 mol %, 15 mol %=y=25 mol %,
and 75 mol %=z=85 mol %. 30

¥ ¥ # ¥ o
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